JP2009014210A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2009014210A
JP2009014210A JP2007173372A JP2007173372A JP2009014210A JP 2009014210 A JP2009014210 A JP 2009014210A JP 2007173372 A JP2007173372 A JP 2007173372A JP 2007173372 A JP2007173372 A JP 2007173372A JP 2009014210 A JP2009014210 A JP 2009014210A
Authority
JP
Japan
Prior art keywords
refrigerant
high pressure
temperature
heat exchanger
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007173372A
Other languages
Japanese (ja)
Inventor
Shinichi Kasahara
伸一 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007173372A priority Critical patent/JP2009014210A/en
Priority to US12/667,016 priority patent/US20100175400A1/en
Priority to PCT/JP2008/001493 priority patent/WO2009004761A1/en
Priority to EP08764088.4A priority patent/EP2175212B1/en
Priority to KR1020107001866A priority patent/KR20100036345A/en
Priority to AU2008272365A priority patent/AU2008272365B2/en
Priority to ES08764088T priority patent/ES2784013T3/en
Priority to CN2008800227018A priority patent/CN101688700B/en
Publication of JP2009014210A publication Critical patent/JP2009014210A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2102Temperatures at the outlet of the gas cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve convergence in capacity control in a refrigerating device performing a supercritical cycle. <P>SOLUTION: An air conditioning device 10 comprises a refrigerant circuit 20 constituted by successively connecting a compressor 21, an outdoor heat exchanger 23, an outdoor expansion valve 24 and an indoor heat exchanger 27, and performing the supercritical refrigerating cycle where high pressure is at a critical pressure of the refrigerant or higher, and a controller 40 controlling controlling objects including at least the compressor 21 and the outdoor expansion valve 24. The controller 40 simultaneously controls the plurality of controlling objects to simultaneously control prescribed physical quantities as barometer of the capacity of the refrigerating device and high pressure of the refrigerating cycle. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、超臨界サイクルを行う冷媒回路を備えた冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus including a refrigerant circuit that performs a supercritical cycle.

圧縮機構と熱源側熱交換器と膨張機構と利用側熱交換器とが順に接続された冷媒回路を備えた冷凍装置においては、圧縮機構と膨張機構とを制御することによって該冷凍装置の能力を制御することが一般的である。かかる冷凍装置の一例として、特許文献1に開示されたものがある。   In a refrigeration apparatus having a refrigerant circuit in which a compression mechanism, a heat source side heat exchanger, an expansion mechanism, and a use side heat exchanger are connected in order, the capacity of the refrigeration apparatus is controlled by controlling the compression mechanism and the expansion mechanism. It is common to control. One example of such a refrigeration apparatus is disclosed in Patent Document 1.

この特許文献1に開示された冷凍装置は、圧縮機構としての圧縮機の容量を制御する圧縮機容量制御手段と、膨張機構としての膨張弁の弁開度を制御する膨張弁開度制御手段とを備えている。この圧縮機容量制御手段は、冷媒回路における冷媒の低圧に基づいて圧縮機の容量を制御している。また、膨張弁開度制御手段は、蒸発器出口における冷媒の温度に基づいて膨張弁の弁開度を制御している。このとき、膨張弁開度制御手段の制御量は、圧縮機の容量に基づいて補正される。
特開2002−22242号公報
The refrigeration apparatus disclosed in Patent Document 1 includes compressor capacity control means for controlling the capacity of a compressor as a compression mechanism, and expansion valve opening degree control means for controlling the valve opening degree of an expansion valve as an expansion mechanism. It has. The compressor capacity control means controls the capacity of the compressor based on the low pressure of the refrigerant in the refrigerant circuit. The expansion valve opening degree control means controls the opening degree of the expansion valve based on the refrigerant temperature at the evaporator outlet. At this time, the control amount of the expansion valve opening control means is corrected based on the capacity of the compressor.
JP 2002-22242 A

しかしながら、膨張弁開度制御手段によって膨張弁の弁開度の制御量を圧縮機の容量に基づいて補正する構成であっても、膨張弁の弁開度を変化させると、冷媒の循環状態が変化するため、冷媒の低圧にも変化が生じる。冷媒の低圧が変化すると、圧縮機容量制御手段によって圧縮機構の容量が調整される。こうして、圧縮機の容量が変化すると、膨張弁開度制御手段による制御量を再び補正する必要が生じる。その結果、膨張弁開度制御手段の制御量の補正、冷媒の低圧の変化、圧縮機の容量の変化、再び膨張弁開度制御手段の制御量の補正、・・・というように、圧縮機による低圧制御や膨張弁による過熱度制御がなかなか収束しないという問題がある。   However, even if the expansion valve opening degree control means corrects the control amount of the expansion valve opening degree based on the capacity of the compressor, if the expansion valve opening degree is changed, the circulation state of the refrigerant is changed. Due to the change, a change also occurs in the low pressure of the refrigerant. When the low pressure of the refrigerant changes, the capacity of the compression mechanism is adjusted by the compressor capacity control means. Thus, when the capacity of the compressor changes, it becomes necessary to correct the control amount by the expansion valve opening degree control means again. As a result, the correction of the control amount of the expansion valve opening control means, the change of the low pressure of the refrigerant, the change of the capacity of the compressor, the correction of the control amount of the expansion valve opening control means again, and so on. There is a problem that the low-pressure control by the superheater and the superheat control by the expansion valve do not converge easily.

特に、高圧が冷媒の臨界圧力以上となる超臨界冷凍サイクルを行う冷凍装置においては、この制御の収束性が悪く、問題となる。   In particular, in a refrigeration apparatus that performs a supercritical refrigeration cycle in which the high pressure is equal to or higher than the critical pressure of the refrigerant, the convergence of this control is poor and becomes a problem.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、超臨界サイクルを行う冷凍装置における能力制御の収束性を向上させることにある。   This invention is made | formed in view of this point, The place made into the objective is to improve the convergence of the capability control in the freezing apparatus which performs a supercritical cycle.

本発明は、超臨界サイクルにおいては高圧の変化に対するガスクーラ出口の冷媒のエンタルピの変化量が大きいことに着目してなされたものである。詳しくは、超臨界サイクルでは、冷房運転において低圧変動によって高圧が変化したときに、それによってガスクーラ出口の冷媒のエンタルピが大きく変化する場合がある。その結果、室内熱交換器入口の冷媒のエンタルピが変化し、それによってさらに室内熱交換器出口の過熱度が変化するという亜臨界冷媒にはない作用が加わり、さらに制御の収束性が悪くなる。暖房時でも高圧が変化したときに、それによってガスクーラ出口の冷媒のエンタルピが大きく変化する場合があり、その結果、室内能力の増減が大きくなって室温が変動し、さらにその影響でガスクーラ出口温度の目標値が変化するという悪循環で制御の収束性が悪くなる。また超臨界冷媒であるCOではフロンなどに比べて、過熱度がついたときの冷媒の密度変化が大きく(例えば蒸発温度5℃で過熱度が0℃から5℃に変化したときで比較すると、R410Aではガス密度が3.5%しか減少しないのに対し、COでは6.5%も減少してしまう)、過熱度が変化することによる循環量や能力の変化も大きいため、より制御性に対する影響が大きくなる。これに鑑みて、本発明は冷凍サイクルの高圧と能力制御により制御する所定の物理量とを共に制御するようにしたものである。 The present invention has been made paying attention to the fact that the amount of change in the enthalpy of the refrigerant at the outlet of the gas cooler is large with respect to the change in high pressure in the supercritical cycle. Specifically, in the supercritical cycle, when the high pressure is changed due to the low pressure fluctuation in the cooling operation, the enthalpy of the refrigerant at the gas cooler outlet may be greatly changed. As a result, the enthalpy of the refrigerant at the inlet of the indoor heat exchanger changes, thereby adding an effect not found in the subcritical refrigerant that the degree of superheat at the outlet of the indoor heat exchanger changes, and the convergence of control is further deteriorated. When the high pressure changes even during heating, the enthalpy of the refrigerant at the gas cooler outlet may change greatly.As a result, the indoor capacity increases and decreases, and the room temperature fluctuates. The convergence of control deteriorates in a vicious circle in which the target value changes. In addition, in CO 2 which is a supercritical refrigerant, the density change of the refrigerant when the degree of superheat is larger than that of chlorofluorocarbon (for example, when the superheat degree changes from 0 ° C. to 5 ° C. at an evaporation temperature of 5 ° C.) , whereas the gas density in R410A is not reduced only 3.5%, decreases also CO 6.5% in 2), because the degree of superheat is greater changes in circulating volume and capacity by changing, more control The effect on sex is increased. In view of this, the present invention controls both the high pressure of the refrigeration cycle and a predetermined physical quantity controlled by capacity control.

具体的には、第1の発明は、圧縮機構(21)と熱源側熱交換器(23)と膨張機構(24)と利用側熱交換器(27)とが順に接続されて高圧が冷媒の臨界圧力以上となる超臨界冷凍サイクルを行う冷媒回路(20)と、少なくとも該圧縮機構(21)及び該膨張機構(24)を含む制御対象を制御する制御手段(40)とを備えた冷凍装置が対象である。そして、前記制御手段(40)は、複数の前記制御対象を共に制御することによって、冷凍装置における所定の物理量と冷凍サイクルの高圧とを共に制御するものとする。   Specifically, in the first invention, the compression mechanism (21), the heat source side heat exchanger (23), the expansion mechanism (24), and the use side heat exchanger (27) are connected in order so that the high pressure is reduced. A refrigeration apparatus comprising a refrigerant circuit (20) that performs a supercritical refrigeration cycle that is equal to or higher than a critical pressure, and a control means (40) that controls a control target including at least the compression mechanism (21) and the expansion mechanism (24) Is the target. And the said control means (40) shall control both the predetermined | prescribed physical quantity in a freezing apparatus, and the high voltage | pressure of a refrigerating cycle by controlling the said several control object together.

前記の構成の場合、冷媒回路(20)における冷凍サイクルの高圧を制御しつつ所定の物理量の制御が行われる。すなわち、制御対象を調整したときの冷凍サイクルの高圧の変化、ひいては、ガスクーラ出口の冷媒のエンタルピの変化を考慮した上で、他の物理量の制御を行うことができる。このように、複数の制御対象を共に制御することで冷凍サイクルの高圧と所定の物理量とを共に制御することによって、互いの変化に起因する高圧や所定の物理量への影響を加味して該制御対象を制御することができるため、制御対象を別々に制御して、対応する冷凍サイクルの高圧や所定の物理量がそれぞれ別々に変化することで互いに影響し合い、なかなか収束しないという事態を防止することができる。その結果、冷凍装置における所定の物理量や高圧の制御の収束性を向上させることができる。   In the case of the above configuration, the predetermined physical quantity is controlled while controlling the high pressure of the refrigeration cycle in the refrigerant circuit (20). That is, other physical quantities can be controlled in consideration of a change in the high pressure of the refrigeration cycle when the control target is adjusted, and a change in the enthalpy of the refrigerant at the gas cooler outlet. In this way, by controlling both the high pressure of the refrigeration cycle and the predetermined physical quantity by controlling a plurality of controlled objects together, the control is performed in consideration of the influence on the high pressure and the predetermined physical quantity caused by the mutual changes. Since the target can be controlled, the controlled object is controlled separately, and the high pressure and the predetermined physical quantity of the corresponding refrigeration cycle are changed separately to affect each other and prevent the situation where it does not converge easily Can do. As a result, it is possible to improve the convergence of a predetermined physical quantity and high pressure control in the refrigeration apparatus.

第2の発明は、第1の発明において、前記制御手段(40)は、前記所定の物理量と冷凍サイクルの高圧とを入力として、複数の前記制御対象のそれぞれに対する制御信号を該物理量と該高圧とを互いに関連付けて生成して、該制御信号を前記各制御対象に出力することによって前記所定の物理量と冷凍サイクルの高圧とを共に制御するものとする。   In a second aspect based on the first aspect, the control means (40) receives the predetermined physical quantity and the high pressure of the refrigeration cycle as input, and outputs a control signal for each of the plurality of control objects to the physical quantity and the high pressure. Are generated in association with each other, and the control signal is output to each control target, thereby controlling both the predetermined physical quantity and the high pressure of the refrigeration cycle.

前記の構成の場合、前記複数の制御対象のそれぞれを制御する制御信号を、所定の物理量と冷凍サイクルの高圧とを入力とし、これらを互いに関連付けて生成することによって、所定の物理量や高圧のうちの何れか1つを入力として制御対象を制御するのではなく、所定の物理量と高圧との両方を加味して各制御対象を制御することができる。さらに、前述の如く複数の制御対象が共に制御させるため、一の制御対象の制御信号を生成する際に、他の制御対象の調整による所定の物理量や高圧への影響をも考慮して制御信号を生成することができる。   In the case of the above-described configuration, a control signal for controlling each of the plurality of control objects is generated by inputting a predetermined physical quantity and a high pressure of the refrigeration cycle in association with each other, thereby generating a predetermined physical quantity or high pressure. Instead of controlling any one of these as an input, it is possible to control each controlled object in consideration of both a predetermined physical quantity and a high pressure. Furthermore, since a plurality of control objects are controlled together as described above, when generating a control signal for one control object, the control signal also takes into account the influence on the predetermined physical quantity and high voltage due to the adjustment of the other control object. Can be generated.

第3の発明は、第1又は第2の発明において、冷媒を空気と熱交換させる前記熱源側熱交換器(23)に空気を供給する熱源側ファン(28)をさらに備え、冷房運転時においては、前記所定の物理量は、前記利用側熱交換器(27)における冷媒の蒸発温度と前記利用側熱交換器(27)の出口における冷媒の過熱度とであり、前記制御対象には、前記熱源側ファン(28)がさらに含まれており、前記制御手段(40)は、冷媒の前記蒸発温度及び前記過熱度と冷凍サイクルの高圧とを入力として、前記圧縮機構(21)、膨張機構(24)及び熱源側ファン(28)を共に制御することによって、冷媒の前記蒸発温度及び冷媒の前記過熱度と冷凍サイクルの高圧とを共に制御するものとする。   A third invention further includes a heat source side fan (28) for supplying air to the heat source side heat exchanger (23) for exchanging heat between the refrigerant and air in the first or second invention, and during cooling operation. The predetermined physical quantities are the refrigerant evaporation temperature in the use side heat exchanger (27) and the degree of superheat of the refrigerant at the outlet of the use side heat exchanger (27). A heat source side fan (28) is further included, and the control means (40) receives the evaporating temperature and superheat degree of the refrigerant and the high pressure of the refrigeration cycle as inputs, and the compression mechanism (21), expansion mechanism ( 24) and the heat source side fan (28) are controlled together to control both the evaporating temperature of the refrigerant, the superheat degree of the refrigerant, and the high pressure of the refrigeration cycle.

前記の構成の場合、冷房運転時において、圧縮機構(21)、膨張機構(24)及び熱源側ファン(28)という3つの制御対象を共に制御して冷凍サイクルの高圧を制御しつつ冷媒の蒸発温度と過熱度とを共に制御することによって、冷凍サイクルの高圧を所望の目標値に安定的に制御した状態で冷媒の蒸発温度と過熱度とを制御することができるため、冷凍サイクルの高圧、冷媒の蒸発温度及び過熱度を高い収束性で制御することができる。   In the case of the above-described configuration, during the cooling operation, the refrigerant evaporates while controlling the high pressure of the refrigeration cycle by controlling the three control objects of the compression mechanism (21), the expansion mechanism (24) and the heat source side fan (28) together. By controlling both the temperature and the degree of superheat, the refrigerant evaporating temperature and the degree of superheat can be controlled while stably controlling the high pressure of the refrigeration cycle to a desired target value. The evaporation temperature and superheat degree of the refrigerant can be controlled with high convergence.

第4の発明は、第1又は第2の発明において、暖房運転時には、前記所定の物理量は、前記熱源側熱交換器(23)の出口における冷媒の過熱度であり、前記制御手段(40)は、冷媒の前記過熱度と冷凍サイクルの高圧とを入力として、前記圧縮機構(21)及び膨張機構(24)を共に制御することによって、冷媒の前記過熱度と冷凍サイクルの高圧とを共に制御するものとする。   According to a fourth invention, in the first or second invention, during the heating operation, the predetermined physical quantity is a degree of superheat of the refrigerant at an outlet of the heat source side heat exchanger (23), and the control means (40) Controls both the superheat degree of the refrigerant and the high pressure of the refrigeration cycle by controlling both the compression mechanism (21) and the expansion mechanism (24) with the superheat degree of the refrigerant and the high pressure of the refrigeration cycle as inputs. It shall be.

前記の構成の場合、暖房運転時において、圧縮機構(21)及び膨張機構(24)という2つの制御対象を共に制御して冷凍サイクルの高圧を制御しつつ冷媒の過熱度を共に制御することによって、冷凍サイクルの高圧を所望の目標値に安定的に制御した状態で冷媒の過熱度を制御することができるため、冷凍サイクルの高圧及び冷媒の過熱度を高い収束性で制御することができる。   In the case of the above-described configuration, during heating operation, by controlling both the compression target (the compression mechanism (21) and the expansion mechanism (24)) and controlling the high pressure of the refrigeration cycle, the superheat degree of the refrigerant is controlled together. Since the superheat degree of the refrigerant can be controlled in a state where the high pressure of the refrigeration cycle is stably controlled to a desired target value, the high pressure of the refrigeration cycle and the superheat degree of the refrigerant can be controlled with high convergence.

第5の発明は、第1又は第2の発明において、前記圧縮機構は、低圧の冷媒を吸入して圧縮する第1圧縮機(21a)と、該第1圧縮機(21a)から吐出された冷媒をさらに圧縮して吐出する第2圧縮機(21b)とを有し、前記膨張機構は、高圧の冷媒を膨張させる第1膨張機構(24)と、該第1膨張機構(24)によって中間圧となった冷媒をさらに膨張させる第2膨張機構(26)とを有し、冷房運転時においては、前記所定の物理量は、前記利用側熱交換器(27)における冷媒の蒸発温度と前記利用側熱交換器(27)の出口における冷媒の過熱度と冷凍サイクルの中間圧とであり、前記制御手段(240)は、冷媒の前記蒸発温度、冷媒の前記過熱度及び冷凍サイクルの中間圧と冷凍サイクルの高圧とを入力として、前記第1及び第2圧縮機(21a,21b)並びに第1及び第2膨張機構(24,26)を共に制御することによって、冷媒の前記蒸発温度、冷媒の前記過熱度及び冷凍サイクルの中間圧と冷凍サイクルの高圧とを共に制御するものとする。   In a fifth aspect based on the first or second aspect, the compression mechanism is discharged from the first compressor (21a) that sucks and compresses the low-pressure refrigerant, and the first compressor (21a). A second compressor (21b) that further compresses and discharges the refrigerant, and the expansion mechanism includes a first expansion mechanism (24) that expands the high-pressure refrigerant and an intermediate between the first expansion mechanism (24). A second expansion mechanism (26) that further expands the refrigerant that has become a pressure, and during the cooling operation, the predetermined physical quantity is determined by the refrigerant evaporation temperature and the utilization in the utilization side heat exchanger (27). The refrigerant superheat degree at the outlet of the side heat exchanger (27) and the intermediate pressure of the refrigeration cycle, and the control means (240) includes the evaporating temperature of the refrigerant, the superheat degree of the refrigerant, and the intermediate pressure of the refrigeration cycle. Using the high pressure of the refrigeration cycle as an input, the first and second compressors (21a, 21b) are arranged By controlling the first and second expansion mechanism (24, 26) together, and to control the evaporation temperature of the refrigerant, the high pressure of the intermediate pressure and the refrigeration cycle of the degree of superheat and refrigeration cycle of the refrigerant together.

前記の構成の場合、冷房運転時において、第1及び第2圧縮機(21a,21b)並びに第1及び第2膨張機構(24,26)という4つの制御対象を共に制御して冷凍サイクルの高圧を制御しつつ冷媒の蒸発温度と過熱度と中間圧とを共に制御することによって、冷凍サイクルの高圧を所望の目標値に安定的に制御した状態で冷媒の蒸発温度と過熱度と冷凍サイクルの中間圧とを制御することができるため、冷凍サイクルの高圧、冷媒の蒸発温度、過熱度及び冷凍サイクルの中間圧を高い収束性で制御することができる。   In the case of the above-described configuration, during the cooling operation, the four controlled objects of the first and second compressors (21a, 21b) and the first and second expansion mechanisms (24, 26) are controlled together to increase the pressure of the refrigeration cycle. By controlling the evaporating temperature, superheat, and intermediate pressure of the refrigerant together while controlling the refrigerant, the evaporating temperature, superheat, and refrigeration cycle of the refrigerant are controlled while the high pressure of the refrigeration cycle is stably controlled to a desired target value. Since the intermediate pressure can be controlled, the high pressure of the refrigeration cycle, the evaporation temperature of the refrigerant, the degree of superheat, and the intermediate pressure of the refrigeration cycle can be controlled with high convergence.

第6の発明は、第1又は第2の発明において、前記圧縮機構は、低圧の冷媒を吸入して圧縮する第1圧縮機(21a)と、該第1圧縮機(21a)から吐出された冷媒をさらに圧縮して吐出する第2圧縮機(21b)とを有し、前記膨張機構は、高圧の冷媒を膨張させる第1膨張機構(24)と、該第1膨張機構(24)によって中間圧となった冷媒をさらに膨張させる第2膨張機構(26)とを有し、暖房運転時においては、前記所定の物理量は、前記熱源側熱交換器(23)における冷媒の蒸発温度と前記熱源側熱交換器(23)の出口における冷媒の過熱度と前記利用側熱交換器(27)の出口における冷媒の温度であるガスクーラ出口温度とであり、前記制御手段(240)は、冷媒の前記蒸発温度、冷媒の前記過熱度及び冷媒の前記ガスクーラ出口温度と冷凍サイクルの高圧とを入力として、前記第1及び第2圧縮機(21a,21b)並びに第1及び第2膨張機構(24,26)を共に制御することによって、冷媒の前記蒸発温度、冷媒の前記過熱度及び冷媒の前記ガスクーラ出口温度と冷凍サイクルの高圧とを共に制御するものとする。   In a sixth aspect based on the first or second aspect, the compression mechanism is discharged from the first compressor (21a) that sucks and compresses the low-pressure refrigerant, and the first compressor (21a). A second compressor (21b) that further compresses and discharges the refrigerant, and the expansion mechanism includes a first expansion mechanism (24) that expands the high-pressure refrigerant and an intermediate between the first expansion mechanism (24). A second expansion mechanism (26) that further expands the refrigerant that has become a pressure, and during the heating operation, the predetermined physical quantity is the refrigerant evaporation temperature and the heat source in the heat source side heat exchanger (23). A degree of superheat of the refrigerant at the outlet of the side heat exchanger (23) and a gas cooler outlet temperature which is the temperature of the refrigerant at the outlet of the utilization side heat exchanger (27), and the control means (240) Evaporation temperature, refrigerant superheat, refrigerant gas cooler outlet temperature and refrigeration cycle And controlling the first and second compressors (21a, 21b) and the first and second expansion mechanisms (24, 26) as inputs, the evaporating temperature of the refrigerant and the overheating of the refrigerant. And the temperature of the gas cooler outlet of the refrigerant and the high pressure of the refrigeration cycle are both controlled.

前記の構成の場合、暖房運転時において、第1及び第2圧縮機(21a,21b)並びに第1及び第2膨張機構(24,26)という4つの制御対象を共に制御して冷凍サイクルの高圧を制御しつつ冷媒の蒸発温度と過熱度とガスクーラ出口温度とを共に制御することによって、冷凍サイクルの高圧を所望の目標値に安定的に制御した状態で冷媒の蒸発温度と過熱度とガスクーラ出口温度とを制御することができるため、冷凍サイクルの高圧、冷媒の蒸発温度、過熱度及びガスクーラ出口温度を高い収束性で制御することができる。   In the case of the above-described configuration, during the heating operation, the four controlled objects of the first and second compressors (21a, 21b) and the first and second expansion mechanisms (24, 26) are controlled together to increase the pressure of the refrigeration cycle. The refrigerant evaporation temperature, superheat, and gas cooler outlet are controlled in a state where the high pressure of the refrigeration cycle is stably controlled to a desired target value by controlling the refrigerant evaporation temperature, superheat, and gas cooler outlet temperature together. Since the temperature can be controlled, the high pressure of the refrigeration cycle, the evaporation temperature of the refrigerant, the superheat degree, and the gas cooler outlet temperature can be controlled with high convergence.

第7の発明は、第1又は第2の発明において、前記利用側熱交換器(27a,27b)は、複数設けられていると共に互いに並列に接続されており、前記膨張機構は、前記各利用側熱交換器(27a,27b)ごとに対応して設けられた複数の利用側膨張機構(26a,26b)と、該利用側熱交換器(27a,27b)及び該利用側膨張機構(26a,26b)と前記熱源側熱交換器(23)との間に設けられた熱源側膨張機構(24)とを有し、冷房運転時においては、前記所定の物理量は、前記利用側熱交換器(27a,27b)における冷媒の蒸発温度と前記各利用側熱交換器(27a,27b)の出口における冷媒の過熱度とであり、前記制御手段(340)は、冷媒の前記蒸発温度及び該各利用側熱交換器(27a,27b)における冷媒の前記過熱度と冷凍サイクルの高圧とを入力として、前記圧縮機構(21)、複数の前記利用側膨張機構(26a,26b)及び前記熱源側膨張機構(24)を共に制御することによって、冷媒の前記蒸発温度及び該各利用側熱交換器(27a,27b)における冷媒の前記過熱度と冷凍サイクルの高圧とを共に制御するものとする。   A seventh invention is the first or second invention, wherein a plurality of the use side heat exchangers (27a, 27b) are provided and connected in parallel to each other, and the expansion mechanism A plurality of utilization side expansion mechanisms (26a, 26b) provided corresponding to the respective side heat exchangers (27a, 27b), the utilization side heat exchangers (27a, 27b), and the utilization side expansion mechanisms (26a, 26b). 26b) and a heat source side heat exchanger (23) provided between the heat source side heat exchanger (23), and during the cooling operation, the predetermined physical quantity is the use side heat exchanger ( 27a, 27b) and the refrigerant evaporating temperature and the degree of superheat of the refrigerant at the outlet of each use side heat exchanger (27a, 27b), and the control means (340) The compression mechanism (21) includes a plurality of superheat degrees of the refrigerant in the side heat exchangers (27a, 27b) and the high pressure of the refrigeration cycle as inputs. By controlling both the use side expansion mechanism (26a, 26b) and the heat source side expansion mechanism (24), the evaporating temperature of the refrigerant and the degree of superheat of the refrigerant in each use side heat exchanger (27a, 27b) And the high pressure of the refrigeration cycle.

前記の構成の場合、冷房運転時において、圧縮機構(21)、熱源側膨張機構(24)及び複数の利用側膨張機構(26a,26b)という複数の制御対象を共に制御して冷凍サイクルの高圧を制御しつつ冷媒の蒸発温度と各利用側熱交換器(27a,27b)における過熱度とを共に制御することによって、冷凍サイクルの高圧を所望の目標値に安定的に制御した状態で冷媒の蒸発温度と各利用側熱交換器(27a,27b)における過熱度とを制御することができるため、冷凍サイクルの高圧、冷媒の蒸発温度及び各利用側熱交換器(27a,27b)における過熱度を高い収束性で制御することができる。   In the case of the above-described configuration, during the cooling operation, a plurality of controlled objects such as the compression mechanism (21), the heat source side expansion mechanism (24), and the plurality of usage side expansion mechanisms (26a, 26b) are controlled together to increase the pressure of the refrigeration cycle. By controlling both the evaporating temperature of the refrigerant and the degree of superheat in each use-side heat exchanger (27a, 27b) while controlling the refrigerant, the high pressure of the refrigeration cycle is stably controlled to the desired target value. Since the evaporation temperature and the degree of superheat in each use side heat exchanger (27a, 27b) can be controlled, the high pressure of the refrigeration cycle, the evaporation temperature of the refrigerant, and the degree of superheat in each use side heat exchanger (27a, 27b) Can be controlled with high convergence.

第8の発明は、第1又は第2の発明において、前記利用側熱交換器(27a,27b)は、複数設けられていると共に互いに並列に接続されており、前記膨張機構は、前記各利用側熱交換器(27a,27b)ごとに対応して設けられた複数の利用側膨張機構(26a,26b)と、該利用側熱交換器(27a,27b)及び該利用側膨張機構(26a,26b)と前記熱源側熱交換器(23)との間に設けられた熱源側膨張機構(24)とを有し、暖房運転時においては、前記所定の物理量は、前記熱源側熱交換器(23)の出口における冷媒の過熱度と前記各利用側熱交換器(27a,27b)の出口における冷媒の温度であるガスクーラ出口温度とであり、前記制御手段(340)は、冷媒の前記過熱度及び前記各利用側熱交換器(27a,27b)における冷媒の前記ガスクーラ出口温度と冷凍サイクルの高圧とを入力として、前記圧縮機構(21)、複数の前記利用側膨張機構(26a,26b)及び前記熱源側膨張機構(24)を共に制御することによって、冷媒の前記過熱度及び前記各利用側熱交換器(27a,27b)における冷媒の前記ガスクーラ出口温度と冷凍サイクルの高圧とを共に制御するものとする。   An eighth invention is the first or second invention, wherein a plurality of the use side heat exchangers (27a, 27b) are provided and connected in parallel to each other, and the expansion mechanism A plurality of utilization side expansion mechanisms (26a, 26b) provided corresponding to the respective side heat exchangers (27a, 27b), the utilization side heat exchangers (27a, 27b), and the utilization side expansion mechanisms (26a, 26b). 26b) and a heat source side heat exchanger (23) provided between the heat source side heat exchanger (23), and during the heating operation, the predetermined physical quantity is the heat source side heat exchanger ( 23) and the gas cooler outlet temperature, which is the temperature of the refrigerant at the outlet of each use side heat exchanger (27a, 27b), and the control means (340) And the gas cooler outlet temperature of the refrigerant and the high pressure of the refrigeration cycle in each of the use side heat exchangers (27a, 27b) By controlling the compression mechanism (21), the plurality of use side expansion mechanisms (26a, 26b) and the heat source side expansion mechanism (24) together, the superheat degree of the refrigerant and each use side heat exchanger are controlled. It is assumed that both the gas cooler outlet temperature of the refrigerant in (27a, 27b) and the high pressure of the refrigeration cycle are controlled.

前記の構成の場合、暖房運転時において、圧縮機構(21)、熱源側膨張機構(24)及び複数の利用側膨張機構(26a,26b)という複数の制御対象を共に制御して冷凍サイクルの高圧を制御しつつ冷媒の過熱度と各利用側熱交換器(27a,27b)における冷媒のガスクーラ出口温度とを共に制御することによって、冷凍サイクルの高圧を所望の目標値に安定的に制御した状態で冷媒の過熱度と各利用側熱交換器(27a,27b)における冷媒のガスクーラ出口温度とを制御することができるため、冷凍サイクルの高圧、冷媒の過熱度及び各利用側熱交換器(27a,27b)における冷媒のガスクーラ出口温度を高い収束性で制御することができる。   In the case of the above-described configuration, during heating operation, a plurality of controlled objects such as the compression mechanism (21), the heat source side expansion mechanism (24), and the plurality of usage side expansion mechanisms (26a, 26b) are controlled together to increase the pressure of the refrigeration cycle. Controlling both refrigerant superheat and refrigerant gas cooler outlet temperature in each heat exchanger (27a, 27b) while controlling the high pressure of the refrigeration cycle to the desired target value Can control the refrigerant superheat degree and the refrigerant gas cooler outlet temperature in each use side heat exchanger (27a, 27b), so that the high pressure of the refrigeration cycle, the refrigerant superheat degree, and each use side heat exchanger (27a 27b), the refrigerant gas cooler outlet temperature can be controlled with high convergence.

本発明によれば、複数の制御対象を共に制御して冷凍装置における所定の物理量と冷凍サイクルの高圧とを共に制御することによって、所定の物理量と冷凍サイクルの高圧とを共に考慮すると共に、複数の制御対象による互いの影響を考慮して所定の物理量と冷凍サイクルの高圧とを共に制御することができるため、冷凍装置における所定の物理量や高圧の制御の収束性を向上させることができる。   According to the present invention, a plurality of objects to be controlled are controlled together to control both a predetermined physical quantity in the refrigeration apparatus and a high pressure of the refrigeration cycle, thereby considering both the predetermined physical quantity and the high pressure of the refrigeration cycle. Since the predetermined physical quantity and the high pressure of the refrigeration cycle can be controlled in consideration of the mutual influences of the controlled objects, the convergence of the predetermined physical quantity and high pressure control in the refrigeration apparatus can be improved.

第2の発明によれば、前記複数の制御対象のそれぞれを制御する制御信号を、所定の物理量と冷凍サイクルの高圧とを入力とし、これらを互いに関連付けて生成することによって、一の制御対象の制御信号を生成する際に、所定の物理量と冷凍サイクルの高圧とを共に考慮することに加えて、他の制御対象の調整による所定の物理量や高圧への影響をも考慮して制御信号を生成することができ、冷凍装置における所定の物理量や高圧の制御の収束性を向上させることができる。   According to the second invention, a control signal for controlling each of the plurality of control targets is generated by inputting a predetermined physical quantity and a high pressure of the refrigeration cycle in association with each other, thereby generating one control target. When generating the control signal, in addition to considering both the predetermined physical quantity and the high pressure of the refrigeration cycle, the control signal is also generated in consideration of the influence on the predetermined physical quantity and high pressure due to the adjustment of other control targets. It is possible to improve the convergence of a predetermined physical quantity and high-pressure control in the refrigeration apparatus.

第3の発明によれば、冷房運転時に、圧縮機構(21)、膨張機構(24)及び熱源側ファン(28)という3つの制御対象を共に制御して冷凍サイクルの高圧を制御しつつ冷媒の蒸発温度と過熱度とを共に制御することによって、冷凍サイクルの高圧、冷媒の蒸発温度及び過熱度を高い収束性で制御することができる。   According to the third invention, during the cooling operation, the three control objects of the compression mechanism (21), the expansion mechanism (24), and the heat source side fan (28) are controlled together to control the high pressure of the refrigeration cycle. By controlling both the evaporation temperature and the degree of superheat, the high pressure of the refrigeration cycle, the evaporation temperature of the refrigerant, and the degree of superheat can be controlled with high convergence.

第4の発明によれば、暖房運転時において、圧縮機構(21)及び膨張機構(24)という2つの制御対象を共に制御して冷凍サイクルの高圧を制御しつつ冷媒の過熱度を共に制御することによって、冷凍サイクルの高圧及び冷媒の過熱度を高い収束性で制御することができる。   According to the fourth aspect of the present invention, during the heating operation, the two control objects of the compression mechanism (21) and the expansion mechanism (24) are controlled together to control the superheat degree of the refrigerant while controlling the high pressure of the refrigeration cycle. Thus, the high pressure of the refrigeration cycle and the degree of superheat of the refrigerant can be controlled with high convergence.

第5の発明によれば、二段圧縮冷凍サイクルを行う冷凍装置において、冷房運転時に、第1及び第2圧縮機(21a,21b)並びに第1及び第2膨張機構(24,26)という4つの制御対象を共に制御して冷凍サイクルの高圧を制御しつつ冷媒の蒸発温度と過熱度と冷凍サイクルの中間圧とを共に制御することによって、冷凍サイクルの高圧、冷媒の蒸発温度、過熱度及び冷凍サイクルの中間圧を高い収束性で制御することができる。   According to the fifth invention, in the refrigeration apparatus that performs the two-stage compression refrigeration cycle, during the cooling operation, the first and second compressors (21a, 21b) and the first and second expansion mechanisms (24, 26) 4 By controlling both the control target and the high pressure of the refrigeration cycle while simultaneously controlling the refrigerant evaporating temperature and superheat degree and the intermediate pressure of the refrigeration cycle, the refrigeration cycle high pressure, refrigerant evaporating temperature, superheat degree and The intermediate pressure of the refrigeration cycle can be controlled with high convergence.

第6の発明によれば、二段圧縮冷凍サイクルを行う冷凍装置において、暖房運転時に、第1及び第2圧縮機(21a,21b)並びに第1及び第2膨張機構(24,26)という4つの制御対象を共に制御して冷凍サイクルの高圧を制御しつつ冷媒の蒸発温度と過熱度とガスクーラ出口温度とを共に制御することによって、冷凍サイクルの高圧、冷媒の蒸発温度、過熱度及びガスクーラ出口温度を高い収束性で制御することができる。   According to the sixth invention, in the refrigeration apparatus that performs the two-stage compression refrigeration cycle, during the heating operation, the first and second compressors (21a, 21b) and the first and second expansion mechanisms (24, 26) 4 By controlling both the refrigerant temperature, superheat and gas cooler outlet temperature while controlling the high pressure of the refrigeration cycle by controlling two control objects together, the high pressure of the refrigeration cycle, the refrigerant evaporation temperature, the superheat and the gas cooler outlet The temperature can be controlled with high convergence.

第7の発明によれば、室内機が複数設けられた所謂マルチ機において、冷房運転時に、圧縮機構(21)、熱源側膨張機構(24)及び複数の利用側膨張機構(26a,26b)という複数の制御対象を共に制御して冷凍サイクルの高圧を制御しつつ冷媒の蒸発温度と各利用側熱交換器(27a,27b)における過熱度とを共に制御することによって、冷凍サイクルの高圧、冷媒の蒸発温度及び各利用側熱交換器(27a,27b)における過熱度を高い収束性で制御することができる。   According to the seventh invention, in a so-called multi-machine provided with a plurality of indoor units, the cooling mechanism is referred to as a compression mechanism (21), a heat source side expansion mechanism (24), and a plurality of use side expansion mechanisms (26a, 26b). By controlling both of the objects to be controlled and controlling the high temperature of the refrigeration cycle while controlling the evaporation temperature of the refrigerant and the degree of superheat in each use side heat exchanger (27a, 27b), It is possible to control the evaporation temperature and the degree of superheat in each use side heat exchanger (27a, 27b) with high convergence.

第8の発明によれば、室内機が複数設けられた所謂マルチ機において、暖房運転時に、圧縮機構(21)、熱源側膨張機構(24)及び複数の利用側膨張機構(26a,26b)という複数の制御対象を共に制御して冷凍サイクルの高圧を制御しつつ冷媒の過熱度と各利用側熱交換器(27a,27b)における冷媒のガスクーラ出口温度とを共に制御することによって、冷凍サイクルの高圧、冷媒の過熱度及び各利用側熱交換器(27a,27b)における冷媒のガスクーラ出口温度を高い収束性で制御することができる。   According to the eighth invention, in a so-called multi-machine provided with a plurality of indoor units, the heating mechanism is referred to as a compression mechanism (21), a heat source side expansion mechanism (24), and a plurality of use side expansion mechanisms (26a, 26b). By controlling both the controlled objects together and controlling the high pressure of the refrigeration cycle, the superheat degree of the refrigerant and the refrigerant gas cooler outlet temperature in each use side heat exchanger (27a, 27b) are controlled together. The high pressure, the degree of superheat of the refrigerant, and the gas cooler outlet temperature of the refrigerant in each use side heat exchanger (27a, 27b) can be controlled with high convergence.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

《発明の実施形態1》
本発明の実施形態を図面に基づいて詳細に説明する。
Embodiment 1 of the Invention
Embodiments of the present invention will be described in detail with reference to the drawings.

図1に示すように、本実施形態の空気調和装置(10)は、冷媒回路(20)とコントローラ(40)を備えている。   As shown in FIG. 1, the air conditioner (10) of this embodiment includes a refrigerant circuit (20) and a controller (40).

前記冷媒回路(20)は、冷媒として二酸化炭素(CO)が充填された閉回路である。冷媒回路(20)では、冷媒が循環して蒸気圧縮式の冷凍サイクルを行うように構成されている。また、この冷媒回路(20)は、高圧が二酸化炭素の臨界圧力以上の値に設定される超臨界冷凍サイクル(即ち、二酸化炭素の臨界温度以上の蒸気圧領域を含む冷凍サイクル)を行うように構成されている。 The refrigerant circuit (20) is a closed circuit filled with carbon dioxide (CO 2 ) as a refrigerant. The refrigerant circuit (20) is configured to perform a vapor compression refrigeration cycle by circulating the refrigerant. The refrigerant circuit (20) performs a supercritical refrigeration cycle (that is, a refrigeration cycle including a vapor pressure region higher than the critical temperature of carbon dioxide) in which the high pressure is set to a value equal to or higher than the critical pressure of carbon dioxide. It is configured.

前記冷媒回路(20)には、圧縮機(21)と、四路切換弁(22)と、室外熱交換器(23)と、室外膨張弁(24)と、室内熱交換器(27)とが接続されている。   The refrigerant circuit (20) includes a compressor (21), a four-way switching valve (22), an outdoor heat exchanger (23), an outdoor expansion valve (24), and an indoor heat exchanger (27). Is connected.

具体的に、前記冷媒回路(20)において、圧縮機(21)は、吐出側が四路切換弁(22)の第1ポートに、吸入側が四路切換弁(22)の第2ポートにそれぞれ接続されている。また、冷媒回路(20)では、四路切換弁(22)の第3ポートから第4ポートへ向かって順に、室外熱交換器(23)、室外膨張弁(24)、室内熱交換器(27)が順に配置されている。   Specifically, in the refrigerant circuit (20), the compressor (21) has a discharge side connected to the first port of the four-way switching valve (22) and a suction side connected to the second port of the four-way switching valve (22). Has been. In the refrigerant circuit (20), the outdoor heat exchanger (23), the outdoor expansion valve (24), and the indoor heat exchanger (27) are sequentially arranged from the third port to the fourth port of the four-way switching valve (22). ) Are arranged in order.

前記圧縮機(21)は、可変容量型のいわゆる全密閉型に構成されている。この圧縮機(21)は、吸入した冷媒(二酸化炭素)をその臨界圧力以上にまで圧縮して吐出する。圧縮機(21)のモータ(図示省略)に供給する交流の周波数を変更することによって、圧縮機(21)の回転速度、つまり、容量を変化させることができる。この圧縮機(21)が圧縮機構を構成する。   The compressor (21) is a variable capacity type so-called hermetic type. The compressor (21) compresses and discharges the sucked refrigerant (carbon dioxide) to the critical pressure or more. By changing the frequency of the alternating current supplied to the motor (not shown) of the compressor (21), the rotational speed, that is, the capacity of the compressor (21) can be changed. This compressor (21) constitutes a compression mechanism.

前記室外熱交換器(23)では、室外ファン(28)によって取り込まれた室外空気と冷媒が熱交換する。前記室内熱交換器(27)では、室内ファン(29)によって取り込まれた室内空気と冷媒が熱交換する。この室外熱交換器(23)が熱源側熱交換器を構成し、室内熱交換器(27)が利用側熱交換器を構成する。また、室外ファン(28)が熱源側ファンを構成する。   In the outdoor heat exchanger (23), the outdoor air taken in by the outdoor fan (28) and the refrigerant exchange heat. In the indoor heat exchanger (27), the indoor air taken in by the indoor fan (29) and the refrigerant exchange heat. The outdoor heat exchanger (23) constitutes a heat source side heat exchanger, and the indoor heat exchanger (27) constitutes a use side heat exchanger. The outdoor fan (28) constitutes a heat source side fan.

前記室外膨張弁(24)は、弁体(図示省略)がパルスモータ(図示省略)で駆動される開度可変の電子膨張弁によって構成されている。この室外膨張弁(24)が膨張機構を構成している。   The outdoor expansion valve (24) is constituted by a variable opening electronic expansion valve whose valve body (not shown) is driven by a pulse motor (not shown). This outdoor expansion valve (24) constitutes an expansion mechanism.

前記四路切換弁(22)は、第1ポートと第3ポートが連通し且つ第2ポートと第4ポートが連通する第1状態(図1に実線で示す状態)と、第1ポートと第4ポートが連通し且つ第2ポートと第3ポートが連通する第2状態(図1に破線で示す状態)とに切り換え可能となっている。   The four-way selector valve (22) includes a first state (state indicated by a solid line in FIG. 1) in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other, It is possible to switch to a second state (state indicated by a broken line in FIG. 1) in which the four ports communicate and the second port and the third port communicate.

つまり、この空気調和装置(10)は、四路切換弁(22)の切換によって、冷房運転と暖房運転とが切り換え可能になっている。   That is, the air conditioner (10) can be switched between a cooling operation and a heating operation by switching the four-way switching valve (22).

冷房運転時には、四路切換弁(22)が第1状態に設定される。この状態で圧縮機(21)を運転すると、室外熱交換器(23)が放熱器(ガスクーラ)となり、各室内熱交換器(27)が蒸発器となって冷凍サイクルが行われる。具体的に、圧縮機(21)から吐出された超臨界状態の冷媒は、室外熱交換器(23)に流れて室外空気へ放熱する。放熱した冷媒は、室外膨張弁(24)を通過する際に膨張して(減圧されて)室内熱交換器(27)へ流れる。室内熱交換器(27)では、冷媒が室内空気から吸熱して蒸発し、冷却された室内空気が室内へ供給される。蒸発した冷媒は、圧縮機(21)へ吸入されて圧縮される。   During the cooling operation, the four-way selector valve (22) is set to the first state. When the compressor (21) is operated in this state, the outdoor heat exchanger (23) becomes a radiator (gas cooler), and each indoor heat exchanger (27) becomes an evaporator to perform a refrigeration cycle. Specifically, the supercritical refrigerant discharged from the compressor (21) flows into the outdoor heat exchanger (23) and radiates heat to the outdoor air. The radiated refrigerant is expanded (depressurized) when passing through the outdoor expansion valve (24) and flows to the indoor heat exchanger (27). In the indoor heat exchanger (27), the refrigerant absorbs heat from the room air and evaporates, and the cooled room air is supplied to the room. The evaporated refrigerant is sucked into the compressor (21) and compressed.

暖房運転時には、四路切換弁(22)が第2状態に設定される。この状態で圧縮機(21)を運転すると、室内熱交換器(27)が放熱器(ガスクーラ)となり、室外熱交換器(23)が蒸発器となって冷凍サイクルが行われる。具体的に、圧縮機(21)から吐出された超臨界状態の冷媒は、室内熱交換器(27)に流れて室内空気へ放熱する。これにより、加熱された室内空気が室内へ供給される。放熱した冷媒は、室外膨張弁(24)を通過する際に膨張する(減圧される)。室外膨張弁(24)で膨張した冷媒は、室外熱交換器(23)に流れて室外空気から吸熱して蒸発する。蒸発した冷媒は、圧縮機(21)へ吸入されて圧縮される。   During the heating operation, the four-way selector valve (22) is set to the second state. When the compressor (21) is operated in this state, the indoor heat exchanger (27) becomes a radiator (gas cooler), and the outdoor heat exchanger (23) becomes an evaporator to perform a refrigeration cycle. Specifically, the supercritical refrigerant discharged from the compressor (21) flows into the indoor heat exchanger (27) and radiates heat to the indoor air. Thereby, the heated indoor air is supplied indoors. The radiated refrigerant expands (depressurizes) when passing through the outdoor expansion valve (24). The refrigerant expanded by the outdoor expansion valve (24) flows into the outdoor heat exchanger (23), absorbs heat from the outdoor air, and evaporates. The evaporated refrigerant is sucked into the compressor (21) and compressed.

このように構成された空気調和装置(10)においては、前記冷媒回路(20)に、外気温度センサ(30)と、室内温度センサ(31)と、低圧センサ(32)と、吐出温度センサ(33)と、高圧センサ(34)と、暖房時ガスクーラ出口温度センサ(37)と、冷房時ガスクーラ出口温度センサ(39)とが設けられている。   In the air conditioner (10) configured as described above, the refrigerant circuit (20) includes an outside air temperature sensor (30), an indoor temperature sensor (31), a low pressure sensor (32), and a discharge temperature sensor ( 33), a high pressure sensor (34), a heating gas cooler outlet temperature sensor (37), and a cooling gas cooler outlet temperature sensor (39).

外気温度センサ(30)は、室外熱交換器(23)に取り込まれる室外空気の温度を検出する温度検出手段である。室内温度センサ(31)は、室内熱交換器(27)に取り込まれる室内空気の温度を検出する温度検出手段である。低圧センサ(32)は、圧縮機(21)に吸入される冷媒の圧力、即ち、冷媒回路(20)における冷凍サイクルの低圧を検出する温度検出手段である。吐出温度センサ(33)は、圧縮機(21)から吐出される冷媒の温度を検出する温度検出手段である。高圧センサ(34)は、圧縮機(21)から吐出される冷媒の圧力、即ち、冷媒回路(20)における冷凍サイクルの高圧を検出する温度検出手段である。暖房時ガスクーラ出口温度センサ(37)は、冷媒回路(220)において冷媒が暖房サイクルで循環するときに、室内熱交換器(27)の出口冷媒温度を検出する温度検出手段である。冷房時ガスクーラ出口温度センサ(39)は、冷媒回路(220)において冷媒が冷房サイクルで循環するときに、室外熱交換器(23)の出口冷媒温度を検出する温度検出手段である。   The outdoor temperature sensor (30) is a temperature detection means for detecting the temperature of the outdoor air taken into the outdoor heat exchanger (23). The indoor temperature sensor (31) is temperature detection means for detecting the temperature of the indoor air taken into the indoor heat exchanger (27). The low pressure sensor (32) is temperature detection means for detecting the pressure of the refrigerant sucked into the compressor (21), that is, the low pressure of the refrigeration cycle in the refrigerant circuit (20). The discharge temperature sensor (33) is temperature detection means for detecting the temperature of the refrigerant discharged from the compressor (21). The high pressure sensor (34) is temperature detection means for detecting the pressure of the refrigerant discharged from the compressor (21), that is, the high pressure of the refrigeration cycle in the refrigerant circuit (20). The heating gas cooler outlet temperature sensor (37) is a temperature detecting means for detecting the outlet refrigerant temperature of the indoor heat exchanger (27) when the refrigerant circulates in the heating cycle in the refrigerant circuit (220). The cooling-time gas cooler outlet temperature sensor (39) is a temperature detecting means for detecting the outlet refrigerant temperature of the outdoor heat exchanger (23) when the refrigerant circulates in the cooling cycle in the refrigerant circuit (220).

前記コントローラ(40)は、前記室内温度センサ(31)、低圧センサ(32)、吐出温度センサ(33)及び高圧センサ(34)の出力信号が入力され、前記圧縮機(21)の運転周波数、室外膨張弁(24)の開度及び室外ファン(28)の運転周波数を制御するように構成されている。このコントローラ(40)が制御手段を構成する。   The controller (40) receives the output signals of the indoor temperature sensor (31), the low pressure sensor (32), the discharge temperature sensor (33) and the high pressure sensor (34), and the operating frequency of the compressor (21), The opening of the outdoor expansion valve (24) and the operating frequency of the outdoor fan (28) are controlled. This controller (40) constitutes a control means.

前記コントローラ(40)は、図2,3に示すように、冷凍サイクルの低圧の目標値である目標低圧Plsを算出する目標低圧算出部(41)と、冷凍サイクルの高圧の目標値である目標高圧Phsを算出する目標高圧算出部(42)と、冷媒の吐出温度の目標値である目標吐出温度T1sを算出する目標吐出温度算出部(43)と、圧縮機(21)、室外膨張弁(24)及び室外ファン(28)への制御信号を生成する制御信号生成部(49)とを有する。尚、コントローラ(40)は、冷房運転と暖房運転とでは制御内容が異なる、即ち、機能する要素が異なるため、冷房運転時の制御ブロック図を図2に、暖房運転時の制御ブロック図を図3に分けて示している。   As shown in FIGS. 2 and 3, the controller (40) includes a target low-pressure calculation unit (41) that calculates a target low-pressure Pls that is a low-pressure target value of the refrigeration cycle, and a target that is a high-pressure target value of the refrigeration cycle. A target high pressure calculation unit (42) for calculating the high pressure Phs, a target discharge temperature calculation unit (43) for calculating a target discharge temperature T1s which is a target value of the refrigerant discharge temperature, a compressor (21), an outdoor expansion valve ( 24) and a control signal generator (49) for generating a control signal to the outdoor fan (28). Note that the controller (40) has different control contents in the cooling operation and the heating operation, that is, since the functioning elements are different, the control block diagram during the cooling operation is shown in FIG. 2, and the control block diagram during the heating operation is shown in FIG. It is divided into three.

前記目標低圧算出部(41)は、設定温度Tsと室内温度センサ(31)からの出力信号(即ち、室内温度Ta)との温度偏差etに基づいて、目標低圧Plsを算出する。   The target low pressure calculator (41) calculates the target low pressure Pls based on the temperature deviation et between the set temperature Ts and the output signal from the room temperature sensor (31) (namely, the room temperature Ta).

前記目標高圧算出部(42)は、冷房運転時には外気温度センサ(30)からの出力信号(即ち、外気温T0)及び冷房時ガスクーラ出口温度センサ(39)からの出力信号(即ち、ガスクーラ出口温度T4)に基づいて、暖房運転時には前記温度偏差et及び暖房時ガスクーラ出口温度(37)からの出力信号(即ち、ガスクーラ出口温度T4)に基づいて、目標高圧Phsを算出する。   The target high pressure calculator (42) outputs an output signal from the outside air temperature sensor (30) during cooling operation (ie, the outside air temperature T0) and an output signal from the cooling gas cooler outlet temperature sensor (39) (ie, the gas cooler outlet temperature). Based on T4), during the heating operation, the target high pressure Phs is calculated based on the temperature deviation et and an output signal from the heating gas cooler outlet temperature (37) (that is, the gas cooler outlet temperature T4).

前記目標吐出温度算出部(43)は、前記温度偏差et、低圧センサ(32)からの出力信号(即ち、実低圧Pl)、高圧センサ(34)からの出力信号(即ち、実高圧Ph)、圧縮機(21)の運転周波数fc及び外気温T0に基づいて、目標吐出温度T1sを算出する。詳しくは、目標吐出温度算出部(43)は、温度偏差et、実低圧Pl、実高圧Ph、圧縮機(21)の運転周波数fc及び外気温T0に基づいて、目標とする過熱度に対応する目標吐出温度T1sを算出している。   The target discharge temperature calculation unit (43) includes the temperature deviation et, an output signal from the low pressure sensor (32) (ie, the actual low pressure Pl), an output signal from the high pressure sensor (34) (ie, the actual high pressure Ph), A target discharge temperature T1s is calculated based on the operating frequency fc of the compressor (21) and the outside air temperature T0. Specifically, the target discharge temperature calculation unit (43) corresponds to the target superheat degree based on the temperature deviation et, the actual low pressure Pl, the actual high pressure Ph, the operating frequency fc of the compressor (21), and the outside air temperature T0. A target discharge temperature T1s is calculated.

これら、目標低圧算出部(41)、目標高圧算出部(42)及び目標吐出温度算出部(43)のそれぞれは、マップ及び関数を有していて、各入力に対して対応する出力値(目標値)を出力するように構成されている。   Each of the target low pressure calculation unit (41), the target high pressure calculation unit (42), and the target discharge temperature calculation unit (43) has a map and a function, and an output value corresponding to each input (target Value).

前記制御信号生成部(49)には、冷房運転と暖房運転とで異なる信号が入力されるように構成されている。また、制御信号生成部(49)は、入力信号に応じた制御パラメータを有する複数のPID制御部(p1a,p2a,…,p1b,p2b,…)を有している。   The control signal generator (49) is configured to receive different signals for the cooling operation and the heating operation. The control signal generation unit (49) includes a plurality of PID control units (p1a, p2a,..., P1b, p2b,...) Having control parameters corresponding to the input signals.

冷房運転時には、目標低圧算出部(41)で算出した目標低圧Plsと低圧センサ(32)から実低圧Plとの低圧偏差e1、目標高圧算出部(42)で算出した目標高圧Phsと高圧センサ(34)からの実高圧Phとの高圧偏差e2、及び目標吐出温度算出部(43)で算出した目標吐出温度T1sと吐出温度センサ(33)からの出力信号(即ち、実吐出温度T1)との吐出温度偏差e3が制御信号生成部(49)に入力されている。   During cooling operation, the target low pressure Pls calculated by the target low pressure calculator (41) and the low pressure deviation e1 between the low pressure sensor (32) and the actual low pressure Pl, the target high pressure Phs calculated by the target high pressure calculator (42) and the high pressure sensor (42) 34), the high pressure deviation e2 from the actual high pressure Ph, the target discharge temperature T1s calculated by the target discharge temperature calculation section (43), and the output signal from the discharge temperature sensor (33) (ie, the actual discharge temperature T1). The discharge temperature deviation e3 is input to the control signal generator (49).

また、冷房運転時には、制御信号生成部(49)における9個のPID制御部(p1a,p2a,…)が機能する。すなわち、制御信号生成部(49)に入力された低圧偏差e1は3個の第1乃至第3PID制御部(p1a,p2a,p3a)に入力され、高圧偏差e2は別の3個の第4乃至第6PID制御部(p4a,p5a,p6a)に入力され、吐出温度偏差e3はさらに別の3個の第7乃至第9PID制御部(p7a,p8a,p9a)に入力されている。   In the cooling operation, nine PID control units (p1a, p2a,...) In the control signal generation unit (49) function. That is, the low-pressure deviation e1 input to the control signal generation unit (49) is input to the three first to third PID control units (p1a, p2a, p3a), and the high-pressure deviation e2 is another three fourth to fourth. The sixth PID control unit (p4a, p5a, p6a) is input, and the discharge temperature deviation e3 is input to another three seventh to ninth PID control units (p7a, p8a, p9a).

第1乃至第9PID制御部(p1a,p2a,…)はそれぞれ、入力される偏差に所定の制御パラメータを掛け合わせて出力する。その結果、制御信号生成部(49)は、第1PID制御部(p1a)、第4PID制御部(p4a)及び第7PID制御部(p7a)からの出力信号を加算して圧縮機周波数制御信号Δfcを生成し、第2PID制御部(p2a)、第5PID制御部(p5a)及び第8PID制御部(p8a)からの出力信号を加算して膨張弁開度制御信号Δevを生成し、第3PID制御部(p3a)、第6PID制御部(p6a)及び第9PID制御部(p9a)からの出力信号を加算してファン周波数制御信号Δffを生成している。   Each of the first to ninth PID control units (p1a, p2a,...) Multiplies the input deviation by a predetermined control parameter and outputs the result. As a result, the control signal generation unit (49) adds the output signals from the first PID control unit (p1a), the fourth PID control unit (p4a), and the seventh PID control unit (p7a) to generate the compressor frequency control signal Δfc. And adding the output signals from the second PID control unit (p2a), the fifth PID control unit (p5a), and the eighth PID control unit (p8a) to generate the expansion valve opening degree control signal Δev, and the third PID control unit ( p3a), the output signals from the sixth PID controller (p6a) and the ninth PID controller (p9a) are added to generate the fan frequency control signal Δff.

こうして生成された圧縮機周波数制御信号Δfc、膨張弁開度制御信号Δev及びファン周波数制御信号Δffは、空気調和装置(10)に出力される。   The compressor frequency control signal Δfc, the expansion valve opening control signal Δev, and the fan frequency control signal Δff thus generated are output to the air conditioner (10).

空気調和装置(10)においては、圧縮機(21)のモータへ供給される交流の周波数(即ち、運転周波数)が圧縮機周波数制御信号Δfcに応じた値に設定され、圧縮機(21)の回転速度が変化する。その結果、該圧縮機(21)の容量が圧縮機周波数制御信号Δfcに応じて変化する。   In the air conditioner (10), the frequency of the alternating current supplied to the motor of the compressor (21) (that is, the operating frequency) is set to a value corresponding to the compressor frequency control signal Δfc, and the compressor (21) The rotation speed changes. As a result, the capacity of the compressor (21) changes according to the compressor frequency control signal Δfc.

また、室外膨張弁(24)のパルスモータへ供給される信号のパルス数が膨張弁開度制御信号Δevに応じた値に設定される。その結果、室外膨張弁(24)のパルスモータが該パルス数に応じた角度だけ回転し、弁開度が膨張弁開度制御信号Δevに応じて調整される。   Further, the number of pulses of the signal supplied to the pulse motor of the outdoor expansion valve (24) is set to a value corresponding to the expansion valve opening control signal Δev. As a result, the pulse motor of the outdoor expansion valve (24) rotates by an angle corresponding to the number of pulses, and the valve opening is adjusted according to the expansion valve opening control signal Δev.

さらに、室外ファン(28)のモータへ供給される交流の周波数(即ち、運転周波数)がファン周波数制御信号Δffに応じた値に設定され室外ファン(28)の回転速度が変化する。その結果、該室外ファン(28)から室外熱交換器(23)へ供給される空気の流量がファン周波数制御信号Δffに応じて変化する。   Furthermore, the AC frequency (that is, the operating frequency) supplied to the motor of the outdoor fan (28) is set to a value corresponding to the fan frequency control signal Δff, and the rotational speed of the outdoor fan (28) changes. As a result, the flow rate of air supplied from the outdoor fan (28) to the outdoor heat exchanger (23) changes according to the fan frequency control signal Δff.

そして、かかる運転状態で運転される空気調和装置(10)における低圧Pl、吐出温度T1及び高圧Phが低圧センサ(32)、吐出温度センサ(33)及び高圧センサ(34)を介してコントローラ(40)にフィードバックされる。こうして、コントローラ(40)は、低圧Pl(ひいては蒸発温度)、吐出温度T1(ひいては過熱度)及び高圧Phが運転状態に応じた目標値となるようにフィードバック制御している。   The low pressure Pl, the discharge temperature T1, and the high pressure Ph in the air conditioner (10) operated in such an operating state are supplied to the controller (40 through the low pressure sensor (32), the discharge temperature sensor (33), and the high pressure sensor (34). ). Thus, the controller (40) performs feedback control so that the low pressure Pl (and thus the evaporation temperature), the discharge temperature T1 (and thus the degree of superheat), and the high pressure Ph become target values according to the operating state.

以上、説明したように、圧縮機周波数制御信号Δfc、膨張弁開度制御信号Δev及びファン周波数制御信号Δffのそれぞれは、低圧偏差e1、高圧偏差e2及び吐出温度偏差e3を互いに関連付けて生成されている。つまり、例えば、圧縮機(21)で冷凍サイクルの低圧を制御し、室外膨張弁(24)で冷媒の吐出温度を制御し、室外ファン(28)で冷凍サイクルの高圧を制御する構成のように、各物理量に個別に対応した制御対象をそれぞれ別々に制御するのではなく、圧縮機(21)、室外膨張弁(24)及び室外ファン(28)を共に制御することで、高圧、低圧及び吐出温度を共に、即ち同時に制御している。すなわち、低圧、高圧及び吐出温度のそれぞれは、圧縮機(21)、室外膨張弁(24)及び室外ファン(28)のうちの何れか1つによってのみ制御されるのではなく、圧縮機(21)、室外膨張弁(24)及び室外ファン(28)の全てによって制御される。さらに詳しくは、制御対象である圧縮機(21)、室外膨張弁(24)及び室外ファン(28)のそれぞれは、そのものだけが駆動制御されるときの低圧、高圧及び吐出温度の変化だけでなく、そのもの以外の他の制御対象が駆動制御されるときの低圧、高圧及び吐出温度の変化をも考慮して駆動制御される(換言すれば、それらが考慮されるように、第1乃至9第PID制御部(p1a,p2a,…)の制御パラメータが設定されている)。   As described above, each of the compressor frequency control signal Δfc, the expansion valve opening control signal Δev, and the fan frequency control signal Δff is generated by associating the low pressure deviation e1, the high pressure deviation e2, and the discharge temperature deviation e3 with each other. Yes. That is, for example, the compressor (21) controls the low pressure of the refrigeration cycle, the outdoor expansion valve (24) controls the refrigerant discharge temperature, and the outdoor fan (28) controls the high pressure of the refrigeration cycle. , Instead of controlling the control objects individually corresponding to each physical quantity separately, the compressor (21), the outdoor expansion valve (24) and the outdoor fan (28) are controlled together, so that high pressure, low pressure and discharge are controlled. The temperatures are controlled together, i.e. simultaneously. That is, each of the low pressure, the high pressure, and the discharge temperature is not controlled by any one of the compressor (21), the outdoor expansion valve (24), and the outdoor fan (28), but the compressor (21 ), All of the outdoor expansion valve (24) and the outdoor fan (28). More specifically, each of the compressor (21), outdoor expansion valve (24), and outdoor fan (28) to be controlled not only changes in low pressure, high pressure and discharge temperature when only the drive is controlled. , Drive control is performed in consideration of changes in low pressure, high pressure, and discharge temperature when a control target other than the control target is controlled (in other words, the first to ninth steps are taken into consideration). The control parameters of the PID control unit (p1a, p2a,... Are set).

一方、暖房運転時には、目標高圧算出部(42)で算出した目標高圧Phsと高圧センサ(34)からの実高圧Phとの高圧偏差e2、及び目標吐出温度算出部(43)で算出した目標吐出温度T1sと吐出温度センサ(33)からの実吐出温度T1との吐出温度偏差e3が制御信号生成部(49)に入力されている。   On the other hand, during heating operation, the high pressure deviation e2 between the target high pressure Phs calculated by the target high pressure calculation unit (42) and the actual high pressure Ph from the high pressure sensor (34), and the target discharge calculated by the target discharge temperature calculation unit (43). A discharge temperature deviation e3 between the temperature T1s and the actual discharge temperature T1 from the discharge temperature sensor (33) is input to the control signal generator (49).

また、暖房運転時には、制御信号生成部(49)における4個のPID制御部(p1b,p2b,…)が機能する。すなわち、制御信号生成部(49)に入力された吐出温度偏差e3は2個の第1,PID制御部(p1b,p2b)に入力され、高圧偏差e2は別の2個の第3,4PID制御部(p3b,p4b)に入力されている。   Further, during the heating operation, the four PID control units (p1b, p2b,...) In the control signal generation unit (49) function. That is, the discharge temperature deviation e3 input to the control signal generation unit (49) is input to the two first and PID control units (p1b, p2b), and the high pressure deviation e2 is the other two third and fourth PID controls. Part (p3b, p4b).

第1乃至第4PID制御部(p1b,p2b,…)はそれぞれ、入力される偏差に所定の制御パラメータを掛け合わせて出力する。その結果、制御信号生成部(49)は、第1PID制御部(p1b)及び第3PID制御部(p3b)からの出力信号を加算して圧縮機周波数制御信号Δfcを生成し、第2PID制御部(p2b)及び第4PID制御部(p4b)からの出力信号を加算して膨張弁開度制御信号Δevを生成している。   Each of the first to fourth PID control units (p1b, p2b,...) Multiplies the input deviation by a predetermined control parameter and outputs the result. As a result, the control signal generation unit (49) adds the output signals from the first PID control unit (p1b) and the third PID control unit (p3b) to generate the compressor frequency control signal Δfc, and the second PID control unit ( The expansion valve opening control signal Δev is generated by adding the output signals from p2b) and the fourth PID control unit (p4b).

こうして生成された圧縮機周波数制御信号Δfc及び膨張弁開度制御信号Δevは、空気調和装置(10)に出力される。   The compressor frequency control signal Δfc and the expansion valve opening control signal Δev generated in this way are output to the air conditioner (10).

空気調和装置(10)においては、圧縮機(21)の容量が圧縮機周波数制御信号Δfcに応じて変化し、室外膨張弁(24)が膨張弁開度制御信号Δevに応じた弁開度に調整されるようになる。   In the air conditioner (10), the capacity of the compressor (21) changes in accordance with the compressor frequency control signal Δfc, and the outdoor expansion valve (24) has a valve opening in accordance with the expansion valve opening control signal Δev. Will be adjusted.

そして、かかる運転状態で運転される空気調和装置(10)における吐出温度T1及び高圧Phが吐出温度センサ(33)及び高圧センサ(34)を介してコントローラ(40)にフィードバックされる。こうして、コントローラ(40)は、吐出温度T1(ひいては過熱度)及び高圧Phが運転状態に応じた目標値となるようにフィードバック制御している。   Then, the discharge temperature T1 and the high pressure Ph in the air conditioner (10) operated in such an operating state are fed back to the controller (40) via the discharge temperature sensor (33) and the high pressure sensor (34). Thus, the controller (40) performs feedback control so that the discharge temperature T1 (and thus the degree of superheat) and the high pressure Ph become target values according to the operating state.

このように、圧縮機周波数制御信号Δfc及び膨張弁開度制御信号Δevのそれぞれは、高圧偏差e2及び吐出温度偏差e3を互いに関連付けて生成されている。つまり、例えば、圧縮機(21)で冷凍サイクルの高圧を制御し、室外膨張弁(24)で冷媒の吐出温度を制御する構成のように、各物理量に個別に対応した制御対象をそれぞれ別々に制御するのではなく、圧縮機(21)及び室外膨張弁(24)を共に制御することで、高圧及び吐出温度を共に、即ち同時に制御している。すなわち、高圧及び吐出温度のそれぞれは、圧縮機(21)及び室外膨張弁(24)のうちの何れか1つによってのみ制御されるのではなく、圧縮機(21)及び室外膨張弁(24)の全てによって制御される。さらに詳しくは、制御対象である圧縮機(21)及び室外膨張弁(24)のそれぞれは、そのものだけが駆動制御されるときの高圧及び吐出温度の変化だけでなく、そのもの以外の他の制御対象が駆動制御されるときの高圧及び吐出温度の変化をも考慮して駆動制御される(換言すれば、それらが考慮されるように、第1乃至第4PID制御部(p1b,p2b,…)の制御パラメータが設定されている)。   Thus, the compressor frequency control signal Δfc and the expansion valve opening degree control signal Δev are each generated by associating the high pressure deviation e2 and the discharge temperature deviation e3 with each other. In other words, for example, the control target individually corresponding to each physical quantity is separately controlled as in the configuration in which the compressor (21) controls the high pressure of the refrigeration cycle and the outdoor expansion valve (24) controls the refrigerant discharge temperature. Instead of controlling, both the compressor (21) and the outdoor expansion valve (24) are controlled to control both the high pressure and the discharge temperature, that is, simultaneously. That is, each of the high pressure and the discharge temperature is not controlled only by any one of the compressor (21) and the outdoor expansion valve (24), but the compressor (21) and the outdoor expansion valve (24). Controlled by all of the above. More specifically, each of the compressor (21) and the outdoor expansion valve (24) to be controlled is not only a change in high pressure and discharge temperature when only the drive control is performed, but also other control objects other than the control target. Is controlled in consideration of changes in high pressure and discharge temperature when driving is controlled (in other words, the first to fourth PID control units (p1b, p2b,... Control parameters are set).

したがって、本実施形態1によれば、空気調和装置(10)における所定の物理量に加えて冷凍サイクルの高圧を運転状態に応じた所定の目標値となるように複数の制御対象(例えば、圧縮機(21)や室外膨張弁(24)等)を同時に駆動制御すると共に、複数の制御対象を制御した際の該物理量及び冷凍サイクルの高圧の変化を考慮しつつ各制御対象を駆動制御することによって、高圧を運転状態に応じた目標値に安定的に保ったまま、空気調和装置(10)の能力制御(例えば、冷房運転時であれば低圧や過熱度等)を行うことができる。その結果、或る一の物理量を調整することによって、別の物理量が変化し、その変化を是正すべく該別の物理量を調整すると、さらに別の物理量或いは先に調整した一の物理量が変化して、さらに調整する必要が生じるというように、制御しようとする物理量がなかなか収束しないという事態を防止することができ、空気調和装置(10)における能力制御及び高圧制御の収束性を向上させることができる。   Therefore, according to the first embodiment, in addition to a predetermined physical quantity in the air conditioner (10), a plurality of control objects (for example, compressors) are set so that the high pressure of the refrigeration cycle becomes a predetermined target value corresponding to the operating state. (21), the outdoor expansion valve (24), etc.) and simultaneously driving and controlling each controlled object while taking into account changes in the physical quantity and high pressure of the refrigeration cycle when a plurality of controlled objects are controlled. The ability control of the air conditioner (10) (for example, the low pressure and the degree of superheat during cooling operation) can be performed while the high pressure is stably maintained at the target value according to the operating state. As a result, by adjusting one physical quantity, another physical quantity changes, and when the other physical quantity is adjusted to correct the change, another physical quantity or the previously adjusted physical quantity changes. Therefore, it is possible to prevent a situation in which the physical quantity to be controlled does not converge so that further adjustment is required, and to improve the convergence of capacity control and high pressure control in the air conditioner (10). it can.

尚、本実施形態では、冷房運転時には、低圧、高圧及び吐出温度という3つの物理量を圧縮機(21)、室外膨張弁(24)及び室外ファン(28)という3つの制御対象で制御すると共に、暖房運転時には、高圧及び吐出温度という2つの物理量を圧縮機(21)及び室外膨張弁(24)という2つの制御対象で制御しているが、制御対象によっては各物理量に影響を与えやすいもの、あるいは与えにくいものがある。即ち、何れか1つの制御対象を変化させても、あまり変化しない物理量がある場合がある。本実施形態では、制御する物理量全てを入力とすると共にそれら全てを関連付けて制御対象ごとの制御信号を生成しているが、影響を与えにくい物理量がある制御対象の制御信号を生成する際には、その影響を与えにくい物理量の関連性を小さくする、あるいは関連性をなくすようにしてもよい(具体的には、影響を与えにくい物理量がある制御対象の制御信号を生成するPID制御部(p1a,…,p1b,…)のうち該影響を与えにくい物理量のPID制御部の制御パラメータを小さくする、あるいは零にしてもよい)。   In the present embodiment, during the cooling operation, the three physical quantities of low pressure, high pressure, and discharge temperature are controlled by the three control targets of the compressor (21), the outdoor expansion valve (24), and the outdoor fan (28), During heating operation, the two physical quantities of high pressure and discharge temperature are controlled by the two controlled objects, the compressor (21) and the outdoor expansion valve (24). Depending on the controlled object, these physical quantities are likely to be affected. Or there are things that are difficult to give. That is, there is a case where there is a physical quantity that does not change much even if any one control object is changed. In this embodiment, all the physical quantities to be controlled are input and associated with each other to generate a control signal for each control target. However, when generating a control signal for a control target having a physical quantity that is difficult to influence, The relevance of a physical quantity that is less likely to be affected may be reduced or the relevance may be eliminated (specifically, a PID control unit (p1a that generates a control signal for a control target having a physical quantity that is less likely to be affected). ,..., P1b,...), The control parameter of the PID control unit having a physical quantity that does not easily affect this may be reduced or zero).

《発明の実施形態2》
次に、本発明の実施形態2について説明する。
<< Embodiment 2 of the Invention >>
Next, Embodiment 2 of the present invention will be described.

実施形態2に係る空気調和装置(210)は、冷媒回路(220)において、室外熱交換器(23)と室内熱交換器(27)との間に2つの膨張弁(24,26)が設けられると共に、2つの圧縮機(21a,21b)が設けられていて、二段圧縮冷凍サイクルを行う点で、実施形態1に係る空気調和装置(10)と異なる。   The air conditioner (210) according to Embodiment 2 includes two expansion valves (24, 26) between the outdoor heat exchanger (23) and the indoor heat exchanger (27) in the refrigerant circuit (220). In addition, it is different from the air conditioner (10) according to the first embodiment in that two compressors (21a, 21b) are provided and a two-stage compression refrigeration cycle is performed.

詳しくは、空気調和装置(210)は、図4に示すように、冷媒回路(220)とコントローラ(240)を備えている。   Specifically, as shown in FIG. 4, the air conditioner (210) includes a refrigerant circuit (220) and a controller (240).

前記冷媒回路(220)には、低段側の第1圧縮機(21a)と、高段側の第2圧縮機(21b)と、四路切換弁(22)と、室外熱交換器(23)と、室外膨張弁(24)と、気液分離器(25)と、室内膨張弁(26)および室内熱交換器(27)とが接続されている。   The refrigerant circuit (220) includes a first compressor (21a) on the lower stage side, a second compressor (21b) on the higher stage side, a four-way switching valve (22), and an outdoor heat exchanger (23 ), An outdoor expansion valve (24), a gas-liquid separator (25), an indoor expansion valve (26), and an indoor heat exchanger (27).

具体的に、前記冷媒回路(220)において、第2圧縮機(21b)の吐出側が四路切換弁(22)の第1ポートに、第1圧縮機(21a)の吸入側が四路切換弁(22)の第2ポートにそれぞれ接続されている。第1圧縮機(21a)と第2圧縮機(21b)とは、第1圧縮機(21a)で圧縮して吐出した冷媒が第2圧縮機(21b)に吸入されてさらに圧縮されるように配管で接続されている。また、冷媒回路(220)では、四路切換弁(22)の第3ポートから第4ポートへ向かって順に、室外熱交換器(23)、室外膨張弁(24)、気液分離器(25)、室内膨張弁(26)および室内熱交換器(27)が順に配置されている。そして、気液分離器(25)は、第1中間圧冷媒配管(25a)を介して第1圧縮機(21a)と第2圧縮機(21b)とを接続する配管に接続されている。   Specifically, in the refrigerant circuit (220), the discharge side of the second compressor (21b) is the first port of the four-way switching valve (22), and the suction side of the first compressor (21a) is the four-way switching valve ( 22) is connected to the second port. The first compressor (21a) and the second compressor (21b) are arranged so that the refrigerant compressed and discharged by the first compressor (21a) is sucked into the second compressor (21b) and further compressed. Connected by piping. In the refrigerant circuit (220), the outdoor heat exchanger (23), the outdoor expansion valve (24), and the gas-liquid separator (25) are sequentially arranged from the third port to the fourth port of the four-way switching valve (22). ), The indoor expansion valve (26) and the indoor heat exchanger (27) are arranged in this order. The gas-liquid separator (25) is connected to a pipe connecting the first compressor (21a) and the second compressor (21b) via the first intermediate pressure refrigerant pipe (25a).

前記第1及び第2圧縮機(21a,21b)は、実施形態1と同様の圧縮機である。これら第1及び第2圧縮機(21a,21b)が圧縮機構を構成する。   The first and second compressors (21a, 21b) are the same compressors as in the first embodiment. These first and second compressors (21a, 21b) constitute a compression mechanism.

前記室外膨張弁(24)および室内膨張弁(26)は、いずれも弁体(図示省略)がパルスモータ(図示省略)で駆動される開度可変の電子膨張弁によって構成されている。この室外膨張弁(24)が第1膨張機構を構成し、室内膨張弁(26)が第2膨張機構を構成している。   Both the outdoor expansion valve (24) and the indoor expansion valve (26) are constituted by variable opening electronic expansion valves whose valve bodies (not shown) are driven by a pulse motor (not shown). The outdoor expansion valve (24) constitutes a first expansion mechanism, and the indoor expansion valve (26) constitutes a second expansion mechanism.

前記気液分離器(25)は縦長で円筒状の密閉容器である。この気液分離器(25)は、ブリッジ回路(50)を介して室外膨張弁(24)及び室内膨張弁(26)にそれぞれ接続されている。   The gas-liquid separator (25) is a vertically long and cylindrical sealed container. The gas-liquid separator (25) is connected to the outdoor expansion valve (24) and the indoor expansion valve (26) via a bridge circuit (50).

詳しくは、前記室外膨張弁(24)が第2中間圧冷媒配管(25b)を介してとブリッジ回路(50)の一の端子に接続されている。また、前記室内膨張弁(26)が第3中間圧冷媒配管(25c)を介してブリッジ回路(50)の別の端子に接続されている。さらに、ブリッジ回路(50)のまた別の端子には冷媒流入配管(25d)の一端部が接続されており、この冷媒流入配管(25d)の他端部は、気液分離器(25)に接続されている。冷媒流入配管(25d)の他端部は、該気液分離器(25)の密閉容器の上面を貫通しその上部空間に位置している。さらにまた、ブリッジ回路(50)のさらに別の端子には冷媒流出配管(25e)の一端部が接続されており、この冷媒流出配管(25e)の他端部は、気液分離器(25)に接続されている。冷媒流出配管(25e)の他端部は、該気液分離器(25)の密閉容器の上面を貫通しその下部空間に位置している。   Specifically, the outdoor expansion valve (24) is connected to one terminal of the bridge circuit (50) via the second intermediate pressure refrigerant pipe (25b). The indoor expansion valve (26) is connected to another terminal of the bridge circuit (50) via the third intermediate pressure refrigerant pipe (25c). Furthermore, one end of the refrigerant inflow pipe (25d) is connected to another terminal of the bridge circuit (50), and the other end of the refrigerant inflow pipe (25d) is connected to the gas-liquid separator (25). It is connected. The other end of the refrigerant inflow pipe (25d) penetrates the upper surface of the closed container of the gas-liquid separator (25) and is located in the upper space. Furthermore, one end of the refrigerant outflow pipe (25e) is connected to another terminal of the bridge circuit (50), and the other end of the refrigerant outflow pipe (25e) is connected to the gas-liquid separator (25). It is connected to the. The other end of the refrigerant outflow pipe (25e) penetrates the upper surface of the sealed container of the gas-liquid separator (25) and is located in the lower space.

そして、前記第1中間圧冷媒配管(25a)の気液分離器(25)側の端部は、該気液分離器(25)の密閉容器の上部側面を貫通してその上部空間に位置している。   The end portion of the first intermediate pressure refrigerant pipe (25a) on the gas-liquid separator (25) side is located in the upper space through the upper side surface of the sealed container of the gas-liquid separator (25). ing.

この空気調和装置(210)は、実施形態1と同様に、四路切換弁(22)の切換によって、冷房運転と暖房運転とが切り換え可能になっている。   As with the first embodiment, the air conditioner (210) can be switched between a cooling operation and a heating operation by switching the four-way switching valve (22).

冷房運転時には、四路切換弁(22)が第1状態に設定される。この状態で第1及び第2圧縮機(21a,21b)を運転すると、室外熱交換器(23)が放熱器(ガスクーラ)となり、各室内熱交換器(27)が蒸発器となって冷凍サイクルが行われる。具体的に、第1圧縮機(21a)から吐出された中間圧冷媒が第2圧縮機(21b)で超臨界状態まで圧縮される。超臨界状態となった冷媒は、室外熱交換器(23)に流れて室外空気へ放熱する。放熱した高圧冷媒は、室外膨張弁(24)で減圧されて気液二相状態の中間圧冷媒となり、第2中間圧冷媒配管(25b)、ブリッジ回路(50)及び冷媒流入配管(25d)を介して気液分離器(25)に流入する。気液分離器(25)に流入した中間圧の冷媒は、液冷媒とガス冷媒とに分離される。そして、中間圧のガス冷媒は、気液分離器(25)の上部空間から第1中間圧冷媒配管(25a)を介して第2圧縮機(21b)の吸入側へ流れ、第1圧縮機(21a)から吐出される中間圧のガス冷媒と合流して、第2圧縮機(21b)に吸入される。一方、中間圧の液冷媒は、気液分離器(25)の下部空間に一時的に貯留された後、下部空間から冷媒流出配管(25e)、ブリッジ回路(50)及び第3中間圧冷媒配管(25c)を介して流出して室内膨張弁(26)でさらに膨張して(減圧されて)気液二相状態の低圧冷媒となり、室内熱交換器(27)へ流入する。室内熱交換器(27)では、冷媒が室内空気から吸熱して蒸発し、冷却された室内空気が室内へ供給される。蒸発した冷媒は、第1圧縮機(21a)へ吸入されて圧縮される。   During the cooling operation, the four-way selector valve (22) is set to the first state. When the first and second compressors (21a, 21b) are operated in this state, the outdoor heat exchanger (23) becomes a radiator (gas cooler), and each indoor heat exchanger (27) becomes an evaporator to form a refrigeration cycle. Is done. Specifically, the intermediate pressure refrigerant discharged from the first compressor (21a) is compressed to the supercritical state by the second compressor (21b). The refrigerant in the supercritical state flows to the outdoor heat exchanger (23) and radiates heat to the outdoor air. The radiated high-pressure refrigerant is decompressed by the outdoor expansion valve (24) to become a gas-liquid two-phase intermediate pressure refrigerant, and is connected to the second intermediate pressure refrigerant pipe (25b), the bridge circuit (50), and the refrigerant inflow pipe (25d). Through the gas-liquid separator (25). The intermediate pressure refrigerant flowing into the gas-liquid separator (25) is separated into liquid refrigerant and gas refrigerant. Then, the intermediate-pressure gas refrigerant flows from the upper space of the gas-liquid separator (25) to the suction side of the second compressor (21b) via the first intermediate-pressure refrigerant pipe (25a), and the first compressor ( The intermediate pressure gas refrigerant discharged from 21a) joins and is sucked into the second compressor (21b). On the other hand, the intermediate-pressure liquid refrigerant is temporarily stored in the lower space of the gas-liquid separator (25), and then, from the lower space, the refrigerant outlet pipe (25e), the bridge circuit (50), and the third intermediate-pressure refrigerant pipe. The refrigerant flows out through (25c), further expands (depressurized) in the indoor expansion valve (26), becomes a low-pressure refrigerant in a gas-liquid two-phase state, and flows into the indoor heat exchanger (27). In the indoor heat exchanger (27), the refrigerant absorbs heat from the room air and evaporates, and the cooled room air is supplied to the room. The evaporated refrigerant is sucked into the first compressor (21a) and compressed.

暖房運転時には、四路切換弁(22)が第2状態に設定される。この状態で第1及び第2圧縮機(21a,21b)を運転すると、室内熱交換器(27)が放熱器(ガスクーラ)となり、室外熱交換器(23)が蒸発器となって冷凍サイクルが行われる。具体的に、第1圧縮機(21a)から吐出された中間圧のガス冷媒が第2圧縮機(21b)で超臨界状態まで圧縮される。超臨界状態の冷媒は、室内熱交換器(27)に流れて室内空気へ放熱する。これにより、加熱された室内空気が室内へ供給される。放熱した冷媒は、室内膨張弁(26)で減圧されて気液二相状態の中間圧冷媒となり、第3中間圧冷媒配管(25c)、ブリッジ回路(50)及び冷媒流入配管(25d)を介して気液分離器(25)に流入する。気液分離器(25)に流入した中間圧の冷媒は、液冷媒とガス冷媒とに分離される。そして、中間圧のガス冷媒は、気液分離器(25)の上部空間から第1中間圧冷媒配管(25a)を介して第2圧縮機(21b)の吸入側へ流れ、第1圧縮機(21a)から吐出される中間圧のガス冷媒と合流して、第2圧縮機(21b)に吸入される。一方、中間圧の液冷媒は気液分離器(25)の下部空間に一時的に貯留された後、下部空間から冷媒流出配管(25e)、ブリッジ回路(50)及び第2中間圧冷媒配管(25b)を介して室外膨張弁(24)へ流入する。この中間圧の液冷媒は、室外膨張弁(24)を通過する際に膨張して(減圧されて)気液二相状態の低圧冷媒となり、室外熱交換器(23)へ流入する。室外熱交換器(23)では、冷媒が室外空気から吸熱して蒸発する。蒸発した冷媒は、第1圧縮機(21a)へ吸入されて圧縮される。   During the heating operation, the four-way selector valve (22) is set to the second state. When the first and second compressors (21a, 21b) are operated in this state, the indoor heat exchanger (27) becomes a radiator (gas cooler), the outdoor heat exchanger (23) becomes an evaporator, and the refrigeration cycle starts. Done. Specifically, the intermediate-pressure gas refrigerant discharged from the first compressor (21a) is compressed to a supercritical state by the second compressor (21b). The supercritical refrigerant flows into the indoor heat exchanger (27) and radiates heat to the indoor air. Thereby, the heated indoor air is supplied indoors. The radiated refrigerant is decompressed by the indoor expansion valve (26) to become an intermediate-pressure refrigerant in a gas-liquid two-phase state, and passes through the third intermediate-pressure refrigerant pipe (25c), the bridge circuit (50), and the refrigerant inflow pipe (25d). Flow into the gas-liquid separator (25). The intermediate pressure refrigerant flowing into the gas-liquid separator (25) is separated into liquid refrigerant and gas refrigerant. Then, the intermediate-pressure gas refrigerant flows from the upper space of the gas-liquid separator (25) to the suction side of the second compressor (21b) via the first intermediate-pressure refrigerant pipe (25a), and the first compressor ( The intermediate pressure gas refrigerant discharged from 21a) joins and is sucked into the second compressor (21b). On the other hand, after the intermediate-pressure liquid refrigerant is temporarily stored in the lower space of the gas-liquid separator (25), the refrigerant outflow pipe (25e), the bridge circuit (50) and the second intermediate-pressure refrigerant pipe ( Flows into the outdoor expansion valve (24) via 25b). The intermediate-pressure liquid refrigerant is expanded (depressurized) when passing through the outdoor expansion valve (24) to become a low-pressure refrigerant in a gas-liquid two-phase state, and flows into the outdoor heat exchanger (23). In the outdoor heat exchanger (23), the refrigerant absorbs heat from the outdoor air and evaporates. The evaporated refrigerant is sucked into the first compressor (21a) and compressed.

このように構成された空気調和装置(210)においては、前記冷媒回路(220)に、室内温度センサ(31)と、低圧センサ(32)と、吐出温度センサ(33)と、高圧センサ(34)と、吸入温度センサ(35)と、中間圧飽和温度センサ(36)と、暖房時ガスクーラ出口温度センサ(37)とが設けられている。   In the air conditioner (210) configured as described above, the refrigerant circuit (220) includes an indoor temperature sensor (31), a low pressure sensor (32), a discharge temperature sensor (33), and a high pressure sensor (34). ), An intake temperature sensor (35), an intermediate pressure saturation temperature sensor (36), and a heating gas cooler outlet temperature sensor (37).

室内温度センサ(31)は、室内熱交換器(27)に取り込まれる室内空気の温度を検出する温度検出手段である。低圧センサ(32)は、第1圧縮機(21a)に吸入される冷媒の圧力、即ち、冷媒回路(220)における冷凍サイクルの低圧を検出する温度検出手段である。吐出温度センサ(33)は、第2圧縮機(21b)から吐出される冷媒の温度を検出する温度検出手段である。高圧センサ(34)は、第2圧縮機(21b)から吐出される冷媒の圧力、即ち、冷媒回路(220)における冷凍サイクルの高圧を検出する温度検出手段である。吸入温度センサ(35)は、第1圧縮機(21a)に吸入される冷媒の温度を検出する温度検出手段である。中間圧飽和温度センサ(36)は、ブリッジ回路(50)と気液分離器(25)とを接続する冷媒流出配管(25e)に設けられ、中間圧冷媒の温度、即ち、冷凍サイクルの中間圧飽和温度を検出する温度検出手段である。暖房時ガスクーラ出口温度センサ(37)は、冷媒回路(220)において冷媒が暖房サイクルで循環するときに、室内熱交換器(27)の出口冷媒温度を検出する温度検出手段である。   The indoor temperature sensor (31) is temperature detection means for detecting the temperature of the indoor air taken into the indoor heat exchanger (27). The low pressure sensor (32) is temperature detection means for detecting the pressure of the refrigerant sucked into the first compressor (21a), that is, the low pressure of the refrigeration cycle in the refrigerant circuit (220). The discharge temperature sensor (33) is temperature detection means for detecting the temperature of the refrigerant discharged from the second compressor (21b). The high pressure sensor (34) is temperature detection means for detecting the pressure of the refrigerant discharged from the second compressor (21b), that is, the high pressure of the refrigeration cycle in the refrigerant circuit (220). The suction temperature sensor (35) is temperature detection means for detecting the temperature of the refrigerant sucked into the first compressor (21a). The intermediate pressure saturation temperature sensor (36) is provided in the refrigerant outflow pipe (25e) connecting the bridge circuit (50) and the gas-liquid separator (25), and the temperature of the intermediate pressure refrigerant, that is, the intermediate pressure of the refrigeration cycle. It is a temperature detection means for detecting the saturation temperature. The heating gas cooler outlet temperature sensor (37) is a temperature detecting means for detecting the outlet refrigerant temperature of the indoor heat exchanger (27) when the refrigerant circulates in the heating cycle in the refrigerant circuit (220).

前記コントローラ(240)は、前記室内温度センサ(31)、低圧センサ(32)、高圧センサ(34)、吸入温度センサ(35)、中間圧飽和温度センサ(36)及び暖房時ガスクーラ出口温度センサ(37)の出力信号が入力され、前記第1及び第2圧縮機(21a,21b)の運転周波数、並びに室外及び室内膨張弁(24,26)の開度を制御するように構成されている。   The controller (240) includes the indoor temperature sensor (31), the low pressure sensor (32), the high pressure sensor (34), the suction temperature sensor (35), the intermediate pressure saturation temperature sensor (36), and the heating gas cooler outlet temperature sensor ( 37) is input, and the operation frequency of the first and second compressors (21a, 21b) and the opening degree of the outdoor and indoor expansion valves (24, 26) are controlled.

前記コントローラ(240)は、図5,6に示すように、冷凍サイクルの低圧の目標値である目標低圧Plsを算出する目標低圧算出部(41)と、冷凍サイクルの高圧の目標値である目標高圧Phsを算出する目標高圧算出部(42)と、冷媒の過熱度の目標値である目標過熱度SHsを算出する目標過熱度算出部(44)と、冷媒の実際の過熱度である実過熱度SHを算出する実過熱度算出部(45)と、冷媒の中間圧飽和温度の目標値である目標中間圧飽和温度T3sを算出する目標中間圧飽和温度算出部(46)と、暖房運転時における冷媒のガスクーラ出口温度の目標値である目標ガスクーラ出口温度T4sを算出する目標ガスクーラ出口温度算出部(47)と、第1及び第2圧縮機(21a,21b)並びに室外及び室内膨張弁(24,26)への制御信号を生成する制御信号生成部(249)とを有する。尚、コントローラ(240)は、冷房運転と暖房運転とでは制御内容が異なるため、冷房運転時の制御ブロック図を図5に、暖房運転時の制御ブロック図を図6に分けて示している。   As shown in FIGS. 5 and 6, the controller (240) includes a target low pressure calculation unit (41) that calculates a target low pressure Pls that is a low pressure target value of the refrigeration cycle, and a target that is a high pressure target value of the refrigeration cycle. A target high pressure calculator (42) for calculating the high pressure Phs, a target superheat degree calculator (44) for calculating a target superheat degree SHs that is a target value of the superheat degree of the refrigerant, and an actual superheat that is the actual superheat degree of the refrigerant An actual superheat degree calculation part (45) for calculating the degree SH, a target intermediate pressure saturation temperature calculation part (46) for calculating a target intermediate pressure saturation temperature T3s that is a target value of the intermediate pressure saturation temperature of the refrigerant, and heating operation A target gas cooler outlet temperature calculating section (47) for calculating a target gas cooler outlet temperature T4s, which is a target value of the refrigerant gas cooler outlet temperature, first and second compressors (21a, 21b), outdoor and indoor expansion valves (24 , 26) Control signal generating unit and a (249). The controller (240) has different control contents between the cooling operation and the heating operation, so the control block diagram during the cooling operation is shown in FIG. 5, and the control block diagram during the heating operation is shown in FIG.

前記目標過熱度算出部(44)は、冷房運転時には設定温度Tsと室内温度センサ(31)からの室内温度Taとの温度偏差etに基づいて、暖房運転時には該温度偏差et及び外気温度センサ(30)からの外気温T0に基づいて室外熱交換器(23)及び室内熱交換器(27)のうち蒸発器として機能する熱交換器の目標過熱度SHsを算出する。   The target superheat degree calculation unit (44) is based on the temperature deviation et between the set temperature Ts and the room temperature Ta from the room temperature sensor (31) during the cooling operation, and the temperature deviation et and the outside air temperature sensor ( The target superheat degree SHs of the heat exchanger functioning as an evaporator among the outdoor heat exchanger (23) and the indoor heat exchanger (27) is calculated based on the outside air temperature T0 from 30).

前記実過熱度算出部(45)は、低圧センサ(32)からの実低圧Plと吸入温度センサ(35)からの実吸入温度T2とに基づいて、室外熱交換器(23)及び室内熱交換器(27)のうち蒸発器として機能する熱交換器の出口における冷媒の実際の過熱度である実過熱度SHを算出する。   Based on the actual low pressure Pl from the low pressure sensor (32) and the actual suction temperature T2 from the suction temperature sensor (35), the actual superheat degree calculation unit (45) exchanges with the outdoor heat exchanger (23) and the indoor heat exchange. The actual superheat degree SH which is the actual superheat degree of the refrigerant | coolant in the exit of the heat exchanger which functions as an evaporator among evaporators (27) is calculated.

前記目標中間圧飽和温度算出部(46)は、外気温度センサ(30)からの外気温度T0、室内温度センサ(31)、高圧センサ(34)からの実高圧Ph、低圧センサ(32)からの実低圧Pl、目標高圧算出部(42)で算出した目標高圧Phs及び目標低圧算出部(41)で算出した目標低圧Plsのうち少なくとも1つの値に基づいて、目標中間圧飽和温度T3sを算出する。   The target intermediate pressure saturation temperature calculation unit (46) includes an outside air temperature T0 from the outside air temperature sensor (30), an indoor temperature sensor (31), an actual high pressure Ph from the high pressure sensor (34), and a low pressure sensor (32). A target intermediate pressure saturation temperature T3s is calculated based on at least one of the actual low pressure Pl, the target high pressure Phs calculated by the target high pressure calculator (42), and the target low pressure Pls calculated by the target low pressure calculator (41). .

前記目標ガスクーラ出口温度算出部(47)は、前記温度偏差etに基づいて、室内熱交換器(27)が放熱器として機能する場合の出口における冷媒の温度の目標値である目標ガスクーラ出口温度T4sを算出する。   Based on the temperature deviation et, the target gas cooler outlet temperature calculation unit (47) calculates a target gas cooler outlet temperature T4s that is a target value of the refrigerant temperature at the outlet when the indoor heat exchanger (27) functions as a radiator. Is calculated.

これら、目標過熱度算出部(44)、実過熱度算出部(45)及び目標中間圧飽和温度算出部(46)のそれぞれは、マップ及び関数を有していて、各入力に対して対応する出力値(目標値)を出力するように構成されている。   Each of the target superheat degree calculation unit (44), the actual superheat degree calculation part (45), and the target intermediate pressure saturation temperature calculation part (46) has a map and a function, and corresponds to each input. An output value (target value) is output.

前記制御信号生成部(249)には、冷房運転と暖房運転とで異なる信号が入力されるように構成されている。また、制御信号生成部(249)は、入力信号に応じた制御パラメータを有するPID制御部(p1c,p2c,…,p1d,p2d,…)を有している。   The control signal generator (249) is configured to receive different signals for the cooling operation and the heating operation. Further, the control signal generation unit (249) includes PID control units (p1c, p2c,..., P1d, p2d,...) Having control parameters corresponding to the input signals.

冷房運転時には、目標低圧算出部(41)で算出した目標低圧Plsと低圧センサ(32)からの実低圧Plとの低圧偏差e1、目標高圧算出部(42)で算出した目標高圧Phsと高圧センサ(34)からの実高圧Phとの高圧偏差e2、目標過熱度算出部(44)で算出した目標過熱度SHsと実過熱度算出部(45)で算出した実過熱度SHとの過熱度偏差e4及び目標中間圧飽和温度算出部(46)で算出した目標中間圧飽和温度T3sと中間圧飽和温度センサ(36)からの出力信号(即ち、実中間圧飽和温度T3)との中間圧飽和温度偏差e5が制御信号生成部(249)に入力されている。   During cooling operation, the low pressure deviation e1 between the target low pressure Pls calculated by the target low pressure calculator (41) and the actual low pressure Pl from the low pressure sensor (32), the target high pressure Phs calculated by the target high pressure calculator (42), and the high pressure sensor The superheat degree deviation of the high pressure deviation e2 from the actual high pressure Ph from (34), the target superheat degree SHs calculated by the target superheat degree calculation unit (44) and the actual superheat degree SH calculated by the actual superheat degree calculation unit (45). e4 and the intermediate pressure saturation temperature between the target intermediate pressure saturation temperature T3s calculated by the target intermediate pressure saturation temperature calculation unit (46) and the output signal from the intermediate pressure saturation temperature sensor (36) (that is, the actual intermediate pressure saturation temperature T3). The deviation e5 is input to the control signal generator (249).

また、冷房運転時には、制御信号生成部(249)における16個のPID制御部(p1c,p2c,…)が機能する。すなわち、制御信号生成部(249)に入力された高圧偏差e2は4個の第1乃至第4PID制御部(p1c〜p4c)に入力され、中間圧飽和温度偏差e5は別の4個の第5乃至第8PID制御部(p5c〜p8c)に入力され、低圧偏差e1はまた別の4個の第9乃至第12PID制御部(p9c〜p12c)に入力され、過熱度偏差e4はさらに別の4個の第13乃至第16PID制御部(p13c〜p16c)に入力されている。   In the cooling operation, 16 PID control units (p1c, p2c,...) In the control signal generation unit (249) function. That is, the high pressure deviation e2 input to the control signal generation unit (249) is input to the four first to fourth PID control units (p1c to p4c), and the intermediate pressure saturation temperature deviation e5 is set to the other four fifths. Thru | or 8th PID control part (p5c-p8c), the low voltage | pressure deviation e1 is inputted into another 4th 9th thru | or 12th PID control part (p9c-p12c), and superheat degree deviation e4 is another 4 pieces. Are input to the thirteenth to sixteenth PID control units (p13c to p16c).

第1乃至第16PID制御部(p1c,p2c,…)はそれぞれ、入力される偏差に所定の制御パラメータを掛け合わせて出力する。その結果、制御信号生成部(249)は、第1PID制御部(p1c)、第5PID制御部(p5c)、第9PID制御部(p9c)及び第13PID制御部(p13c)からの出力信号を加算して第1圧縮機周波数制御信号Δfc1を生成し、第2PID制御部(p2c)、第6PID制御部(p6c)、第10PID制御部(p10c)及び第14PID制御部(p14c)からの出力信号を加算して第2圧縮機周波数制御信号Δfc2を生成し、第3PID制御部(p3c)、第7PID制御部(p7c)、第11PID制御部(p11c)及び第15PID制御部(p15c)からの出力信号を加算して室外膨張弁開度制御信号Δev1を生成し、第4PID制御部(p4c)、第8PID制御部(p8c)、第12PID制御部(p12c)及び第16PID制御部(p16c)からの出力信号を加算して室内張弁開度制御信号Δev2を生成している。   Each of the first to 16th PID control units (p1c, p2c,...) Multiplies the input deviation by a predetermined control parameter and outputs the result. As a result, the control signal generation unit (249) adds the output signals from the first PID control unit (p1c), the fifth PID control unit (p5c), the ninth PID control unit (p9c), and the thirteenth PID control unit (p13c). The first compressor frequency control signal Δfc1 is generated and the output signals from the second PID control unit (p2c), the sixth PID control unit (p6c), the tenth PID control unit (p10c), and the fourteenth PID control unit (p14c) are added. The second compressor frequency control signal Δfc2 is generated, and output signals from the third PID control unit (p3c), the seventh PID control unit (p7c), the eleventh PID control unit (p11c), and the fifteenth PID control unit (p15c) are generated. Addition to generate the outdoor expansion valve opening control signal Δev1, and output signals from the fourth PID control unit (p4c), the eighth PID control unit (p8c), the twelfth PID control unit (p12c) and the sixteenth PID control unit (p16c) To increase the opening of the indoor tension valve A control signal Δev2 is generated.

こうして生成された第1圧縮機周波数制御信号Δfc1、第2圧縮機周波数制御信号Δfc2、室外膨張弁開度制御信号Δev1及び室内膨張弁開度制御信号Δev2は、空気調和装置(210)に出力される。   The first compressor frequency control signal Δfc1, the second compressor frequency control signal Δfc2, the outdoor expansion valve opening control signal Δev1 and the indoor expansion valve opening control signal Δev2 generated in this way are output to the air conditioner (210). The

空気調和装置(210)においては、第1圧縮機(21a)の容量が第1圧縮機周波数制御信号Δfc1に応じた値に変化し、第2圧縮機(21b)の容量が第2圧縮機周波数制御信号Δfc2に応じた値に変化する。   In the air conditioner (210), the capacity of the first compressor (21a) changes to a value corresponding to the first compressor frequency control signal Δfc1, and the capacity of the second compressor (21b) changes to the second compressor frequency. It changes to a value corresponding to the control signal Δfc2.

また、室外膨張弁(24)は、室外膨張弁開度制御信号Δev1に応じた弁開度に調整され、室内膨張弁(26)も同様に、室内膨張弁開度制御信号Δev2に応じた弁開度に調整されるようになる。   The outdoor expansion valve (24) is adjusted to a valve opening corresponding to the outdoor expansion valve opening control signal Δev1, and the indoor expansion valve (26) is similarly a valve corresponding to the indoor expansion valve opening control signal Δev2. The opening is adjusted.

そして、かかる運転状態で運転される空気調和装置(210)における低圧Pl、高圧Ph、吸入温度T2及び中間圧飽和温度T3が低圧センサ(32)、高圧センサ(34)、吸入温度センサ(35)及び中間圧飽和温度センサ(36)を介してコントローラ(240)にフィードバックされる。こうして、コントローラ(240)は、低圧Pl、高圧Ph、過熱度SH及び中間圧飽和温度T3が運転状態に応じた目標値となるようにフィードバック制御している。   The low pressure Pl, high pressure Ph, suction temperature T2, and intermediate pressure saturation temperature T3 in the air conditioner (210) operated in such an operating state are the low pressure sensor (32), the high pressure sensor (34), and the suction temperature sensor (35). And fed back to the controller (240) via the intermediate pressure saturation temperature sensor (36). Thus, the controller (240) performs feedback control so that the low pressure Pl, the high pressure Ph, the superheat degree SH, and the intermediate pressure saturation temperature T3 become target values according to the operating state.

このように、第1及び第2圧縮機周波数制御信号Δfc1、Δfc2並びに室外及び室内膨張弁開度制御信号Δev1、Δev2のそれぞれは、低圧偏差e1、高圧偏差e2、過熱度偏差e4及び中間圧飽和温度偏差e5を互いに関連付けて生成されている。つまり、各物理量に個別に対応した制御対象をそれぞれ別々に制御するのではなく、第1及び第2圧縮機(21a,21b)並びに室外及び室内膨張弁(24,26)を共に制御することで、低圧、高圧、過熱度及び中間圧飽和温度を共に、即ち同時に制御している。すなわち、低圧、高圧、過熱度及び中間圧飽和温度のそれぞれは、第1及び第2圧縮機(21a,21b)並びに室外及び室内膨張弁(24,26)のうちの何れか1つによって制御されるのではなく、第1及び第2圧縮機(21a,21b)並びに室外及び室内膨張弁(24,26)の全てによって制御される。さらに詳しくは、制御対象である第1及び第2圧縮機(21a,21b)並びに室外及び室内膨張弁(24,26)のそれぞれは、そのものだけが駆動制御されるときの低圧、高圧、過熱度及び中間圧飽和温度の変化だけでなく、そのもの以外の他の制御対象が駆動制御されるときの低圧、高圧、過熱度及び中間圧飽和温度の変化をも考慮して駆動制御される(換言すれば、それらが考慮されるように、第1乃至第16PID制御部(p1c,p2c,…)の制御パラメータが設定されている)。   Thus, the first and second compressor frequency control signals Δfc1 and Δfc2 and the outdoor and indoor expansion valve opening control signals Δev1 and Δev2, respectively, are low pressure deviation e1, high pressure deviation e2, superheat degree deviation e4, and intermediate pressure saturation. The temperature deviation e5 is generated in association with each other. In other words, the control objects individually corresponding to each physical quantity are not controlled separately, but by controlling both the first and second compressors (21a, 21b) and the outdoor and indoor expansion valves (24, 26). , Low pressure, high pressure, superheat and intermediate pressure saturation temperature are controlled together, ie simultaneously. That is, each of the low pressure, the high pressure, the superheat degree, and the intermediate pressure saturation temperature is controlled by any one of the first and second compressors (21a, 21b) and the outdoor and indoor expansion valves (24, 26). Instead, it is controlled by the first and second compressors (21a, 21b) and the outdoor and indoor expansion valves (24, 26). More specifically, each of the first and second compressors (21a, 21b) and the outdoor and indoor expansion valves (24, 26) to be controlled is low pressure, high pressure, and superheat degree when only the drive is controlled. In addition to the change in the intermediate pressure saturation temperature, the drive control is performed in consideration of the change in the low pressure, the high pressure, the superheat degree, and the intermediate pressure saturation temperature when the control target other than itself is controlled (in other words, For example, the control parameters of the first to 16th PID control units (p1c, p2c,...) Are set so that they are taken into consideration).

一方、暖房運転時には、目標高圧算出部(42)で算出した目標高圧Phsと高圧センサ(34)からの実高圧Phとの高圧偏差e2、目標過熱度算出部(44)で算出した目標過熱度SHsと実過熱度算出部(45)で算出した実過熱度SHとの過熱度偏差e4、目標中間圧飽和温度算出部(46)で算出した目標中間圧飽和温度T3sと中間圧飽和温度センサ(36)からの実中間圧飽和温度T3との中間圧飽和温度偏差e5及び目標ガスクーラ出口温度算出部(47)で算出した目標ガスクーラ出口温度T4sと暖房時ガスクーラ出口温度センサ(37)からの出力信号(即ち、実ガスクーラ出口温度T4)とのガスクーラ出口温度偏差e6が制御信号生成部(249)に入力されている。   On the other hand, during heating operation, the high pressure deviation e2 between the target high pressure Phs calculated by the target high pressure calculator (42) and the actual high pressure Ph from the high pressure sensor (34), and the target superheat degree calculated by the target superheat degree calculator (44). The superheat degree deviation e4 between the SHs and the actual superheat degree SH calculated by the actual superheat degree calculator (45), the target intermediate pressure saturation temperature T3s calculated by the target intermediate pressure saturation temperature calculator (46), and the intermediate pressure saturation temperature sensor ( 36), an intermediate pressure saturation temperature deviation e5 from the actual intermediate pressure saturation temperature T3, a target gas cooler outlet temperature T4s calculated by the target gas cooler outlet temperature calculating section (47), and an output signal from the heating gas cooler outlet temperature sensor (37). The gas cooler outlet temperature deviation e6 (that is, the actual gas cooler outlet temperature T4) is input to the control signal generator (249).

また、暖房運転時には、制御信号生成部(249)では、冷房運転時とは別の16個のPID制御部(p1d,p2d,…)が機能する。すなわち、制御信号生成部(249)に入力された高圧偏差e2は4個の第1乃至第4PID制御部(p1d〜p4d)に入力され、中間圧飽和温度偏差e5は別の4個の第5乃至第8PID制御部(p5d〜p8d)に入力され、ガスクーラ出口温度偏差e6はまた別の4個の第9乃至第12PID制御部(p9d〜p12d)に入力され、過熱度偏差e4はさらに別の4個の第13乃至第16PID制御部(p13d〜p16d)に入力されている。   In the heating operation, the control signal generation unit (249) functions 16 PID control units (p1d, p2d,...) Different from those in the cooling operation. That is, the high pressure deviation e2 input to the control signal generation unit (249) is input to the four first to fourth PID control units (p1d to p4d), and the intermediate pressure saturation temperature deviation e5 is set to the other four fifths. Thru | or 8th PID control part (p5d-p8d), gas cooler exit | outlet temperature deviation e6 is inputted into another four 9th thru | or 12th PID control part (p9d-p12d), and superheat degree deviation e4 is further another. The four thirteenth to sixteenth PID control units (p13d to p16d) are input.

第1乃至第16PID制御部(p1d,p2d,…)はそれぞれ、入力される偏差に所定の制御パラメータを掛け合わせて出力する。その結果、制御信号生成部(249)は、第1PID制御部(p1d)、第5PID制御部(p5d)、第9PID制御部(p9d)及び第13PID制御部(p13d)からの出力信号を加算して第1圧縮機周波数制御信号Δfc1を生成し、第2PID制御部(p2d)、第6PID制御部(p6d)、第10PID制御部(p10d)及び第14PID制御部(p14d)からの出力信号を加算して第2圧縮機周波数制御信号Δfc2を生成し、第3PID制御部(p3d)、第7PID制御部(p7d)、第11PID制御部(p11d)及び第15PID制御部(p15d)からの出力信号を加算して室外膨張弁開度制御信号Δev1を生成し、第4PID制御部(p4d)、第8PID制御部(p8d)、第12PID制御部(p12d)及び第16PID制御部(p16d)からの出力信号を加算して室内張弁開度制御信号Δev2を生成している。   Each of the first to sixteenth PID control units (p1d, p2d,...) Multiplies the input deviation by a predetermined control parameter and outputs the result. As a result, the control signal generation unit (249) adds the output signals from the first PID control unit (p1d), the fifth PID control unit (p5d), the ninth PID control unit (p9d), and the thirteenth PID control unit (p13d). The first compressor frequency control signal Δfc1 is generated and the output signals from the second PID control unit (p2d), the sixth PID control unit (p6d), the tenth PID control unit (p10d), and the fourteenth PID control unit (p14d) are added. The second compressor frequency control signal Δfc2 is generated, and output signals from the third PID control unit (p3d), the seventh PID control unit (p7d), the eleventh PID control unit (p11d), and the fifteenth PID control unit (p15d) are generated. Addition to generate the outdoor expansion valve opening control signal Δev1, and output signals from the fourth PID control unit (p4d), the eighth PID control unit (p8d), the twelfth PID control unit (p12d) and the sixteenth PID control unit (p16d) To increase the opening of the indoor tension valve A control signal Δev2 is generated.

こうして生成された第1圧縮機周波数制御信号Δfc1、第2圧縮機周波数制御信号Δfc2、室外膨張弁開度制御信号Δev1及び室内膨張弁開度制御信号Δev2は、空気調和装置(210)に出力される。   The first compressor frequency control signal Δfc1, the second compressor frequency control signal Δfc2, the outdoor expansion valve opening control signal Δev1 and the indoor expansion valve opening control signal Δev2 generated in this way are output to the air conditioner (210). The

空気調和装置(210)においては、第1圧縮機(21a)の容量が第1圧縮機周波数制御信号Δfc1に応じて変化し、第2圧縮機(21b)の容量が第2圧縮機周波数制御信号Δfc2に応じて変化する。また、室外膨張弁(24)が室外膨張弁開度制御信号Δev1に応じた弁開度に調整され、室内膨張弁(26)が室内膨張弁開度制御信号Δev2に応じた弁開度に調整されるようになる。   In the air conditioner (210), the capacity of the first compressor (21a) changes according to the first compressor frequency control signal Δfc1, and the capacity of the second compressor (21b) changes to the second compressor frequency control signal. It changes according to Δfc2. Further, the outdoor expansion valve (24) is adjusted to a valve opening corresponding to the outdoor expansion valve opening control signal Δev1, and the indoor expansion valve (26) is adjusted to a valve opening corresponding to the indoor expansion valve opening control signal Δev2. Will come to be.

そして、かかる運転状態で運転される空気調和装置(210)における高圧Ph、吸入温度T2、中間圧飽和温度T3及びガスクーラ出口温度T4が高圧センサ(34)、吸入温度センサ(35)、中間圧飽和温度センサ(36)及び暖房時ガスクーラ出口温度センサ(37)を介してコントローラ(240)にフィードバックされる。こうして、コントローラ(240)は、高圧Ph、過熱度SH、中間圧飽和温度T3及びガスクーラ出口温度T4が運転状態に応じた目標値となるようにフィードバック制御している。   The high pressure Ph, the suction temperature T2, the intermediate pressure saturation temperature T3, and the gas cooler outlet temperature T4 in the air conditioner (210) operated in such an operating state are the high pressure sensor (34), the suction temperature sensor (35), and the intermediate pressure saturation. The temperature is fed back to the controller (240) through the temperature sensor (36) and the heating gas cooler outlet temperature sensor (37). In this way, the controller (240) performs feedback control so that the high pressure Ph, the superheat degree SH, the intermediate pressure saturation temperature T3, and the gas cooler outlet temperature T4 become target values according to the operation state.

このように、第1及び第2圧縮機周波数制御信号Δfc1、Δfc2並びに室外及び室内膨張弁開度制御信号Δev1、Δev2のそれぞれは、高圧偏差e2、過熱度偏差e4、中間圧飽和温度偏差e5及びガスクーラ出口温度偏差e6を互いに関連付けて生成されている。つまり、各物理量に個別に対応した制御対象をそれぞれ別々に制御するのではなく、第1及び第2圧縮機(21a,21b)並びに室外及び室内膨張弁(24,26)を共に制御することで、高圧、過熱度、中間圧飽和温度及びガスクーラ出口温度を共に、即ち同時に制御している。すなわち、高圧、過熱度、中間圧飽和温度及びガスクーラ出口温度のそれぞれは、第1及び第2圧縮機(21a,21b)並びに室外及び室内膨張弁(24,26)のうちの何れか1つによって制御されるのではなく、第1及び第2圧縮機(21a,21b)並びに室外及び室内膨張弁(24,26)の全てによって制御される。さらに詳しくは、制御対象である第1及び第2圧縮機(21a,21b)並びに室外及び室内膨張弁(24,26)のそれぞれは、そのものだけが駆動制御されるときの高圧、過熱度、中間圧飽和温度及びガスクーラ出口温度の変化だけでなく、そのもの以外の他の制御対象が駆動制御されるときの高圧、過熱度、中間圧飽和温度及びガスクーラ出口温度の変化をも考慮して駆動制御される(換言すれば、それらが考慮されるように、第1乃至第16PID制御部(p1d,p2d,…)の制御パラメータが設定されている)。   Thus, the first and second compressor frequency control signals Δfc1 and Δfc2 and the outdoor and indoor expansion valve opening control signals Δev1 and Δev2, respectively, are a high pressure deviation e2, a superheat degree deviation e4, an intermediate pressure saturation temperature deviation e5, and The gas cooler outlet temperature deviation e6 is generated in association with each other. In other words, the control objects individually corresponding to each physical quantity are not controlled separately, but by controlling both the first and second compressors (21a, 21b) and the outdoor and indoor expansion valves (24, 26). The high pressure, superheat, intermediate pressure saturation temperature and gas cooler outlet temperature are controlled together, i.e. simultaneously. That is, the high pressure, superheat, intermediate pressure saturation temperature, and gas cooler outlet temperature are respectively determined by any one of the first and second compressors (21a, 21b) and the outdoor and indoor expansion valves (24, 26). Rather than being controlled, it is controlled by the first and second compressors (21a, 21b) and all of the outdoor and indoor expansion valves (24, 26). More specifically, each of the first and second compressors (21a, 21b) and the outdoor and indoor expansion valves (24, 26) to be controlled is high pressure, superheat, intermediate when only the drive control is performed. Drive control is performed in consideration of not only changes in pressure saturation temperature and gas cooler outlet temperature, but also changes in high pressure, superheat, intermediate pressure saturation temperature, and gas cooler outlet temperature when other controlled objects are driven and controlled. (In other words, the control parameters of the first to 16th PID control units (p1d, p2d,...) Are set so that they are taken into account).

したがって、本実施形態2によれば、空気調和装置(210)における所定の物理量に加えて冷凍サイクルの高圧を運転状態に応じた所定の目標値となるように複数の制御対象(例えば、第1圧縮機(21a)や室外膨張弁(24)等)を同時に駆動制御すると共に、複数の制御対象を制御した際の該物理量及び冷凍サイクルの高圧の変化を考慮しつつ各制御対象を駆動制御することによって、高圧を運転状態に応じた目標値に安定的に保ったまま、空気調和装置(210)の能力制御(例えば、冷房運転時であれば低圧や過熱度等)を行うことができる。その結果、或る一の物理量を調整することによって、別の物理量が変化し、その変化を是正すべく該別の物理量を調整すると、さらに別の物理量或いは先に調整した一の物理量が変化して、さらに調整する必要が生じるというように、制御しようとする物理量がなかなか収束しないという事態を防止することができ、空気調和装置(210)における能力制御及び高圧制御の収束性を向上させることができる。   Therefore, according to the second embodiment, in addition to the predetermined physical quantity in the air conditioner (210), a plurality of control objects (for example, the first control object) are set so that the high pressure of the refrigeration cycle becomes a predetermined target value corresponding to the operating state. Compressor (21a), outdoor expansion valve (24), etc.) are driven and controlled at the same time, and each controlled object is driven and controlled while taking into account changes in the physical quantity and high pressure of the refrigeration cycle when multiple controlled objects are controlled As a result, it is possible to control the capacity of the air conditioner (210) (for example, the low pressure and the degree of superheat during the cooling operation) while stably maintaining the high pressure at the target value corresponding to the operating state. As a result, by adjusting one physical quantity, another physical quantity changes, and when the other physical quantity is adjusted to correct the change, another physical quantity or the previously adjusted physical quantity changes. As a result, it is possible to prevent a situation in which the physical quantity to be controlled does not converge so that further adjustment is required, and to improve the convergence of the capacity control and the high pressure control in the air conditioner (210). it can.

尚、本実施形態では、冷房運転時には、低圧、高圧、過熱度及び中間圧飽和温度という4つの物理量を第1及び第2圧縮機(21a,21b)並びに室外及び室内膨張弁(24,26)という4つの制御対象で制御すると共に、暖房運転時には、高圧、過熱度、中間圧飽和温度及びガスクーラ出口温度という4つの物理量を第1及び第2圧縮機(21a,21b)並びに室外及び室内膨張弁(24,26)という4つの制御対象で制御しているが、制御対象によっては各物理量に影響を与えやすいもの、あるいは与えにくいものがある。つまり、何れか1つの制御対象を変化させても、あまり変化しない物理量がある場合がある。本実施形態では、制御する物理量全てを入力とすると共にそれら全てを関連付けて制御対象ごとの制御信号を生成しているが、影響を与えにくい物理量がある制御対象の制御信号を生成する際には、その影響を与えにくい物理量の関連性を小さくする、あるいは関連性をなくすようにしてもよい(具体的には、影響を与えにくい物理量がある制御対象の制御信号を生成するPID制御部(p1c,…,p1d,…)のうち該影響を与えにくい物理量のPID制御部の制御パラメータを小さくする、あるいは零にしてもよい)。   In the present embodiment, during the cooling operation, the four physical quantities of low pressure, high pressure, superheat degree, and intermediate pressure saturation temperature are used as the first and second compressors (21a, 21b) and the outdoor and indoor expansion valves (24, 26). In the heating operation, the four physical quantities of high pressure, superheat, intermediate pressure saturation temperature, and gas cooler outlet temperature are used for the first and second compressors (21a, 21b) and the outdoor and indoor expansion valves. Although control is performed with four control targets (24, 26), there are some that are likely to affect each physical quantity, or some that are difficult to give depending on the control target. That is, there is a case where there is a physical quantity that does not change so much even if any one control object is changed. In this embodiment, all the physical quantities to be controlled are input and associated with each other to generate a control signal for each control target. However, when generating a control signal for a control target having a physical quantity that is difficult to influence, The relevance of a physical quantity that is less likely to be affected may be reduced or the relevance may be eliminated (specifically, a PID control unit (p1c that generates a control signal for a control target having a physical quantity that is less likely to be affected). ,..., P1d,...), The control parameter of the PID control unit having a physical quantity that does not easily affect the control parameter may be reduced or zero).

《発明の実施形態3》
続いて、本発明の実施形態3について説明する。
<< Embodiment 3 of the Invention >>
Subsequently, Embodiment 3 of the present invention will be described.

実施形態3に係る空気調和装置(310)は、冷媒回路(320)において、室内熱交換器(27a,27b)が複数設けられている点で、実施形態1に係る空気調和装置(10)と異なる。   The air conditioner (310) according to Embodiment 3 is different from the air conditioner (10) according to Embodiment 1 in that a plurality of indoor heat exchangers (27a, 27b) are provided in the refrigerant circuit (320). Different.

詳しくは、空気調和装置(310)は、図7に示すように、冷媒回路(320)とコントローラ(340)を備えている。   Specifically, as shown in FIG. 7, the air conditioner (310) includes a refrigerant circuit (320) and a controller (340).

前記冷媒回路(320)には、圧縮機(21)と、四路切換弁(22)と、室外熱交換器(23)と、室外膨張弁(24)と、レシーバ(25)と、第1及び第2室内膨張弁(26a,26b)並びに第1及び第2室内熱交換器(27a,27b)とが接続されている。この冷媒回路(320)では、複数(本実施形態では、2つ)の室内熱交換器(27a,27b)が互いに並列に接続され、各室内熱交換器(27a(27b))毎に室内膨張弁(26a(26b))が接続されている。   The refrigerant circuit (320) includes a compressor (21), a four-way switching valve (22), an outdoor heat exchanger (23), an outdoor expansion valve (24), a receiver (25), a first The second indoor expansion valve (26a, 26b) and the first and second indoor heat exchangers (27a, 27b) are connected. In this refrigerant circuit (320), a plurality (two in this embodiment) of indoor heat exchangers (27a, 27b) are connected in parallel to each other, and each indoor heat exchanger (27a (27b)) is expanded indoors. A valve (26a (26b)) is connected.

具体的に、前記冷媒回路(320)において、圧縮機(21)は、吐出側が四路切換弁(22)の第1ポートに、吸入側が四路切換弁(22)の第2ポートにそれぞれ接続されている。また、冷媒回路(320)では、四路切換弁(22)の第3ポートから第4ポートへ向かって順に、室外熱交換器(23)、室外膨張弁(24)、レシーバ(25)および2組の室内膨張弁(26a,26b)および室内熱交換器(27a,27b)が順に配置されている。   Specifically, in the refrigerant circuit (320), the compressor (21) has a discharge side connected to a first port of the four-way switching valve (22) and a suction side connected to a second port of the four-way switching valve (22). Has been. Further, in the refrigerant circuit (320), the outdoor heat exchanger (23), the outdoor expansion valve (24), the receiver (25) and 2 are arranged in order from the third port to the fourth port of the four-way switching valve (22). A pair of indoor expansion valves (26a, 26b) and indoor heat exchangers (27a, 27b) are sequentially arranged.

室外膨張弁(24)並びに第1及び第2室内膨張弁(26a,26b)は、いずれも弁体(図示省略)がパルスモータ(図示省略)で駆動される開度可変の電子膨張弁によって構成されている。この室外膨張弁(24)が熱源側膨張機構を構成し、第1及び第2室内膨張弁(26a,26b)が利用側膨張機構を構成している。   Both the outdoor expansion valve (24) and the first and second indoor expansion valves (26a, 26b) are constituted by variable opening electronic expansion valves whose valve bodies (not shown) are driven by pulse motors (not shown). Has been. This outdoor expansion valve (24) constitutes a heat source side expansion mechanism, and the first and second indoor expansion valves (26a, 26b) constitute a utilization side expansion mechanism.

第1及び第2室内熱交換器(27a,27b)には、それぞれ別々の第1及び第2室外ファン(29a,29b)が設けられている。   Separate first and second outdoor fans (29a, 29b) are provided in the first and second indoor heat exchangers (27a, 27b), respectively.

この空気調和装置(310)は、実施形態1と同様に、四路切換弁(22)の切換によって、冷房運転と暖房運転とが切り換え可能になっている。   As in the first embodiment, the air conditioner (310) can be switched between a cooling operation and a heating operation by switching the four-way switching valve (22).

冷房運転時には、四路切換弁(22)が第1状態に設定される。この状態で圧縮機(21)を運転すると、室外熱交換器(23)が放熱器となり、第1及び第2室内熱交換器(27a,27b)が蒸発器となって冷凍サイクルが行われる。具体的に、圧縮機(21)から吐出された超臨界状態の冷媒は、室外熱交換器(23)に流れて室外空気へ放熱する。放熱した冷媒は、室外膨張弁(24)を通過する際に膨張する(減圧される)。膨張した冷媒は、レシーバ(25)を通過した後、分岐して第1及び第2各室内膨張弁(26a,26b)を通過する。このとき、冷媒はさらに膨張して(減圧されて)、第1及び第2室内熱交換器(27a,27b)へ流れる。つまり、レシーバ(25)を含む室外膨張弁(24)と室内膨張弁(26a,26b)の間の冷媒が中間圧状態になる。第1及び第2室内熱交換器(27a,27b)では、冷媒が室内空気から吸熱して蒸発し、冷却された室内空気が室内へ供給される。蒸発した冷媒は、圧縮機(21)へ吸入されて圧縮される。   During the cooling operation, the four-way selector valve (22) is set to the first state. When the compressor (21) is operated in this state, the outdoor heat exchanger (23) serves as a radiator and the first and second indoor heat exchangers (27a, 27b) serve as evaporators to perform a refrigeration cycle. Specifically, the supercritical refrigerant discharged from the compressor (21) flows into the outdoor heat exchanger (23) and radiates heat to the outdoor air. The radiated refrigerant expands (depressurizes) when passing through the outdoor expansion valve (24). The expanded refrigerant passes through the receiver (25), then branches and passes through the first and second indoor expansion valves (26a, 26b). At this time, the refrigerant is further expanded (depressurized) and flows to the first and second indoor heat exchangers (27a, 27b). That is, the refrigerant between the outdoor expansion valve (24) including the receiver (25) and the indoor expansion valves (26a, 26b) is in an intermediate pressure state. In the first and second indoor heat exchangers (27a, 27b), the refrigerant absorbs heat from the room air and evaporates, and the cooled room air is supplied to the room. The evaporated refrigerant is sucked into the compressor (21) and compressed.

暖房運転時には、四路切換弁(22)が第2状態に設定される。この状態で圧縮機(21)を運転すると、第1及び第2室内熱交換器(27a,27b)が放熱器となり、室外熱交換器(23)が蒸発器となって冷凍サイクルが行われる。具体的に、圧縮機(21)から吐出された超臨界状態の冷媒は、第1及び第2室内熱交換器(27a,27b)に分岐して流れて室内空気へ放熱する。これにより、加熱された室内空気が室内へ供給される。放熱した冷媒は、第1及び第2室内膨張弁(26a,26b)を通過する際に膨張する(減圧される)。膨張した冷媒は、レシーバ(25)を通過した後、室外膨張弁(24)を通過する際にさらに膨張する(減圧される)。つまり、レシーバ(25)を含む室外膨張弁(24)と第1及び第2室内膨張弁(26a,26b)の間の冷媒が中間圧状態になる。室外膨張弁(24)で膨張した冷媒は、室外熱交換器(23)に流れて室外空気から吸熱して蒸発する。蒸発した冷媒は、圧縮機(21)へ吸入されて圧縮される。   During the heating operation, the four-way selector valve (22) is set to the second state. When the compressor (21) is operated in this state, the first and second indoor heat exchangers (27a, 27b) serve as radiators, and the outdoor heat exchanger (23) serves as an evaporator to perform a refrigeration cycle. Specifically, the supercritical refrigerant discharged from the compressor (21) branches and flows to the first and second indoor heat exchangers (27a, 27b) and dissipates heat to the indoor air. Thereby, the heated indoor air is supplied indoors. The radiated refrigerant expands (depressurizes) when passing through the first and second indoor expansion valves (26a, 26b). The expanded refrigerant passes through the receiver (25) and then expands (depressurizes) when passing through the outdoor expansion valve (24). That is, the refrigerant between the outdoor expansion valve (24) including the receiver (25) and the first and second indoor expansion valves (26a, 26b) is in an intermediate pressure state. The refrigerant expanded by the outdoor expansion valve (24) flows into the outdoor heat exchanger (23), absorbs heat from the outdoor air, and evaporates. The evaporated refrigerant is sucked into the compressor (21) and compressed.

このように構成された空気調和装置(310)においては、前記冷媒回路(320)に、第1及び第2室内温度センサ(31a,31b)と、低圧センサ(32)と、高圧センサ(34)と、吸入温度センサ(35)と、第1及び第2暖房時ガスクーラ出口温度センサ(37a,37b)と、第1及び第2蒸発器出口温度センサ(38a,38b)と、冷房時ガスクーラ出口温度センサ(39)が設けられている。   In the air conditioner (310) thus configured, the refrigerant circuit (320) includes the first and second indoor temperature sensors (31a, 31b), the low pressure sensor (32), and the high pressure sensor (34). An intake temperature sensor (35), first and second heating gas cooler outlet temperature sensors (37a, 37b), first and second evaporator outlet temperature sensors (38a, 38b), and a cooling gas cooler outlet temperature. A sensor (39) is provided.

第1及び第2室内温度センサ(31a,31b)は、第1及び第2室内熱交換器(27a,27b)に取り込まれる室内空気の温度を検出する温度検出手段であって、第1及び第2室内熱交換器(27a,27b)ごとに設けられている。第1及び第2暖房時ガスクーラ出口温度センサ(37a,37b)は、冷媒回路(320)において冷媒が暖房サイクルで循環するときに、第1及び第2室内熱交換器(27a,27b)の出口冷媒温度をそれぞれ検出する温度検出手段であって、第1及び第2室内熱交換器(27a,27b)ごとに設けられている。第1及び第2蒸発器出口温度センサ(38a,38b)は、冷媒回路(320)において冷媒が冷房サイクルで循環するときに、第1及び第2室内熱交換器(27a,27b)の出口冷房温度をそれぞれ検出する温度検出手段であって、第1及び第2室内熱交換器(27a,27b)ごとに設けられている。   The first and second indoor temperature sensors (31a, 31b) are temperature detection means for detecting the temperature of the indoor air taken into the first and second indoor heat exchangers (27a, 27b). Two indoor heat exchangers (27a, 27b) are provided. The first and second heating gas cooler outlet temperature sensors (37a, 37b) are connected to the outlets of the first and second indoor heat exchangers (27a, 27b) when the refrigerant circulates in the heating circuit in the refrigerant circuit (320). It is a temperature detection means which each detects refrigerant | coolant temperature, Comprising: It is provided for every 1st and 2nd indoor heat exchanger (27a, 27b). The first and second evaporator outlet temperature sensors (38a, 38b) are used for outlet cooling of the first and second indoor heat exchangers (27a, 27b) when the refrigerant circulates in the cooling cycle in the refrigerant circuit (320). It is a temperature detection means which detects each temperature, Comprising: It is provided for every 1st and 2nd indoor heat exchanger (27a, 27b).

前記コントローラ(340)は、第1及び第2室内温度センサ(31a,31b)、低圧センサ(32)、高圧センサ(34)、吸入温度センサ(35)、第1及び第2暖房時ガスクーラ出口温度センサ(37a,37b)並びに第1及び第2蒸発器出口温度センサ(38a,38b)の出力信号が入力され、圧縮機(21)の運転周波数並びに室外、第1及び第2室内膨張弁(24,26a,26b)の開度を制御するように構成されている。   The controller (340) includes first and second indoor temperature sensors (31a, 31b), a low pressure sensor (32), a high pressure sensor (34), an intake temperature sensor (35), and first and second heating gas cooler outlet temperatures. The output signals of the sensors (37a, 37b) and the first and second evaporator outlet temperature sensors (38a, 38b) are input, the operating frequency of the compressor (21), the outdoor, first and second indoor expansion valves (24 , 26a, 26b).

前記コントローラ(340)は、図8,9に示すように、冷凍サイクルの低圧の目標値である目標低圧Plsを算出する目標低圧算出部(41)と、冷凍サイクルの高圧の目標値である目標高圧Phsを算出する目標高圧算出部(42)と、冷媒の実際の過熱度である実過熱度SHを算出する実過熱度算出部(45)と、冷房運転時の第1室内熱交換器(27a)の出口における冷媒の過熱度の目標値である目標第1過熱度SHasを算出する目標第1過熱度算出部(44a)と、冷房運転時の第2室内熱交換器(27b)の出口における冷媒の過熱度の目標値である目標第2過熱度SHbsを算出する目標第2過熱度算出部(44b)と、暖房運転時の第1室内熱交換器(27a)の出口における冷媒のガスクーラ出口温度の目標値である目標第1ガスクーラ出口温度T4asを算出する目標第1ガスクーラ出口温度算出部(47a)と、暖房運転時の第2室内熱交換器(27b)の出口における冷媒のガスクーラ出口温度の目標値である目標第2ガスクーラ出口温度T4bsを算出する目標第2ガスクーラ出口温度算出部(47b)と、暖房運転時の室外熱交換器(23)の出口における冷媒の過熱度の目標値である目標過熱度SHsを算出する目標過熱度算出部(44)と、圧縮機(21)並びに室外、第1室内及び第2室内膨張弁(24,26a,26b)への制御信号を生成する制御信号生成部(349)とを有する。尚、コントローラ(340)は、冷房運転と暖房運転とでは制御内容が異なるため、冷房運転時の制御ブロック図を図8に、暖房運転時の制御ブロック図を図9に分けて示している。   As shown in FIGS. 8 and 9, the controller (340) includes a target low pressure calculation unit (41) that calculates a target low pressure Pls that is a low pressure target value of the refrigeration cycle, and a target that is a high pressure target value of the refrigeration cycle. A target high pressure calculation unit (42) for calculating the high pressure Phs, an actual superheat calculation unit (45) for calculating the actual superheat degree SH which is the actual superheat degree of the refrigerant, and a first indoor heat exchanger ( A target first superheat degree calculation unit (44a) for calculating a target first superheat degree SHas that is a target value of the superheat degree of the refrigerant at the outlet of 27a), and an outlet of the second indoor heat exchanger (27b) during cooling operation A target second superheat degree calculation unit (44b) that calculates a target second superheat degree SHbs that is a target value of the superheat degree of the refrigerant in the refrigerant, and a refrigerant gas cooler at the outlet of the first indoor heat exchanger (27a) during heating operation Target first gas cooler outlet temperature T4a which is a target value of outlet temperature A target first gas cooler outlet temperature calculating section (47a) for calculating the target gas gas outlet temperature T4bs, which is a target value of the refrigerant gas cooler outlet temperature at the outlet of the second indoor heat exchanger (27b) during heating operation. A target second gas cooler outlet temperature calculation unit (47b) to be calculated, and a target superheat degree calculation unit to calculate a target superheat degree SHs that is a target value of the superheat degree of the refrigerant at the outlet of the outdoor heat exchanger (23) during heating operation (44), and a compressor (21) and a control signal generator (349) for generating control signals to the outdoor, first indoor and second indoor expansion valves (24, 26a, 26b). Since the controller (340) has different control contents between the cooling operation and the heating operation, the control block diagram during the cooling operation is shown in FIG. 8, and the control block diagram during the heating operation is shown in FIG.

前記目標低圧算出部(41)は、第1室内熱交換器(27a)側の設定温度Tsaと第1室内温度センサ(31a)からの室内温度Taaとの温度偏差eta及び、第2室内熱交換器(27b)側の設定温度Tsbと第2室内温度センサ(31b)からの室内温度Tabとの温度偏差etbに基づいて、空気調和装置(310)全体としての目標低圧Plsを算出する。   The target low-pressure calculating unit (41) is configured to generate a temperature deviation eta between the set temperature Tsa on the first indoor heat exchanger (27a) side and the indoor temperature Taa from the first indoor temperature sensor (31a), and a second indoor heat exchange. Based on the temperature deviation etb between the set temperature Tsb on the container (27b) side and the room temperature Tab from the second room temperature sensor (31b), the target low pressure Pls of the air conditioner (310) as a whole is calculated.

前記目標高圧算出部(42)は、冷房運転時には外気温度センサ(30)からの外気温T0及び冷房時ガスクーラ出口温度センサ(39)からのガスクーラ出口温度T4に基づいて、暖房運転時には第1室内熱交換器(27a)側の温度偏差eta及び第2室内熱交換器(27b)側の温度偏差etb、目標第1ガスクーラ出口温度算出部(47a)で算出される目標第1ガスクーラ出口温度T4as、目標第2ガスクーラ出口温度算出部(47b)で算出される目標第2ガスクーラ出口温度T4bs並びに第1及び第2暖房時ガスクーラ出口温度センサ(37a,37b)からの第1及び第2ガスクーラ出口温度T4a,T4bの少なくとも1つに基づいて、空気調和装置(310)全体としての目標高圧Phsを算出する。   The target high pressure calculator (42) is configured to use the first indoor temperature during heating operation based on the outside air temperature T0 from the outside air temperature sensor (30) during cooling operation and the gas cooler outlet temperature T4 from the gas cooler outlet temperature sensor (39) during cooling. The temperature deviation eta on the heat exchanger (27a) side, the temperature deviation etb on the second indoor heat exchanger (27b) side, the target first gas cooler outlet temperature T4as calculated by the target first gas cooler outlet temperature calculator (47a), The target second gas cooler outlet temperature T4bs calculated by the target second gas cooler outlet temperature calculation section (47b) and the first and second gas cooler outlet temperatures T4a from the first and second heating gas cooler outlet temperature sensors (37a, 37b). , T4b, the target high pressure Phs of the air conditioner (310) as a whole is calculated.

前記目標第1過熱度算出部(44a)は、第1室内熱交換器(27a)側の温度偏差etaに基づいて、目標第1過熱度SHasを算出する。   The target first superheat degree calculation unit (44a) calculates a target first superheat degree SHas based on the temperature deviation eta on the first indoor heat exchanger (27a) side.

前記目標第2過熱度算出部(44b)は、第2室内熱交換器(27b)側の温度偏差etbに基づいて、目標第2過熱度SHbsを算出する。   The target second superheat degree calculation unit (44b) calculates a target second superheat degree SHbs based on the temperature deviation etb on the second indoor heat exchanger (27b) side.

前記実過熱度算出部(45)は、冷房運転時には、低圧センサ(32)からの実低圧Plと第1又は第2蒸発器出口温度センサ(38a,38b)からの第1又は第2蒸発器出口温度T5a,T5bとに基づいて第1又は第2室内熱交換器(27a,27b)の出口における冷媒の実際の過熱度である実第1又は第2過熱度SHa,SHbを算出する一方、暖房運転時には、低圧センサ(32)からの実低圧Plと吸入温度センサ(35)からの実吸入温度T2とに基づいて室外熱交換器(23)の出口における冷媒の実際の過熱度である実過熱度SHを算出する。   In the cooling operation, the actual superheat degree calculation unit (45) includes the actual low pressure Pl from the low pressure sensor (32) and the first or second evaporator from the first or second evaporator outlet temperature sensor (38a, 38b). While calculating the actual first or second superheat degree SHa, SHb, which is the actual superheat degree of the refrigerant at the outlet of the first or second indoor heat exchanger (27a, 27b) based on the outlet temperature T5a, T5b, During the heating operation, the actual superheat degree of the refrigerant at the outlet of the outdoor heat exchanger (23) based on the actual low pressure Pl from the low pressure sensor (32) and the actual suction temperature T2 from the suction temperature sensor (35). The superheat degree SH is calculated.

前記目標第1ガスクーラ出口温度算出部(47a)は、第1室内熱交換器(27a)側の温度偏差etaに基づいて、目標第1ガスクーラ出口温度T4asを算出する。   The target first gas cooler outlet temperature calculator (47a) calculates a target first gas cooler outlet temperature T4as based on the temperature deviation eta on the first indoor heat exchanger (27a) side.

前記目標第2ガスクーラ出口温度算出部(47b)は、第2室内熱交換器(27b)側の温度偏差etbに基づいて、目標第2ガスクーラ出口温度T4bsを算出する。   The target second gas cooler outlet temperature calculator (47b) calculates a target second gas cooler outlet temperature T4bs based on the temperature deviation etb on the second indoor heat exchanger (27b) side.

これら、目標低圧算出部(41)、目標高圧算出部(42)、目標第1過熱度算出部(44a)、目標第2過熱度算出部(44b)、目標過熱度算出部(44)、目標第1ガスクーラ出口温度算出部(47a)及び目標第2ガスクーラ出口温度算出部(47b)のそれぞれは、マップ及び関数を有していて、各入力に対して対応する出力値を出力するように構成されている。   These target low pressure calculator (41), target high pressure calculator (42), target first superheat degree calculator (44a), target second superheat degree calculator (44b), target superheat degree calculator (44), target Each of the first gas cooler outlet temperature calculator (47a) and the target second gas cooler outlet temperature calculator (47b) has a map and a function, and is configured to output a corresponding output value for each input. Has been.

前記制御信号生成部(349)には、冷房運転と暖房運転とで異なる信号が入力されるように構成されている。また、制御信号生成部(349)は、入力信号に応じた制御パラメータを有するPID制御部(p1e,p2e,…,p1f,p2f,…)を有している。   The control signal generator (349) is configured to receive different signals for the cooling operation and the heating operation. The control signal generation unit (349) includes PID control units (p1e, p2e,..., P1f, p2f,...) Having control parameters corresponding to the input signals.

冷房運転時には、目標低圧算出部(41)で算出した目標低圧Plsと低圧センサ(32)からの実低圧Plとの低圧偏差e1、目標高圧算出部(42)で算出した目標高圧Phsと高圧センサ(34)からの実高圧Phとの高圧偏差e2、目標第1過熱度算出部(44a)で算出した目標過熱度SHasと実過熱度算出部(45)で算出した第1室内熱交換器(27a)側の実第1過熱度SHaとの第1過熱度偏差e4a及び目標第2過熱度算出部(44b)で算出した目標過熱度SHbsと実過熱度算出部(45)で算出した第2室内熱交換器(27b)側の実第2過熱度SHbとの第2過熱度偏差e4bが制御信号生成部(349)に入力されている。   During cooling operation, the low pressure deviation e1 between the target low pressure Pls calculated by the target low pressure calculator (41) and the actual low pressure Pl from the low pressure sensor (32), the target high pressure Phs calculated by the target high pressure calculator (42), and the high pressure sensor The high pressure deviation e2 from the actual high pressure Ph from (34), the target superheat degree SHas calculated by the target first superheat degree calculation unit (44a), and the first indoor heat exchanger (45) calculated by the actual superheat degree calculation unit (45) ( 27a) the first superheat degree deviation e4a with the actual first superheat degree SHa and the target superheat degree SHbs calculated by the target second superheat degree calculation unit (44b) and the second value calculated by the actual superheat degree calculation unit (45). A second superheat degree deviation e4b from the actual second superheat degree SHb on the indoor heat exchanger (27b) side is input to the control signal generation unit (349).

また、冷房運転時には、制御信号生成部(349)における16個のPID制御部(p1e,p2e,…)が機能する。すなわち、制御信号生成部(349)に入力された低圧偏差e1は4個の第1乃至第4PID制御部(p1e〜p4e)に入力され、高圧偏差e2は別の4個の第5乃至第8PID制御部(p5e〜p8e)に入力され、第1過熱度偏差e4aはまた別の4個の第9乃至第12PID制御部(p9e〜p12e)に入力され、第2過熱度偏差e4bはさらに別の4個の第13乃至第16PID制御部(p13e〜p16e)に入力されている。   In the cooling operation, 16 PID control units (p1e, p2e,...) In the control signal generation unit (349) function. That is, the low pressure deviation e1 input to the control signal generation unit (349) is input to the four first to fourth PID control units (p1e to p4e), and the high pressure deviation e2 is set to the other four fifth to eighth PIDs. The first superheat degree deviation e4a is inputted to another four ninth to twelfth PID control parts (p9e to p12e), and the second superheat degree deviation e4b is further inputted to the control part (p5e to p8e). The four thirteenth to sixteenth PID control units (p13e to p16e) are input.

第1乃至第16PID制御部(p1e,p2e,…)はそれぞれ、入力される偏差に所定の制御パラメータを掛け合わせて出力する。詳しくは、制御信号生成部(349)は、第1PID制御部(p1e)、第5PID制御部(p5e)、第9PID制御部(p9e)及び第13PID制御部(p13e)からの出力信号を加算して圧縮機周波数制御信号Δfcを生成し、第2PID制御部(p2e)、第6PID制御部(p6e)、第10PID制御部(p10e)及び第14PID制御部(p14e)からの出力信号を加算して室外膨張弁開度制御信号Δev1を生成し、第3PID制御部(p3e)、第7PID制御部(p7e)、第11PID制御部(p11e)及び第15PID制御部(p15e)からの出力信号を加算して第1室内膨張弁開度制御信号Δev2aを生成し、第4PID制御部(p4e)、第8PID制御部(p8e)、第12PID制御部(p12e)及び第16PID制御部(p16e)からの出力信号を加算して第2室内張弁開度制御信号Δev2bを生成している。   Each of the first to sixteenth PID control units (p1e, p2e,...) Multiplies the input deviation by a predetermined control parameter and outputs the result. Specifically, the control signal generation unit (349) adds the output signals from the first PID control unit (p1e), the fifth PID control unit (p5e), the ninth PID control unit (p9e), and the thirteenth PID control unit (p13e). The compressor frequency control signal Δfc is generated, and output signals from the second PID control unit (p2e), the sixth PID control unit (p6e), the tenth PID control unit (p10e), and the fourteenth PID control unit (p14e) are added. An outdoor expansion valve opening control signal Δev1 is generated, and output signals from the third PID control unit (p3e), the seventh PID control unit (p7e), the eleventh PID control unit (p11e), and the fifteenth PID control unit (p15e) are added. The first indoor expansion valve opening control signal Δev2a is generated and output signals from the fourth PID control unit (p4e), the eighth PID control unit (p8e), the twelfth PID control unit (p12e), and the sixteenth PID control unit (p16e). Is added to open the second indoor tension valve It generates a control signal Derutaev2b.

こうして生成された圧縮機周波数制御信号Δfc、室外膨張弁開度制御信号Δev1、第1室内膨張弁開度制御信号Δev2a及び第2室内膨張弁開度制御信号Δev2bは、空気調和装置(310)に出力される。   The compressor frequency control signal Δfc, the outdoor expansion valve opening control signal Δev1, the first indoor expansion valve opening control signal Δev2a, and the second indoor expansion valve opening control signal Δev2b generated in this way are sent to the air conditioner (310). Is output.

空気調和装置(310)においては、圧縮機(21)の容量が圧縮機周波数制御信号Δfcに応じた値に変化する。   In the air conditioner (310), the capacity of the compressor (21) changes to a value corresponding to the compressor frequency control signal Δfc.

また、室外膨張弁(24)は、室外膨張弁開度制御信号Δev1に応じた弁開度に調整され、第1室内膨張弁(26a)は、第1室内膨張弁開度制御信号Δev2aに応じた弁開度に調整され、第2室内膨張弁(26b)は、第2室内膨張弁開度制御信号Δev2bに応じた弁開度に調整されるようになる。   The outdoor expansion valve (24) is adjusted to a valve opening corresponding to the outdoor expansion valve opening control signal Δev1, and the first indoor expansion valve (26a) is adjusted according to the first indoor expansion valve opening control signal Δev2a. The second indoor expansion valve (26b) is adjusted to a valve opening corresponding to the second indoor expansion valve opening control signal Δev2b.

そして、かかる運転状態で運転される空気調和装置(310)における低圧Pl、高圧Ph、第1室内熱交換器(27a)側の第1蒸発器出口温度T5a及び第2室内熱交換器(27b)側の第2蒸発器出口温度T5bが低圧センサ(32)、高圧センサ(34)並びに第1及び第2蒸発器出口温度センサ(38a,38b)を介してコントローラ(340)にフィードバックされる。こうして、コントローラ(340)は、低圧Pl、高圧Ph並びに第1及び第2過熱度SHa,SHbが運転状態に応じた目標値となるようにフィードバック制御している。   And in the air conditioner (310) operated in such an operating state, the low pressure Pl, the high pressure Ph, the first evaporator outlet temperature T5a on the first indoor heat exchanger (27a) side, and the second indoor heat exchanger (27b) The second evaporator outlet temperature T5b on the side is fed back to the controller (340) via the low pressure sensor (32), the high pressure sensor (34), and the first and second evaporator outlet temperature sensors (38a, 38b). Thus, the controller (340) performs feedback control so that the low pressure Pl, the high pressure Ph, and the first and second superheat degrees SHa and SHb become target values according to the operating state.

このように、圧縮機周波数制御信号Δfc並びに室外、第1室内及び第2室内膨張弁開度制御信号Δev1、Δev2a、Δev2bのそれぞれは、低圧偏差e1、高圧偏差e2、第1過熱度偏差e4a及び第2過熱度偏差e4bを互いに関連付けて生成されている。つまり、各物理量に個別に対応した制御対象をそれぞれ別々に制御するのではなく、圧縮機(21)、室外膨張弁(24)並びに第1及び第2室内膨張弁(26a,26b)を共に制御することで、低圧、高圧、第1過熱度及び第2過熱度を共に、即ち同時に制御している。すなわち、低圧、高圧、第1過熱度及び第2過熱度のそれぞれは、圧縮機(21)、室外膨張弁(24)並びに第1及び第2室内膨張弁(26a,26b)のうちの何れか1つによって制御されるのではなく、圧縮機(21)、室外膨張弁(24)並びに第1及び第2室内膨張弁(26a,26b)の全てによって制御される。さらに詳しくは、制御対象である圧縮機(21)、室外膨張弁(24)並びに第1及び第2室内膨張弁(26a,26b)のそれぞれは、そのものだけが駆動制御されるときの低圧、高圧、第1過熱度及び第2過熱度の変化だけでなく、そのもの以外の他の制御対象が駆動制御されるときの低圧、高圧、第1過熱度及び第2過熱度の変化をも考慮して駆動制御される(換言すれば、それらが考慮されるように、第1乃至第16PID制御部(p1e,p2e,…)の制御パラメータが設定されている)。   Thus, the compressor frequency control signal Δfc and the outdoor, first indoor and second indoor expansion valve opening control signals Δev1, Δev2a, Δev2b are respectively low pressure deviation e1, high pressure deviation e2, first superheat degree deviation e4a and The second superheat degree deviation e4b is generated in association with each other. In other words, the control target corresponding to each physical quantity is not controlled separately, but the compressor (21), the outdoor expansion valve (24), and the first and second indoor expansion valves (26a, 26b) are controlled together. Thus, the low pressure, the high pressure, the first superheat degree and the second superheat degree are controlled together, that is, simultaneously. That is, each of the low pressure, the high pressure, the first superheat degree, and the second superheat degree is any of the compressor (21), the outdoor expansion valve (24), and the first and second indoor expansion valves (26a, 26b). Instead of being controlled by one, it is controlled by the compressor (21), the outdoor expansion valve (24), and the first and second indoor expansion valves (26a, 26b). More specifically, each of the compressor (21), the outdoor expansion valve (24), and the first and second indoor expansion valves (26a, 26b) to be controlled is low pressure and high pressure when only the drive is controlled. Considering not only changes in the first superheat degree and the second superheat degree, but also changes in the low pressure, high pressure, first superheat degree, and second superheat degree when other controlled objects are driven and controlled. Drive control is performed (in other words, the control parameters of the first to 16th PID control units (p1e, p2e,...) Are set so that they are taken into consideration).

一方、暖房運転時には、目標高圧算出部(42)で算出した目標高圧Phsと高圧センサ(34)からの実高圧Phとの高圧偏差e2、目標過熱度算出部(44)で算出した目標過熱度SHsと実過熱度算出部(45)で算出した実過熱度SHとの過熱度偏差e4、目標第1ガスクーラ出口温度算出部(47a)で算出した目標第1ガスクーラ出口温度T4asと第1暖房時ガスクーラ出口温度センサ(37a)からの実第1ガスクーラ出口温度T4aとの第1ガスクーラ出口温度偏差e6a及び目標第2ガスクーラ出口温度算出部(47b)で算出した目標第2ガスクーラ出口温度T4bsと第2暖房時ガスクーラ出口温度センサ(37b)からの実第2ガスクーラ出口温度T4bとの第2ガスクーラ出口温度偏差e6bが制御信号生成部(349)に入力されている。   On the other hand, during heating operation, the high pressure deviation e2 between the target high pressure Phs calculated by the target high pressure calculator (42) and the actual high pressure Ph from the high pressure sensor (34), and the target superheat degree calculated by the target superheat degree calculator (44). Supersaturation deviation e4 between SHs and actual superheat degree SH calculated by actual superheat degree calculator (45), target first gas cooler outlet temperature T4as calculated by target first gas cooler outlet temperature calculator (47a), and first heating time The first gas cooler outlet temperature deviation e6a from the actual first gas cooler outlet temperature T4a from the gas cooler outlet temperature sensor (37a), the target second gas cooler outlet temperature T4bs calculated by the target second gas cooler outlet temperature calculator (47b), and the second The second gas cooler outlet temperature deviation e6b from the actual second gas cooler outlet temperature T4b from the heating gas cooler outlet temperature sensor (37b) is input to the control signal generator (349).

また、暖房運転時には、制御信号生成部(349)では、冷房運転時とは別の16個のPID制御部(p1f,p2f,…)が機能する。すなわち、制御信号生成部(349)に入力された、高圧偏差e2は4個の第1乃至第4PID制御部(p1f〜p4f)に入力され、第1ガスクーラ出口温度偏差e6aは別の4個の第5乃至第8PID制御部(p5f〜p8f)に入力され、第2ガスクーラ出口温度偏差e6bはまた別の4個の第9乃至第12PID制御部(p9f〜p12f)に入力され、過熱度偏差e4はさらに別の4個の第13乃至第16PID制御部(p13f〜p16f)に入力されている。   Further, during the heating operation, the control signal generation unit (349) functions 16 PID control units (p1f, p2f,...) Different from those during the cooling operation. That is, the high pressure deviation e2 input to the control signal generation unit (349) is input to the four first to fourth PID control units (p1f to p4f), and the first gas cooler outlet temperature deviation e6a is set to another four. The second gas cooler outlet temperature deviation e6b is inputted to another four ninth to twelfth PID control parts (p9f to p12f), and the superheat degree deviation e4 is inputted to the fifth to eighth PID control parts (p5f to p8f). Are input to four other thirteenth to sixteenth PID control units (p13f to p16f).

第1乃至第16PID制御部(p1f,p2f,…)はそれぞれ、入力される偏差に所定の制御パラメータを掛け合わせて出力する。詳しくは、制御信号生成部(349)は、第1PID制御部(p1f)、第5PID制御部(p5f)、第9PID制御部(p9f)及び第13PID制御部(p13f)からの出力信号を加算して圧縮機周波数制御信号Δfcを生成し、第2PID制御部(p2e)、第6PID制御部(p6e)、第10PID制御部(p10e)及び第14PID制御部(p14e)からの出力信号を加算して室外膨張弁開度制御信号Δev1を生成し、第3PID制御部(p3e)、第7PID制御部(p7e)、第11PID制御部(p11e)及び第15PID制御部(p15e)からの出力信号を加算して第1室内膨張弁開度制御信号Δev2aを生成し、第4PID制御部(p4e)、第8PID制御部(p8e)、第12PID制御部(p12e)及び第16PID制御部(p16e)からの出力信号を加算して第2室内張弁開度制御信号Δev2bを生成している。   Each of the first to 16th PID control units (p1f, p2f,...) Multiplies the input deviation by a predetermined control parameter and outputs the result. Specifically, the control signal generation unit (349) adds the output signals from the first PID control unit (p1f), the fifth PID control unit (p5f), the ninth PID control unit (p9f), and the thirteenth PID control unit (p13f). The compressor frequency control signal Δfc is generated and the output signals from the second PID control unit (p2e), the sixth PID control unit (p6e), the tenth PID control unit (p10e), and the fourteenth PID control unit (p14e) are added. An outdoor expansion valve opening control signal Δev1 is generated, and output signals from the third PID control unit (p3e), the seventh PID control unit (p7e), the eleventh PID control unit (p11e), and the fifteenth PID control unit (p15e) are added. The first indoor expansion valve opening control signal Δev2a is generated and output signals from the fourth PID control unit (p4e), the eighth PID control unit (p8e), the twelfth PID control unit (p12e), and the sixteenth PID control unit (p16e). Is added to open the second indoor tension valve Degree control signal Δev2b is generated.

こうして生成された圧縮機周波数制御信号Δfc、室外膨張弁開度制御信号Δev1、第1室内膨張弁開度制御信号Δev2a及び第2室内膨張弁開度制御信号Δev2bは、空気調和装置(310)に出力される。   The compressor frequency control signal Δfc, the outdoor expansion valve opening control signal Δev1, the first indoor expansion valve opening control signal Δev2a, and the second indoor expansion valve opening control signal Δev2b generated in this way are sent to the air conditioner (310). Is output.

空気調和装置(310)においては、圧縮機(21)の容量が圧縮機周波数制御信号Δfcに応じた値に変化する。   In the air conditioner (310), the capacity of the compressor (21) changes to a value corresponding to the compressor frequency control signal Δfc.

室外膨張弁(24)は、室外膨張弁開度制御信号Δev1に応じた弁開度に調整され、第1室内膨張弁(26a)は、第1室内膨張弁開度制御信号Δev2aに応じた弁開度に調整され、第2室内膨張弁(26b)は、第2室内膨張弁開度制御信号Δev2bに応じた弁開度に調整されるようになる。   The outdoor expansion valve (24) is adjusted to a valve opening corresponding to the outdoor expansion valve opening control signal Δev1, and the first indoor expansion valve (26a) is a valve corresponding to the first indoor expansion valve opening control signal Δev2a. The second indoor expansion valve (26b) is adjusted to the valve opening according to the second indoor expansion valve opening control signal Δev2b.

そして、かかる運転状態で運転される空気調和装置(310)における低圧Pl、高圧Ph、第1室内熱交換器(27a)側の第1ガスクーラ出口温度T4a及び第2室内熱交換器(27b)側の第2ガスクーラ出口温度T4bが低圧センサ(32)、高圧センサ(34)並びに第1及び第2暖房時ガスクーラ出口温度センサ(37a,37b)を介してコントローラ(340)にフィードバックされる。こうして、コントローラ(340)は、低圧Pl、高圧Ph並びに第1及び第2過熱度SHa,SHbが運転状態に応じた目標値となるようにフィードバック制御している。   And in the air conditioner (310) operated in such an operating state, the low pressure Pl, the high pressure Ph, the first gas cooler outlet temperature T4a on the first indoor heat exchanger (27a) side, and the second indoor heat exchanger (27b) side The second gas cooler outlet temperature T4b is fed back to the controller (340) via the low pressure sensor (32), the high pressure sensor (34), and the first and second heating gas cooler outlet temperature sensors (37a, 37b). Thus, the controller (340) performs feedback control so that the low pressure Pl, the high pressure Ph, and the first and second superheat degrees SHa and SHb become target values according to the operating state.

このように、圧縮機周波数制御信号Δfc並びに室外、第1室内及び第2室内膨張弁開度制御信号Δev1、Δev2a、Δev2bのそれぞれは、高圧偏差e2、過熱度偏差e4、第1ガスクーラ出口温度偏差e6a及び第2ガスクーラ出口温度偏差e6bを互いに関連付けて生成されている。つまり、各物理量に個別に対応した制御対象をそれぞれ別々に制御するのではなく、圧縮機(21)、室外膨張弁(24)並びに第1及び第2室内膨張弁(26a,26b)を共に制御することで、高圧、過熱度、第1ガスクーラ出口温度及び第2ガスクーラ出口温度を共に、即ち同時に制御している。すなわち、高圧、過熱度、第1ガスクーラ出口温度及び第2ガスクーラ出口温度のそれぞれは、圧縮機(21)、室外膨張弁(24)並びに第1及び第2室内膨張弁(26a,26b)のうちの何れか1つによって制御されるのではなく、圧縮機(21)、室外膨張弁(24)並びに第1及び第2室内膨張弁(26a,26b)の全てによって制御される。さらに詳しくは、制御対象である圧縮機(21)、室外膨張弁(24)並びに第1及び第2室内膨張弁(26a,26b)のそれぞれは、そのものだけが駆動制御されるときの高圧、過熱度、第1ガスクーラ出口温度及び第2ガスクーラ出口温度の変化だけでなく、そのもの以外の他の制御対象が駆動制御されるときの高圧、過熱度、第1ガスクーラ出口及び第2ガスクーラ出口温度の変化をも考慮して駆動制御される(換言すれば、それらが考慮されるように、第1乃至第16PID制御部(p1f,p2f,…)の制御パラメータが設定されている)。   Thus, the compressor frequency control signal Δfc and the outdoor, first indoor and second indoor expansion valve opening control signals Δev1, Δev2a, Δev2b are respectively a high pressure deviation e2, a superheat degree deviation e4, and a first gas cooler outlet temperature deviation. e6a and the second gas cooler outlet temperature deviation e6b are generated in association with each other. In other words, the control target corresponding to each physical quantity is not controlled separately, but the compressor (21), the outdoor expansion valve (24), and the first and second indoor expansion valves (26a, 26b) are controlled together. Thus, the high pressure, the degree of superheat, the first gas cooler outlet temperature, and the second gas cooler outlet temperature are all controlled, that is, simultaneously. That is, the high pressure, the degree of superheat, the first gas cooler outlet temperature, and the second gas cooler outlet temperature are respectively the compressor (21), the outdoor expansion valve (24), and the first and second indoor expansion valves (26a, 26b). It is not controlled by any one of these, but is controlled by all of the compressor (21), the outdoor expansion valve (24), and the first and second indoor expansion valves (26a, 26b). More specifically, the compressor (21), the outdoor expansion valve (24), and the first and second indoor expansion valves (26a, 26b) to be controlled are high pressure and overheat when only the drive is controlled. Not only changes in the first gas cooler outlet temperature and the second gas cooler outlet temperature, but also changes in high pressure, superheat, first gas cooler outlet temperature, and second gas cooler outlet temperature when a control object other than itself is driven and controlled. (In other words, the control parameters of the first to 16th PID control units (p1f, p2f,...) Are set so that they are taken into consideration).

したがって、本実施形態3によれば、空気調和装置(310)における所定の物理量に加えて冷凍サイクルの高圧を運転状態に応じた所定の目標値となるように複数の制御対象(例えば、圧縮機(21)や室外膨張弁(24)等)を同時に駆動制御すると共に、複数の制御対象を制御した際の該物理量及び冷凍サイクルの高圧の変化を考慮しつつ各制御対象を駆動制御することによって、高圧を運転状態に応じた目標値に安定的に保ったまま、空気調和装置(310)の能力制御(例えば、冷房運転時であれば低圧や過熱度等)を行うことができる。その結果、或る一の物理量を調整することによって、別の物理量が変化し、その変化を是正すべく該別の物理量を調整すると、さらに別の物理量或いは先に調整した一の物理量が変化して、さらに調整する必要が生じるというように、制御しようとする物理量がなかなか収束しないという事態を防止することができ、空気調和装置(310)における能力制御及び高圧制御の収束性を向上させることができる。   Therefore, according to the third embodiment, in addition to a predetermined physical quantity in the air conditioner (310), a plurality of control objects (for example, compressors) are set so that the high pressure of the refrigeration cycle becomes a predetermined target value corresponding to the operating state. (21), the outdoor expansion valve (24), etc.) and simultaneously driving and controlling each controlled object while taking into account changes in the physical quantity and high pressure of the refrigeration cycle when a plurality of controlled objects are controlled. The capacity control of the air conditioner (310) (for example, the low pressure and the degree of superheat during the cooling operation) can be performed while the high pressure is stably maintained at the target value according to the operation state. As a result, by adjusting one physical quantity, another physical quantity changes, and when the other physical quantity is adjusted to correct the change, another physical quantity or the previously adjusted physical quantity changes. As a result, it is possible to prevent a situation in which the physical quantity to be controlled does not converge so that further adjustment is required, and to improve the convergence of capacity control and high pressure control in the air conditioner (310). it can.

尚、本実施形態では、冷房運転時には、低圧、高圧、第1過熱度及び第2過熱度という4つの物理量を圧縮機(21)、室外膨張弁(24)並びに第1及び第2室内膨張弁(26a,26b)という4つの制御対象で制御すると共に、暖房運転時には、高圧、第1ガスクーラ出口温度、第2ガスクーラ出口温度及び過熱度という4つの物理量を圧縮機(21)、室外膨張弁(24)並びに第1及び第2室内膨張弁(26a,26b)という4つの制御対象で制御しているが、制御対象によっては各物理量に影響を与えやすいもの、あるいは与えにくいものがある。つまり、何れか1つの制御対象を変化させても、あまり変化しない物理量がある場合がある。本実施形態では、制御する物理量全てを入力とすると共にそれら全てを関連付けて制御対象ごとの制御信号を生成しているが、影響を与えにくい物理量がある制御対象の制御信号を生成する際には、その影響を与えにくい物理量の関連性を小さくする、あるいは関連性をなくすようにしてもよい(具体的には、影響を与えにくい物理量がある制御対象の制御信号を生成するPID制御部(p1e,…,p1f,…)のうち該影響を与えにくい物理量のPID制御部の制御パラメータを小さくする、あるいは零にしてもよい)。   In the present embodiment, during the cooling operation, four physical quantities of low pressure, high pressure, first superheat degree, and second superheat degree are used as the compressor (21), the outdoor expansion valve (24), and the first and second indoor expansion valves. (26a, 26b) and the four physical quantities of high pressure, first gas cooler outlet temperature, second gas cooler outlet temperature and superheat degree during the heating operation, the compressor (21), outdoor expansion valve ( 24) and the first and second indoor expansion valves (26a, 26b) are controlled by four controlled objects. Depending on the controlled objects, there are those that easily or hardly affect each physical quantity. That is, there is a case where there is a physical quantity that does not change so much even if any one control object is changed. In this embodiment, all the physical quantities to be controlled are input and associated with each other to generate a control signal for each control target. However, when generating a control signal for a control target having a physical quantity that is difficult to influence, The relevance of a physical quantity that is less likely to be affected may be reduced or the relevance may be eliminated (specifically, a PID control unit (p1e that generates a control signal for a control target having a physical quantity that is less likely to be affected). ,..., P1f,...), The control parameter of the PID control unit having a physical quantity that does not easily affect this may be reduced or zero).

《その他の実施形態》
本発明は、前記実施形態について、以下のような構成としてもよい。
<< Other Embodiments >>
The present invention may be configured as follows with respect to the embodiment.

すなわち、本発明は、前記実施形態に係る冷媒回路に限られるものではなく、任意の冷媒回路に採用することができる。例えば、図10に示すように、二段圧縮冷凍サイクルを行い且つ室内機が複数設けられたマルチタイプの空気調和装置(410)であってもよい。この場合、例えば、高圧、低圧、第1蒸発器出口温度、第2蒸発器出口温度及び中間圧飽和温度を入力として、これら複数の物理量を関連させて第1及び第2圧縮機(21a,21b)、第1及び第2室内膨張弁(26a,26b)並びに室外膨張弁(24)をそれぞれ駆動制御する制御信号を生成してもよい。その結果、第1及び第2圧縮機(21a,21b)、第1及び第2室内膨張弁(26a,26b)並びに室外膨張弁(24)の全てが調整された場合に、高圧、低圧、第1蒸発器出口温度、第2蒸発器出口温度及び中間圧飽和温度のそれぞれが所定の目標値となるように、第1及び第2圧縮機(21a,21b)、第1及び第2室内膨張弁(26a,26b)並びに室外膨張弁(24)それぞれの制御信号が生成される、すなわち、第1及び第2圧縮機(21a,21b)、第1及び第2室内膨張弁(26a,26b)並びに室外膨張弁(24)が駆動制御される。   That is, the present invention is not limited to the refrigerant circuit according to the embodiment, and can be adopted in any refrigerant circuit. For example, as shown in FIG. 10, it may be a multi-type air conditioner (410) that performs a two-stage compression refrigeration cycle and is provided with a plurality of indoor units. In this case, for example, the high pressure, the low pressure, the first evaporator outlet temperature, the second evaporator outlet temperature, and the intermediate pressure saturation temperature are input, and the first and second compressors (21a, 21b) are associated with these physical quantities. ), Control signals for driving and controlling the first and second indoor expansion valves (26a, 26b) and the outdoor expansion valve (24) may be generated. As a result, when all of the first and second compressors (21a, 21b), the first and second indoor expansion valves (26a, 26b), and the outdoor expansion valve (24) are adjusted, the high pressure, low pressure, The first and second compressors (21a, 21b), the first and second indoor expansion valves are set so that the one evaporator outlet temperature, the second evaporator outlet temperature, and the intermediate pressure saturation temperature each have a predetermined target value. (26a, 26b) and the outdoor expansion valve (24) control signals are generated, that is, the first and second compressors (21a, 21b), the first and second indoor expansion valves (26a, 26b), and The outdoor expansion valve (24) is driven and controlled.

また、例えば、図11に示すように、室外熱交換器(23)と室外膨張弁(24)との間に内部熱交換器(51)を設けた、二段圧縮冷凍サイクルを行い且つ室内機が複数設けられたマルチタイプの空気調和装置(510)であってもよい。   For example, as shown in FIG. 11, a two-stage compression refrigeration cycle in which an internal heat exchanger (51) is provided between the outdoor heat exchanger (23) and the outdoor expansion valve (24) is performed and the indoor unit A multi-type air conditioner (510) in which a plurality of air conditioners are provided.

詳しくは、空気調和装置(510)においては、室外熱交換器(23)とレシーバ(25)とを接続する接続配管(52)の途中から分岐して、第1圧縮機(21a)と第2圧縮機(21b)とを接続する配管に接続されるバイパス配管(53)が設けられている。このバイパス配管(53)の途中には、バイパス側膨張弁(54)が設けられており、バイパス配管(53)を流通する冷媒はこのバイパス側膨張弁(54)によって減圧されて中間圧冷媒となる。   Specifically, in the air conditioner (510), the first compressor (21a) and the second compressor branch from the middle of the connection pipe (52) connecting the outdoor heat exchanger (23) and the receiver (25). A bypass pipe (53) connected to the pipe connecting the compressor (21b) is provided. A bypass-side expansion valve (54) is provided in the middle of the bypass pipe (53), and the refrigerant flowing through the bypass pipe (53) is depressurized by the bypass-side expansion valve (54) to be an intermediate pressure refrigerant. Become.

また、接続配管(52)のうちバイパス配管(53)の分岐部よりもレシーバ(25)側の部分に、室外膨張弁(24)が設けられている。   In addition, an outdoor expansion valve (24) is provided in a portion of the connection pipe (52) that is closer to the receiver (25) than the branch of the bypass pipe (53).

そして、前記内部熱交換器(51)は、接続配管(52)のうちバイパス配管(53)との分岐部と室外膨張弁(24)の間の部分と、バイパス配管(53)のうちバイパス側膨張弁(54)よりも下流側の部分とに跨って設けられており、両部を流れる冷媒同士で熱交換させる。すなわち、冷房運転時において、バイパス配管(53)を流通する冷媒は、バイパス側膨張弁(54)によって減圧されて中間圧の液冷媒又は気液二相冷媒となった後、内部熱交換器(51)を流通することで接続配管(52)を流れる冷媒から吸熱して過熱状態のガス冷媒となって第2圧縮機(21b)の吸入側へ流れていく。一方、接続配管(52)を流通する冷媒は、室外熱交換器(23)から流出した後、内部熱交換器(51)を流通することでバイパス配管(53)を流れる冷媒へ放熱することによって過冷却状態となり、その後、室外膨張弁(24)によって減圧されて中間圧となってレシーバ(25)へ流入する。   The internal heat exchanger (51) includes a connection pipe (52) between the branch pipe (53) and the outdoor expansion valve (24), and a bypass pipe (53) on the bypass side. It is provided across the portion downstream of the expansion valve (54), and heat exchange is performed between the refrigerants flowing through both portions. That is, during cooling operation, the refrigerant flowing through the bypass pipe (53) is reduced in pressure by the bypass side expansion valve (54) to become an intermediate-pressure liquid refrigerant or a gas-liquid two-phase refrigerant, and then the internal heat exchanger ( By circulating through 51), it absorbs heat from the refrigerant flowing through the connecting pipe (52) and becomes a superheated gas refrigerant and flows to the suction side of the second compressor (21b). On the other hand, the refrigerant flowing through the connection pipe (52) flows out of the outdoor heat exchanger (23) and then dissipates heat to the refrigerant flowing through the bypass pipe (53) by flowing through the internal heat exchanger (51). After being in a supercooled state, the pressure is reduced by the outdoor expansion valve (24) to become an intermediate pressure and flows into the receiver (25).

接続配管(52)のうち室外膨張機(24)よりもレシーバ(25)側の部分には、レシーバ圧飽和温度センサ(55)が設けられている。また、バイパス配管(53)のうち内部熱交換器(51)よりも下流側の部分に中間圧飽和温度センサ(36)が設けられている。   A receiver pressure saturation temperature sensor (55) is provided in a portion of the connection pipe (52) closer to the receiver (25) than the outdoor expander (24). Further, an intermediate pressure saturation temperature sensor (36) is provided in a portion of the bypass pipe (53) on the downstream side of the internal heat exchanger (51).

このように構成された空気調和装置(510)においては、例えば、高圧、低圧、第1蒸発器出口温度、第2蒸発器出口温度、中間圧飽和温度及びレシーバ圧飽和温度センサ(55)によって検出されるレシーバ内圧を入力として、これら複数の物理量を関連させて第1及び第2圧縮機(21a,21b)、第1及び第2室内膨張弁(26a,26b)、室外膨張弁(24)並びにバイパス側膨張弁(54)をそれぞれ駆動制御する制御信号を生成している。その結果、第1及び第2圧縮機(21a,21b)、第1及び第2室内膨張弁(26a,26b)、室外膨張弁(24)並びにバイパス側膨張弁(54)の全てが調整された場合に、高圧、低圧、第1蒸発器出口温度、第2蒸発器出口温度、中間圧飽和温度及びレシーバ内圧のそれぞれが所定の目標値となるように、第1及び第2圧縮機(21a,21b)、第1及び第2室内膨張弁(26a,26b)、室外膨張弁(24)並びにバイパス側膨張弁(54)それぞれの制御信号が生成される、すなわち、第1及び第2圧縮機(21a,21b)、第1及び第2室内膨張弁(26a,26b)、室外膨張弁(24)並びにバイパス側膨張弁(54)が駆動制御される。   In the air conditioner (510) configured as described above, for example, detection is performed by a high pressure, a low pressure, a first evaporator outlet temperature, a second evaporator outlet temperature, an intermediate pressure saturation temperature, and a receiver pressure saturation temperature sensor (55). The receiver internal pressure is input, and the plurality of physical quantities are related to each other so that the first and second compressors (21a, 21b), the first and second indoor expansion valves (26a, 26b), the outdoor expansion valve (24), and A control signal for driving and controlling each of the bypass side expansion valves (54) is generated. As a result, all of the first and second compressors (21a, 21b), the first and second indoor expansion valves (26a, 26b), the outdoor expansion valve (24), and the bypass side expansion valve (54) were adjusted. In this case, the first and second compressors (21a, 21a, 21) are set so that the high pressure, the low pressure, the first evaporator outlet temperature, the second evaporator outlet temperature, the intermediate pressure saturation temperature, and the receiver internal pressure become predetermined target values. 21b), control signals for the first and second indoor expansion valves (26a, 26b), the outdoor expansion valve (24) and the bypass side expansion valve (54) are generated, that is, the first and second compressors ( 21a, 21b), the first and second indoor expansion valves (26a, 26b), the outdoor expansion valve (24), and the bypass side expansion valve (54) are driven and controlled.

さらに、前記実施形態2では、2つの圧縮機(21a,21b)と2つの膨張弁(24,26)とを設けて、二段圧縮冷凍サイクルを行うように構成されているが、1つの圧縮機を設け、該圧縮機の圧縮工程の途中にガスインジェクションする構成であってもよい。この場合、制御対象が1つの圧縮機と2つの膨張弁(24,26)との合計3つになるため、制御する物理量も合計3つ(少なくとも冷凍サイクルの高圧を含む)にすることが好ましい。   Further, in the second embodiment, two compressors (21a, 21b) and two expansion valves (24, 26) are provided to perform a two-stage compression refrigeration cycle. A configuration may be employed in which gas injection is provided during the compression process of the compressor. In this case, since a total of three objects to be controlled are one compressor and two expansion valves (24, 26), it is preferable to control a total of three physical quantities (including at least the high pressure of the refrigeration cycle). .

また、前記実施形態においては、複数の物理量を入力として、各物理量に制御パラメータを掛け合わせたものを互いに加算することで、一の制御対象に対する制御信号を生成しているが、これに限られるものではない。例えば、各冷媒回路の冷凍サイクルの動的モデルに基づいて、複数の物理量を入力として、これに制御パラメータからなる行列を掛け合わせることによって、複数の制御信号を出力として算出するように構成してもよい。このような構成であっても、複数の物理量の入力を互いに関連付けさせて、制御対象の制御信号を生成することができ、複数の制御対象を共に制御することで、複数の物理量を共に制御することができ、各物理量の収束性を向上させることができる。   In the embodiment, a control signal for one control object is generated by adding a plurality of physical quantities as inputs and multiplying each physical quantity by a control parameter. However, the present invention is not limited to this. It is not a thing. For example, based on a dynamic model of the refrigeration cycle of each refrigerant circuit, it is configured to calculate a plurality of control signals as outputs by taking a plurality of physical quantities as inputs and multiplying this by a matrix of control parameters. Also good. Even in such a configuration, it is possible to generate a control signal to be controlled by associating inputs of a plurality of physical quantities with each other, and to control a plurality of physical quantities together by controlling the plurality of control targets together. And the convergence of each physical quantity can be improved.

さらに、前記実施形態においては、膨張機構として膨張弁を採用しているが、これに限られるものではなく、膨張機であってもよい。   Furthermore, in the said embodiment, although the expansion valve is employ | adopted as an expansion mechanism, it is not restricted to this, An expander may be sufficient.

さらにまた、前記実施形態1においてのみ、室外ファン(28)を制御対象として制御しているが、それ以外の実施形態においても室外ファン(28)を併用して高圧制御及び能力制御をおこなってもよい。   Furthermore, only in Embodiment 1, the outdoor fan (28) is controlled as a control target. However, in other embodiments, the outdoor fan (28) is also used for high pressure control and capacity control. Good.

尚、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、超臨界サイクルを行う冷媒回路を備えた冷凍装置について有用である。   As described above, the present invention is useful for a refrigeration apparatus including a refrigerant circuit that performs a supercritical cycle.

実施形態1に係る空気調和装置の構成を示す配管系統図である。1 is a piping system diagram illustrating a configuration of an air conditioner according to Embodiment 1. FIG. 冷房運転時におけるコントローラの制御ブロック図である。It is a control block diagram of a controller at the time of cooling operation. 暖房運転時におけるコントローラの制御ブロック図である。It is a control block diagram of a controller at the time of heating operation. 実施形態2に係る空気調和装置の構成を示す配管系統図である。It is a piping system diagram which shows the structure of the air conditioning apparatus which concerns on Embodiment 2. 冷房運転時におけるコントローラの制御ブロック図である。It is a control block diagram of a controller at the time of cooling operation. 暖房運転時におけるコントローラの制御ブロック図である。It is a control block diagram of a controller at the time of heating operation. 実施形態3に係る空気調和装置の構成を示す配管系統図である。It is a piping system diagram which shows the structure of the air conditioning apparatus which concerns on Embodiment 3. 冷房運転時におけるコントローラの制御ブロック図である。It is a control block diagram of a controller at the time of cooling operation. 暖房運転時におけるコントローラの制御ブロック図である。It is a control block diagram of a controller at the time of heating operation. その他の実施形態に係る空気調和装置の構成を示す配管系統図である。It is a piping system diagram which shows the structure of the air conditioning apparatus which concerns on other embodiment. 別のその他の実施形態に係る空気調和装置の構成を示す配管系統図である。It is a piping system diagram which shows the structure of the air conditioning apparatus which concerns on another other embodiment.

符号の説明Explanation of symbols

20 冷媒回路
21 圧縮機(圧縮機構)
21a 第1圧縮機(圧縮機構)
21b 第2圧縮機(圧縮機構)
23 室外熱交換器(熱源側熱交換器)
24 室外膨張弁(膨張機構、第1膨張機構、熱源側膨張機構)
26 室内膨張弁(膨張機構、第2膨張機構)
26a 第1室内膨張弁(利用側膨張機構)
26b 第2室内膨張弁(利用側膨張機構)
27 室内熱交換器(利用側熱交換器)
27a 第1室内熱交換器(利用側熱交換器)
27b 第2室内熱交換器(利用側熱交換器)
28 室外ファン(熱源側ファン)
40,240,340 コントローラ(制御手段)
20 Refrigerant circuit
21 Compressor (compression mechanism)
21a First compressor (compression mechanism)
21b Second compressor (compression mechanism)
23 Outdoor heat exchanger (heat source side heat exchanger)
24 Outdoor expansion valve (expansion mechanism, first expansion mechanism, heat source side expansion mechanism)
26 Indoor expansion valve (expansion mechanism, second expansion mechanism)
26a 1st indoor expansion valve (use side expansion mechanism)
26b Second indoor expansion valve (use side expansion mechanism)
27 Indoor heat exchanger (use side heat exchanger)
27a 1st indoor heat exchanger (use side heat exchanger)
27b 2nd indoor heat exchanger (use side heat exchanger)
28 Outdoor fan (heat source side fan)
40,240,340 Controller (control means)

Claims (8)

圧縮機構(21)と熱源側熱交換器(23)と膨張機構(24)と利用側熱交換器(27)とが順に接続されて高圧が冷媒の臨界圧力以上となる超臨界冷凍サイクルを行う冷媒回路(20)と、少なくとも該圧縮機構(21)及び該膨張機構(24)を含む制御対象を制御する制御手段(40)とを備えた冷凍装置であって、
前記制御手段(40)は、複数の前記制御対象を共に制御することによって、冷凍装置の能力の指標となる所定の物理量と冷凍サイクルの高圧とを共に制御することを特徴とする冷凍装置。
A compression mechanism (21), a heat source side heat exchanger (23), an expansion mechanism (24), and a use side heat exchanger (27) are connected in order to perform a supercritical refrigeration cycle in which the high pressure exceeds the critical pressure of the refrigerant. A refrigeration apparatus comprising a refrigerant circuit (20) and control means (40) for controlling a control object including at least the compression mechanism (21) and the expansion mechanism (24),
The said control means (40) controls both the predetermined physical quantity used as the parameter | index of the capacity | capacitance of a refrigerating device, and the high voltage | pressure of a refrigerating cycle by controlling the said several control object together.
請求項1において、
前記制御手段(40)は、前記所定の物理量と冷凍サイクルの高圧とを入力として、複数の前記制御対象のそれぞれに対する制御信号を該物理量と該高圧とを互いに関連付けて生成して、該制御信号を前記各制御対象に出力することによって前記所定の物理量と冷凍サイクルの高圧とを共に制御することを特徴とする冷凍装置。
In claim 1,
The control means (40) receives the predetermined physical quantity and the high pressure of the refrigeration cycle as inputs, generates a control signal for each of the plurality of control objects in association with the physical quantity and the high pressure, and generates the control signal. The refrigeration apparatus is characterized in that both the predetermined physical quantity and the high pressure of the refrigeration cycle are controlled by outputting to each control object.
請求項1又は2において、
冷媒を空気と熱交換させる前記熱源側熱交換器(23)に空気を供給する熱源側ファン(28)をさらに備え、
冷房運転時においては、
前記所定の物理量は、前記利用側熱交換器(27)における冷媒の蒸発温度と前記利用側熱交換器(27)の出口における冷媒の過熱度とであり、
前記制御対象には、前記熱源側ファン(28)がさらに含まれており、
前記制御手段(40)は、冷媒の前記蒸発温度及び前記過熱度と冷凍サイクルの高圧とを入力として、前記圧縮機構(21)、膨張機構(24)及び熱源側ファン(28)を共に制御することによって、冷媒の前記蒸発温度及び冷媒の前記過熱度と冷凍サイクルの高圧とを共に制御することを特徴とする冷凍装置。
In claim 1 or 2,
A heat source side fan (28) for supplying air to the heat source side heat exchanger (23) for exchanging heat between the refrigerant and air;
During cooling operation,
The predetermined physical quantity is a refrigerant evaporation temperature in the use side heat exchanger (27) and a superheat degree of the refrigerant at an outlet of the use side heat exchanger (27),
The control object further includes the heat source side fan (28),
The control means (40) controls both the compression mechanism (21), the expansion mechanism (24), and the heat source side fan (28) with the evaporation temperature and superheat degree of the refrigerant and the high pressure of the refrigeration cycle as inputs. Thus, both the evaporating temperature of the refrigerant, the superheat degree of the refrigerant, and the high pressure of the refrigeration cycle are controlled.
請求項1又は2において、
暖房運転時には、
前記所定の物理量は、前記熱源側熱交換器(23)の出口における冷媒の過熱度であり、
前記制御手段(40)は、冷媒の前記過熱度と冷凍サイクルの高圧とを入力として、前記圧縮機構(21)及び膨張機構(24)を共に制御することによって、冷媒の前記過熱度と冷凍サイクルの高圧とを共に制御することを特徴とする冷凍装置。
In claim 1 or 2,
During heating operation,
The predetermined physical quantity is the degree of superheat of the refrigerant at the outlet of the heat source side heat exchanger (23),
The control means (40) receives the superheat degree of the refrigerant and the high pressure of the refrigeration cycle as inputs, and controls both the compression mechanism (21) and the expansion mechanism (24), whereby the superheat degree of the refrigerant and the refrigeration cycle are controlled. The refrigeration apparatus characterized by controlling both the high pressure of the two.
請求項1又は2において、
前記圧縮機構は、低圧の冷媒を吸入して圧縮する第1圧縮機(21a)と、該第1圧縮機(21a)から吐出された冷媒をさらに圧縮して吐出する第2圧縮機(21b)とを有し、
前記膨張機構は、高圧の冷媒を膨張させる第1膨張機構(24)と、該第1膨張機構(24)によって中間圧となった冷媒をさらに膨張させる第2膨張機構(26)とを有し、
冷房運転時においては、
前記所定の物理量は、前記利用側熱交換器(27)における冷媒の蒸発温度と前記利用側熱交換器(27)の出口における冷媒の過熱度と冷凍サイクルの中間圧とであり、
前記制御手段(240)は、冷媒の前記蒸発温度、冷媒の前記過熱度及び冷凍サイクルの中間圧と冷凍サイクルの高圧とを入力として、前記第1及び第2圧縮機(21a,21b)並びに第1及び第2膨張機構(24,26)を共に制御することによって、冷媒の前記蒸発温度、冷媒の前記過熱度及び冷凍サイクルの中間圧と冷凍サイクルの高圧とを共に制御することを特徴とする冷凍装置。
In claim 1 or 2,
The compression mechanism includes a first compressor (21a) that sucks and compresses a low-pressure refrigerant, and a second compressor (21b) that further compresses and discharges the refrigerant discharged from the first compressor (21a). And
The expansion mechanism includes a first expansion mechanism (24) that expands a high-pressure refrigerant and a second expansion mechanism (26) that further expands the refrigerant that has reached an intermediate pressure by the first expansion mechanism (24). ,
During cooling operation,
The predetermined physical quantities are a refrigerant evaporation temperature in the use side heat exchanger (27), a superheat degree of the refrigerant at an outlet of the use side heat exchanger (27), and an intermediate pressure of the refrigeration cycle,
The control means (240) receives the first and second compressors (21a, 21b) and the first as input with the evaporating temperature of the refrigerant, the degree of superheat of the refrigerant, the intermediate pressure of the refrigeration cycle and the high pressure of the refrigeration cycle as inputs. By controlling both the first and second expansion mechanisms (24, 26), the evaporating temperature of the refrigerant, the superheat degree of the refrigerant, the intermediate pressure of the refrigeration cycle, and the high pressure of the refrigeration cycle are both controlled. Refrigeration equipment.
請求項1又は2において、
前記圧縮機構は、低圧の冷媒を吸入して圧縮する第1圧縮機(21a)と、該第1圧縮機(21a)から吐出された冷媒をさらに圧縮して吐出する第2圧縮機(21b)とを有し、
前記膨張機構は、高圧の冷媒を膨張させる第1膨張機構(24)と、該第1膨張機構(24)によって中間圧となった冷媒をさらに膨張させる第2膨張機構(26)とを有し、
暖房運転時においては、
前記所定の物理量は、前記熱源側熱交換器(23)における冷媒の蒸発温度と前記熱源側熱交換器(23)の出口における冷媒の過熱度と前記利用側熱交換器(27)の出口における冷媒の温度であるガスクーラ出口温度とであり、
前記制御手段(240)は、冷媒の前記蒸発温度、冷媒の前記過熱度及び冷媒の前記ガスクーラ出口温度と冷凍サイクルの高圧とを入力として、前記第1及び第2圧縮機(21a,21b)並びに第1及び第2膨張機構(24,26)を共に制御することによって、冷媒の前記蒸発温度、冷媒の前記過熱度及び冷媒の前記ガスクーラ出口温度と冷凍サイクルの高圧とを共に制御することを特徴とする冷凍装置。
In claim 1 or 2,
The compression mechanism includes a first compressor (21a) that sucks and compresses a low-pressure refrigerant, and a second compressor (21b) that further compresses and discharges the refrigerant discharged from the first compressor (21a). And
The expansion mechanism includes a first expansion mechanism (24) that expands a high-pressure refrigerant and a second expansion mechanism (26) that further expands the refrigerant that has reached an intermediate pressure by the first expansion mechanism (24). ,
During heating operation,
The predetermined physical quantity includes the refrigerant evaporation temperature in the heat source side heat exchanger (23), the degree of superheat of the refrigerant at the outlet of the heat source side heat exchanger (23), and the outlet of the use side heat exchanger (27). Gas cooler outlet temperature, which is the temperature of the refrigerant,
The control means (240) receives the first and second compressors (21a, 21b) and the refrigerant temperature, the superheat degree of the refrigerant, the gas cooler outlet temperature of the refrigerant, and the high pressure of the refrigeration cycle as inputs. By controlling both the first and second expansion mechanisms (24, 26), the evaporation temperature of the refrigerant, the degree of superheat of the refrigerant, the gas cooler outlet temperature of the refrigerant, and the high pressure of the refrigeration cycle are controlled together. Refrigeration equipment.
請求項1又は2において、
前記利用側熱交換器(27a,27b)は、複数設けられていると共に互いに並列に接続されており、
前記膨張機構は、前記各利用側熱交換器(27a,27b)ごとに対応して設けられた複数の利用側膨張機構(26a,26b)と、該利用側熱交換器(27a,27b)及び該利用側膨張機構(26a,26b)と前記熱源側熱交換器(23)との間に設けられた熱源側膨張機構(24)とを有し、
冷房運転時においては、
前記所定の物理量は、前記利用側熱交換器(27a,27b)における冷媒の蒸発温度と前記各利用側熱交換器(27a,27b)の出口における冷媒の過熱度とであり、
前記制御手段(340)は、冷媒の前記蒸発温度及び該各利用側熱交換器(27a,27b)における冷媒の前記過熱度と冷凍サイクルの高圧とを入力として、前記圧縮機構(21)、複数の前記利用側膨張機構(26a,26b)及び前記熱源側膨張機構(24)を共に制御することによって、冷媒の前記蒸発温度及び該各利用側熱交換器(27a,27b)における冷媒の前記過熱度と冷凍サイクルの高圧とを共に制御することを特徴とする冷凍装置。
In claim 1 or 2,
The use side heat exchangers (27a, 27b) are provided in plural and connected in parallel to each other,
The expansion mechanism includes a plurality of utilization side expansion mechanisms (26a, 26b) provided corresponding to the respective utilization side heat exchangers (27a, 27b), the utilization side heat exchangers (27a, 27b), and A heat source side expansion mechanism (24) provided between the use side expansion mechanism (26a, 26b) and the heat source side heat exchanger (23);
During cooling operation,
The predetermined physical quantity is a refrigerant evaporation temperature in the use side heat exchanger (27a, 27b) and a superheat degree of the refrigerant at an outlet of each use side heat exchanger (27a, 27b),
The control means (340) receives the evaporating temperature of the refrigerant, the superheat degree of the refrigerant in each of the use side heat exchangers (27a, 27b), and the high pressure of the refrigeration cycle as inputs. By controlling both the use side expansion mechanism (26a, 26b) and the heat source side expansion mechanism (24) of the refrigerant, the evaporating temperature of the refrigerant and the overheating of the refrigerant in each of the use side heat exchangers (27a, 27b) A refrigeration system that controls both the temperature and the high pressure of the refrigeration cycle.
請求項1又は2において、
前記利用側熱交換器(27a,27b)は、複数設けられていると共に互いに並列に接続されており、
前記膨張機構は、前記各利用側熱交換器(27a,27b)ごとに対応して設けられた複数の利用側膨張機構(26a,26b)と、該利用側熱交換器(27a,27b)及び該利用側膨張機構(26a,26b)と前記熱源側熱交換器(23)との間に設けられた熱源側膨張機構(24)とを有し、
暖房運転時においては、
前記所定の物理量は、前記熱源側熱交換器(23)の出口における冷媒の過熱度と前記各利用側熱交換器(27a,27b)の出口における冷媒の温度であるガスクーラ出口温度とであり、
前記制御手段(340)は、冷媒の前記過熱度及び前記各利用側熱交換器(27a,27b)における冷媒の前記ガスクーラ出口温度と冷凍サイクルの高圧とを入力として、前記圧縮機構(21)、複数の前記利用側膨張機構(26a,26b)及び前記熱源側膨張機構(24)を共に制御することによって、冷媒の前記過熱度及び前記各利用側熱交換器(27a,27b)における冷媒の前記ガスクーラ出口温度と冷凍サイクルの高圧とを共に制御することを特徴とする冷凍装置。
In claim 1 or 2,
The use side heat exchangers (27a, 27b) are provided in plural and connected in parallel to each other,
The expansion mechanism includes a plurality of utilization side expansion mechanisms (26a, 26b) provided corresponding to the respective utilization side heat exchangers (27a, 27b), the utilization side heat exchangers (27a, 27b), and A heat source side expansion mechanism (24) provided between the use side expansion mechanism (26a, 26b) and the heat source side heat exchanger (23);
During heating operation,
The predetermined physical quantity is a degree of superheat of the refrigerant at the outlet of the heat source side heat exchanger (23) and a gas cooler outlet temperature which is a temperature of the refrigerant at the outlet of each use side heat exchanger (27a, 27b),
The control means (340) receives the superheat degree of the refrigerant, the gas cooler outlet temperature of the refrigerant in each of the use side heat exchangers (27a, 27b), and the high pressure of the refrigeration cycle as inputs, the compression mechanism (21), By controlling both the plurality of use side expansion mechanisms (26a, 26b) and the heat source side expansion mechanism (24), the degree of superheat of the refrigerant and the refrigerant in each use side heat exchanger (27a, 27b) are controlled. A refrigeration apparatus that controls both the gas cooler outlet temperature and the high pressure of the refrigeration cycle.
JP2007173372A 2007-06-29 2007-06-29 Refrigerating device Pending JP2009014210A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2007173372A JP2009014210A (en) 2007-06-29 2007-06-29 Refrigerating device
US12/667,016 US20100175400A1 (en) 2007-06-29 2008-06-11 Refrigeration apparatus
PCT/JP2008/001493 WO2009004761A1 (en) 2007-06-29 2008-06-11 Freezing device
EP08764088.4A EP2175212B1 (en) 2007-06-29 2008-06-11 Freezing device
KR1020107001866A KR20100036345A (en) 2007-06-29 2008-06-11 Freezing device
AU2008272365A AU2008272365B2 (en) 2007-06-29 2008-06-11 Refrigeration apparatus
ES08764088T ES2784013T3 (en) 2007-06-29 2008-06-11 Freezing device
CN2008800227018A CN101688700B (en) 2007-06-29 2008-06-11 Freezing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007173372A JP2009014210A (en) 2007-06-29 2007-06-29 Refrigerating device

Publications (1)

Publication Number Publication Date
JP2009014210A true JP2009014210A (en) 2009-01-22

Family

ID=40225828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007173372A Pending JP2009014210A (en) 2007-06-29 2007-06-29 Refrigerating device

Country Status (8)

Country Link
US (1) US20100175400A1 (en)
EP (1) EP2175212B1 (en)
JP (1) JP2009014210A (en)
KR (1) KR20100036345A (en)
CN (1) CN101688700B (en)
AU (1) AU2008272365B2 (en)
ES (1) ES2784013T3 (en)
WO (1) WO2009004761A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276238A (en) * 2009-05-27 2010-12-09 Sanyo Electric Co Ltd Refrigerating cycle device
JP2011038711A (en) * 2009-08-12 2011-02-24 Hitachi Appliances Inc Turbo refrigerator
JP2011208894A (en) * 2010-03-30 2011-10-20 Sanyo Electric Co Ltd Refrigerating device

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130174591A1 (en) * 2010-09-13 2013-07-11 Carrier Corporation Superheat control for a refrigerant vapor compression system
JP5798830B2 (en) * 2011-07-29 2015-10-21 三菱重工業株式会社 Supercritical cycle heat pump
CN103635761A (en) * 2011-08-04 2014-03-12 三菱电机株式会社 Refrigeration device
JP5240332B2 (en) * 2011-09-01 2013-07-17 ダイキン工業株式会社 Refrigeration equipment
JP5594267B2 (en) * 2011-09-12 2014-09-24 ダイキン工業株式会社 Refrigeration equipment
EP2778567B1 (en) * 2011-11-07 2021-01-20 Mitsubishi Electric Corporation Air-conditioning apparatus
JP6029879B2 (en) * 2012-07-10 2016-11-24 シャープ株式会社 Heat pump type heating device
WO2014013528A1 (en) * 2012-07-20 2014-01-23 三菱電機株式会社 Air conditioner
SG11201501310RA (en) * 2012-08-24 2015-04-29 Carrier Corp Transcritical refrigerant vapor compression system high side pressure control
GB2508655A (en) * 2012-12-07 2014-06-11 Elstat Electronics Ltd CO2 refrigeration compressor control system
JP2014119157A (en) * 2012-12-14 2014-06-30 Sharp Corp Heat pump type heating device
CA2899277C (en) * 2013-01-25 2018-07-17 Emerson Climate Technologies Retail Solutions, Inc. System and method for control of a transcritical refrigeration system
DE102013213916A1 (en) * 2013-07-16 2015-01-22 Robert Bosch Gmbh A method of controlling a fan means of an evaporator of a heat pump cycle
EP3040642B1 (en) * 2013-08-28 2021-06-02 Mitsubishi Electric Corporation Air conditioner
EP3051225B1 (en) * 2013-09-24 2021-05-19 Mitsubishi Electric Corporation Refrigeration cycle device
KR101542171B1 (en) * 2013-10-29 2015-08-06 한국에너지기술연구원 Heat pump system
JP2015178919A (en) * 2014-03-19 2015-10-08 サンデンホールディングス株式会社 Refrigeration device
EP3199887B1 (en) * 2014-09-22 2019-02-13 Mitsubishi Electric Corporation Refrigeration cycle device
US20160109160A1 (en) * 2014-10-15 2016-04-21 General Electric Company Packaged terminal air conditioner unit
JP6548890B2 (en) * 2014-10-31 2019-07-24 三菱重工サーマルシステムズ株式会社 Control device of refrigeration cycle, refrigeration cycle, and control method of refrigeration cycle
US9638444B2 (en) * 2014-11-01 2017-05-02 Teppo Kullervo Jokinen Filter less A/C system
EP3023712A1 (en) * 2014-11-19 2016-05-25 Danfoss A/S A method for controlling a vapour compression system with a receiver
CN105890268B (en) * 2015-02-13 2020-07-10 旺矽科技股份有限公司 Cooling system with defrosting function
EP3267127B1 (en) * 2015-03-02 2019-12-11 Mitsubishi Electric Corporation Control device and method for refrigeration cycle device
JP2016186407A (en) * 2015-03-27 2016-10-27 三菱重工業株式会社 Control value calculation apparatus, control value calculation method and program
US10240836B2 (en) 2015-06-30 2019-03-26 Emerson Climate Technologies Retail Solutions, Inc. Energy management for refrigeration systems
US11009250B2 (en) 2015-06-30 2021-05-18 Emerson Climate Technologies Retail Solutions, Inc. Maintenance and diagnostics for refrigeration systems
US20170016659A1 (en) * 2015-07-14 2017-01-19 Nortek Global Hvac Llc Refrigerant charge and control method for heat pump systems
CA2993328A1 (en) 2015-08-14 2017-02-23 Danfoss A/S A vapour compression system with at least two evaporator groups
WO2017047354A1 (en) * 2015-09-15 2017-03-23 株式会社デンソー Multi-stage compression refrigeration cycle device
KR102346627B1 (en) * 2015-09-30 2022-01-05 엘지전자 주식회사 An air conditioning system and a method for controlling the same
US20170100985A1 (en) * 2015-10-09 2017-04-13 Ritchie Engineering Company, Inc. Refrigeration efficiency monitoring system
WO2017067858A1 (en) * 2015-10-20 2017-04-27 Danfoss A/S A method for controlling a vapour compression system with a variable receiver pressure setpoint
WO2017067860A1 (en) 2015-10-20 2017-04-27 Danfoss A/S A method for controlling a vapour compression system in ejector mode for a prolonged time
TWI587107B (en) * 2016-02-18 2017-06-11 Air Compressor Control Method
CN106123419B (en) * 2016-07-04 2019-04-23 青岛海尔空调器有限总公司 A method of control air conditioner electric expansion valve
CN106052231B (en) * 2016-07-04 2019-05-31 青岛海尔空调器有限总公司 The method for adjusting air conditioner electric expansion valve
CN106196786B (en) * 2016-07-04 2019-05-31 青岛海尔空调器有限总公司 The method for adjusting outdoor machine of air-conditioner electronic expansion valve
US10627146B2 (en) 2016-10-17 2020-04-21 Emerson Climate Technologies, Inc. Liquid slugging detection and protection
US11486617B2 (en) * 2017-10-27 2022-11-01 Mitsubishi Electric Corporation Refrigeration cycle apparatus
PL3628940T3 (en) 2018-09-25 2022-08-22 Danfoss A/S A method for controlling a vapour compression system based on estimated flow
PL3628942T3 (en) 2018-09-25 2021-10-04 Danfoss A/S A method for controlling a vapour compression system at a reduced suction pressure
DK180146B1 (en) 2018-10-15 2020-06-25 Danfoss As Intellectual Property Heat exchanger plate with strenghened diagonal area
CN109855252B (en) * 2019-02-14 2022-02-22 青岛海尔空调电子有限公司 Refrigerant control method of multi-split air conditioning system
JP2021025670A (en) * 2019-07-31 2021-02-22 ダイキン工業株式会社 Refrigeration cycle device
CN112856865A (en) * 2021-01-28 2021-05-28 山东奇威特太阳能科技有限公司 Refrigerant flow control method and refrigerating unit
CN114815927B (en) * 2022-05-24 2024-01-09 国网江苏省电力有限公司泰州供电分公司 Large-scale power supply temperature control system of power distribution station
CN115523591B (en) * 2022-08-17 2023-07-21 宁波奥克斯电气股份有限公司 Control method and device for electronic expansion valve of indoor unit and central air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329155A (en) * 1986-07-21 1988-02-06 日本電信電話株式会社 Method of controlling air conditioner
JPH08327124A (en) * 1995-05-31 1996-12-13 Toshiba Corp Control method of air conditioner and air conditioner
JPH11218349A (en) * 1997-11-28 1999-08-10 Daikin Ind Ltd Operation control device of air conditioning system
JP2000297970A (en) * 1999-04-14 2000-10-24 Yanmar Diesel Engine Co Ltd Controller for heat pump
JP2002130770A (en) * 2000-10-30 2002-05-09 Mitsubishi Electric Corp Refrigerating cycle device and its control method
JP2002327950A (en) * 2001-04-27 2002-11-15 Daikin Ind Ltd Air conditioner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329155A (en) * 1993-05-21 1994-11-29 Mabuchi:Kk Flat pallet
KR100642709B1 (en) * 2004-03-19 2006-11-10 산요덴키가부시키가이샤 Refrigerator
JP4613526B2 (en) * 2004-06-23 2011-01-19 株式会社デンソー Supercritical heat pump cycle equipment
JP4049769B2 (en) * 2004-08-12 2008-02-20 三洋電機株式会社 Refrigerant cycle equipment
US7600390B2 (en) * 2004-10-21 2009-10-13 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a two-stage compressor
JP3929067B2 (en) * 2004-12-09 2007-06-13 松下電器産業株式会社 heat pump
JP2006343017A (en) * 2005-06-08 2006-12-21 Sanyo Electric Co Ltd Freezer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329155A (en) * 1986-07-21 1988-02-06 日本電信電話株式会社 Method of controlling air conditioner
JPH08327124A (en) * 1995-05-31 1996-12-13 Toshiba Corp Control method of air conditioner and air conditioner
JPH11218349A (en) * 1997-11-28 1999-08-10 Daikin Ind Ltd Operation control device of air conditioning system
JP2000297970A (en) * 1999-04-14 2000-10-24 Yanmar Diesel Engine Co Ltd Controller for heat pump
JP2002130770A (en) * 2000-10-30 2002-05-09 Mitsubishi Electric Corp Refrigerating cycle device and its control method
JP2002327950A (en) * 2001-04-27 2002-11-15 Daikin Ind Ltd Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276238A (en) * 2009-05-27 2010-12-09 Sanyo Electric Co Ltd Refrigerating cycle device
JP2011038711A (en) * 2009-08-12 2011-02-24 Hitachi Appliances Inc Turbo refrigerator
JP2011208894A (en) * 2010-03-30 2011-10-20 Sanyo Electric Co Ltd Refrigerating device

Also Published As

Publication number Publication date
KR20100036345A (en) 2010-04-07
CN101688700A (en) 2010-03-31
US20100175400A1 (en) 2010-07-15
EP2175212B1 (en) 2020-02-12
ES2784013T3 (en) 2020-09-21
CN101688700B (en) 2013-03-27
WO2009004761A1 (en) 2009-01-08
AU2008272365B2 (en) 2011-07-28
EP2175212A4 (en) 2014-10-08
AU2008272365A1 (en) 2009-01-08
EP2175212A1 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
JP2009014210A (en) Refrigerating device
JP5318099B2 (en) Refrigeration cycle apparatus and control method thereof
KR100856991B1 (en) Refrigerating air conditioner, operation control method of refrigerating air conditioner, and refrigerant quantity control method of refrigerating air conditioner
WO2016171052A1 (en) Refrigeration cycle device
JP6657613B2 (en) Air conditioner
JP5795025B2 (en) Refrigeration cycle equipment
JP6792057B2 (en) Refrigeration cycle equipment
JP4375171B2 (en) Refrigeration equipment
JP5979112B2 (en) Refrigeration equipment
JP2019086251A (en) Control device of multi-type air conditioning device, multi-type air conditioning device, control method of multi-type air conditioning device, and control program of multi-type air conditioning device
JP4859480B2 (en) Turbo chiller, control device thereof, and control method of turbo chiller
JP4273493B2 (en) Refrigeration air conditioner
JP2019011899A (en) Air conditioning device
KR20190006399A (en) Air conditioning device using vapor injection cycle and method for controlling thereof
JP2012127606A (en) Refrigeration air conditioner
KR20130026685A (en) Air conditioner and control method thereof
JP2011196684A (en) Heat pump device and outdoor unit of the heat pump device
JP2015087020A (en) Refrigeration cycle device
JP6964241B2 (en) Refrigeration cycle device and liquid heating device equipped with it
JP6750388B2 (en) Refrigeration equipment
JP5571429B2 (en) Gas-liquid heat exchange type refrigeration equipment
JP6978242B2 (en) Refrigerant circuit equipment
JP7098513B2 (en) Environment forming device and cooling device
JP7407920B2 (en) Refrigeration cycle equipment
JP2014070835A (en) Refrigeration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605