JP4049769B2 - Refrigerant cycle equipment - Google Patents

Refrigerant cycle equipment Download PDF

Info

Publication number
JP4049769B2
JP4049769B2 JP2004235405A JP2004235405A JP4049769B2 JP 4049769 B2 JP4049769 B2 JP 4049769B2 JP 2004235405 A JP2004235405 A JP 2004235405A JP 2004235405 A JP2004235405 A JP 2004235405A JP 4049769 B2 JP4049769 B2 JP 4049769B2
Authority
JP
Japan
Prior art keywords
refrigerant
capillary tube
compression element
compressor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004235405A
Other languages
Japanese (ja)
Other versions
JP2006052898A (en
Inventor
一朗 上村
洋 向山
悟 今井
博之 齋
雅久 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004235405A priority Critical patent/JP4049769B2/en
Priority to CNA2005100785686A priority patent/CN1734209A/en
Priority to EP05017389A priority patent/EP1628088A3/en
Publication of JP2006052898A publication Critical patent/JP2006052898A/en
Application granted granted Critical
Publication of JP4049769B2 publication Critical patent/JP4049769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、圧縮機、放熱器、第1の減圧装置、中間圧力レシーバ、第2の減圧装置及び蒸発器を順次環状に接続して冷媒回路が構成され、高圧側が超臨界圧力にて運転される冷媒サイクル装置に関するものである。   In the present invention, a refrigerant circuit is configured by sequentially connecting a compressor, a radiator, a first pressure reducing device, an intermediate pressure receiver, a second pressure reducing device, and an evaporator in a ring shape, and the high pressure side is operated at a supercritical pressure. The present invention relates to a refrigerant cycle device.

従来のこの種冷媒サイクル装置、例えば、室内を冷房する空気調和機では、圧縮機、放熱器、減圧装置、蒸発器等を環状に配管接続して冷媒サイクルが構成されている。そして、圧縮機の圧縮要素に冷媒ガスが吸入され、圧縮されて高温高圧の冷媒ガスとなり、吐出されて放熱器に流入し、そこで冷媒が放熱する。放熱器を出た冷媒はその後、減圧装置にて絞られて蒸発器に供給される。そこで冷媒が蒸発し、その時に周囲から吸熱することにより冷却作用を発揮して室内を冷却するものであった。   In a conventional refrigerant cycle apparatus of this type, for example, an air conditioner that cools a room, a refrigerant cycle is configured by connecting a compressor, a radiator, a decompressor, an evaporator, and the like in a ring shape. Then, the refrigerant gas is sucked into the compression element of the compressor and compressed to become a high-temperature and high-pressure refrigerant gas, which is discharged and flows into the radiator, where the refrigerant radiates heat. Thereafter, the refrigerant exiting the radiator is throttled by a decompression device and supplied to the evaporator. Therefore, the refrigerant evaporates, and at that time, it absorbs heat from the surroundings to exert a cooling action to cool the room.

ここで、近年では地球環境問題に対処するためこの種の冷媒サイクルにおいても、従来のフロンを用いずに自然冷媒である二酸化炭素(CO2)を冷媒として用い、高圧側を超臨界圧力として運転する装置が開発されて来ている(特許文献1参照)。
特許第2804527号公報
Here, in recent years, in order to deal with global environmental problems, even in this type of refrigerant cycle, carbon dioxide (CO 2 ), which is a natural refrigerant, is used as a refrigerant without using conventional chlorofluorocarbon, and the high pressure side is operated as a supercritical pressure. The device which performs is developed (refer patent document 1).
Japanese Patent No. 2804527

この種の冷媒サイクル装置では、放熱器において冷媒と熱交換する熱源の温度が上昇した場合、冷凍効果が著しく減少するため、それを補うために高圧側圧力を上げる必要があり、その結果、圧縮動力が増加し、性能が低下するという問題が生じていた。   In this type of refrigerant cycle device, when the temperature of the heat source that exchanges heat with the refrigerant in the radiator rises, the refrigeration effect decreases significantly, so it is necessary to increase the high-pressure side pressure to compensate for it, and as a result, compression There was a problem that the power increased and the performance decreased.

また、二酸化炭素冷媒は他の冷媒と比較して圧力損失が小さいため、減圧装置における減圧度を大きくしなければならないが、係る減圧装置として通常の電子式膨張弁を使用した場合、所望の絞り効果を得ることが困難で、適切な制御を行うことができなかった。   In addition, since the carbon dioxide refrigerant has a smaller pressure loss than other refrigerants, the degree of decompression in the decompression device must be increased. However, when a normal electronic expansion valve is used as such a decompression device, a desired throttle is required. It was difficult to obtain an effect, and proper control could not be performed.

一方、減圧装置としてキャピラリチューブを使用した場合、所望の減圧効果を得るためにはキャピラリチューブの長さを長くしたり、内径を縮小しなければならないが、内径を小さくし過ぎると、キャピラリチューブ内にスラッジや水分やオイルが詰まり、冷媒流通に支障を来す恐れがあった。しかし、通常の内径0.6mmのキャピラリチューブで所望の減圧効果を得るためには20m以上もの長さになっていた。   On the other hand, when a capillary tube is used as a decompression device, in order to obtain a desired decompression effect, the length of the capillary tube must be increased or the inner diameter must be reduced. In addition, sludge, moisture, and oil are clogged, and there is a risk of disturbing the refrigerant flow. However, in order to obtain a desired pressure reduction effect with a normal capillary tube having an inner diameter of 0.6 mm, the length is 20 m or more.

本発明は係る従来の技術的課題を解決するために成されたものであり、高圧側が超臨界圧力で運転される冷媒サイクル装置において、性能の維持・向上と詰まりの発生やキャピラリチューブの寸法縮小を図る。   The present invention has been made to solve the conventional technical problems, and in a refrigerant cycle device that operates at a supercritical pressure on the high-pressure side, maintenance and improvement of performance, occurrence of clogging, and reduction in size of the capillary tube Plan.

本発明の冷媒サイクル装置は、圧縮機、第1のキャピラリチューブ、第2のキャピラリチューブ、中間圧力レシーバ、膨張弁及び蒸発器を順次環状に接続して冷媒回路が構成され、二酸化炭素を冷媒として該冷媒回路の高圧側が超臨界圧力にて運転されるものであって、圧縮機は、第1の圧縮要素と、該第1の圧縮要素にて圧縮された冷媒を圧縮する第2の圧縮要素とを有し、中間圧力レシーバ内の気相冷媒を逆止弁を介して圧縮機の第2の圧縮要素に吸い込ませ、中間圧力レシーバ内の液相冷媒を膨張弁にて減圧した後、蒸発器に導入すると共に、第1のキャピラリチューブの内径を第2のキャピラリチューブの内径より小さく、且つ、当該内径を0.1mm以上0.4mm以下で構成することを特徴とする。 In the refrigerant cycle device of the present invention, a compressor, a first capillary tube, a second capillary tube , an intermediate pressure receiver, an expansion valve and an evaporator are sequentially connected in an annular manner to constitute a refrigerant circuit, and carbon dioxide is used as a refrigerant. The high-pressure side of the refrigerant circuit is operated at a supercritical pressure, and the compressor includes a first compression element and a second compression element that compresses the refrigerant compressed by the first compression element. The gas-phase refrigerant in the intermediate pressure receiver is sucked into the second compression element of the compressor through the check valve, and the liquid-phase refrigerant in the intermediate pressure receiver is decompressed by the expansion valve , and then evaporated. And the inside diameter of the first capillary tube is smaller than the inside diameter of the second capillary tube, and the inside diameter is 0.1 mm or more and 0.4 mm or less .

本発明では、圧縮機、第1のキャピラリチューブ、第2のキャピラリチューブ、中間圧力レシーバ、膨張弁及び蒸発器を順次環状に接続して冷媒回路が構成され、二酸化炭素を冷媒として該冷媒回路の高圧側が超臨界圧力にて運転されるものであって、圧縮機は、第1の圧縮要素と、該第1の圧縮要素にて圧縮された冷媒を圧縮する第2の圧縮要素とを有し、中間圧力レシーバ内の気相冷媒を逆止弁を介して圧縮機の第2の圧縮要素に吸い込ませ、中間圧力レシーバ内の液相冷媒を膨張弁にて減圧した後、蒸発器に導入するので、第1の圧縮要素の冷媒流量を減少させて圧縮動力を低減し、成績係数を向上させることができるようになる。また、蒸発器での冷媒流量が低下するので、蒸発器での圧力損失も低減され、性能の向上が図れる。更に、蒸発器での液相冷媒の量が増加するので、伝熱性能が向上し、総じて性能の向上を図ることができるようになる。 In the present invention, a compressor circuit, a first capillary tube, a second capillary tube , an intermediate pressure receiver, an expansion valve, and an evaporator are sequentially connected in a ring to form a refrigerant circuit, and carbon dioxide is used as a refrigerant . The high pressure side is operated at a supercritical pressure, and the compressor has a first compression element and a second compression element that compresses the refrigerant compressed by the first compression element. The gas-phase refrigerant in the intermediate pressure receiver is sucked into the second compression element of the compressor through the check valve, and the liquid-phase refrigerant in the intermediate pressure receiver is decompressed by the expansion valve and then introduced into the evaporator. Therefore, the refrigerant flow rate of the first compression element can be reduced to reduce the compression power and improve the coefficient of performance. Moreover, since the refrigerant | coolant flow rate in an evaporator falls, the pressure loss in an evaporator is also reduced and a performance improvement can be aimed at. Furthermore, since the amount of the liquid-phase refrigerant in the evaporator increases, the heat transfer performance is improved, and the overall performance can be improved.

更に、第1のキャピラリチューブの内径を第2のキャピラリチューブの内径より小さく、且つ、当該内径を0.1mm以上0.4mm以下で構成したので、超臨界状態の冷媒をキャピラリチューブにて減圧することになる。この超臨界状態の冷媒は優れた溶解特性を有するため、キャピラリチューブの内径を0.1mm以上0.4mm以下と云うように小さくしても、スラッジや水分、オイルによる詰まりが生じ難くなる。従って、二酸化炭素を冷媒として用い、減圧度を大きくとらなければならない場合にも、キャピラリチューブの長さを短くしてスペース効率を改善することができるようになる。 Furthermore, since the inner diameter of the first capillary tube is smaller than the inner diameter of the second capillary tube and the inner diameter is 0.1 mm or more and 0.4 mm or less, the supercritical refrigerant is decompressed by the capillary tube. It will be. Since this supercritical refrigerant has excellent dissolution characteristics, clogging with sludge, moisture, and oil is less likely to occur even if the inner diameter of the capillary tube is reduced to 0.1 mm or more and 0.4 mm or less. Accordingly, even when carbon dioxide is used as a refrigerant and the degree of decompression must be increased, the length of the capillary tube can be shortened to improve the space efficiency.

以下、図面に基づき本発明の実施形態を詳述する。Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の一実施例の冷媒サイクル装置210の冷媒回路図である。本実施例の冷媒サイクル装置210は、圧縮機10、放熱器12、第1の減圧装置13、中間圧力レシーバ16、第2の減圧装置17及び蒸発器20を順次環状に接続して冷媒回路が構成されている。即ち、圧縮機10の冷媒吐出管10Aは放熱器12の入口に接続されている。 FIG. 1 is a refrigerant circuit diagram of a refrigerant cycle device 210 according to an embodiment of the present invention. The refrigerant cycle device 210 of the present embodiment includes a compressor circuit, a radiator 12, a first pressure reduction device 13, an intermediate pressure receiver 16, a second pressure reduction device 17, and an evaporator 20, which are sequentially connected in a ring shape to form a refrigerant circuit. It is configured. That is, the refrigerant discharge pipe 10 </ b> A of the compressor 10 is connected to the inlet of the radiator 12.

ここで、実施例の圧縮機10は第1の圧縮要素30と、この第1の圧縮要素30で圧縮された冷媒を圧縮する第2の圧縮要素32を有する2段圧縮式の圧縮機であり、図示しない密閉容器内に駆動要素とこの駆動要素により駆動される上記第1の圧縮要素30及び第2の圧縮要素32にて構成されている。   Here, the compressor 10 of the embodiment is a two-stage compression type compressor having a first compression element 30 and a second compression element 32 that compresses the refrigerant compressed by the first compression element 30. A driving element and a first compression element 30 and a second compression element 32 driven by the driving element are provided in an airtight container (not shown).

図中11は、圧縮機10の第1の圧縮要素30(1段目)で圧縮された冷媒を密閉容器外部に吐出させて、第2の圧縮要素32(2段目)に導入するための冷媒導入管である。この冷媒導入管11の途中部には後述する連通管40が接続されている。   11 in the figure is for discharging the refrigerant compressed by the first compression element 30 (first stage) of the compressor 10 to the outside of the sealed container and introducing it into the second compression element 32 (second stage). It is a refrigerant introduction pipe. A communication pipe 40 which will be described later is connected to the middle part of the refrigerant introduction pipe 11.

また、放熱器12を出た冷媒配管12Aは、第1の減圧装置13の入口に接続されている。ここで、第1の減圧装置13は、第1のキャピラリチューブ14と第2のキャピラリチューブ25とから成り、第1のキャピラリチューブ14が冷媒上流側、第2のキャピラリチューブ25第1のキャピラリチューブ14の下流側となるように配設されている。即ち、放熱器12にて放熱した冷媒は第1の減圧装置13にて上流側に設けられた第1のキャピラリチューブ14により減圧された後、その下流側に設けられた第2のキャピラリチューブ25にて減圧されることとなる。また、第1のキャピラリチューブ14は内径が0.1mm以上0.4mm以下、寸法が0.5m以上5m以下とされている。 In addition, the refrigerant pipe 12 </ b> A exiting the radiator 12 is connected to the inlet of the first decompression device 13. Here, the first decompression device 13 includes a first capillary tube 14 and a second capillary tube 25 , where the first capillary tube 14 is upstream of the refrigerant and the second capillary tube 25 is the first capillary. It arrange | positions so that it may become the downstream of the tube 14. FIG. That is, the refrigerant radiated by the radiator 12 is decompressed by the first capillary tube 14 provided on the upstream side by the first decompression device 13, and then the second capillary tube 25 provided on the downstream side thereof. The pressure is reduced at. The first capillary tube 14 has an inner diameter of 0.1 mm to 0.4 mm and a dimension of 0.5 m to 5 m.

一方、第1の減圧装置13の出口側に接続された冷媒配管15Aは中間圧力レシーバ16の入口に至る。この中間圧力レシーバ16は冷媒の気液を分離するためのものであり、前記第1の減圧装置13にて減圧されて気体/液体の二相混合体となった冷媒は、中間圧力レシーバ16にて液相冷媒が当該中間圧レシーバ16内に一旦貯溜される。この中間圧力レシーバ16の上方には、前述した連通管40が接続されている。この連通管40は、中間圧レシーバ16にて液相と分離された気相冷媒を圧縮機12に戻すためのものであり、連通管40の途中部には冷媒導入管11方向を順方向とする逆止弁42が設けられている。これにより、中間圧力レシーバ16にて液相冷媒と分離された気相冷媒は当該連通管40を通って、圧縮機12の冷媒導入管11に至り、第1の圧縮要素30にて圧縮された中間圧力の冷媒ガスと合流して、第2の圧縮要素32に吸入される。 On the other hand, the refrigerant pipe 15 </ b> A connected to the outlet side of the first pressure reducing device 13 reaches the inlet of the intermediate pressure receiver 16. The intermediate pressure receiver 16 is for separating the gas-liquid refrigerant, and the refrigerant that has been decompressed by the first decompression device 13 to become a gas / liquid two-phase mixture is supplied to the intermediate pressure receiver 16. Thus, the liquid phase refrigerant is temporarily stored in the intermediate pressure receiver 16. Above the intermediate pressure receiver 16, the communication pipe 40 described above is connected. This communication pipe 40 is for returning the gas-phase refrigerant separated from the liquid phase by the intermediate pressure receiver 16 to the compressor 12. The refrigerant introduction pipe 11 direction is a forward direction in the middle of the communication pipe 40. A check valve 42 is provided. As a result, the gas-phase refrigerant separated from the liquid-phase refrigerant by the intermediate pressure receiver 16 passes through the communication pipe 40, reaches the refrigerant introduction pipe 11 of the compressor 12, and is compressed by the first compression element 30. It merges with the intermediate-pressure refrigerant gas and is sucked into the second compression element 32.

他方、中間圧力レシーバ16の底面には、第2の減圧装置としての電子式膨張弁17の入口に至る冷媒配管16Aが接続されており、当該中間圧力レシーバ16にて気相冷媒と分離され一旦貯溜された液相冷媒がこの冷媒配管16Aから膨張弁17に流れる。また、膨張弁17を出た配管17Aは蒸発器20の入口に接続されている。   On the other hand, a refrigerant pipe 16A reaching the inlet of an electronic expansion valve 17 as a second decompression device is connected to the bottom surface of the intermediate pressure receiver 16, and is separated from the gas phase refrigerant by the intermediate pressure receiver 16 once. The stored liquid phase refrigerant flows from the refrigerant pipe 16A to the expansion valve 17. A pipe 17 </ b> A exiting the expansion valve 17 is connected to the inlet of the evaporator 20.

そして、蒸発器20の出口側には前記圧縮機10の冷媒導入管20Aが接続されて圧縮機10に戻る環状のサイクルを構成している。   And the refrigerant | coolant inlet tube 20A of the said compressor 10 is connected to the exit side of the evaporator 20, and the cyclic | annular cycle which returns to the compressor 10 is comprised.

係る冷媒サイクル装置210の冷媒としては地球環境にやさしく、可燃性及び毒性等を考慮して自然冷媒である二酸化炭素(CO2)が使用され、潤滑油としてのオイルはPAG(ポリアルキレングリコール)、POE(ポリオールエステル)等が使用される。 As the refrigerant of the refrigerant cycle device 210 , which is friendly to the global environment, carbon dioxide (CO 2 ), which is a natural refrigerant, is used in consideration of flammability and toxicity, and the oil as the lubricating oil is PAG (polyalkylene glycol), POE (polyol ester) or the like is used.

以上の構成で次に図2のp−h線図(モリエル線図)を参照しながら冷媒サイクル装置210の動作を説明する。図示しない制御装置により圧縮機10の図示しない駆動要素が駆動されると、圧縮機10の第1の圧縮要素30に低圧の冷媒ガスが吸い込まれ(図2のAの状態)、圧縮されて中間圧の冷媒ガスとなる(図2のBの状態)。そして、中間圧の冷媒ガスは冷媒導入管11を経由して第2の圧縮要素32に吸入される。このとき、中間圧の冷媒ガスは後述する中間圧力レシーバ16からの気相冷媒の合流により温度低下して図2のCの状態となる。そして、第2の圧縮要素32に吸い込まれた冷媒は2段目の圧縮が行われて高温高圧の冷媒ガスとなり、冷媒吐出管10Aより外部に吐出される。このとき、冷媒は適切な超臨界圧力(定格時7MPa程度。但し、環境条件により5MPa〜11MPaと変動する)まで圧縮されている(図2のDの状態)。 Next, the operation of the refrigerant cycle apparatus 210 will be described with reference to the ph diagram (Mollier diagram) of FIG. When a drive element (not shown) of the compressor 10 is driven by a control device (not shown), a low-pressure refrigerant gas is sucked into the first compression element 30 of the compressor 10 (state A in FIG. 2) and compressed to be intermediate. Pressure refrigerant gas (state B in FIG. 2). The intermediate-pressure refrigerant gas is sucked into the second compression element 32 through the refrigerant introduction pipe 11. At this time, the refrigerant gas at the intermediate pressure is lowered in temperature by the joining of the gas-phase refrigerant from the intermediate pressure receiver 16, which will be described later, and becomes the state of C in FIG. The refrigerant sucked into the second compression element 32 is compressed in the second stage to become high-temperature and high-pressure refrigerant gas, and is discharged to the outside through the refrigerant discharge pipe 10A. At this time, the refrigerant is compressed to an appropriate supercritical pressure (about 7 MPa at the time of rating, but varies from 5 MPa to 11 MPa depending on environmental conditions) (state D in FIG. 2).

冷媒吐出管10Aから吐出された冷媒ガスは放熱器12に流入し、そこで空冷方式若しくは水冷方式により放熱する。当該放熱器12において二酸化炭素冷媒は凝縮して、液化することなく超臨界の状態のまま、温度低下して図2のEの状態となる。   The refrigerant gas discharged from the refrigerant discharge pipe 10A flows into the radiator 12, where it dissipates heat by an air cooling method or a water cooling method. In the heat radiator 12, the carbon dioxide refrigerant is condensed and the temperature is lowered to a state E in FIG.

放熱器12にて放熱した冷媒は、冷媒配管12Aを経て第1の減圧装置13に至る。この第1の減圧装置13にて冷媒は先ず、上流側に設けられた第1のキャピラリチューブ14に流入し、当該キャピラリチューブ14を通過する過程で圧力が低下する(図2のFの状態)。 The refrigerant radiated by the radiator 12 reaches the first pressure reducing device 13 through the refrigerant pipe 12A. In the first decompression device 13, the refrigerant first flows into the first capillary tube 14 provided on the upstream side, and the pressure decreases in the process of passing through the capillary tube 14 (state F in FIG. 2). .

ここで、放熱器12を出た冷媒は上述の如く超臨界状態であるため、当該キャピラリチューブ14において冷媒は超臨界状態を維持したまま、若しくは、当該キャピラリチューブ14の出口付近で気相/液相の二相混合体となるだけで、第1のキャピラリチューブ14を通過する殆どの行程で超臨界状態のまま減圧される。 Here, since the refrigerant exiting the radiator 12 is in a supercritical state as described above, the refrigerant remains in the supercritical state in the capillary tube 14 or in the vicinity of the outlet of the capillary tube 14 in the gas phase / liquid state. By only becoming a two-phase mixture of phases, the pressure is reduced while maintaining the supercritical state in most of the strokes passing through the first capillary tube 14.

係る超臨界状態の冷媒は優れた溶解特性を有する。このため、第1のキャピラリチューブ14の内径を0.1mm以上0.4mm以下と小さくしてもスラッジや水分、オイルによる目詰まりが生じ難くなる。 Such supercritical refrigerants have excellent dissolution characteristics. For this reason, even if the inner diameter of the first capillary tube 14 is reduced to 0.1 mm or more and 0.4 mm or less, clogging due to sludge, moisture, or oil hardly occurs.

従来のフロン系冷媒を用いた場合、キャピラリチューブは通常0.6mm程度の内径のものを使用しており、それ以上内径を縮小するとスラッジや水分、オイル等が詰まって、冷媒流通に支障を来す恐れがあった。   When using conventional chlorofluorocarbon refrigerants, the capillary tube usually has an inner diameter of about 0.6 mm. If the inner diameter is reduced further, sludge, moisture, oil, etc. are clogged and the refrigerant flow is hindered. There was a fear.

しかしながら、冷媒として二酸化炭素を使用し、第1のキャピラリチューブ14に入る冷媒圧力が超臨界状態となるようにすることで、第1のキャピラリチューブ14にて超臨界状態の冷媒を減圧することとなり、係る超臨界状態特有の優れた溶解特性により第1のキャピラリチューブ14の内径を0.1mm以上0.4mm以下と小さくすることができるようになる。これにより、圧力損失の少ない二酸化炭素冷媒を用いても、係る冷媒流通に支障が生じる不都合を回避し、第1のキャピラリチューブ14の寸法を縮小して、第1のキャピラリチューブ14における絞り効果を充分得ることができるようになる。 However, using carbon dioxide as a refrigerant, by refrigerant pressure entering the first capillary tube 14 to a supercritical state, it becomes possible to depressurize the refrigerant in the supercritical state in the first capillary tube 14 Due to the excellent melting characteristics peculiar to the supercritical state, the inner diameter of the first capillary tube 14 can be reduced to 0.1 mm or more and 0.4 mm or less. Thereby, even if a carbon dioxide refrigerant with a small pressure loss is used, the inconvenience of disturbing the refrigerant flow is avoided, the size of the first capillary tube 14 is reduced, and the throttling effect in the first capillary tube 14 is reduced. You can get enough.

これにより、二酸化炭素を冷媒として用い、減圧度を大きくとらなければならない場合にも、第1のキャピラリチューブ14の長さを短くしてスペース効率を改善することができるようになる。 As a result, even when carbon dioxide is used as a refrigerant and the degree of decompression must be increased, the length of the first capillary tube 14 can be shortened to improve the space efficiency.

尚、第1のキャピラリチューブ14にて減圧された冷媒は、その後第1のキャピラリチューブ14の下流側に設けられた第2のキャピラリチューブ25(内径が0.5mm以上0.6mm以下、寸法が0.5m以上2m以下の従来より用いられているものである。)に流入し、当該第2のキャピラリチューブ25における圧力低下により気体/液体の二相混合体とされ(図2のGの状態)、中間圧力レシーバ16に至る。また、中間圧力レシーバ16において冷媒は前記第1の減圧装置13における減圧効果で圧力が3MPa〜4MPa程度にまで低下している。そして、中間圧力レシーバ16において、冷媒は気相冷媒(飽和蒸気)と液相冷媒(飽和液)に分離され、気相冷媒は中間圧力レシーバ16内で図2の状態Hとなり、連通管40介して圧縮機10の冷媒導入管11に戻され、第1の圧縮要素30で圧縮された中間圧の冷媒と合流する。このとき、冷媒は図2のCの状態となる。 The refrigerant depressurized by the first capillary tube 14 is then supplied to a second capillary tube 25 (inner diameter is 0.5 mm or more and 0.6 mm or less, the dimension is provided downstream of the first capillary tube 14) . 2) , and a gas / liquid two-phase mixture is formed by the pressure drop in the second capillary tube 25 (state G in FIG. 2). ) To the intermediate pressure receiver 16. In the intermediate pressure receiver 16, the pressure of the refrigerant is reduced to about 3 MPa to 4 MPa due to the pressure reducing effect in the first pressure reducing device 13. Then, in the intermediate pressure receiver 16, the refrigerant is separated into a gas phase refrigerant (saturated vapor) and a liquid phase refrigerant (saturated liquid), and the gas phase refrigerant enters the state H in FIG. Then, the refrigerant is returned to the refrigerant introduction pipe 11 of the compressor 10 and merged with the intermediate pressure refrigerant compressed by the first compression element 30. At this time, the refrigerant is in the state shown in FIG.

このように、中間圧力レシーバ16にて冷媒の気液を分離して、気体成分を連通管40から圧縮機12の冷媒導入管11に戻すことで、冷却に寄与しない気体成分を中間圧力レシーバ16以降の低圧側の冷媒回路に循環させず、この分だけ冷媒サイクルの効率を向上させることができる。特に、本発明の如く二酸化炭素冷媒を用いることで、中間圧力レシーバ16で分離される気相冷媒が従来のフロン系冷媒に比べて多くなり、係る気相冷媒を圧縮機10の冷媒導入管11から第2の圧縮要素32に導入することで、より効率の向上を図ることができる。   In this way, the gas-liquid of the refrigerant is separated by the intermediate pressure receiver 16 and the gas component is returned from the communication pipe 40 to the refrigerant introduction pipe 11 of the compressor 12, so that the gas component that does not contribute to cooling is removed from the intermediate pressure receiver 16. The efficiency of the refrigerant cycle can be improved by this amount without circulating to the low pressure side refrigerant circuit thereafter. In particular, by using carbon dioxide refrigerant as in the present invention, the amount of gas-phase refrigerant separated by the intermediate pressure receiver 16 is larger than that of conventional chlorofluorocarbon-based refrigerant, and the gas-phase refrigerant is used as the refrigerant introduction pipe 11 of the compressor 10. Therefore, the efficiency can be further improved.

一方、液相冷媒は中間圧力レシーバ16内で一旦貯留されて、図2のIの状態となり、底部に設けられた冷媒配管16Aから当該中間圧力レシーバ16を出て膨張弁17にて更に絞られて、図2のJの状態となる。   On the other hand, the liquid phase refrigerant is temporarily stored in the intermediate pressure receiver 16 to be in the state of I in FIG. Thus, the state of J in FIG.

膨張弁17にて圧力低下した冷媒は配管17Aを介して蒸発器20内に流入する。そこで、冷媒は蒸発し、そのときに周囲から吸熱することにより冷却作用を発揮する。   The refrigerant whose pressure has been reduced by the expansion valve 17 flows into the evaporator 20 through the pipe 17A. Therefore, the refrigerant evaporates, and at that time, the refrigerant absorbs heat from the surroundings and exhibits a cooling action.

その後、蒸発器20を出た冷媒は圧縮機10の冷媒導入管20Aから第1の圧縮要素30に吸い込まれるサイクルを繰り返す(図2のAの状態)。   Thereafter, the refrigerant exiting the evaporator 20 repeats the cycle of being sucked into the first compression element 30 from the refrigerant introduction pipe 20A of the compressor 10 (state A in FIG. 2).

このように、中間圧力レシーバ16にて気相冷媒を圧縮機10の第2の圧縮要素32に吸い込ませ、中間圧力レシーバ16内の液相冷媒を第2の減圧装置としての膨張弁17にて減圧した後、蒸発器20に導入するので、第1の圧縮要素30の冷媒流量を減少させることができるようになる。これにより、第1の圧縮要素30における圧縮動力を低減し、成績係数を向上させることができるようになる。   In this way, the intermediate pressure receiver 16 causes the gas-phase refrigerant to be sucked into the second compression element 32 of the compressor 10, and the liquid-phase refrigerant in the intermediate pressure receiver 16 is expanded by the expansion valve 17 as the second decompression device. Since the pressure is reduced and then introduced into the evaporator 20, the refrigerant flow rate of the first compression element 30 can be reduced. Thereby, the compression power in the 1st compression element 30 can be reduced, and a coefficient of performance can be improved.

また、蒸発器20での冷媒流量が低下するので、蒸発器20での圧力損失も低減され、性能の向上が図れるようになる。   Moreover, since the refrigerant | coolant flow rate in the evaporator 20 falls, the pressure loss in the evaporator 20 is also reduced and the performance can be improved.

更に、蒸発器20での液相冷媒の量が増加するので、伝熱性能が向上し、総じて性能の向上を図ることができるようになる。   Furthermore, since the amount of the liquid-phase refrigerant in the evaporator 20 increases, the heat transfer performance is improved and the performance can be improved as a whole.

上記実施例のように第2の減圧装置を電子式膨張弁にて構成する場合に限らず、例えば、図3に示す如く第2の減圧装置を従来のキャピラリチューブにて構成しても構わない。 The second decompression device is not limited to the electronic expansion valve as in the above embodiment, and for example, the second decompression device may be constructed with a conventional capillary tube as shown in FIG. .

図3はこの場合の冷媒サイクル装置410の冷媒回路図であり、27は第2の減圧装置としてのキャピラリチューブである。図3において図1と同一の符号が付されているものは同様、若しくは、類似の効果を奏するものとする。 FIG. 3 is a refrigerant circuit diagram of the refrigerant cycle device 410 in this case, and 27 is a capillary tube as a second decompression device. In FIG. 3 , the same reference numerals as those in FIG. 1 denote the same or similar effects.

この場合にも超臨界状態の冷媒を先ず、内径の小さい第1のキャピラリチューブ14にて減圧することで、冷媒を充分に減圧することができるので、その下流側の第2のキャピラリチューブ25は内径を縮小したり、寸法を拡大すること無く、従来のキャピラリチューブを用いることができる。 Also in this case first a supercritical refrigerant, by vacuum in the first capillary tube 14 inner diameter small, it is possible to sufficiently decompressing the refrigerant, a second capillary tube 25 on the downstream side of A conventional capillary tube can be used without reducing the inner diameter or enlarging the dimensions.

尚、上記各実施例では一つの蒸発器20にて冷媒を蒸発させるものとしたが、複数台の蒸発器を並設して、各蒸発器にそれぞれ冷媒を流し、蒸発させるものとしても良い。この場合、例えば、図4のように配管16Aの途中部に分岐配管16Bを接続し、当該分岐配管16Bにキャピラリチューブ28と、蒸発器21を設ける。また、蒸発器21から出た分岐配管21Aは蒸発器20の出口側に接続された冷媒導入管20Aの途中部に接続するものとする。更に、蒸発器21の出口側の分岐配管21Aには、冷媒導入管20A側を順方向とする逆止弁24を設け、同様に冷媒導入管20Aには圧縮機10側を順方向とする逆止弁22を設置する。そして、分岐配管16Bの接続位置に三方弁19を設けて、当該三方弁19により、中間圧力レシーバ16にて気相冷媒と分離された液相冷媒をキャピラリチューブ27に流すか、キャピラリチューブ28に流すか、若しくは、両方に流すかを適宜制御することで、各蒸発器20、21にて選択的に冷媒を蒸発することができるようになる。 In each of the above-described embodiments, the refrigerant is evaporated by one evaporator 20, but a plurality of evaporators may be arranged in parallel to cause the refrigerant to flow through each of the evaporators to be evaporated. In this case, for example, as shown in FIG. 4 , a branch pipe 16B is connected to the middle of the pipe 16A, and a capillary tube 28 and an evaporator 21 are provided in the branch pipe 16B. Further, it is assumed that the branch pipe 21 </ b> A exiting from the evaporator 21 is connected to the middle part of the refrigerant introduction pipe 20 </ b> A connected to the outlet side of the evaporator 20. Furthermore, the branch pipe 21A on the outlet side of the evaporator 21 is provided with a check valve 24 whose forward direction is the refrigerant introduction pipe 20A side. Similarly, the refrigerant introduction pipe 20A has a reverse direction whose forward direction is the compressor 10 side. A stop valve 22 is installed. Then, a three-way valve 19 is provided at the connection position of the branch pipe 16B, and the three-way valve 19 allows the liquid-phase refrigerant separated from the gas-phase refrigerant by the intermediate pressure receiver 16 to flow into the capillary tube 27 or to the capillary tube 28. The refrigerant can be selectively evaporated in each of the evaporators 20 and 21 by appropriately controlling whether to flow or to both.

これにより、冷媒サイクル装置510を室内を空調する空気調和機として使用する場合には、各蒸発器20、21により、2室を選択的に冷却することができるようになる。また、冷媒サイクル装置510を冷蔵庫などに適用すれば、異なる2つの被冷却空間を同時、若しくは、選択的に冷却することができるようになる。これらにより、当該冷媒サイクル装置の汎用性の向上を図ることができる。   As a result, when the refrigerant cycle device 510 is used as an air conditioner for air-conditioning the room, the two rooms can be selectively cooled by the evaporators 20 and 21. Further, when the refrigerant cycle device 510 is applied to a refrigerator or the like, two different cooling spaces can be simultaneously or selectively cooled. Thereby, the versatility of the refrigerant cycle device can be improved.

本発明の一実施例の冷媒サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerant cycle device of one example of the present invention. 図1の冷媒サイクル装置のp−h線図である。It is a ph diagram of the refrigerant cycle device of FIG. 本発明の第2実施例の冷媒サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerant cycle device of the 2nd example of the present invention. 本発明の第3実施例の冷媒サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerant cycle device of the 3rd example of the present invention.

符号の説明Explanation of symbols

10 圧縮機
11、20A 冷媒導入管
12 放熱器
12A、15A、16A、17A 冷媒配管
13 第1の減圧装置
14、25、27、28 キャピラリチューブ
15、17 電子式膨張弁
16 中間圧力レシーバ
19 三方弁
20、21 蒸発器
22、24、42 逆止弁
30 第1の圧縮要素
32 第2の圧縮要素
40 連通管
210、410、510 冷媒サイクル装置
DESCRIPTION OF SYMBOLS 10 Compressor 11, 20A Refrigerant introduction pipe 12 Radiator 12A, 15A, 16A, 17A Refrigerant piping 13 First decompression device 14, 25, 27, 28 Capillary tube 15, 17 Electronic expansion valve 16 Intermediate pressure receiver 19 Three-way valve 20, 21 Evaporator 22, 24, 42 Check valve 30 First compression element 32 Second compression element 40 Communication pipe
210, 410, 510 refrigerant cycle apparatus

Claims (1)

圧縮機、第1のキャピラリチューブ、第2のキャピラリチューブ、中間圧力レシーバ、膨張弁及び蒸発器を順次環状に接続して冷媒回路が構成され、二酸化炭素を冷媒として該冷媒回路の高圧側が超臨界圧力にて運転され、
前記圧縮機は、第1の圧縮要素と、該第1の圧縮要素にて圧縮された冷媒を圧縮する第2の圧縮要素とを有し、前記中間圧力レシーバ内の気相冷媒を逆止弁を介して前記圧縮機の第2の圧縮要素に吸い込ませ、前記中間圧力レシーバ内の液相冷媒を前記膨張弁にて減圧した後、前記蒸発器に導入すると共に、
前記第1のキャピラリチューブの内径を前記第2のキャピラリチューブの内径より小さく、且つ、当該内径を0.1mm以上0.4mm以下で構成することを特徴とする冷媒サイクル装置。
A compressor circuit, a first capillary tube, a second capillary tube , an intermediate pressure receiver, an expansion valve, and an evaporator are sequentially connected in an annular manner to form a refrigerant circuit. Carbon dioxide is used as a refrigerant, and the high pressure side of the refrigerant circuit is supercritical. Operated with pressure,
The compressor has a first compression element and a second compression element which compresses a refrigerant compressed by the first compression element, the check valve to the gas-phase refrigerant in the intermediate pressure receiver And sucking into the second compression element of the compressor through the pressure reduction of the liquid phase refrigerant in the intermediate pressure receiver in the expansion valve , and then introduced into the evaporator,
A refrigerant cycle device characterized in that an inner diameter of the first capillary tube is smaller than an inner diameter of the second capillary tube, and the inner diameter is 0.1 mm or more and 0.4 mm or less .
JP2004235405A 2004-08-12 2004-08-12 Refrigerant cycle equipment Expired - Fee Related JP4049769B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004235405A JP4049769B2 (en) 2004-08-12 2004-08-12 Refrigerant cycle equipment
CNA2005100785686A CN1734209A (en) 2004-08-12 2005-06-17 Refrigerant cycle apparatus
EP05017389A EP1628088A3 (en) 2004-08-12 2005-08-10 Refrigerant cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004235405A JP4049769B2 (en) 2004-08-12 2004-08-12 Refrigerant cycle equipment

Publications (2)

Publication Number Publication Date
JP2006052898A JP2006052898A (en) 2006-02-23
JP4049769B2 true JP4049769B2 (en) 2008-02-20

Family

ID=35311387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004235405A Expired - Fee Related JP4049769B2 (en) 2004-08-12 2004-08-12 Refrigerant cycle equipment

Country Status (3)

Country Link
EP (1) EP1628088A3 (en)
JP (1) JP4049769B2 (en)
CN (1) CN1734209A (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100275624A1 (en) * 2006-02-15 2010-11-04 Lg Electronics Inc. Air-Conditioning System And Controlling Method For The Same
JP2007263402A (en) * 2006-03-27 2007-10-11 Sanyo Electric Co Ltd Transient critical refrigerating cycle device
JP2008032295A (en) * 2006-07-27 2008-02-14 Fuji Electric Retail Systems Co Ltd Refrigeration apparatus
JP5332093B2 (en) * 2006-09-11 2013-11-06 ダイキン工業株式会社 Refrigeration equipment
DE102007003989A1 (en) * 2007-01-26 2008-07-31 Grasso Gmbh Refrigeration Technology CO2 refrigeration system with oil-immersed screw compressors in two-stage arrangement
JP2009014210A (en) * 2007-06-29 2009-01-22 Daikin Ind Ltd Refrigerating device
NO327832B1 (en) * 2007-06-29 2009-10-05 Sinvent As Steam circuit compression dress system with closed circuit as well as method for operating the system.
JP2008164288A (en) * 2008-03-28 2008-07-17 Sanyo Electric Co Ltd Refrigerating device
JP2008164287A (en) * 2008-03-28 2008-07-17 Sanyo Electric Co Ltd Refrigerating device
JP2010043758A (en) * 2008-08-08 2010-02-25 Fuji Electric Retail Systems Co Ltd Cooling device
WO2011014719A1 (en) * 2009-07-31 2011-02-03 Johnson Controls Technology Company Refrigerant control system and method
DE102011012644A1 (en) * 2011-02-28 2012-08-30 Gea Bock Gmbh Cooling system for cooling and freezing of foods in warehouses or supermarkets, has refrigerant circuit, which is provided for circulation of refrigerant, particularly carbon dioxide, in operating flow direction
CN102654324A (en) * 2012-05-24 2012-09-05 东华大学 Twin-stage compression heat pump system with hot gas bypass defrosting device
JP5776746B2 (en) 2013-01-29 2015-09-09 ダイキン工業株式会社 Air conditioner
FR3013268B1 (en) * 2013-11-18 2017-02-17 Valeo Systemes Thermiques HEAT CONDITIONING SYSTEM FOR A MOTOR VEHICLE AND HEATING, VENTILATION AND / OR AIR CONDITIONING SYSTEM THEREOF
DE102015215491A1 (en) * 2015-08-13 2017-02-16 BSH Hausgeräte GmbH Single-circuit refrigerating appliance
WO2019185121A1 (en) * 2018-03-27 2019-10-03 Bitzer Kühlmaschinenbau Gmbh Refrigeration system
JP2023125350A (en) * 2022-02-28 2023-09-07 三菱重工サーマルシステムズ株式会社 Constant temperature transport system, vehicle and control method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493012A (en) * 1967-09-15 1970-02-03 Webb James E Fluid flow restrictor
US4742694A (en) * 1987-04-17 1988-05-10 Nippondenso Co., Ltd. Refrigerant apparatus
JP2804527B2 (en) 1989-07-24 1998-09-30 三洋電機株式会社 Air conditioner
US4918942A (en) * 1989-10-11 1990-04-24 General Electric Company Refrigeration system with dual evaporators and suction line heating
US6385980B1 (en) * 2000-11-15 2002-05-14 Carrier Corporation High pressure regulation in economized vapor compression cycles
JP2002349979A (en) * 2001-05-31 2002-12-04 Hitachi Air Conditioning System Co Ltd Co2 gas compressing system
JP2003074999A (en) * 2001-08-31 2003-03-12 Daikin Ind Ltd Refrigerating machine
JP2004085104A (en) * 2002-08-27 2004-03-18 Sanyo Electric Co Ltd Refrigerator

Also Published As

Publication number Publication date
EP1628088A2 (en) 2006-02-22
CN1734209A (en) 2006-02-15
EP1628088A3 (en) 2006-08-30
JP2006052898A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
US7320228B2 (en) Refrigerant cycle apparatus
EP1628088A2 (en) Refrigerant cycle apparatus
US7331196B2 (en) Refrigerating apparatus and refrigerator
WO2010038762A1 (en) Refrigeration cycle device
US7464563B2 (en) Air-conditioner having a dual-refrigerant cycle
JP2002327967A (en) Ejector cycle
JP4776438B2 (en) Refrigeration cycle
JP2006275496A (en) Refrigerating device and refrigerator
JP2007162988A (en) Vapor compression refrigerating cycle
JP2007078318A (en) Refrigeration cycle device
JP2005257237A (en) Refrigeration unit
JP2006292229A (en) Co2 refrigeration cycle device and supercritical refrigeration operation method therefor
JP2005147456A (en) Air conditioner
JP2020056538A (en) Refrigeration cycle device
JP2009276046A (en) Ejector type refrigeration cycle
JP2009299911A (en) Refrigeration device
KR102367790B1 (en) Turbo chiller
JP4971877B2 (en) Refrigeration cycle
JP2007093105A (en) Freezing device and gas-liquid separator
JP2006207980A (en) Refrigerating apparatus and refrigerator
JP5895662B2 (en) Refrigeration equipment
JP4468887B2 (en) Supercooling device and air conditioner equipped with supercooling device
JP4352327B2 (en) Ejector cycle
JP2005098604A (en) Refrigerating air conditioner
WO2015075760A1 (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees