US20130174591A1 - Superheat control for a refrigerant vapor compression system - Google Patents
Superheat control for a refrigerant vapor compression system Download PDFInfo
- Publication number
- US20130174591A1 US20130174591A1 US13/822,817 US201113822817A US2013174591A1 US 20130174591 A1 US20130174591 A1 US 20130174591A1 US 201113822817 A US201113822817 A US 201113822817A US 2013174591 A1 US2013174591 A1 US 2013174591A1
- Authority
- US
- United States
- Prior art keywords
- refrigerant vapor
- vapor compression
- compression system
- expansion valve
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003507 refrigerant Substances 0.000 title claims abstract description 71
- 230000006835 compression Effects 0.000 title claims abstract description 42
- 238000007906 compression Methods 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 claims description 19
- 230000001052 transient effect Effects 0.000 claims description 16
- 230000001276 controlling effect Effects 0.000 claims description 4
- 230000002596 correlated effect Effects 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 description 15
- 238000001816 cooling Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 230000003044 adaptive effect Effects 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011555 saturated liquid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F25B41/062—
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
- F25B41/34—Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/21—Refrigerant outlet evaporator temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/17—Speeds
- F25B2700/171—Speeds of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1933—Suction pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2104—Temperatures of an indoor room or compartment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2106—Temperatures of fresh outdoor air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21151—Temperatures of a compressor or the drive means therefor at the suction side of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2117—Temperatures of an evaporator
- F25B2700/21175—Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- Exemplary embodiments pertain to the art of refrigerant vapor compression systems and, more particularly to a system for stabilizing superheat based on ambient temperature and compressor speed to provide enhanced operation.
- Superheat or an amount of heat added to a refrigerant vapor after a change in state is a measure of system performance of a refrigerant vapor compression system. More specifically, super heat is a performance indicator for how well an evaporator portion of the refrigerant vapor compression system is performing Too much superheat indicates that the evaporator portion is not receiving enough refrigerant. Conversely, too little superheat indicates that the evaporator is being flooded or over-fed with refrigerant.
- the amount of refrigerant fed to the evaporator is controlled by an expansion valve. The expansion valve is opened/closed to control refrigerant flow to the evaporator based upon steady state control limits. That is, at present, superheat values are fixed targets based on specific ambient temperatures and pre-determined operating conditions. Such control limits to not provide for enhanced performance during transient periods such as during start-up, defrost entry and exit, or compressor speed changes.
- a refrigerant vapor compression system including a compressor, an expansion valve, a compressor speed sensor operatively connected to the compressor, an ambient temperature sensor, and a controller operatively coupled to the expansion valve, compressor speed sensor and ambient temperature sensor.
- the controller includes superheat control that is configured and disposed to selectively activate the expansion valve to establish a desired superheat value based on a speed of the compressor as sensed by the compressor speed sensor and ambient temperature as sensed by the ambient temperature sensor.
- the method includes sensing ambient temperature, detecting operational speed of a compressor of the refrigerant vapor compression system, and establishing a desired evaporator superheat value based on ambient temperature and operational speed of the compressor.
- FIG. 1 is a schematic representation of a refrigerant vapor compression system shown operating in a heating mode including a superheat control in accordance with an exemplary embodiment
- FIG. 2 is a flow chart illustrating a method of controlling superheat in accordance with the exemplary embodiment.
- a refrigerant vapor compression air conditioning system in accordance with an exemplary embodiment is indicated generally at 2 .
- Refrigerant vapor compression system 2 includes a compressor 4 , an accumulator 6 , and a condenser assembly 10 .
- compressor 4 takes the form of a variable speed compressor.
- Condenser assembly 10 includes a condenser coil 12 and a condenser fan 14 .
- Condenser coil 12 and condenser fan 14 define an indoor system 16 of refrigerant vapor compression system 2 .
- Refrigerant vapor compression system 2 also includes a heating expansion valve 20 and an evaporator assembly 24 .
- evaporator assembly 24 includes an evaporator coil 27 and an evaporator fan 30 .
- Evaporator assembly 24 also includes a distributor (not shown) to divide the refrigerant flow into multiple circuits through condenser coil 12 .
- Compressor 4 , accumulator 6 , heating expansion valve 20 and evaporator assembly 24 collectively define an outdoor system 33 of refrigerant vapor compression system 2 .
- Compressor 4 , accumulator 6 , condenser assembly 10 , heating expansion valve 20 and evaporator assembly 24 are connected in a serial relationship and in refrigerant flow communication via refrigerant lines (not separately labeled).
- refrigerant for example R12, R22, R134a, R404A, R410A, R407C, R717, R744 or other compressible fluids pass through evaporator coil 27 in a heat exchange relationship with outdoor air.
- evaporator fan 30 As the outdoor air is passed over evaporator coil 27 by evaporator fan 30 .
- the refrigerant absorbs heat and is transformed into a refrigerant vapor.
- the refrigerant vapor then passes through accumulator 6 and onto compressor 4 .
- Compressor 4 pressurizes the refrigerant vapor.
- the pressurized refrigerant vapor is then passed into condenser coil 12 .
- Indoor air is passed over condenser coil 12 in a heat exchange relationship by condenser fan 14 .
- the indoor air is heated by the refrigerant vapor and is directed into living spaces (not shown). Exchanging heat with the indoor air transforms the refrigerant vapor into a pressurized liquid refrigerant.
- the pressurized liquid refrigerant passes from condenser assembly 10 to heating expansion valve 20 wherein the pressurized liquid refrigerant is transformed to a lower pressure, lower temperature liquid refrigerant, typically to a saturated liquid prior to entering evaporator assembly 24 where the process begins anew.
- the above described process refers to a heating mode of operation. It should be understood that the flow of refrigerant can be reversed to operate in a cooling mode. In such a case, the refrigerant bypasses expansion valve 20 and, instead, flows through a cooling expansion valve 35 .
- expansion valve 20 and possibly cooling expansion valve 35 is, in accordance with an exemplary embodiment, an electronic variable orifice type expansion valve (EEV).
- EEV electronic variable orifice type expansion valve
- heating electronic expansion valve 20 regulates an amount of liquid refrigerant entering evaporator assembly 24 in response to a superheat condition of the refrigerant entering compressor 4 .
- refrigerant vapor compression system 2 includes a controller 40 .
- controller 40 takes the form of a proportional-integrated-derivative (PID) controller and includes a superheat control 41 , a transient operation control 42 , a flooding control 43 , and a memory 44 . That is, instead of operating refrigerant vapor compression system 2 based on a single superheat value, the exemplary embodiment provides an adaptive superheat control that regulates liquid refrigerant passing into evaporator assembly 24 based on a wide range of ambient temperature values and compressor speeds.
- PID proportional-integrated-derivative
- controller 40 includes a memory 42 and is operatively coupled to heating expansion valve 20 , cooling expansion valve 35 and a plurality of sensors. More specifically, refrigerant vapor compression system 2 includes a temperature sensor 46 and a pressure sensor 49 compressor provided on the refrigerant line at an outlet of evaporator coil 27 . In addition, a 4 includes a compressor speed sensor 50 . At this point it should be understood that the particular type of sensors can vary. For example, compressor speed sensor 50 need not be an actual physical sensor. Speed could be sensed by reading voltage and/or current passing through motor windings of compressor 4 . In addition, it should be understood that refrigerant vapor compression system 2 may include additional temperature and pressure sensors arranged to detect superheat when in the cooling mode.
- controller 40 waits to receive a conditioning call in block 110 .
- controller 40 will receive a call for heating.
- controller 40 dictates various operating parameters in block 112 .
- controller 40 establishes compressor speed, fan operation, electronic expansion valve setting and the like based on ambient temperature and indoor demand (a desired temperature selected versus the actual indoor temperature) in the call).
- refrigerant vapor compression system 2 is monitored to determine, in block 114 , when a steady-state or stable operation is achieved. If stable operation is not achieved, controller 40 adjusts the preset parameters in block 112 .
- superheat control 41 sets a desired superheat value in block 116 .
- the desired superheat value is dependent upon ambient temperature as sensed by temperature sensor 46 and compressor speed as sensed by compressor speed sensor 50 .
- superheat control 41 refers to a look-up table stored in memory 44 .
- the look-up table includes a plurality of data points representing a range of ambient temperatures and range of compressor speeds each correlated to desired superheat values. Thus, for each ambient temperature and compressor speed combination, there is listed a desired superheat value. In the event that ambient temperature and/or compressor speed falls between data points, superheat control 41 interpolates the desired superheat value.
- expansion valve 20 is set to establish the desired superheat. Once established, controller 40 monitors the superheat through temperature sensor 46 and pressure sensor 49 . If necessary, expansion valve 20 is adjusted to maintain the desired superheat. With this arrangement, superheat control 41 establishes an adaptive superheat value that is employed to regulate liquid refrigerant passing into evaporator based on existing conditions. In this manner, superheat control 41 enhances operation of refrigerant vapor compression system 2 .
- controller 40 monitors for transient system changes in block 118 .
- Transient system changes may include sudden changes in demand, sudden system initialization, entry into or exit from a defrost mode, and/or changes in compressor speed. If a transient system change is detected, transient operation control 42 establishes an opening of expansion valve 20 based on the sensed transient system change in block 118 . If, for example, compressor 4 changes to a higher speed, transient operation control 42 sets the desired superheat value based on steady state operation at the higher speed and establishes the opening for the expansion valve 20 .
- controller 40 provides a waiting period, for example two minutes, to allow refrigerant vapor compression system 2 to return to stable operation. If after the waiting period refrigerant vapor compression system 2 is not stable or operation changes, controller 40 resets the position of expansion valve 20 . If the system returns to stable operation after the waiting period superheat is controlled as discussed above. If no transient system changes are detected, controller 40 monitors for a flooding condition in evaporator assembly 24 in block 130 .
- the partial flooding of evaporator is described as a relatively few number of evaporator circuits flooding when a majority of the evaporator circuits are still in a superheated condition. This partial flooding is detected by, for example, sensing a rapid change in superheat with a small change of position of expansion valve 20 .
- the partial flooding condition is most often caused by frost forming on the outdoor coil in heating mode. Because frosting does not form evenly across the coil, heat ultimately is absorbed into the refrigerant circuits unevenly.
- Other conditions that may cause the partial flooding condition in either cooling or heating modes include debris on the evaporator or non-uniform airflow across the evaporator.
- flooding control 43 slows down controller response to allow refrigerant vapor compression system 2 to achieve a stable operation. Flooding control 43 continues until flooding cannot be stopped by the slowed closing of expansion valve 20 in block 133 , and a defrost mode is entered or refrigerant vapor compression system 2 is deactivated in block 134 .
- heating expansion valve 20 and cooling expansion valve 35 can take on a variety of forms.
- the expansion device for the other mode may take on any variety of forms including fixed orifice valves, thermostatic expansion valves (TXV), electronic expansion valves (EEV) and/or pulse-type solenoid valves.
- the exemplary embodiments enhance operation of a refrigerant vapor compression system by establishing superheat values based on actual operating conditions. That is, instead of using a pre-programmed superheat value that is idealized for steady state conditions, the exemplary embodiment sets the superheat value based on actual operating conditions. In addition, the exemplary embodiment adjusts and refines the superheat value based on transient system changes and corrects for flooding conditions by adjusting the expansion valve independently from the desired superheat value. Adaptive control of the superheat enhances system efficiency, enhances reliability and reduces energy costs. It should further be appreciated that while described in a heating mode, the superheat control algorithm can also be employed in a cooling mode.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
- This application is a National Stage Application of PCT Application No. PCT/US11/048948 dated Aug. 24, 2011, the disclosure of which is incorporated by reference herein in its entirety.
- Exemplary embodiments pertain to the art of refrigerant vapor compression systems and, more particularly to a system for stabilizing superheat based on ambient temperature and compressor speed to provide enhanced operation.
- Superheat, or an amount of heat added to a refrigerant vapor after a change in state is a measure of system performance of a refrigerant vapor compression system. More specifically, super heat is a performance indicator for how well an evaporator portion of the refrigerant vapor compression system is performing Too much superheat indicates that the evaporator portion is not receiving enough refrigerant. Conversely, too little superheat indicates that the evaporator is being flooded or over-fed with refrigerant. The amount of refrigerant fed to the evaporator is controlled by an expansion valve. The expansion valve is opened/closed to control refrigerant flow to the evaporator based upon steady state control limits. That is, at present, superheat values are fixed targets based on specific ambient temperatures and pre-determined operating conditions. Such control limits to not provide for enhanced performance during transient periods such as during start-up, defrost entry and exit, or compressor speed changes.
- Disclosed is a refrigerant vapor compression system including a compressor, an expansion valve, a compressor speed sensor operatively connected to the compressor, an ambient temperature sensor, and a controller operatively coupled to the expansion valve, compressor speed sensor and ambient temperature sensor. The controller includes superheat control that is configured and disposed to selectively activate the expansion valve to establish a desired superheat value based on a speed of the compressor as sensed by the compressor speed sensor and ambient temperature as sensed by the ambient temperature sensor.
- Also disclosed is a method of controlling superheat in a refrigerant vapor compression system. The method includes sensing ambient temperature, detecting operational speed of a compressor of the refrigerant vapor compression system, and establishing a desired evaporator superheat value based on ambient temperature and operational speed of the compressor.
- The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
-
FIG. 1 is a schematic representation of a refrigerant vapor compression system shown operating in a heating mode including a superheat control in accordance with an exemplary embodiment; and -
FIG. 2 is a flow chart illustrating a method of controlling superheat in accordance with the exemplary embodiment. - A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
- With reference to
FIG. 1 , a refrigerant vapor compression air conditioning system in accordance with an exemplary embodiment is indicated generally at 2. Refrigerantvapor compression system 2 includes acompressor 4, an accumulator 6, and acondenser assembly 10. In accordance with an aspect of the exemplary embodiment,compressor 4 takes the form of a variable speed compressor.Condenser assembly 10 includes acondenser coil 12 and acondenser fan 14. Condenser coil 12 andcondenser fan 14 define anindoor system 16 of refrigerantvapor compression system 2. Refrigerantvapor compression system 2 also includes aheating expansion valve 20 and anevaporator assembly 24. In a manner similar to that described above,evaporator assembly 24 includes anevaporator coil 27 and anevaporator fan 30.Evaporator assembly 24 also includes a distributor (not shown) to divide the refrigerant flow into multiple circuits throughcondenser coil 12.Compressor 4, accumulator 6,heating expansion valve 20 andevaporator assembly 24 collectively define anoutdoor system 33 of refrigerantvapor compression system 2.Compressor 4, accumulator 6,condenser assembly 10,heating expansion valve 20 andevaporator assembly 24 are connected in a serial relationship and in refrigerant flow communication via refrigerant lines (not separately labeled). - In operation, refrigerant, for example R12, R22, R134a, R404A, R410A, R407C, R717, R744 or other compressible fluids pass through
evaporator coil 27 in a heat exchange relationship with outdoor air. As the outdoor air is passed overevaporator coil 27 byevaporator fan 30. The refrigerant absorbs heat and is transformed into a refrigerant vapor. The refrigerant vapor then passes through accumulator 6 and ontocompressor 4.Compressor 4 pressurizes the refrigerant vapor. The pressurized refrigerant vapor is then passed intocondenser coil 12. Indoor air is passed overcondenser coil 12 in a heat exchange relationship bycondenser fan 14. The indoor air is heated by the refrigerant vapor and is directed into living spaces (not shown). Exchanging heat with the indoor air transforms the refrigerant vapor into a pressurized liquid refrigerant. The pressurized liquid refrigerant passes fromcondenser assembly 10 toheating expansion valve 20 wherein the pressurized liquid refrigerant is transformed to a lower pressure, lower temperature liquid refrigerant, typically to a saturated liquid prior to enteringevaporator assembly 24 where the process begins anew. The above described process refers to a heating mode of operation. It should be understood that the flow of refrigerant can be reversed to operate in a cooling mode. In such a case, the refrigerant bypassesexpansion valve 20 and, instead, flows through acooling expansion valve 35. - At this point it should be appreciated that
expansion valve 20 and possiblycooling expansion valve 35 is, in accordance with an exemplary embodiment, an electronic variable orifice type expansion valve (EEV). In the heating mode, heatingelectronic expansion valve 20 regulates an amount of liquid refrigerant enteringevaporator assembly 24 in response to a superheat condition of the refrigerant enteringcompressor 4. In order to ensure a proper regulation of liquid refrigerant enteringevaporator assembly 24 for all temperature and all speeds ofcompressor 4, refrigerantvapor compression system 2 includes acontroller 40. In accordance with one aspect of the exemplary embodiment,controller 40 takes the form of a proportional-integrated-derivative (PID) controller and includes asuperheat control 41, atransient operation control 42, aflooding control 43, and amemory 44. That is, instead of operating refrigerantvapor compression system 2 based on a single superheat value, the exemplary embodiment provides an adaptive superheat control that regulates liquid refrigerant passing intoevaporator assembly 24 based on a wide range of ambient temperature values and compressor speeds. - In accordance with the exemplary embodiment,
controller 40 includes amemory 42 and is operatively coupled toheating expansion valve 20,cooling expansion valve 35 and a plurality of sensors. More specifically, refrigerantvapor compression system 2 includes atemperature sensor 46 and apressure sensor 49 compressor provided on the refrigerant line at an outlet ofevaporator coil 27. In addition, a 4 includes acompressor speed sensor 50. At this point it should be understood that the particular type of sensors can vary. For example,compressor speed sensor 50 need not be an actual physical sensor. Speed could be sensed by reading voltage and/or current passing through motor windings ofcompressor 4. In addition, it should be understood that refrigerantvapor compression system 2 may include additional temperature and pressure sensors arranged to detect superheat when in the cooling mode. - Reference will now be made to
FIG. 2 in describing asuperheat control algorithm 100 of controlling superheat in refrigerantvapor compression system 2. Initially, controller 40 waits to receive a conditioning call inblock 110. For purposes of the foregoing discussion,controller 40 will receive a call for heating. Once the conditioning call is received inblock 110,controller 40 dictates various operating parameters inblock 112. For example,controller 40 establishes compressor speed, fan operation, electronic expansion valve setting and the like based on ambient temperature and indoor demand (a desired temperature selected versus the actual indoor temperature) in the call). At this point, refrigerantvapor compression system 2 is monitored to determine, inblock 114, when a steady-state or stable operation is achieved. If stable operation is not achieved,controller 40 adjusts the preset parameters inblock 112. - Once refrigerant
vapor compression system 2 is stable,superheat control 41 sets a desired superheat value inblock 116. The desired superheat value is dependent upon ambient temperature as sensed bytemperature sensor 46 and compressor speed as sensed bycompressor speed sensor 50. In accordance with one aspect of the exemplary embodiment,superheat control 41 refers to a look-up table stored inmemory 44. The look-up table includes a plurality of data points representing a range of ambient temperatures and range of compressor speeds each correlated to desired superheat values. Thus, for each ambient temperature and compressor speed combination, there is listed a desired superheat value. In the event that ambient temperature and/or compressor speed falls between data points,superheat control 41 interpolates the desired superheat value. Once the desired superheat value is chosen,expansion valve 20 is set to establish the desired superheat. Once established,controller 40 monitors the superheat throughtemperature sensor 46 andpressure sensor 49. If necessary,expansion valve 20 is adjusted to maintain the desired superheat. With this arrangement,superheat control 41 establishes an adaptive superheat value that is employed to regulate liquid refrigerant passing into evaporator based on existing conditions. In this manner,superheat control 41 enhances operation of refrigerantvapor compression system 2. - After the desired superheat is established in
block 116,controller 40 monitors for transient system changes inblock 118. Transient system changes may include sudden changes in demand, sudden system initialization, entry into or exit from a defrost mode, and/or changes in compressor speed. If a transient system change is detected,transient operation control 42 establishes an opening ofexpansion valve 20 based on the sensed transient system change inblock 118. If, for example,compressor 4 changes to a higher speed,transient operation control 42 sets the desired superheat value based on steady state operation at the higher speed and establishes the opening for theexpansion valve 20. Once the a post transient position is set forexpansion valve 20,controller 40 provides a waiting period, for example two minutes, to allow refrigerantvapor compression system 2 to return to stable operation. If after the waiting period refrigerantvapor compression system 2 is not stable or operation changes,controller 40 resets the position ofexpansion valve 20. If the system returns to stable operation after the waiting period superheat is controlled as discussed above. If no transient system changes are detected,controller 40 monitors for a flooding condition inevaporator assembly 24 inblock 130. - The partial flooding of evaporator is described as a relatively few number of evaporator circuits flooding when a majority of the evaporator circuits are still in a superheated condition. This partial flooding is detected by, for example, sensing a rapid change in superheat with a small change of position of
expansion valve 20. The partial flooding condition is most often caused by frost forming on the outdoor coil in heating mode. Because frosting does not form evenly across the coil, heat ultimately is absorbed into the refrigerant circuits unevenly. Other conditions that may cause the partial flooding condition in either cooling or heating modes include debris on the evaporator or non-uniform airflow across the evaporator. Ifcontroller 40 detects partial flooding inevaporator assembly 24,flooding control 43 slows down controller response to allow refrigerantvapor compression system 2 to achieve a stable operation. Floodingcontrol 43 continues until flooding cannot be stopped by the slowed closing ofexpansion valve 20 inblock 133, and a defrost mode is entered or refrigerantvapor compression system 2 is deactivated inblock 134. - At this point it should be understood that
heating expansion valve 20 andcooling expansion valve 35 can take on a variety of forms. For example, if the superheat control algorithm is only used in one mode, i.e., heating or cooling, the expansion device for the other mode may take on any variety of forms including fixed orifice valves, thermostatic expansion valves (TXV), electronic expansion valves (EEV) and/or pulse-type solenoid valves. - It should also be appreciated that the exemplary embodiments enhance operation of a refrigerant vapor compression system by establishing superheat values based on actual operating conditions. That is, instead of using a pre-programmed superheat value that is idealized for steady state conditions, the exemplary embodiment sets the superheat value based on actual operating conditions. In addition, the exemplary embodiment adjusts and refines the superheat value based on transient system changes and corrects for flooding conditions by adjusting the expansion valve independently from the desired superheat value. Adaptive control of the superheat enhances system efficiency, enhances reliability and reduces energy costs. It should further be appreciated that while described in a heating mode, the superheat control algorithm can also be employed in a cooling mode.
- While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/822,817 US20130174591A1 (en) | 2010-09-13 | 2011-08-24 | Superheat control for a refrigerant vapor compression system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US38231010P | 2010-09-13 | 2010-09-13 | |
PCT/US2011/048948 WO2012036855A1 (en) | 2010-09-13 | 2011-08-24 | Superheat control for a refrigerant vapor compression system |
US13/822,817 US20130174591A1 (en) | 2010-09-13 | 2011-08-24 | Superheat control for a refrigerant vapor compression system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130174591A1 true US20130174591A1 (en) | 2013-07-11 |
Family
ID=44533235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/822,817 Abandoned US20130174591A1 (en) | 2010-09-13 | 2011-08-24 | Superheat control for a refrigerant vapor compression system |
Country Status (2)
Country | Link |
---|---|
US (1) | US20130174591A1 (en) |
WO (1) | WO2012036855A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130243032A1 (en) * | 2012-03-16 | 2013-09-19 | Dunan Microstaq, Inc. | Superheat Sensor |
WO2015197613A1 (en) * | 2014-06-26 | 2015-12-30 | Valeo Klimasysteme Gmbh | Method for operating a battery cooler system, and battery cooler system |
EP3109573A1 (en) | 2015-06-24 | 2016-12-28 | Emerson Climate Technologies GmbH | Components cross-mapping in a refrigeration system |
US9746224B2 (en) | 2012-11-21 | 2017-08-29 | Liebert Corporation | Expansion valve setpoint control systems and methods |
WO2018009275A1 (en) * | 2016-07-07 | 2018-01-11 | Rocky Research | Vector drive for vapor compression systems |
US10047990B2 (en) * | 2013-03-26 | 2018-08-14 | Aaim Controls, Inc. | Refrigeration circuit control system |
US10174977B2 (en) | 2012-11-21 | 2019-01-08 | Vertiv Corporation | Apparatus and method for subcooling control based on superheat setpoint control |
US11493225B1 (en) | 2019-07-11 | 2022-11-08 | Trane International Inc. | Systems and methods for controlling superheat in a climate control system |
US11841176B2 (en) | 2021-12-01 | 2023-12-12 | Haier Us Appliance Solutions, Inc. | Method of operating an electronic expansion valve in an air conditioner unit |
US11841151B2 (en) | 2021-12-01 | 2023-12-12 | Haier Us Appliance Solutions, Inc. | Method of operating an electronic expansion valve in an air conditioner unit |
US12013161B2 (en) | 2021-12-01 | 2024-06-18 | Haier Us Appliance Solutions, Inc. | Method of operating an electronic expansion valve in an air conditioner unit |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022212047A1 (en) | 2022-11-14 | 2024-05-16 | Robert Bosch Gesellschaft mit beschränkter Haftung | Method for operating a combined heat and power engine, control or regulating device and combined heat and power engine |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2282385A (en) * | 1939-07-14 | 1942-05-12 | Carrier Corp | Refrigeration control |
US3715894A (en) * | 1971-09-16 | 1973-02-13 | Gen Motors Corp | Air conditioning bypass control |
US4420947A (en) * | 1981-07-10 | 1983-12-20 | System Homes Company, Ltd. | Heat pump air conditioning system |
US4651535A (en) * | 1984-08-08 | 1987-03-24 | Alsenz Richard H | Pulse controlled solenoid valve |
US4697431A (en) * | 1984-08-08 | 1987-10-06 | Alsenz Richard H | Refrigeration system having periodic flush cycles |
US4807445A (en) * | 1986-11-25 | 1989-02-28 | Nippondenso Co., Ltd. | Refrigeration system |
JPS6457054A (en) * | 1987-08-28 | 1989-03-03 | Nippon Denso Co | Controller for refrigeration cycle |
US5035119A (en) * | 1984-08-08 | 1991-07-30 | Alsenz Richard H | Apparatus for monitoring solenoid expansion valve flow rates |
JPH08200843A (en) * | 1995-01-27 | 1996-08-06 | Toshiba Corp | Superheat controlling apparatus for refrigeration cycle |
JPH10160273A (en) * | 1996-12-02 | 1998-06-19 | Hitachi Ltd | Air conditioner |
US20050150240A1 (en) * | 2002-06-04 | 2005-07-14 | Sanyo Electric Co., Ltd. | Supercritical refrigerant cycle system |
US6951116B2 (en) * | 2002-11-22 | 2005-10-04 | Lg Electronics Inc. | Air conditioner and method for controlling electronic expansion valve of air conditioner |
JP2005291553A (en) * | 2004-03-31 | 2005-10-20 | Mitsubishi Heavy Ind Ltd | Multiple air conditioner |
US20060042282A1 (en) * | 2004-08-26 | 2006-03-02 | Thermo King Corporation | Control method for operating a refrigeration system |
US20090031740A1 (en) * | 2007-08-01 | 2009-02-05 | American Standard International, Inc. | Expansion valve control system and method for air conditioning apparatus |
US20090090118A1 (en) * | 2007-10-08 | 2009-04-09 | Emerson Climate Technologies, Inc. | Variable speed compressor protection system and method |
US20100175400A1 (en) * | 2007-06-29 | 2010-07-15 | Shinichi Kasahara | Refrigeration apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3713869A1 (en) * | 1987-04-25 | 1988-11-03 | Danfoss As | CONTROL UNIT FOR THE OVERHEATING TEMPERATURE OF THE EVAPORATOR OF A REFRIGERATION OR HEAT PUMP SYSTEM |
JPH01222164A (en) * | 1988-02-29 | 1989-09-05 | Nippon Denso Co Ltd | Refrigerating cycle control device |
JPH06201198A (en) * | 1993-01-07 | 1994-07-19 | Toshiba Corp | Refrigerating cycle control device |
JP5570739B2 (en) * | 2009-02-25 | 2014-08-13 | 三菱重工業株式会社 | Multi-type air conditioner, outdoor unit thereof, and control method thereof |
-
2011
- 2011-08-24 WO PCT/US2011/048948 patent/WO2012036855A1/en active Application Filing
- 2011-08-24 US US13/822,817 patent/US20130174591A1/en not_active Abandoned
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2282385A (en) * | 1939-07-14 | 1942-05-12 | Carrier Corp | Refrigeration control |
US3715894A (en) * | 1971-09-16 | 1973-02-13 | Gen Motors Corp | Air conditioning bypass control |
US4420947A (en) * | 1981-07-10 | 1983-12-20 | System Homes Company, Ltd. | Heat pump air conditioning system |
US4651535A (en) * | 1984-08-08 | 1987-03-24 | Alsenz Richard H | Pulse controlled solenoid valve |
US4697431A (en) * | 1984-08-08 | 1987-10-06 | Alsenz Richard H | Refrigeration system having periodic flush cycles |
US5035119A (en) * | 1984-08-08 | 1991-07-30 | Alsenz Richard H | Apparatus for monitoring solenoid expansion valve flow rates |
US4807445A (en) * | 1986-11-25 | 1989-02-28 | Nippondenso Co., Ltd. | Refrigeration system |
JPS6457054A (en) * | 1987-08-28 | 1989-03-03 | Nippon Denso Co | Controller for refrigeration cycle |
JPH08200843A (en) * | 1995-01-27 | 1996-08-06 | Toshiba Corp | Superheat controlling apparatus for refrigeration cycle |
JPH10160273A (en) * | 1996-12-02 | 1998-06-19 | Hitachi Ltd | Air conditioner |
US20050150240A1 (en) * | 2002-06-04 | 2005-07-14 | Sanyo Electric Co., Ltd. | Supercritical refrigerant cycle system |
US6951116B2 (en) * | 2002-11-22 | 2005-10-04 | Lg Electronics Inc. | Air conditioner and method for controlling electronic expansion valve of air conditioner |
JP2005291553A (en) * | 2004-03-31 | 2005-10-20 | Mitsubishi Heavy Ind Ltd | Multiple air conditioner |
US20060042282A1 (en) * | 2004-08-26 | 2006-03-02 | Thermo King Corporation | Control method for operating a refrigeration system |
US20100175400A1 (en) * | 2007-06-29 | 2010-07-15 | Shinichi Kasahara | Refrigeration apparatus |
US20090031740A1 (en) * | 2007-08-01 | 2009-02-05 | American Standard International, Inc. | Expansion valve control system and method for air conditioning apparatus |
US20090090118A1 (en) * | 2007-10-08 | 2009-04-09 | Emerson Climate Technologies, Inc. | Variable speed compressor protection system and method |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9140613B2 (en) * | 2012-03-16 | 2015-09-22 | Zhejiang Dunan Hetian Metal Co., Ltd. | Superheat sensor |
US9404815B2 (en) | 2012-03-16 | 2016-08-02 | Zhejiang Dunan Hetian Metal Co., Ltd. | Superheat sensor having external temperature sensor |
US20130243032A1 (en) * | 2012-03-16 | 2013-09-19 | Dunan Microstaq, Inc. | Superheat Sensor |
US9772235B2 (en) | 2012-03-16 | 2017-09-26 | Zhejiang Dunan Hetian Metal Co., Ltd. | Method of sensing superheat |
US9746224B2 (en) | 2012-11-21 | 2017-08-29 | Liebert Corporation | Expansion valve setpoint control systems and methods |
US10174977B2 (en) | 2012-11-21 | 2019-01-08 | Vertiv Corporation | Apparatus and method for subcooling control based on superheat setpoint control |
US10047990B2 (en) * | 2013-03-26 | 2018-08-14 | Aaim Controls, Inc. | Refrigeration circuit control system |
WO2015197613A1 (en) * | 2014-06-26 | 2015-12-30 | Valeo Klimasysteme Gmbh | Method for operating a battery cooler system, and battery cooler system |
EP3109573A1 (en) | 2015-06-24 | 2016-12-28 | Emerson Climate Technologies GmbH | Components cross-mapping in a refrigeration system |
WO2018009275A1 (en) * | 2016-07-07 | 2018-01-11 | Rocky Research | Vector drive for vapor compression systems |
US10627145B2 (en) | 2016-07-07 | 2020-04-21 | Rocky Research | Vector drive for vapor compression systems |
US11639819B2 (en) | 2016-07-07 | 2023-05-02 | Rocky Research | Vector drive for vapor compression systems |
US11493225B1 (en) | 2019-07-11 | 2022-11-08 | Trane International Inc. | Systems and methods for controlling superheat in a climate control system |
US11841176B2 (en) | 2021-12-01 | 2023-12-12 | Haier Us Appliance Solutions, Inc. | Method of operating an electronic expansion valve in an air conditioner unit |
US11841151B2 (en) | 2021-12-01 | 2023-12-12 | Haier Us Appliance Solutions, Inc. | Method of operating an electronic expansion valve in an air conditioner unit |
US12013161B2 (en) | 2021-12-01 | 2024-06-18 | Haier Us Appliance Solutions, Inc. | Method of operating an electronic expansion valve in an air conditioner unit |
Also Published As
Publication number | Publication date |
---|---|
WO2012036855A1 (en) | 2012-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130174591A1 (en) | Superheat control for a refrigerant vapor compression system | |
US10443872B2 (en) | Air conditioner and method of controlling the same | |
US9250001B2 (en) | Control of an expansion valve regulating refrigerant to an evaporator of a climate control system | |
US10527330B2 (en) | Refrigeration cycle device | |
US10345021B2 (en) | Active refrigerant charge compensation for refrigeration and air conditioning systems | |
JP5100416B2 (en) | Reheat dehumidifier and air conditioner | |
CN103776131B (en) | The control method of electric expansion valve when a kind of air conditioner refrigerating | |
EP2122276B1 (en) | Free-cooling limitation control for air conditioning systems | |
US9970696B2 (en) | Defrost for transcritical vapor compression system | |
US8205465B2 (en) | Control system for an expansion valve regulating refrigerant to an evaporator of a climate control system | |
WO2018123361A1 (en) | Multi-split air conditioner control device, multi-split air conditioner, multi-split air conditioner control method, and multi-split air conditioner control program | |
EP3301380B1 (en) | Refrigeration cycle device and refrigeration cycle device control method | |
JP5308220B2 (en) | Heat pump type hot water supply / air conditioner | |
CN104457048A (en) | Air conditioner refrigerating system and control method | |
JP2005076933A (en) | Refrigeration cycle system | |
CN108800417B (en) | Defrosting control method and system for outdoor unit of air conditioner | |
JP2017133763A (en) | Air conditioner | |
US9050360B1 (en) | Apparatus for crankcase pressure regulation using only ambient air or coolant temperature | |
JP2010181052A (en) | Heat pump device | |
KR101589807B1 (en) | Heat pump cooling system | |
KR102500807B1 (en) | Air conditioner and a method for controlling the same | |
US10443901B2 (en) | Indoor unit of air conditioner | |
EP3222943A1 (en) | System and method to maintain evaporator superheat during pumped refrigerant economizer operation | |
US10816251B2 (en) | Heat pump | |
JP6766239B2 (en) | Refrigeration cycle equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CARRIER CORPORATION, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAS, SATHISH RAFEY;ADEPETU, ADEYEMI A.;SCHUSTER, DON A.;AND OTHERS;REEL/FRAME:029984/0713 Effective date: 20110816 |
|
STCV | Information on status: appeal procedure |
Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STCV | Information on status: appeal procedure |
Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS |
|
STCV | Information on status: appeal procedure |
Free format text: BOARD OF APPEALS DECISION RENDERED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |