WO2012036855A1 - Superheat control for a refrigerant vapor compression system - Google Patents

Superheat control for a refrigerant vapor compression system Download PDF

Info

Publication number
WO2012036855A1
WO2012036855A1 PCT/US2011/048948 US2011048948W WO2012036855A1 WO 2012036855 A1 WO2012036855 A1 WO 2012036855A1 US 2011048948 W US2011048948 W US 2011048948W WO 2012036855 A1 WO2012036855 A1 WO 2012036855A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant vapor
vapor compression
compression system
expansion valve
compressor
Prior art date
Application number
PCT/US2011/048948
Other languages
French (fr)
Inventor
Sathish R. Das
Adeyemi A. Adepetu
Don A. Schuster
Rajendra K. Shah
Original Assignee
Carrier Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corporation filed Critical Carrier Corporation
Priority to US13/822,817 priority Critical patent/US20130174591A1/en
Publication of WO2012036855A1 publication Critical patent/WO2012036855A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/171Speeds of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • Exemplary embodiments pertain to the art of refrigerant vapor compression systems and, more particularly to a system for stabilizing superheat based on ambient temperature and compressor speed to provide enhanced operation.
  • Superheat or an amount of heat added to a refrigerant vapor after a change in state is a measure of system performance of a refrigerant vapor compression system. More specifically, super heat is a performance indicator for how well an evaporator portion of the refrigerant vapor compression system is performing. Too much superheat indicates that the evaporator portion is not receiving enough refrigerant. Conversely, too little superheat indicates that the evaporator is being flooded or over-fed with refrigerant.
  • the amount of refrigerant fed to the evaporator is controlled by an expansion valve. The expansion valve is opened/closed to control refrigerant flow to the evaporator based upon steady state control limits. That is, at present, superheat values are fixed targets based on specific ambient temperatures and pre-determined operating conditions. Such control limits to not provide for enhanced performance during transient periods such as during start-up, defrost entry and exit, or compressor speed changes.
  • a refrigerant vapor compression system including a compressor, an expansion valve, a compressor speed sensor operatively connected to the compressor, an ambient temperature sensor, and a controller operatively coupled to the expansion valve, compressor speed sensor and ambient temperature sensor.
  • the controller includes superheat control that is configured and disposed to selectively activate the expansion valve to establish a desired superheat value based on a speed of the compressor as sensed by the compressor speed sensor and ambient temperature as sensed by the ambient temperature sensor.
  • a method of controlling superheat in a refrigerant vapor compression system includes sensing ambient temperature, detecting operational speed of a compressor of the refrigerant vapor compression system, and establishing a desired evaporator superheat value based on ambient temperature and operational speed of the compressor.
  • FIG. 1 is a schematic representation of a refrigerant vapor compression system shown operating in a heating mode including a superheat control in accordance with an exemplary embodiment
  • FIG. 2 is a flow chart illustrating a method of controlling superheat in accordance with the exemplary embodiment.
  • a refrigerant vapor compression air conditioning system in accordance with an exemplary embodiment is indicated generally at 2.
  • Refrigerant vapor compression system 2 includes a compressor 4, an accumulator 6, and a condenser assembly 10.
  • compressor 4 takes the form of a variable speed compressor.
  • Condenser assembly 10 includes a condenser coil 12 and a condenser fan 14.
  • Condenser coil 12 and condenser fan 14 define an indoor system 16 of refrigerant vapor compression system 2.
  • Refrigerant vapor compression system 2 also includes a heating expansion valve 20 and an evaporator assembly 24.
  • evaporator assembly 24 includes an evaporator coil 27 and an evaporator fan 30. Evaporator assembly 24 also includes a distributor (not shown) to divide the refrigerant flow into multiple circuits through condenser coil 12.
  • Compressor 4, accumulator 6, heating expansion valve 20 and evaporator assembly 24 collectively define an outdoor system 33 of refrigerant vapor compression system 2.
  • Compressor 4, accumulator 6, condenser assembly 10, heating expansion valve 20 and evaporator assembly 24 are connected in a serial relationship and in refrigerant flow communication via refrigerant lines (not separately labeled).
  • refrigerant for example R12, R22, R134a, R404A, R410A, R407C, R717, R744 or other compressible fluids pass through evaporator coil 27 in a heat exchange relationship with outdoor air.
  • evaporator fan 30 As the outdoor air is passed over evaporator coil 27 by evaporator fan 30.
  • the refrigerant absorbs heat and is transformed into a refrigerant vapor.
  • the refrigerant vapor then passes through accumulator 6 and onto compressor 4.
  • Compressor 4 pressurizes the refrigerant vapor.
  • the pressurized refrigerant vapor is then passed into condenser coil 12.
  • Indoor air is passed over condenser coil 12 in a heat exchange relationship by condenser fan 14.
  • the indoor air is heated by the refrigerant vapor and is directed into living spaces (not shown). Exchanging heat with the indoor air transforms the refrigerant vapor into a pressurized liquid refrigerant.
  • the pressurized liquid refrigerant passes from condenser assembly 10 to heating expansion valve 20 wherein the pressurized liquid refrigerant is transformed to a lower pressure, lower temperature liquid refrigerant, typically to a saturated liquid prior to entering evaporator assembly 24 where the process begins anew.
  • the above described process refers to a heating mode of operation. It should be understood that the flow of refrigerant can be reversed to operate in a cooling mode. In such a case, the refrigerant bypasses expansion valve 20 and, instead, flows through a cooling expansion valve 35.
  • expansion valve 20 and possibly cooling expansion valve 35 is, in accordance with an exemplary embodiment, an electronic variable orifice type expansion valve (EEV).
  • EEV electronic variable orifice type expansion valve
  • heating electronic expansion valve 20 regulates an amount of liquid refrigerant entering evaporator assembly 24 in response to a superheat condition of the refrigerant entering compressor 4.
  • refrigerant vapor compression system 2 includes a controller 40.
  • controller 40 takes the form of a proportional-integrated-derivative (PID) controller and includes a superheat control 41, a transient operation control 42, a flooding control 43, and a memory 44. That is, instead of operating refrigerant vapor compression system 2 based on a single superheat value, the exemplary embodiment provides an adaptive superheat control that regulates liquid refrigerant passing into evaporator assembly 24 based on a wide range of ambient temperature values and compressor speeds.
  • PID proportional-integrated-derivative
  • controller 40 includes a memory 42 and is operatively coupled to heating expansion valve 20, cooling expansion valve 35 and a plurality of sensors. More specifically, refrigerant vapor compression system 2 includes a temperature sensor 46 and a pressure sensor 49 compressor provided on the refrigerant line at an outlet of evaporator coil 27. In addition, a 4 includes a compressor speed sensor 50. At this point it should be understood that the particular type of sensors can vary. For example, compressor speed sensor 50 need not be an actual physical sensor. Speed could be sensed by reading voltage and/or current passing through motor windings of compressor 4. In addition, it should be understood that refrigerant vapor compression system 2 may include additional temperature and pressure sensors arranged to detect superheat when in the cooling mode.
  • controller 40 waits to receive a conditioning call in block 110.
  • controller 40 will receive a call for heating.
  • controller 40 dictates various operating parameters in block 112. For example, controller 40 establishes compressor speed, fan operation, electronic expansion valve setting and the like based on ambient temperature and indoor demand (a desired temperature selected versus the actual indoor temperature) in the call).
  • refrigerant vapor compression system 2 is monitored to determine, in block 114, when a steady- state or stable operation is achieved. If stable operation is not achieved, controller 40 adjusts the preset parameters in block 112.
  • superheat control 41 sets a desired superheat value in block 116.
  • the desired superheat value is dependent upon ambient temperature as sensed by temperature sensor 46 and compressor speed as sensed by compressor speed sensor 50.
  • superheat control 41 refers to a look-up table stored in memory 44.
  • the look-up table includes a plurality of data points representing a range of ambient temperatures and range of compressor speeds each correlated to desired superheat values. Thus, for each ambient temperature and compressor speed combination, there is listed a desired superheat value. In the event that ambient temperature and/or compressor speed falls between data points, superheat control 41 interpolates the desired superheat value.
  • expansion valve 20 is set to establish the desired superheat. Once established, controller 40 monitors the superheat through temperature sensor 46 and pressure sensor 49. If necessary, expansion valve 20 is adjusted to maintain the desired superheat. With this arrangement, superheat control 41 establishes an adaptive superheat value that is employed to regulate liquid refrigerant passing into evaporator based on existing conditions. In this manner, superheat control 41 enhances operation of refrigerant vapor compression system 2.
  • controller 40 monitors for transient system changes in block 118.
  • Transient system changes may include sudden changes in demand, sudden system initialization, entry into or exit from a defrost mode, and/or changes in compressor speed. If a transient system change is detected, transient operation control 42 establishes an opening of expansion valve 20 based on the sensed transient system change in block 118. If, for example, compressor 4 changes to a higher speed, transient operation control 42 sets the desired superheat value based on steady state operation at the higher speed and establishes the opening for the expansion valve 20.
  • controller 40 provides a waiting period, for example two minutes, to allow refrigerant vapor compression system 2 to return to stable operation. If after the waiting period refrigerant vapor compression system 2 is not stable or operation changes, controller 40 resets the position of expansion valve 20. If the system returns to stable operation after the waiting period superheat is controlled as discussed above. If no transient system changes are detected, controller 40 monitors for a flooding condition in evaporator assembly 24 in block 130.
  • the partial flooding of evaporator is described as a relatively few number of evaporator circuits flooding when a majority of the evaporator circuits are still in a superheated condition.
  • This partial flooding is detected by, for example, sensing a rapid change in superheat with a small change of position of expansion valve 20.
  • the partial flooding condition is most often caused by frost forming on the outdoor coil in heating mode. Because frosting does not form evenly across the coil, heat ultimately is absorbed into the refrigerant circuits unevenly.
  • Other conditions that may cause the partial flooding condition in either cooling or heating modes include debris on the evaporator or non-uniform airflow across the evaporator.
  • flooding control 43 slows down controller response to allow refrigerant vapor compression system 2 to achieve a stable operation. Flooding control 43 continues until flooding cannot be stopped by the slowed closing of expansion valve 20 in block 133, and a defrost mode is entered or refrigerant vapor compression system 2 is deactivated in block 134.
  • heating expansion valve 20 and cooling expansion valve 35 can take on a variety of forms.
  • the expansion device for the other mode may take on any variety of forms including fixed orifice valves, thermostatic expansion valves (TXV), electronic expansion valves (EEV) and/or pulse-type solenoid valves.
  • the exemplary embodiments enhance operation of a refrigerant vapor compression system by establishing superheat values based on actual operating conditions. That is, instead of using a pre-programmed superheat value that is idealized for steady state conditions, the exemplary embodiment sets the superheat value based on actual operating conditions. In addition, the exemplary embodiment adjusts and refines the superheat value based on transient system changes and corrects for flooding conditions by adjusting the expansion valve independently from the desired superheat value. Adaptive control of the superheat enhances system efficiency, enhances reliability and reduces energy costs. It should further be appreciated that while described in a heating mode, the superheat control algorithm can also be employed in a cooling mode.

Abstract

A refrigerant vapor compression system includes a compressor, an expansion valve, a compressor speed sensor operatively connected to the compressor, an ambient temperature sensor, and a controller operatively coupled to the expansion valve, compressor speed sensor and ambient temperature sensor. The controller including a superheat control that is configured and disposed to selectively activate the expansion valve to establish a desired superheat value based on a speed of the compressor as sensed by the compressor speed sensor and ambient temperature as sensed by the ambient temperature sensor.

Description

SUPERHEAT CONTROL FOR A REFRIGERANT VAPOR COMPRESSION SYSTEM
BACKGROUND OF THE INVENTION
[0001] Exemplary embodiments pertain to the art of refrigerant vapor compression systems and, more particularly to a system for stabilizing superheat based on ambient temperature and compressor speed to provide enhanced operation.
[0002] Superheat, or an amount of heat added to a refrigerant vapor after a change in state is a measure of system performance of a refrigerant vapor compression system. More specifically, super heat is a performance indicator for how well an evaporator portion of the refrigerant vapor compression system is performing. Too much superheat indicates that the evaporator portion is not receiving enough refrigerant. Conversely, too little superheat indicates that the evaporator is being flooded or over-fed with refrigerant. The amount of refrigerant fed to the evaporator is controlled by an expansion valve. The expansion valve is opened/closed to control refrigerant flow to the evaporator based upon steady state control limits. That is, at present, superheat values are fixed targets based on specific ambient temperatures and pre-determined operating conditions. Such control limits to not provide for enhanced performance during transient periods such as during start-up, defrost entry and exit, or compressor speed changes.
BRIEF DESCRIPTION OF THE INVENTION
[0003] Disclosed is a refrigerant vapor compression system including a compressor, an expansion valve, a compressor speed sensor operatively connected to the compressor, an ambient temperature sensor, and a controller operatively coupled to the expansion valve, compressor speed sensor and ambient temperature sensor. The controller includes superheat control that is configured and disposed to selectively activate the expansion valve to establish a desired superheat value based on a speed of the compressor as sensed by the compressor speed sensor and ambient temperature as sensed by the ambient temperature sensor.
[0004] Also disclosed is a method of controlling superheat in a refrigerant vapor compression system. The method includes sensing ambient temperature, detecting operational speed of a compressor of the refrigerant vapor compression system, and establishing a desired evaporator superheat value based on ambient temperature and operational speed of the compressor. BRIEF DESCRIPTION OF THE DRAWINGS
[0005] The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
[0006] FIG. 1 is a schematic representation of a refrigerant vapor compression system shown operating in a heating mode including a superheat control in accordance with an exemplary embodiment; and
[0007] FIG. 2 is a flow chart illustrating a method of controlling superheat in accordance with the exemplary embodiment.
DETAILED DESCRIPTION OF THE INVENTION
[0008] A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
[0009] With reference to FIG. 1, a refrigerant vapor compression air conditioning system in accordance with an exemplary embodiment is indicated generally at 2. Refrigerant vapor compression system 2 includes a compressor 4, an accumulator 6, and a condenser assembly 10. In accordance with an aspect of the exemplary embodiment, compressor 4 takes the form of a variable speed compressor. Condenser assembly 10 includes a condenser coil 12 and a condenser fan 14. Condenser coil 12 and condenser fan 14 define an indoor system 16 of refrigerant vapor compression system 2. Refrigerant vapor compression system 2 also includes a heating expansion valve 20 and an evaporator assembly 24. In a manner similar to that described above, evaporator assembly 24 includes an evaporator coil 27 and an evaporator fan 30. Evaporator assembly 24 also includes a distributor (not shown) to divide the refrigerant flow into multiple circuits through condenser coil 12. Compressor 4, accumulator 6, heating expansion valve 20 and evaporator assembly 24 collectively define an outdoor system 33 of refrigerant vapor compression system 2. Compressor 4, accumulator 6, condenser assembly 10, heating expansion valve 20 and evaporator assembly 24 are connected in a serial relationship and in refrigerant flow communication via refrigerant lines (not separately labeled).
[0010] In operation, refrigerant, for example R12, R22, R134a, R404A, R410A, R407C, R717, R744 or other compressible fluids pass through evaporator coil 27 in a heat exchange relationship with outdoor air. As the outdoor air is passed over evaporator coil 27 by evaporator fan 30. The refrigerant absorbs heat and is transformed into a refrigerant vapor. The refrigerant vapor then passes through accumulator 6 and onto compressor 4. Compressor 4 pressurizes the refrigerant vapor. The pressurized refrigerant vapor is then passed into condenser coil 12. Indoor air is passed over condenser coil 12 in a heat exchange relationship by condenser fan 14. The indoor air is heated by the refrigerant vapor and is directed into living spaces (not shown). Exchanging heat with the indoor air transforms the refrigerant vapor into a pressurized liquid refrigerant. The pressurized liquid refrigerant passes from condenser assembly 10 to heating expansion valve 20 wherein the pressurized liquid refrigerant is transformed to a lower pressure, lower temperature liquid refrigerant, typically to a saturated liquid prior to entering evaporator assembly 24 where the process begins anew. The above described process refers to a heating mode of operation. It should be understood that the flow of refrigerant can be reversed to operate in a cooling mode. In such a case, the refrigerant bypasses expansion valve 20 and, instead, flows through a cooling expansion valve 35.
[0011] At this point it should be appreciated that expansion valve 20 and possibly cooling expansion valve 35 is, in accordance with an exemplary embodiment, an electronic variable orifice type expansion valve (EEV). In the heating mode, heating electronic expansion valve 20 regulates an amount of liquid refrigerant entering evaporator assembly 24 in response to a superheat condition of the refrigerant entering compressor 4. In order to ensure a proper regulation of liquid refrigerant entering evaporator assembly 24 for all temperature and all speeds of compressor 4, refrigerant vapor compression system 2 includes a controller 40. In accordance with one aspect of the exemplary embodiment, controller 40 takes the form of a proportional-integrated-derivative (PID) controller and includes a superheat control 41, a transient operation control 42, a flooding control 43, and a memory 44. That is, instead of operating refrigerant vapor compression system 2 based on a single superheat value, the exemplary embodiment provides an adaptive superheat control that regulates liquid refrigerant passing into evaporator assembly 24 based on a wide range of ambient temperature values and compressor speeds.
[0012] In accordance with the exemplary embodiment, controller 40 includes a memory 42 and is operatively coupled to heating expansion valve 20, cooling expansion valve 35 and a plurality of sensors. More specifically, refrigerant vapor compression system 2 includes a temperature sensor 46 and a pressure sensor 49 compressor provided on the refrigerant line at an outlet of evaporator coil 27. In addition, a 4 includes a compressor speed sensor 50. At this point it should be understood that the particular type of sensors can vary. For example, compressor speed sensor 50 need not be an actual physical sensor. Speed could be sensed by reading voltage and/or current passing through motor windings of compressor 4. In addition, it should be understood that refrigerant vapor compression system 2 may include additional temperature and pressure sensors arranged to detect superheat when in the cooling mode.
[0013] Reference will now be made to FIG. 2 in describing a superheat control algorithm 100 of controlling superheat in refrigerant vapor compression system 2. Initially, controller 40 waits to receive a conditioning call in block 110. For purposes of the foregoing discussion, controller 40 will receive a call for heating. Once the conditioning call is received in block 110, controller 40 dictates various operating parameters in block 112. For example, controller 40 establishes compressor speed, fan operation, electronic expansion valve setting and the like based on ambient temperature and indoor demand (a desired temperature selected versus the actual indoor temperature) in the call). At this point, refrigerant vapor compression system 2 is monitored to determine, in block 114, when a steady- state or stable operation is achieved. If stable operation is not achieved, controller 40 adjusts the preset parameters in block 112.
[0014] Once refrigerant vapor compression system 2 is stable, superheat control 41 sets a desired superheat value in block 116. The desired superheat value is dependent upon ambient temperature as sensed by temperature sensor 46 and compressor speed as sensed by compressor speed sensor 50. In accordance with one aspect of the exemplary embodiment, superheat control 41 refers to a look-up table stored in memory 44. The look-up table includes a plurality of data points representing a range of ambient temperatures and range of compressor speeds each correlated to desired superheat values. Thus, for each ambient temperature and compressor speed combination, there is listed a desired superheat value. In the event that ambient temperature and/or compressor speed falls between data points, superheat control 41 interpolates the desired superheat value. Once the desired superheat value is chosen, expansion valve 20 is set to establish the desired superheat. Once established, controller 40 monitors the superheat through temperature sensor 46 and pressure sensor 49. If necessary, expansion valve 20 is adjusted to maintain the desired superheat. With this arrangement, superheat control 41 establishes an adaptive superheat value that is employed to regulate liquid refrigerant passing into evaporator based on existing conditions. In this manner, superheat control 41 enhances operation of refrigerant vapor compression system 2.
[0015] After the desired superheat is established in block 116, controller 40 monitors for transient system changes in block 118. Transient system changes may include sudden changes in demand, sudden system initialization, entry into or exit from a defrost mode, and/or changes in compressor speed. If a transient system change is detected, transient operation control 42 establishes an opening of expansion valve 20 based on the sensed transient system change in block 118. If, for example, compressor 4 changes to a higher speed, transient operation control 42 sets the desired superheat value based on steady state operation at the higher speed and establishes the opening for the expansion valve 20. Once the a post transient position is set for expansion valve 20, controller 40 provides a waiting period, for example two minutes, to allow refrigerant vapor compression system 2 to return to stable operation. If after the waiting period refrigerant vapor compression system 2 is not stable or operation changes, controller 40 resets the position of expansion valve 20. If the system returns to stable operation after the waiting period superheat is controlled as discussed above. If no transient system changes are detected, controller 40 monitors for a flooding condition in evaporator assembly 24 in block 130.
[0016] The partial flooding of evaporator is described as a relatively few number of evaporator circuits flooding when a majority of the evaporator circuits are still in a superheated condition. This partial flooding is detected by, for example, sensing a rapid change in superheat with a small change of position of expansion valve 20. The partial flooding condition is most often caused by frost forming on the outdoor coil in heating mode. Because frosting does not form evenly across the coil, heat ultimately is absorbed into the refrigerant circuits unevenly. Other conditions that may cause the partial flooding condition in either cooling or heating modes include debris on the evaporator or non-uniform airflow across the evaporator. If controller 40 detects partial flooding in evaporator assembly 24, flooding control 43 slows down controller response to allow refrigerant vapor compression system 2 to achieve a stable operation. Flooding control 43 continues until flooding cannot be stopped by the slowed closing of expansion valve 20 in block 133, and a defrost mode is entered or refrigerant vapor compression system 2 is deactivated in block 134.
[0017] At this point it should be understood that heating expansion valve 20 and cooling expansion valve 35 can take on a variety of forms. For example, if the superheat control algorithm is only used in one mode, i.e., heating or cooling, the expansion device for the other mode may take on any variety of forms including fixed orifice valves, thermostatic expansion valves (TXV), electronic expansion valves (EEV) and/or pulse-type solenoid valves.
[0018] It should also be appreciated that the exemplary embodiments enhance operation of a refrigerant vapor compression system by establishing superheat values based on actual operating conditions. That is, instead of using a pre-programmed superheat value that is idealized for steady state conditions, the exemplary embodiment sets the superheat value based on actual operating conditions. In addition, the exemplary embodiment adjusts and refines the superheat value based on transient system changes and corrects for flooding conditions by adjusting the expansion valve independently from the desired superheat value. Adaptive control of the superheat enhances system efficiency, enhances reliability and reduces energy costs. It should further be appreciated that while described in a heating mode, the superheat control algorithm can also be employed in a cooling mode.
[0019] While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims.

Claims

What is claimed is:
1. A refrigerant vapor compression system comprising:
a compressor;
an expansion valve;
a compressor speed sensor operatively connected to the compressor;
an ambient temperature sensor; and
a controller control operatively coupled to the expansion valve, compressor speed sensor and ambient temperature sensor, the controller including a superheat control configured and disposed to selectively activate the expansion valve to establish a desired superheat value based on a speed of the compressor as sensed by the compressor speed sensor and ambient temperature as sensed by the ambient temperature sensor.
2. The refrigerant vapor compression system according to claim 1, wherein the controller includes a memory having stored therein a look-up table, the look-up table including a plurality of superheat values that are correlated to ambient temperature and compressor speed.
3. The refrigerant vapor compression system according to claim 2, wherein the expansion valve is a variable orifice expansion valve.
4. The refrigerant vapor compression system according to claim 1, wherein the controller includes a transient operation control that establishes the predicted expansion valve position to provide the desired superheat value following a transient system change.
5. The refrigerant vapor compression system according to claim 4, wherein the transient system change includes one of a compressor speed change, a system initialization, and an exit from a defrost mode.
6. The refrigerant vapor compression system according to claim 1, wherein the controller includes a flooding control that selectively operates the expansion valve based upon a sensed partial flooding condition of the evaporator.
7. The refrigerant vapor compression system according to claim 6, wherein the flooding control shifts the expansion valve toward a closed position upon detecting a partial flooding condition.
8. The refrigerant vapor compression system according to claim 1, wherein the superheat control comprises a proportional-integrated-derivative (PID) controller.
9. A method of controlling superheat in a refrigerant vapor compression system, the method comprising:
sensing ambient temperature; detecting operational speed of a compressor of the refrigerant vapor compression system; and
establishing a desired superheat value based on ambient temperature and operational speed of the compressor.
10. The method of claim 9, wherein establishing the desired superheat value comprises selectively operating an expansion valve of the refrigerant vapor compression system.
11. The method of claim 10, wherein selectively operating the expansion valve of the refrigerant vapor compression system comprises establishing a desired orifice of the expansion valve.
12. The method of claim 9, further comprising: retrieving the desired superheat value from a look-up table stored in a memory, the superheat value being correlated to compressor speed and ambient temperature in the look-up table.
13. The method of claim 12, further comprising: interpolating the desired superheat value.
14. The method of claim 9, further comprising: establishing a predicted superheat value following a transient system change.
15. The method of claim 14, wherein the predicted superheat value is established for a predetermined period of time.
16. The method of claim 14, wherein the predicted superheat value is established following one of a compressor speed change, a system initialization, and one of an entry into and an exit from a defrost mode.
17. The method of claim 14, wherein the predicted superheat value is based upon a predicted steady state operation of the refrigerant vapor compression system following the transient operating parameter change.
18. The method of claim 9, further comprising:
detecting a partial evaporator flooding condition; and
shifting an evaporator valve of the refrigerant vapor compression system toward a closed position based on the detected partial evaporator flooded condition.
19. The method of claim 18, wherein detecting a partial evaporator flooded condition comprises detecting a frosted condition on at least a portion of the evaporator.
20. The method of claim 18, further comprising: maintaining the expansion valve in the closed position until the refrigerant vapor compression system enters a defrost mode.
PCT/US2011/048948 2010-09-13 2011-08-24 Superheat control for a refrigerant vapor compression system WO2012036855A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/822,817 US20130174591A1 (en) 2010-09-13 2011-08-24 Superheat control for a refrigerant vapor compression system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US38231010P 2010-09-13 2010-09-13
US61/382,310 2010-09-13

Publications (1)

Publication Number Publication Date
WO2012036855A1 true WO2012036855A1 (en) 2012-03-22

Family

ID=44533235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/048948 WO2012036855A1 (en) 2010-09-13 2011-08-24 Superheat control for a refrigerant vapor compression system

Country Status (2)

Country Link
US (1) US20130174591A1 (en)
WO (1) WO2012036855A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9140613B2 (en) 2012-03-16 2015-09-22 Zhejiang Dunan Hetian Metal Co., Ltd. Superheat sensor
US10174977B2 (en) 2012-11-21 2019-01-08 Vertiv Corporation Apparatus and method for subcooling control based on superheat setpoint control
US9746224B2 (en) 2012-11-21 2017-08-29 Liebert Corporation Expansion valve setpoint control systems and methods
US10047990B2 (en) * 2013-03-26 2018-08-14 Aaim Controls, Inc. Refrigeration circuit control system
DE102014108999A1 (en) * 2014-06-26 2016-01-14 Valeo Klimasysteme Gmbh Method for operating a battery cooler system and battery cooler system
ES2834548T3 (en) 2015-06-24 2021-06-17 Emerson Climate Tech Gmbh Cross-mapping of components in a refrigeration system
US10627145B2 (en) 2016-07-07 2020-04-21 Rocky Research Vector drive for vapor compression systems
US11493225B1 (en) 2019-07-11 2022-11-08 Trane International Inc. Systems and methods for controlling superheat in a climate control system
US11841151B2 (en) 2021-12-01 2023-12-12 Haier Us Appliance Solutions, Inc. Method of operating an electronic expansion valve in an air conditioner unit
US11841176B2 (en) 2021-12-01 2023-12-12 Haier Us Appliance Solutions, Inc. Method of operating an electronic expansion valve in an air conditioner unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171240A2 (en) * 1984-08-08 1986-02-12 Richard H. Alsenz Closed vapor cycle refrigerator
GB2203865A (en) * 1987-04-25 1988-10-26 Danfoss As Controlling the superheat temperature of the evaporator of a refrigeration or heat-pump apparatus
JPH01222164A (en) * 1988-02-29 1989-09-05 Nippon Denso Co Ltd Refrigerating cycle control device
JPH06201198A (en) * 1993-01-07 1994-07-19 Toshiba Corp Refrigerating cycle control device
EP2175212A1 (en) * 2007-06-29 2010-04-14 Daikin Industries, Ltd. Freezing device
EP2224180A1 (en) * 2009-02-25 2010-09-01 Mitsubishi Heavy Industries, Ltd. Multi-unit air conditioner, outdoor unit thereof and method of controlling refrigerant pressure

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2282385A (en) * 1939-07-14 1942-05-12 Carrier Corp Refrigeration control
US3715894A (en) * 1971-09-16 1973-02-13 Gen Motors Corp Air conditioning bypass control
JPS588956A (en) * 1981-07-10 1983-01-19 株式会社システム・ホ−ムズ Heat pump type air conditioner
US4697431A (en) * 1984-08-08 1987-10-06 Alsenz Richard H Refrigeration system having periodic flush cycles
US5035119A (en) * 1984-08-08 1991-07-30 Alsenz Richard H Apparatus for monitoring solenoid expansion valve flow rates
JPH0754207B2 (en) * 1986-11-25 1995-06-07 日本電装株式会社 Refrigeration cycle equipment
JPS6457054A (en) * 1987-08-28 1989-03-03 Nippon Denso Co Controller for refrigeration cycle
JPH08200843A (en) * 1995-01-27 1996-08-06 Toshiba Corp Superheat controlling apparatus for refrigeration cycle
JPH10160273A (en) * 1996-12-02 1998-06-19 Hitachi Ltd Air conditioner
EP1369648A3 (en) * 2002-06-04 2004-02-04 Sanyo Electric Co., Ltd. Supercritical refrigerant cycle system
KR100471453B1 (en) * 2002-11-22 2005-03-08 엘지전자 주식회사 a heat pump system and a linear expansion valve's control method for the same
JP2005291553A (en) * 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd Multiple air conditioner
US7143594B2 (en) * 2004-08-26 2006-12-05 Thermo King Corporation Control method for operating a refrigeration system
US8151583B2 (en) * 2007-08-01 2012-04-10 Trane International Inc. Expansion valve control system and method for air conditioning apparatus
US8459053B2 (en) * 2007-10-08 2013-06-11 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171240A2 (en) * 1984-08-08 1986-02-12 Richard H. Alsenz Closed vapor cycle refrigerator
GB2203865A (en) * 1987-04-25 1988-10-26 Danfoss As Controlling the superheat temperature of the evaporator of a refrigeration or heat-pump apparatus
JPH01222164A (en) * 1988-02-29 1989-09-05 Nippon Denso Co Ltd Refrigerating cycle control device
JPH06201198A (en) * 1993-01-07 1994-07-19 Toshiba Corp Refrigerating cycle control device
EP2175212A1 (en) * 2007-06-29 2010-04-14 Daikin Industries, Ltd. Freezing device
EP2224180A1 (en) * 2009-02-25 2010-09-01 Mitsubishi Heavy Industries, Ltd. Multi-unit air conditioner, outdoor unit thereof and method of controlling refrigerant pressure

Also Published As

Publication number Publication date
US20130174591A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
US20130174591A1 (en) Superheat control for a refrigerant vapor compression system
US9250001B2 (en) Control of an expansion valve regulating refrigerant to an evaporator of a climate control system
US10527330B2 (en) Refrigeration cycle device
JP5100416B2 (en) Reheat dehumidifier and air conditioner
CN103776131B (en) The control method of electric expansion valve when a kind of air conditioner refrigerating
US10345021B2 (en) Active refrigerant charge compensation for refrigeration and air conditioning systems
AU2005277189B2 (en) Compressor loading control
EP2122276B1 (en) Free-cooling limitation control for air conditioning systems
US8205465B2 (en) Control system for an expansion valve regulating refrigerant to an evaporator of a climate control system
US9970696B2 (en) Defrost for transcritical vapor compression system
JP5308220B2 (en) Heat pump type hot water supply / air conditioner
WO2017038161A1 (en) Refrigeration cycle device and refrigeration cycle device control method
AU2002332260B2 (en) Air conditioner
CN108800417B (en) Defrosting control method and system for outdoor unit of air conditioner
EP1630497B1 (en) Cooling plant for a fluid with control of variables
US9050360B1 (en) Apparatus for crankcase pressure regulation using only ambient air or coolant temperature
US11137164B2 (en) Control systems and methods for heat pump systems
JP2010181052A (en) Heat pump device
KR102500807B1 (en) Air conditioner and a method for controlling the same
US10443901B2 (en) Indoor unit of air conditioner
EP1787071A1 (en) Refrigerant cycle with defrost termination control
KR20120085403A (en) Refrigerant circulation apparatus and method of controlling the same
JP6819186B2 (en) Refrigeration equipment
JP6766239B2 (en) Refrigeration cycle equipment
CN113465156A (en) Control method of refrigerating device and refrigerating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11749706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13822817

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11749706

Country of ref document: EP

Kind code of ref document: A1