JP3929067B2 - heat pump - Google Patents

heat pump Download PDF

Info

Publication number
JP3929067B2
JP3929067B2 JP2006546772A JP2006546772A JP3929067B2 JP 3929067 B2 JP3929067 B2 JP 3929067B2 JP 2006546772 A JP2006546772 A JP 2006546772A JP 2006546772 A JP2006546772 A JP 2006546772A JP 3929067 B2 JP3929067 B2 JP 3929067B2
Authority
JP
Japan
Prior art keywords
pressure
heat pump
control
predetermined value
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006546772A
Other languages
Japanese (ja)
Other versions
JPWO2006062190A1 (en
Inventor
雅也 本間
雄一 藥丸
朋一郎 田村
哲哉 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Application granted granted Critical
Publication of JP3929067B2 publication Critical patent/JP3929067B2/en
Publication of JPWO2006062190A1 publication Critical patent/JPWO2006062190A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

本発明は、空調機、給湯機などとして有用であるヒートポンプに関し、より詳しくは、膨張機によりエネルギーを回収する機構を備えたヒートポンプに関する。   The present invention relates to a heat pump useful as an air conditioner, a water heater, and the like, and more particularly, to a heat pump provided with a mechanism for recovering energy by an expander.

膨張弁に代えて膨張機を用いたヒートポンプでは、冷媒が膨張するエネルギーを電力または動力として回収できる。膨張機としては、冷媒を導入して膨張させるための容量可変の空間を有する容積式膨張機が用いられることが多い。膨張機によるエネルギーの回収は、冷媒として二酸化炭素を用い、高圧側が超臨界状態に達する遷臨界サイクルにおいて、特にその意義が大きい。   In a heat pump using an expander instead of the expansion valve, the energy for expanding the refrigerant can be recovered as electric power or power. As the expander, a positive displacement expander having a variable capacity space for introducing and expanding a refrigerant is often used. Energy recovery by an expander is particularly significant in a transcritical cycle in which carbon dioxide is used as a refrigerant and the high pressure side reaches a supercritical state.

膨張機は、その構造上、所定の方向に沿って冷媒が通過しないとエネルギーを回収できない。しかし、空調機として用いるヒートポンプでは、室内に設置した熱交換器を、暖房運転時には放熱器として、冷房運転時には蒸発器として、使用する必要があるため、基本的に、冷房運転時と暖房運転時とにおいて冷媒を反対に流す必要がある。   Due to its structure, the expander cannot recover energy unless the refrigerant passes along a predetermined direction. However, in a heat pump used as an air conditioner, it is necessary to use a heat exchanger installed indoors as a radiator during heating operation and as an evaporator during cooling operation. It is necessary to flow the refrigerant in reverse.

特開2001−66006号は、冷房運転時および暖房運転時の双方において膨張機によるエネルギー回収が可能なヒートポンプを開示している。このヒートポンプは、四方弁の切り換えにより、冷房、暖房のいずれの運転時においても、冷媒が膨張機を同一方向に流れるように設計されている。また、このヒートポンプでは、膨張機で回収したエネルギーをそのまま圧縮機の運転に費やすために、膨張機と圧縮機とが同一の回転軸に接続、即ち直結されている。   Japanese Patent Application Laid-Open No. 2001-66006 discloses a heat pump capable of recovering energy by an expander during both cooling operation and heating operation. This heat pump is designed so that the refrigerant flows through the expander in the same direction during both cooling and heating operations by switching the four-way valve. In this heat pump, in order to spend the energy recovered by the expander as it is for the operation of the compressor, the expander and the compressor are connected to the same rotating shaft, that is, directly connected.

膨張機と圧縮機とが直結されたヒートポンプでは、膨張機と圧縮機とが同じ回転速度で作動するため、膨張機と圧縮機との押しのけ容積比を運転条件に応じて変化させることができない。即ち、この種のヒートポンプは密度比一定の制約を有する。このため、膨張機と圧縮機とが直結されたヒートポンプは、エネルギーの回収効率には優れているが、運転条件に応じた円滑な運転が困難であった。特開2003−121018号は、この困難を緩和するヒートポンプを開示している。   In a heat pump in which an expander and a compressor are directly connected, since the expander and the compressor operate at the same rotational speed, the displacement volume ratio between the expander and the compressor cannot be changed according to operating conditions. That is, this type of heat pump has a constant density ratio. For this reason, the heat pump in which the expander and the compressor are directly connected is excellent in energy recovery efficiency, but it is difficult to smoothly operate according to the operating conditions. JP2003-121018 discloses a heat pump that alleviates this difficulty.

図14に示すように、特開2003−121018号は、特開2001−66006号と同様、管体111に2つの四方弁151,153を配置し、四方弁151,153の切り換えにより、冷房、暖房のいずれの運転時においても、冷媒が膨張機103および圧縮機101を同一方向に流れるように設計されたヒートポンプを開示している(同公報図4参照)。このヒートポンプを用いた空調機では、暖房時には、四方弁151,153内において実線で示された経路が選択され、室内熱交換器152が放熱器として機能し、室外熱交換器154が蒸発器として機能する。この空調機では、冷房時には、四方弁151,153内において破線で示された経路が選択され、室内熱交換器152が蒸発器として機能し、室外熱交換器154が放熱器として機能する。このヒートポンプでは、膨張機103および圧縮機101が直結して1つの回転軸を共有し、この回転軸がモータ105により駆動される。   As shown in FIG. 14, Japanese Patent Laid-Open No. 2003-121018, like Japanese Patent Laid-Open No. 2001-66006, arranges two four-way valves 151, 153 in the tube body 111, and switching the four-way valves 151, 153, A heat pump is disclosed in which the refrigerant is designed to flow through the expander 103 and the compressor 101 in the same direction during any heating operation (see FIG. 4). In the air conditioner using this heat pump, during heating, a path indicated by a solid line is selected in the four-way valves 151 and 153, the indoor heat exchanger 152 functions as a radiator, and the outdoor heat exchanger 154 serves as an evaporator. Function. In this air conditioner, during cooling, a path indicated by a broken line is selected in the four-way valves 151, 153, the indoor heat exchanger 152 functions as an evaporator, and the outdoor heat exchanger 154 functions as a radiator. In this heat pump, the expander 103 and the compressor 101 are directly connected to share one rotating shaft, and the rotating shaft is driven by the motor 105.

特開2003−121018号に開示されたヒートポンプでは、膨張機103と並列に配置されたバイパス回路112に膨張弁(バイパス弁)107が配置され、さらに膨張機103と直列にも膨張弁106が配置されている。そして、運転条件に応じて、膨張弁106または膨張弁107の開度が制御される。レシーバ100は、冷媒を一時的に貯留することにより、膨張機103への冷媒の流入過多を防止する。   In the heat pump disclosed in Japanese Patent Laid-Open No. 2003-121018, an expansion valve (bypass valve) 107 is arranged in a bypass circuit 112 arranged in parallel with the expander 103, and an expansion valve 106 is also arranged in series with the expander 103. Has been. Then, the opening degree of the expansion valve 106 or the expansion valve 107 is controlled according to the operating conditions. The receiver 100 prevents the refrigerant from excessively flowing into the expander 103 by temporarily storing the refrigerant.

上述のように、膨張機と圧縮機とが直結されたヒートポンプは、エネルギーの回収という点では優れているが、膨張機と圧縮機との押しのけ容積比を運転条件に応じて変化させることができない。例えば、冷房運転時の標準的な条件を基準として膨張機が設計されていると、暖房運転時には膨張機の押しのけ容積が要求値に対して大きすぎることになる。このため、特開2003−121018号に開示されたヒートポンプでは、暖房運転時には、膨張弁107が全閉され、膨張弁106の開度が適宜制御される。他方、冷房運転時には、膨張機103の押しのけ容積が要求値よりも小さくなることがある。この場合には、膨張弁106が全開され、膨張弁107の開度が適宜制御される。   As described above, the heat pump in which the expander and the compressor are directly connected is excellent in terms of energy recovery, but the displacement volume ratio between the expander and the compressor cannot be changed according to the operating conditions. . For example, if the expander is designed on the basis of standard conditions during cooling operation, the displacement volume of the expander is too large for the required value during heating operation. For this reason, in the heat pump disclosed in Japanese Patent Laid-Open No. 2003-121018, during the heating operation, the expansion valve 107 is fully closed, and the opening degree of the expansion valve 106 is appropriately controlled. On the other hand, during the cooling operation, the displacement volume of the expander 103 may be smaller than the required value. In this case, the expansion valve 106 is fully opened, and the opening degree of the expansion valve 107 is appropriately controlled.

このように、特開2003−121018号が開示するヒートポンプは、膨張弁106,107の一方を全開または全閉した状態で他方の開度を調整することにより、密度比一定の制約を回避し、運転条件に応じた円滑なサイクル動作を可能としている。   As described above, the heat pump disclosed in Japanese Patent Laid-Open No. 2003-121018 avoids the restriction of a constant density ratio by adjusting the opening degree of the other in a state where one of the expansion valves 106 and 107 is fully opened or fully closed, Smooth cycle operation according to operating conditions is possible.

図15は、図14に示したヒートポンプにおける冷凍サイクルを示すモリエル線図であり、横軸Hはエンタルピを縦軸Pは圧力をそれぞれ示す。圧縮機101から吐出された高圧PHの状態aにある冷媒は、放熱器として機能する室内熱交換器152または室外熱交換器154において放熱して状態bに至る。冷媒は、膨張弁106で等エンタルピ膨張して状態cに至り、さらに膨張機103内で等エントロピ膨張して低圧PLの状態dに至る。冷媒は、蒸発器として機能する室外熱交換器154または室内熱交換器152において吸熱しながら、飽和蒸気線との交点(状態e)を超えて過熱蒸気状態である状態fに至った後、再び圧縮機101に流入する。このヒートポンプでは、膨張機103により、状態cと状態dとのエンタルピ差W2に相当するエネルギーが回収される。このため、このヒートポンプには、基本的に、エンタルピ差W2を状態aと状態fとのエンタルピ差W1から差し引いた値(W1−W2)に相当する動力を圧縮機101に投入すれば足りる。 FIG. 15 is a Mollier diagram showing the refrigeration cycle in the heat pump shown in FIG. 14, where the horizontal axis H represents enthalpy and the vertical axis P represents pressure. The refrigerant in the high pressure PH state a discharged from the compressor 101 radiates heat to the state b in the indoor heat exchanger 152 or the outdoor heat exchanger 154 functioning as a radiator. The refrigerant is expanded in an equal enthalpy state by the expansion valve 106 to state c, and further isentropically expanded in the expander 103 to reach a state d of low pressure PL. The refrigerant absorbs heat in the outdoor heat exchanger 154 or the indoor heat exchanger 152 functioning as an evaporator, reaches the state f that is in the superheated steam state beyond the intersection (state e) with the saturated vapor line, and then again. It flows into the compressor 101. In this heat pump, energy corresponding to the enthalpy difference W 2 between the state c and the state d is recovered by the expander 103. Therefore, in this heat pump, basically, by introducing power corresponding to the value obtained by subtracting the enthalpy difference W 2 from the enthalpy difference W 1 between the states a and state f (W 1 -W 2) to the compressor 101 It's enough.

上記のように、特開2003−121018号が開示するヒートポンプでは、膨張機103の押しのけ容積が要求値よりも小さくなると、膨張弁107が開かれて冷媒の一部がバイパス回路112に流される。しかし、バイパス回路112を流れる冷媒の流量を増やすにつれて、冷凍サイクルの高圧側圧力PHと低圧側圧力PLとの差は小さくなり、これに伴って圧縮機101に流入する冷媒の過熱(スーパーヒート)の程度(過熱度)も小さくなる。   As described above, in the heat pump disclosed in Japanese Patent Application Laid-Open No. 2003-121018, when the displacement volume of the expander 103 becomes smaller than the required value, the expansion valve 107 is opened and a part of the refrigerant flows into the bypass circuit 112. However, as the flow rate of the refrigerant flowing through the bypass circuit 112 is increased, the difference between the high-pressure side pressure PH and the low-pressure side pressure PL of the refrigeration cycle is reduced, and accordingly, the refrigerant flowing into the compressor 101 is superheated (superheat). The degree (degree of superheat) also decreases.

この変化を図15に併せて示す。膨張弁107の開度を大きくすると、冷凍サイクル(a〜f)が冷凍サイクル(a’〜f’)へと移行する。図15に示したように、この移行に伴い、高圧側圧力はPHからPH’に低下し、低圧側圧力はPLからPL’へと上昇する。そして、冷媒の過熱度の大きさを示す状態fと状態eとのエンタルピ差はSHからSH’へと減少する。   This change is also shown in FIG. When the opening degree of the expansion valve 107 is increased, the refrigeration cycle (af) shifts to the refrigeration cycle (a'-f '). As shown in FIG. 15, with this transition, the high-pressure side pressure decreases from PH to PH ′, and the low-pressure side pressure increases from PL to PL ′. Then, the enthalpy difference between the state f indicating the degree of superheat of the refrigerant and the state e decreases from SH to SH ′.

冷媒の過熱度SHが小さくなると、圧縮機101の信頼性を確保しながら安定した運転を行うことが困難となる。過熱度SHが小さいと、冷媒の一部が液体のまま圧縮機101に流入し、圧縮機101において避けるべき液圧縮が行われるおそれがあるためである。   When the superheat degree SH of the refrigerant decreases, it becomes difficult to perform a stable operation while ensuring the reliability of the compressor 101. This is because if the degree of superheat SH is small, a part of the refrigerant flows into the compressor 101 as a liquid, and liquid compression that should be avoided in the compressor 101 may occur.

また、特開2003−121018号が開示する制御では、円滑な運転の確保のために膨張弁106,107の開度が調整されており、その結果として高圧側圧力PHが変動している。しかし、冷凍サイクルの高圧側圧力PHはヒートポンプの成績係数(coefficient of performance; COP)に影響を及ぼすため、膨張弁の制御は、円滑な運転の確保のみならず、成績係数を向上させる観点からも適切に行うことが望ましい。   Further, in the control disclosed in Japanese Patent Application Laid-Open No. 2003-121018, the opening degree of the expansion valves 106 and 107 is adjusted to ensure smooth operation, and as a result, the high pressure side pressure PH varies. However, since the high pressure PH of the refrigeration cycle affects the coefficient of performance (COP) of the heat pump, the control of the expansion valve not only ensures smooth operation but also improves the coefficient of performance. It is desirable to do it properly.

なお、成績係数(COP)は、ヒートポンプに投入したエネルギーに対する、得られたエネルギーの比を示す無次元の数値である。   The coefficient of performance (COP) is a dimensionless numerical value indicating the ratio of the obtained energy to the energy input to the heat pump.

そこで、本発明は、膨張機と圧縮機とが直結されたヒートポンプにおいて、圧縮機の信頼性を確保しながら、効率が良い運転を可能とすることを目的とする。   Therefore, an object of the present invention is to enable efficient operation while ensuring the reliability of a compressor in a heat pump in which an expander and a compressor are directly connected.

本発明のヒートポンプは、圧縮機と、放熱器と、膨張機と、蒸発器と、前記圧縮機、前記放熱器、前記膨張機、および前記蒸発器をこの順に経由して冷媒が循環する循環経路、ならびに前記膨張機を経由することなく前記放熱器から前記蒸発器へと冷媒が流れるバイパス経路、を形成する管体と、前記放熱器と前記膨張機との間または前記膨張機と前記蒸発器との間の前記循環経路に配置された、開度が可変である第1絞り装置と、前記バイパス経路に配置された、開度が可変である第2絞り装置と、前記第1絞り装置の開度および前記第2絞り装置の開度を調整する制御装置と、を有する。このヒートポンプでは、前記圧縮機と前記膨張機とが、同じ回転数で回転するように直結されているThe heat pump of the present invention includes a compressor, a radiator, an expander, an evaporator, the compressor, the radiator, the expander, and a circulation path through which the refrigerant circulates through the evaporator in this order. And a tube forming a bypass path through which refrigerant flows from the radiator to the evaporator without going through the expander, and between the radiator and the expander or between the expander and the evaporator A first throttle device having a variable opening degree disposed in the circulation path between the first throttle device and a second throttle device having a variable opening degree disposed in the bypass path; And a control device for adjusting the opening and the opening of the second throttling device. In this heat pump, the compressor and the expander are directly connected so as to rotate at the same rotational speed .

さらに、本発明のヒートポンプでは、前記制御装置が、前記循環経路を循環する冷媒の高圧側圧力PHと、ヒートポンプの成績係数が最適となる値に基づいて定められた所定値PHTとの差が所定範囲PHDR内にない場合には、前記圧力PHと前記所定値PHTとの差の絶対値が小さくなるように前記第2絞り装置の開度を変更する、第1制御を実施する。そして、前記第1制御を終了した後に、前記圧縮機に流入する冷媒の過熱度SHと、予め定められた正の値である所定値SHTとの差が所定範囲SHDR内にない場合には、前記過熱度SHと前記所定値SHTとの差の絶対値が小さくなるように前記第1絞り装置の開度を変更する、第2制御を実施する。 Furthermore, in the heat pump of the present invention, the control device includes a high side pressure PH of the refrigerant circulating through the circulation path, the difference between the predetermined value PH T which is determined based on the value the coefficient of performance becomes optimum heat pump If not within the predetermined range PH DR, the absolute value of the difference between the pressure PH and the predetermined value PH T changes the opening degree of the second throttle device so as to reduce, to implement the first control. Then, after finishing the first control, and the superheat degree SH of the refrigerant flowing into the compressor, when the difference between the predetermined value SH T is not within the predetermined range SH DR is a positive predetermined value Performs a second control in which the opening degree of the first expansion device is changed so that the absolute value of the difference between the superheat degree SH and the predetermined value SH T becomes small.

本発明では、第2絞り装置を調整して、円滑なサイクル動作を確保しつつ成績係数の向上を図った場合には、引き続き第1絞り装置を調整して冷媒の過熱度を制御することとした。この制御により、圧縮機と膨張機とが直結されたヒートポンプにおいても、圧縮機の信頼性を確保しながら、運転条件に応じた円滑かつ効率的な運転を行うことができる。   In the present invention, when the second expansion device is adjusted to improve the coefficient of performance while ensuring a smooth cycle operation, the first expansion device is continuously adjusted to control the degree of superheat of the refrigerant. did. With this control, even in a heat pump in which the compressor and the expander are directly connected, smooth and efficient operation according to the operation conditions can be performed while ensuring the reliability of the compressor.

以下、図面を参照しながら、本発明の好ましい実施形態を説明する。なお、以下の説明では、同じ部材やステップには同じ符号を付し、説明の重複を避ける場合がある。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following description, the same members and steps are denoted by the same reference numerals, and duplication of description may be avoided.

図1に、本発明のヒートポンプの一形態の構成図を示す。ヒートポンプ71は、圧縮機1と、放熱器2と、膨張機3と、蒸発器4とをヒートポンプの基本的な機能を発揮するための主要な構成要素として備えている。これら主要な構成要素は、圧縮機1、放熱器2、膨張機3、および蒸発器4をこの順に経由して冷媒が循環する循環経路を形成する管体11により接続されている。管体12は、その一端が放熱器2と膨張機3との間の管体11に接続され、その他端が膨張機3と蒸発器4との間の管体11に接続されている。管体12は、膨張機3を経由することなく放熱器2から蒸発器4へと冷媒が流れるバイパス経路を形成している。   In FIG. 1, the block diagram of one form of the heat pump of this invention is shown. The heat pump 71 includes the compressor 1, the radiator 2, the expander 3, and the evaporator 4 as main components for exhibiting basic functions of the heat pump. These main components are connected by a tube 11 that forms a circulation path through which the refrigerant circulates through the compressor 1, the radiator 2, the expander 3, and the evaporator 4 in this order. One end of the tube body 12 is connected to the tube body 11 between the radiator 2 and the expander 3, and the other end is connected to the tube body 11 between the expander 3 and the evaporator 4. The tubular body 12 forms a bypass path through which the refrigerant flows from the radiator 2 to the evaporator 4 without going through the expander 3.

冷媒は、図1に矢印で示した方向に沿って循環しながら、蒸発器4で吸収した熱を放熱器2で放出する。これにより、このシステムは、蒸発器4から放熱器2へと熱を汲み上げるヒートポンプとして機能する。圧縮機1および膨張機3は、一つの回転軸(シャフト)10に接続されている。圧縮機1は、シャフト10に接続された電動機5から与えられる動力と、膨張機3により回収される動力とにより作動する。圧縮機1と膨張機3とが直結され、同じ回転数で回転するヒートポンプは、膨張機3の回転数を圧縮機1の回転数から独立して制御できないため、いわゆる密度比一定の制約を受ける。この制約を回避するため、ヒートポンプ71では、管体12が冷媒のバイパス経路を形成し、このバイパス経路に膨張弁7が配置されている。   While the refrigerant circulates in the direction indicated by the arrow in FIG. 1, the heat absorbed by the evaporator 4 is released by the radiator 2. As a result, this system functions as a heat pump that pumps heat from the evaporator 4 to the radiator 2. The compressor 1 and the expander 3 are connected to one rotating shaft (shaft) 10. The compressor 1 is operated by power supplied from the electric motor 5 connected to the shaft 10 and power recovered by the expander 3. Since the heat pump in which the compressor 1 and the expander 3 are directly connected and rotate at the same rotation speed cannot be controlled independently of the rotation speed of the compressor 1, the heat pump is subjected to a so-called constant density ratio constraint. . In order to avoid this restriction, in the heat pump 71, the pipe body 12 forms a bypass path for the refrigerant, and the expansion valve 7 is disposed in the bypass path.

ヒートポンプ71には、放熱器2と膨張機3との間に第1絞り装置である第1膨張弁6が配置され、バイパス経路に第2絞り装置である第2膨張弁7が配置されている。膨張機3との関係に着目して表現すれば、第1膨張弁6は膨張機3に直列に、第2膨張弁7は膨張機3に並列に配置されていることになる。膨張弁6,7の開度は、制御装置(コントローラ)30により制御可能である。コントローラ30により第2膨張弁7の開度が最も小さく設定されると(即ち全閉状態となると)、循環する冷媒は、バイパス経路を流れず、すべて膨張機3に流入する。   In the heat pump 71, a first expansion valve 6 that is a first expansion device is disposed between the radiator 2 and the expander 3, and a second expansion valve 7 that is a second expansion device is disposed in the bypass path. . If it expresses paying attention to the relationship with the expander 3, the first expansion valve 6 is arranged in series with the expander 3, and the second expansion valve 7 is arranged in parallel with the expander 3. The opening degree of the expansion valves 6 and 7 can be controlled by a control device (controller) 30. When the opening degree of the second expansion valve 7 is set to the minimum by the controller 30 (that is, when the second expansion valve 7 is fully closed), the circulating refrigerant does not flow through the bypass path but flows into the expander 3.

ヒートポンプ71には、蒸発器4と圧縮機1との間に、圧縮機1に流入する冷媒の温度を測定する温度センサ(第1温度検出手段)23が配置されており、蒸発器4には、蒸発器4における冷媒の温度を検出する温度センサ(第2温度検出手段)24が配置されている。圧縮機1に流入する冷媒の温度と、蒸発器において冷媒が蒸発する温度(冷媒蒸発温度)とが特定できれば、当該冷媒の過熱度SHを算出することができる。このように、ヒートポンプは、過熱度SHを特定するために、圧縮機に流入する冷媒の温度を検出する第1温度検出手段および蒸発器における冷媒の温度を検出する第2温度検出手段をさらに有していてもよい。   The heat pump 71 is provided with a temperature sensor (first temperature detecting means) 23 for measuring the temperature of the refrigerant flowing into the compressor 1 between the evaporator 4 and the compressor 1. A temperature sensor (second temperature detecting means) 24 for detecting the temperature of the refrigerant in the evaporator 4 is disposed. If the temperature of the refrigerant flowing into the compressor 1 and the temperature at which the refrigerant evaporates in the evaporator (refrigerant evaporation temperature) can be specified, the superheat degree SH of the refrigerant can be calculated. Thus, the heat pump further includes first temperature detecting means for detecting the temperature of the refrigerant flowing into the compressor and second temperature detecting means for detecting the temperature of the refrigerant in the evaporator in order to specify the degree of superheat SH. You may do it.

ヒートポンプ71には、外気温Tを測定する温度センサ25も配置されている。後述するように、外気温Tが高くなると、第2膨張弁7の開度を大きくする必要性が高まる。このように、ヒートポンプは、系外の温度を検出する第3温度検出手段をさらに有していてもよい。「系外の温度」は、具体的には、放熱器2に流入して加熱される媒体の温度、例えば外気の温度や流入する水の温度が適当である。   The heat pump 71 is also provided with a temperature sensor 25 that measures the outside air temperature T. As will be described later, when the outside air temperature T increases, the necessity of increasing the opening degree of the second expansion valve 7 increases. Thus, the heat pump may further include third temperature detection means for detecting the temperature outside the system. Specifically, the “outside system temperature” is suitably the temperature of the medium that flows into the radiator 2 and is heated, for example, the temperature of the outside air or the temperature of the flowing water.

ヒートポンプ71には、圧縮機1と放熱器2との間に、圧縮機1から吐出される冷媒の圧力Pdを測定する圧力センサ21が配置されている。圧力Pdは、冷凍サイクルの高圧側圧力PHに相当する。このように、ヒートポンプは、圧力PHを特定するために、圧縮機から吐出される冷媒の圧力を検出する圧力検出手段をさらに有していてもよい。   In the heat pump 71, a pressure sensor 21 that measures the pressure Pd of the refrigerant discharged from the compressor 1 is disposed between the compressor 1 and the radiator 2. The pressure Pd corresponds to the high-pressure side pressure PH of the refrigeration cycle. Thus, the heat pump may further include a pressure detection unit that detects the pressure of the refrigerant discharged from the compressor in order to specify the pressure PH.

冷凍サイクルの高圧側圧力PHは、圧力Pd以外の測定値から算出することもできる。例えば、外気温Tと、圧縮機1から吐出される冷媒の温度Tdとを測定し、これらの温度T,Tdから圧力PHを算出することが可能である。温度センサの設置は圧力センサの設置よりも安価に実施できる。また、圧力センサを設置すると、圧力センサの取り付け部分から冷媒が漏洩しやすくなる。このため、温度センサのみを用いて圧力PHを特定することが望ましい。   The high-pressure side pressure PH of the refrigeration cycle can also be calculated from measured values other than the pressure Pd. For example, the outside temperature T and the temperature Td of the refrigerant discharged from the compressor 1 can be measured, and the pressure PH can be calculated from these temperatures T and Td. The temperature sensor can be installed at a lower cost than the pressure sensor. Moreover, if a pressure sensor is installed, it will become easy to leak a refrigerant | coolant from the attachment part of a pressure sensor. For this reason, it is desirable to specify the pressure PH using only the temperature sensor.

この算出を実施するためのヒートポンプを図2に例示する。ヒートポンプ72には、圧縮機1と放熱器2との間に、圧力センサ21に代えて、圧縮機1から吐出される冷媒の温度Tdを測定する温度センサ22が配置されている。このように、ヒートポンプは、圧力PHを特定するために、系外の温度を検出する第3温度検出手段と、圧縮機から吐出される冷媒の温度を検出する第4温度検出手段と、をさらに有していてもよい。   A heat pump for carrying out this calculation is illustrated in FIG. In the heat pump 72, a temperature sensor 22 that measures the temperature Td of the refrigerant discharged from the compressor 1 is disposed between the compressor 1 and the radiator 2 instead of the pressure sensor 21. Thus, the heat pump further includes the third temperature detecting means for detecting the temperature outside the system and the fourth temperature detecting means for detecting the temperature of the refrigerant discharged from the compressor in order to specify the pressure PH. You may have.

圧力センサ21および温度センサ22,23,24,25はすべてコントローラ30に接続されており、これらセンサからの信号に基づいて、コントローラ30が膨張弁6,7の開度を調整する。これらセンサは、従来から知られているものを用いればよい。温度センサは例えばサーミスタであってもよい。   The pressure sensor 21 and the temperature sensors 22, 23, 24, and 25 are all connected to the controller 30, and the controller 30 adjusts the opening degree of the expansion valves 6 and 7 based on signals from these sensors. As these sensors, those conventionally known may be used. The temperature sensor may be a thermistor, for example.

以下、コントローラ30によるヒートポンプ72(図2参照)の制御について説明する。ここでは、膨張機3のシリンダ容積(正確には、圧縮機1のシリンダ容積に対する膨張機3のシリンダ容積の比)を冬のサイクル条件を基準に決定した場合についての制御を例示する。この場合、系外の雰囲気温度(外気温T)が高くなるにつれて膨張機3の押しのけ容積に対する要求値が大きくなり、外気温Tが所定温度に達すると、要求値が膨張機3の押しのけ容積を上回る。即ち、外気温Tが所定値以上になると、膨張機3に流入しようとする冷媒の体積流量がシリンダ容積よりも大きくなる。   Hereinafter, control of the heat pump 72 (see FIG. 2) by the controller 30 will be described. Here, the control when the cylinder volume of the expander 3 (more precisely, the ratio of the cylinder volume of the expander 3 to the cylinder volume of the compressor 1) is determined based on winter cycle conditions is illustrated. In this case, the required value for the displacement volume of the expander 3 increases as the ambient temperature outside the system (outside air temperature T) increases, and when the outside air temperature T reaches a predetermined temperature, the required value decreases the displacement volume of the expander 3. Exceed. That is, when the outside air temperature T becomes equal to or higher than a predetermined value, the volume flow rate of the refrigerant that flows into the expander 3 becomes larger than the cylinder volume.

圧縮機に直結された膨張機3の回転数は、圧縮機1の回転数から切り離して制御することができない。このため、上記のように要求値が過大となると、第2膨張弁7を開いて冷媒の一部をバイパス経路に流すことにより、円滑な運転を確保する必要が生じる。しかし、冷媒の一部がバイパス経路に流れると、冷凍サイクルの高圧側圧力PHが低下し、これに伴って圧縮機1に流入する冷媒の過熱度SHも減少する。過熱度SHが小さくなると、圧縮機に液体の冷媒が流入するおそれが生じ、圧縮機の信頼性を確保することができない。また、高圧側圧力PHの低下に伴って、ヒートポンプの成績係数(COP)も変化する。   The rotational speed of the expander 3 directly connected to the compressor cannot be controlled separately from the rotational speed of the compressor 1. For this reason, when the required value is excessive as described above, it is necessary to ensure smooth operation by opening the second expansion valve 7 and allowing a part of the refrigerant to flow through the bypass path. However, when a part of the refrigerant flows into the bypass path, the high-pressure side pressure PH of the refrigeration cycle decreases, and accordingly, the superheat degree SH of the refrigerant flowing into the compressor 1 also decreases. When the degree of superheat SH decreases, there is a risk that liquid refrigerant flows into the compressor, and the reliability of the compressor cannot be ensured. In addition, the coefficient of performance (COP) of the heat pump changes as the high pressure side pressure PH decreases.

図3を参照しながら以下に説明する制御では、高圧側圧力PHが適切な値に制御され、冷媒過熱度SHも制御される。   In the control described below with reference to FIG. 3, the high-pressure side pressure PH is controlled to an appropriate value, and the refrigerant superheat degree SH is also controlled.

まず、温度センサ25からの信号により外気温Tが入力される(ステップ1;S1)。次に、外気温Tと予め定められた温度Taとが対比され、外気温Tが温度Ta以上であればステップ3に移行し、外気温Tが温度Ta未満であればステップ1に戻る(ステップ2;S2)。外気温Tが温度Ta以上である場合には、閉じていた第2膨張弁7が開かれ、バイパス経路を形成する管体12に冷媒の一部が流入する(ステップ3;S3)。   First, the outside air temperature T is input by a signal from the temperature sensor 25 (step 1; S1). Next, the outside air temperature T is compared with a predetermined temperature Ta, and if the outside air temperature T is equal to or higher than the temperature Ta, the process proceeds to step 3, and if the outside air temperature T is less than the temperature Ta, the process returns to step 1 (step 2; S2). When the outside air temperature T is equal to or higher than the temperature Ta, the closed second expansion valve 7 is opened, and a part of the refrigerant flows into the tubular body 12 forming the bypass path (step 3; S3).

ステップ3では、予め定められた所定の開度にまで第2膨張弁7を開いてもよいし、温度差(T−Ta)に応じた開度にまで第2膨張弁7を開いてもよい。温度Taは、例えば、圧縮機1のシリンダ容積に対する膨張機3のシリンダ容積の比に基づいて定めればよい。   In step 3, the second expansion valve 7 may be opened to a predetermined opening degree that is determined in advance, or the second expansion valve 7 may be opened to an opening degree that corresponds to the temperature difference (T-Ta). . The temperature Ta may be determined based on, for example, the ratio of the cylinder volume of the expander 3 to the cylinder volume of the compressor 1.

ここでは、外気温Tが温度Ta未満である場合には、第2膨張弁7を全閉して冷媒の全量が膨張機3に流入するようにした。この制御は、膨張機3によるエネルギーの回収効率の向上に有利である。しかし、これに限らず、ステップ3を実施する前に冷媒の一部をバイパス経路に導入しておいてもよい。この場合、ステップ3は、「閉じていた第2膨張弁を開く」制御ではなく、「第2膨張弁の開度を大きくする」制御となる。   Here, when the outside air temperature T is lower than the temperature Ta, the second expansion valve 7 is fully closed so that the entire amount of the refrigerant flows into the expander 3. This control is advantageous for improving the energy recovery efficiency of the expander 3. However, the present invention is not limited to this, and a part of the refrigerant may be introduced into the bypass path before performing Step 3. In this case, step 3 is not “open the second expansion valve that has been closed” control but “control the degree of opening of the second expansion valve”.

引き続き、温度センサ22,25からの信号に基づき、冷凍サイクルの高圧側圧力PHが算出される(ステップ4;S4)。圧力センサ21を備えたヒートポンプ71の場合には、センサ21により求めた値をそのまま用いればよい。次に、圧力PHと予め定められた目標圧力PHTとが対比され、圧力PHが目標圧力PHTに一致しなければステップ6以降に、一致していればステップ9以降に移行する(ステップ5;S5)。 Subsequently, the high-pressure side pressure PH of the refrigeration cycle is calculated based on the signals from the temperature sensors 22 and 25 (step 4; S4). In the case of the heat pump 71 provided with the pressure sensor 21, the value obtained by the sensor 21 may be used as it is. Next, the pressure PH is compared with a predetermined target pressure PH T, and if the pressure PH does not match the target pressure PH T , the process proceeds to step 6 or later, and if it matches, the process proceeds to step 9 or later (step 5). S5).

高圧側圧力PHは、例えば、図4に示した関係図に基づいて算出できる。外気温Tおよび圧縮機から吐出される冷媒の温度(圧縮機の吐出冷媒温度)Tdが定まれば、圧縮機から吐出される冷媒の圧力(圧縮機の吐出冷媒圧力)Pdを求めることは可能である。   The high pressure side pressure PH can be calculated based on, for example, the relationship diagram shown in FIG. If the outside air temperature T and the temperature of the refrigerant discharged from the compressor (the discharge refrigerant temperature of the compressor) Td are determined, the pressure of the refrigerant discharged from the compressor (the discharge refrigerant pressure of the compressor) Pd can be obtained. It is.

目標圧力PHTは、ヒートポンプの成績係数を最適化する値に基づいて定められる。ヒートポンプの成績係数が最適となる圧力の値は、例えば、放熱器の加熱能力(給湯器では4.5kW、6.0kWなどといった値をとる)、外気温(給湯器では入水温度に相当する)などに応じて変化する。成績係数に影響を与える代表的因子は外気温である。成績係数が最適となる値を、予め実験により測定しておき、その結果に基づいて、所定の変数(例えば外気温)の関数として、目標圧力PHTを定めておけばよい。 Target pressure PH T is determined based on the value that optimizes the coefficient of performance of the heat pump. The pressure value at which the coefficient of performance of the heat pump is optimal is, for example, the heating capacity of the radiator (takes values such as 4.5 kW or 6.0 kW for a water heater), the outside temperature (corresponds to the incoming water temperature for a water heater) It changes according to the etc. A typical factor that affects the coefficient of performance is the outside temperature. The value coefficient of performance becomes optimum, measured beforehand by experiment, based on the results, as a function of predetermined variables (e.g., outside air temperature), it is sufficient to set the target pressure PH T.

目標圧力PHTは、ヒートポンプに適用される運転条件においてヒートポンプの成績係数が最適となる値(最適値)と一致する値とすることが望ましいが、最適値と厳密に一致する必要はなく、あるいは常に一致している必要はない。例えば、所定範囲の外気温ごとに1つの目標圧力PHTを設定してもよい。この場合は、外気温や入水温度の変化に応じて目標圧力PHTは段階的に変化することになる。こうして予め定められた、外気温に代表される変数と目標圧力PHTとの関係がコントローラ30に予め入力され、運転条件に応じて定まる当該変数に基づいて目標圧力PHTが定められる。 Target pressure PH T is desirably set to a value coefficient of performance of the heat pump in the operating conditions applicable to the heat pump coincides with the optimum value serving (optimum value), it is not necessary to exactly match the optimal value, or It is not always necessary to match. For example, it is possible to set one of the target pressure PH T for each outside air temperature in a predetermined range. In this case, the target pressure PH T in response to changes in ambient temperature or entering water temperature will vary stepwise. Thus predetermined relationship between the variable and the target pressure PH T represented by the outside air temperature is previously inputted to the controller 30, the target pressure PH T is determined based on the variable which is determined according to the operating conditions.

圧力PHと目標圧力PHTとが等しくない場合には、圧力PHが目標圧力PHTよりも大きいか否かが判断される(ステップ6;S6)。そして、圧力PHが目標圧力PHTよりも大きければ第2膨張弁7の開度が大きく変更され(ステップ7;S7)、圧力PHが目標圧力PHTよりも小さければ第2膨張弁7の開度が小さく変更される(ステップ8;S8)。 If the pressure PH and the target pressure PH T not equal, whether the pressure PH is larger than the target pressure PH T is determined (Step 6; S6). If the pressure PH is larger than the target pressure PH T, the opening degree of the second expansion valve 7 is greatly changed (step 7; S7). If the pressure PH is smaller than the target pressure PH T , the second expansion valve 7 is opened. The degree is changed small (step 8; S8).

ステップ7を経由すると圧力PHは低下し、ステップ8を経由すると圧力PHは上昇する。その後、ステップ4に戻って再び圧力PHが算出され、ステップ5において算出された圧力PHが目標圧力PHTと対比される。こうして、圧力PHが目標圧力PHTと一致するまで、ステップ4〜8からなるループ制御が繰り返される。 When passing through step 7, the pressure PH decreases, and when passing through step 8, the pressure PH increases. Thereafter, the calculated again pressure PH returns to Step 4, the pressure PH calculated in step 5 is compared with the target pressure PH T. Thus, until the pressure PH coincides with the target pressure PH T, it is repeated loop control comprising steps 4-8.

このループ制御では、ステップ7または8における開度の変更の程度はごく僅かにとどめるとよい。開度を一度に大きく変更すると、圧力PHが目標圧力PHT近傍に収束しにくくなるためである。 In this loop control, it is preferable that the degree of change in the opening degree in step 7 or 8 is very small. Larger changes at once the opening, because the pressure PH is less likely to converge to the vicinity of the target pressure PH T.

ステップ5において圧力PHと目標圧力PHTとの一致が確認されると、冷凍サイクルの高圧側圧力PHの制御(第1制御)は一旦終了し、冷媒の過熱度SHの制御(第2制御)が実施される。 When a match between the pressure PH and the target pressure PH T is confirmed in step 5, the control (first control) of the high side pressure PH of the refrigeration cycle is temporarily terminated, the control of the superheat degree SH of the refrigerant (the second control) Is implemented.

第2制御では、まず、過熱度SHが算出される(ステップ9;S9)。ヒートポンプ72では、温度センサ23で測定された温度に基づき、冷媒の飽和蒸気線を参照して(具体的には温度センサ24で測定された冷媒蒸発温度を参照して)、過熱度SHが算出される。次に、過熱度SHと予め定められた目標過熱度SHTとが対比され、過熱度SHが目標過熱度SHTに一致しなければステップ11以降に移行し、一致していればステップ4に戻る(ステップ10;S10)。 In the second control, first, the superheat degree SH is calculated (step 9; S9). In the heat pump 72, based on the temperature measured by the temperature sensor 23, the superheat degree SH is calculated by referring to the saturated vapor line of the refrigerant (specifically, referring to the refrigerant evaporation temperature measured by the temperature sensor 24). Is done. Then, the degree of superheat SH and a predetermined target degree of superheat SH T is compared, the degree of superheat SH is proceeds to step 11 and subsequent to be equal to the target degree of superheat SH T, in step 4 if the match Return (step 10; S10).

目標過熱度とする所定値SHTは、ヒートポンプや冷媒の種類、想定される使用条件などによって適宜定めればよいが、通常は、0℃を超え20℃以下の範囲にある値が適している。過熱度は、上記のように温度差により示すことができるが、上記温度差は、正確に言えば、過熱(スーパーヒート)された当該冷媒の温度から、当該冷媒の圧力における飽和蒸気線との交点が示す温度(当該圧力における沸点)との差である。 The predetermined value SH T as the target superheat degree may be determined as appropriate depending on the type of heat pump and refrigerant, assumed use conditions, etc., but usually a value in the range of more than 0 ° C. and not more than 20 ° C. is suitable. . The degree of superheat can be indicated by the temperature difference as described above. To be precise, the temperature difference is calculated from the temperature of the superheated refrigerant and the saturated vapor line at the pressure of the refrigerant. It is the difference from the temperature indicated by the intersection (boiling point at the pressure).

圧縮機の信頼性を確保するためには過熱度SHはある程度以上大きいことが望ましい。しかし、過熱度SHが大きすぎると圧縮機に投入すべき動力が大きくなる。これを考慮すると、所定値SHTは、5℃以上の値が好ましく、10℃以下の値がより好ましい。過熱度SHを適切な範囲に制御すると、圧縮機1の信頼性を確保し、かつ圧縮機1への動力の投入が必要以上に大きくなることを防止できる。過熱度SHの適切な制御は、圧縮機1の信頼性のみならず、ヒートポンプの成績係数の更なる向上にも資するものである。 In order to ensure the reliability of the compressor, it is desirable that the degree of superheat SH is greater than a certain level. However, if the superheat degree SH is too large, the power to be input to the compressor increases. Considering this, the predetermined value SH T is preferably a value of 5 ° C. or more, and more preferably a value of 10 ° C. or less. When the superheat degree SH is controlled within an appropriate range, the reliability of the compressor 1 can be ensured, and the power input to the compressor 1 can be prevented from becoming unnecessarily large. Appropriate control of the superheat degree SH contributes not only to the reliability of the compressor 1 but also to further improvement of the coefficient of performance of the heat pump.

過熱度SHと目標過熱度SHTとが等しくない場合には、過熱度SHが目標過熱度SHTよりも大きいか否かが判断される(ステップ11;S11)。そして、過熱度SHが目標過熱度SHTよりも大きければ第1膨張弁6の開度が大きく変更され(ステップ12;S12)、過熱度SHが目標過熱度SHTよりも小さければ第1膨張弁6の開度が小さく変更される(ステップ13;S13)。 When the degree of superheat SH and unequal and the target degree of superheat SH T is whether the degree of superheat SH is larger than the target degree of superheat SH T is determined (step 11; S11). Then, the degree of superheat SH is the opening degree of the first expansion valve 6 is larger than the target degree of superheat SH T is changed greatly (Step 12; S12), a first expansion if the degree of superheat SH is smaller than the target degree of superheat SH T The opening degree of the valve 6 is changed to be small (step 13; S13).

ステップ12を経由すると過熱度SHは低下し、ステップ13を経由すると過熱度SHは上昇する。ステップ7,8で説明した理由により、ステップ12または13における開度の変更の程度もごく僅かにとどめるとよい。ステップ12またはステップ13を経由することにより、確実に過熱度SHが目標過熱度SHTに近づくようにするためである。 If it goes through step 12, superheat degree SH will fall, and if it goes through step 13, superheat degree SH will rise. For the reasons described in steps 7 and 8, the degree of change in the opening degree in step 12 or 13 should be very slight. By way of step 12 or step 13, reliably superheat degree SH is so that closer to the target degree of superheat SH T.

ステップ12または13の実施の後、ステップ4に戻って再び圧力PHの制御が実施される。このように、図3に示した制御では、過熱度SHの制御(第2制御)が終了した後、さらに高圧側圧力PHの制御(第1制御)が実施される。   After execution of step 12 or 13, it returns to step 4 and control of pressure PH is implemented again. As described above, in the control shown in FIG. 3, after the control of the superheat degree SH (second control) is completed, the control of the high-pressure side pressure PH (first control) is further performed.

高圧側圧力PHのみを制御するのであれば、特開2003−121018号が開示するように、膨張弁の一方を全開または全閉した状態で他方の開度を調整する制御を実施すれば足りる。これに対し、図3に示した制御では、第2膨張弁7の開度を適切に調整する第1制御が終了した後、第2膨張弁7の開度をそのままの状態として(即ち、変更することなく)、第2制御において第1膨張弁6の開度の調整が行われる。   If only the high-pressure side pressure PH is to be controlled, as disclosed in Japanese Patent Application Laid-Open No. 2003-121018, it is sufficient to carry out control to adjust the opening of the other with one of the expansion valves fully opened or fully closed. In contrast, in the control shown in FIG. 3, after the first control for appropriately adjusting the opening degree of the second expansion valve 7 is completed, the opening degree of the second expansion valve 7 is left as it is (that is, changed). Without the adjustment), the opening degree of the first expansion valve 6 is adjusted in the second control.

なお、図3には示していないが、ヒートポンプ71,72においても、膨張機3に流入しようとする冷媒の体積流量が膨張機3のシリンダ容積よりも小さい温度域では、第2膨張弁7を全閉した状態を保持しつつ、第1膨張弁6の開度を調整する制御を実施してもよい。この制御は、ステップ2からステップ1に戻るときにこれらステップの間において実施することができる。   Although not shown in FIG. 3, also in the heat pumps 71 and 72, the second expansion valve 7 is set in a temperature range where the volume flow rate of the refrigerant to be flown into the expander 3 is smaller than the cylinder volume of the expander 3. You may implement control which adjusts the opening degree of the 1st expansion valve 6, hold | maintaining the state closed fully. This control can be performed between these steps when returning from step 2 to step 1.

図3に示した制御では、圧力PHについては目標圧力PHTとの一致を確認した後にその制御を終了して過熱度SHの制御に移行したが、過熱度SHについては目標過熱度SHTとの一致を確認することなくその制御を終了して圧力PHの制御に戻ることとしている。これは、冷凍サイクルの高圧側圧力PHの適切な制御をより重視した結果である。しかし、これに限らず、過熱度SHについても、目標過熱度SHTとの一致を確認した後にその制御を終了してもよい。この制御を行うためのフローチャートを図5に例示する。 In the control shown in FIG. 3, although the pressure PH is shifted to the control of the target pressure PH T ends its control after checking the agreement between to superheat SH, the superheat degree SH is the target degree of superheat SH T The control is terminated without confirming the coincidence and the control returns to the control of the pressure PH. This is a result of placing more emphasis on appropriate control of the high-pressure side pressure PH of the refrigeration cycle. However, the present invention is not limited to this, the degree of superheat SH also, may end its control after confirming the match between the target degree of superheat SH T. A flowchart for performing this control is illustrated in FIG.

図5に示した制御例では、ステップ12または13を終了した後、ステップ9に戻って制御が継続される。この場合は、第2制御も、過熱度SHが目標値SHTと一致するまで繰り返されるループ制御となる。ループ制御とする場合は、ステップ10における判断を目標値との一致するか否か、ではなく、過熱度SHと目標値SHTとの差が所定範囲SHDR内になるか否か、により実施するほうが適切なこともある。図5に示した制御のその他のステップは、図3の制御例と同様に実施される。 In the control example shown in FIG. 5, after step 12 or 13 is finished, the process returns to step 9 and the control is continued. In this case, the second control is also a loop control that is repeated until the degree of superheat SH matches the target value SH T. If the loop control, whether the determination in step 10 coincides with the target value, but not carried out whether the difference between the degree of superheat SH and the target value SH T is within a predetermined range SH DR, by It may be more appropriate to do this. Other steps of the control shown in FIG. 5 are performed in the same manner as the control example of FIG.

図5に例示した変更以外にも、圧力PHおよび過熱度SHの制御には種々の変更を加えることができる。本発明の制御は、図3,5に示した制御例に限られるわけではない。   In addition to the changes illustrated in FIG. 5, various changes can be made to control the pressure PH and the superheat degree SH. The control of the present invention is not limited to the control examples shown in FIGS.

例えば、上記では、圧力PHについて目標圧力PHTとの一致、言い換えれば、圧力PHと目標圧力PHTとの差が0であるか否かを判断対象としたが、これに代えて、圧力PHと目標圧力PHTとの差が所定範囲PHDR内にあることを判断対象としてもよい。この場合は、ステップ5に代えて、圧力PHと目標圧力PHTとの差が所定範囲PHDR内にあるか否かを判断すればよい。差が所定範囲PHDR内にあるか否かの判断は、差を直接算出して行わなくてもよく、例えば比を算出し、その比が当該比に換算された所定範囲PHDR内にあるか否かを判断することによって行っても構わない。過熱度SHの制御についても、同様である。 For example, in the above, consistent with the target pressure PH T for the pressure PH, in other words, although whether or not the difference between the pressure PH and the target pressure PH T is 0 and the determination target, instead of this, the pressure PH and it may be determined subject to the difference between the target pressure PH T is within a predetermined range PH DR. In this case, instead of step 5, the difference between the pressure PH and the target pressure PH T may be judged whether it is within a predetermined range PH DR. The difference is whether within a predetermined range PH DR determination may not be performed by calculating the difference directly, for example, to calculate the ratio, the ratio is within a predetermined range PH DR which is converted to the ratio This may be done by determining whether or not. The same applies to the control of the superheat degree SH.

所定範囲PHDR、SHDRの大きさは、ヒートポンプの用途などによって適宜設定すればよいが、ごく限られた範囲とすることが望ましい。一例を挙げると、所定範囲PHDRは、圧力PH(MPa)から目標圧力PHT(MPa)を差し引いた値により表示して、−1.2MPa以上1.2MPa以下、さらには−0.8MPa以上0.8MPa以下が好適である。所定範囲SHDRは、過熱度SH(℃)から目標過熱度SHT(℃)を差し引いた値により表示して、−(SHT)℃を超え20℃以下、さらには−(SHT)℃を超え10℃以下、となるように定めた範囲が好適であるが、上記値が負とならないように、例えば所定範囲SHDRを0℃を超える値として定めてもよい。「−(SHT)℃を超え20℃以下」とは、目標過熱度SHTが10℃の場合は、「−10℃を超え20℃以下」の範囲である。 The sizes of the predetermined ranges PH DR and SH DR may be set as appropriate depending on the use of the heat pump and the like, but are desirably limited to a very limited range. For example, the predetermined range PH DR is expressed by a value obtained by subtracting the target pressure PH T (MPa) from the pressure PH (MPa), and is −1.2 MPa or more and 1.2 MPa or less, and further −0.8 MPa or more. 0.8 MPa or less is suitable. The predetermined range SH DR is expressed by a value obtained by subtracting the target superheat degree SH T (° C.) from the superheat degree SH (° C.), and exceeds − (SH T ) ° C. and 20 ° C. or less, and further − (SH T ) ° C. exceeding 10 ° C. or less, and it is preferable range determined to be, so that the value does not become negative, for example, a predetermined range SH DR may be defined as a value exceeding 0 ° C.. “− (SH T ) ° C. over 20 ° C.” is a range of “−10 ° C. over 20 ° C.” when the target superheat degree SH T is 10 ° C.

また例えば、ステップ8の後、第2膨張弁7が全閉となっているか否かを判断するステップを追加し、この追加のステップにおいて第2膨張弁7が全閉であると判断されればステップ1に戻ることとしてもよい。追加のステップにおいて第2膨張弁7が全閉でないと判断されれば、制御は、ステップ4に戻って繰り返される。   Further, for example, after step 8, a step of determining whether or not the second expansion valve 7 is fully closed is added, and if it is determined in this additional step that the second expansion valve 7 is fully closed. It is good also as returning to step 1. If it is determined in the additional step that the second expansion valve 7 is not fully closed, the control returns to step 4 and is repeated.

また例えば、圧力PHの制御に先立って過熱度SHの制御を行うべく、ステップ3の次にステップ9を実施しても差し支えはない。この場合は、過熱度SHが制御され、引き続き圧力PHが制御され、その後再び過熱度SHが制御されることになる。ヒートポンプの用途や設計内容によっては、ステップ1〜3を実施することなくステップ4または9から制御を開始してもよい。   In addition, for example, step 9 may be performed after step 3 in order to control the superheat degree SH prior to the control of the pressure PH. In this case, the superheat degree SH is controlled, the pressure PH is continuously controlled, and then the superheat degree SH is controlled again. Depending on the use and design content of the heat pump, control may be started from step 4 or 9 without performing steps 1 to 3.

以上説明したとおり、コントローラ(制御装置)30は、冷媒の高圧側圧力PHと目標とする所定値PHTとの差が所定範囲PHDR内にない場合には、圧力PHと所定値PHTとの差の絶対値が小さくなるように(圧力PHが所定値PHTに近づくように)、第2膨張弁(第2絞り装置)7の開度を変更する圧力制御(第1制御)を実施する(S4〜S8)。 As described above, the controller (control device) 30, when the difference between the predetermined value PH T to high side pressure PH and the target refrigerant is not within the predetermined range PH DR, the pressure PH and a predetermined value PH T Pressure control (first control) is performed to change the opening of the second expansion valve (second expansion device) 7 so that the absolute value of the difference between the two becomes smaller (so that the pressure PH approaches the predetermined value PH T ). (S4 to S8).

そして、第1制御を終了した後に、圧縮機に流入する冷媒の過熱度SHと予め定められた正の値である所定値SHTとの差が所定範囲SHDR内にない場合には、過熱度SHと所定値SHTとの差の絶対値が小さくなるように(過熱度SHが所定値SHTに近づくように)、第1膨張弁(第1絞り装置)6の開度を変更する過熱度制御(第2制御)を実施する(S9〜S13)。 Then, after finishing the first control, when the difference between the predetermined value SH T is a positive predetermined value and the degree of superheat SH of the refrigerant entering the compressor is not within the predetermined range SH DR is overheated The opening degree of the first expansion valve (first expansion device) 6 is changed so that the absolute value of the difference between the degree SH and the predetermined value SH T becomes smaller (so that the superheat degree SH approaches the predetermined value SH T ). Superheat degree control (second control) is performed (S9 to S13).

第1制御においては、制御装置が、圧力PHと所定値PHTとの差が所定範囲PHDR内となるように、第2絞り装置の開度を変更することが好ましい。また、第2制御においては、制御装置が、過熱度SHと所定値SHTとの差が所定範囲SHDR内となるように、第1絞り装置の開度を変更してもよい。 In the first control, the control device, so that the difference between the pressure PH and the predetermined value PH T falls within a predetermined range PH DR, it is preferable to change the degree of opening of the second throttle device. In the second control, the control device, so that the difference between the degree of superheat SH and a predetermined value SH T falls within a predetermined range SH DR, may change the opening degree of the first throttle device.

上記の制御例のように、制御装置は、第2制御を終了した後に、圧力PHと所定値PHTとの差が所定範囲PHDR内にない場合には、第1制御をさらに実施してもよい。第2制御による圧力PHの変化を考慮して、圧力PHを再制御するためである。 As in the above control example, the control device, after finishing the second control, when the difference between the pressure PH and the predetermined value PH T is not within the predetermined range PH DR is to further implement the first control Also good. This is because the pressure PH is re-controlled in consideration of the change in the pressure PH due to the second control.

上記で例示したように、具体的な制御として、第1制御においては、圧力PHが所定値PHTよりも高く、かつ圧力PHと所定値PHTとの差が所定範囲PHDR内にない場合には、第2絞り装置の開度が大きくされ、圧力PHが所定値PHTよりも低く、かつ圧力PHと所定値PHTとの差が所定範囲PHDR内にない場合には、第2絞り装置の開度が小さくされる。 As exemplified above, a specific control, in a first control pressure PH is higher than the predetermined value PH T, and when the difference between the pressure PH and the predetermined value PH T is not within the predetermined range PH DR the degree of opening of the second throttle device is large and the pressure PH is lower than the predetermined value PH T, and the difference between the pressure PH and the predetermined value PH T not within a predetermined range PH DR is second The opening degree of the expansion device is reduced.

また、第2制御においては、過熱度SHが所定値SHTよりも高く、かつ過熱度SHと所定値SHTとの差が所定範囲SHDR内にない場合には、第1絞り装置の開度が大きくされ、過熱度SHが所定値SHTよりも低く、かつ過熱度SHと所定値SHTとの差が所定範囲SHDR内にない場合には、第1絞り装置の開度が小さくされる。 In the second control, superheat degree SH is higher than the predetermined value SH T, and when the difference between the degree of superheat SH and a predetermined value SH T is not within the predetermined range SH DR, open the first throttle device degree is large and the degree of superheat SH is lower than the predetermined value SH T, and the difference between the degree of superheat SH and a predetermined value SH T is not within the predetermined range SH DR is, the opening degree of the first throttle device is small Is done.

図3、図5に例示した制御では、圧力PHおよび過熱度SHの値をそれぞれ具体的に特定し、その値に基づいて膨張弁を調整することにより、圧力PHおよび過熱度SHを制御した。しかし、圧力PHおよび過熱度SHの制御は、圧力PHまたは過熱度SHに関連づけられる代替パラメータを用いて間接的に行うことが可能である。   In the control illustrated in FIGS. 3 and 5, the values of the pressure PH and the superheat degree SH are specifically specified, and the expansion valve is adjusted based on the values, thereby controlling the pressure PH and the superheat degree SH. However, the control of the pressure PH and the superheat degree SH can be performed indirectly using alternative parameters associated with the pressure PH or the superheat degree SH.

例えば、冷凍サイクルの高圧側圧力PHについての制御は、膨張機3に流入する冷媒の体積流量に対する圧縮機1に流入する冷媒の体積流量の比RVを測定し、この比RVと、膨張機3の容積に対する圧縮機1の容積の比RCとに基づいて行うことも可能である。比RVと比RCとの大小関係は、高圧側圧力PHに関連づけられる代替パラメータRPであり、このパラメータについて目標圧力PHTに関連づけられる制御目標RPTを設定することもできる。 For example, the control of the high-pressure side pressure PH of the refrigeration cycle is performed by measuring the ratio RV of the volume flow rate of the refrigerant flowing into the compressor 1 with respect to the volume flow rate of the refrigerant flowing into the expander 3. It is also possible to carry out based on the ratio RC of the volume of the compressor 1 to the volume of. Magnitude relationship between the ratio RV and specific RC is an alternative parameter RP associated with high side pressure PH, it is also possible to set the control target RP T associated for this parameter to the target pressure PH T.

このように、上記の制御では、制御装置が、圧力PHと所定値PHTとを直接対比することなく、圧力PHに関連づけられる所定の特性RPと、所定値PHTに関連づけられる、当該特性RPについての所定値RPTと、を対比することにより、圧力PHと所定値PHTとの差が所定範囲PHDR内にあるか否か、を判断する、こととしてもよい。 Thus, in the above control, the control device, without comparing the pressure PH and the predetermined value PH T directly, a predetermined characteristic RP associated with the pressure PH, is associated with a predetermined value PH T, the characteristic RP by comparison, the predetermined value RP T for, whether the difference between the pressure PH and the predetermined value PH T is within a predetermined range PH DR, determines, it is also possible.

図6に、上記の制御による冷凍サイクルの変化を示す。当初の冷凍サイクル(a1〜f1)は、第1制御において目標圧力PHTよりも高い高圧側圧力を低下させるべく第2膨張弁7の開度が大きく変更されると、冷凍サイクル(a2〜f2)へと移行する。この冷凍サイクルは、第2制御において相対的に大きい過熱度を確保するべく第1膨張弁6の開度が小さく変更されると冷凍サイクル(a3〜f3)へと移行する。この冷凍サイクルは、再び実施される第1制御において高圧側圧力を低下させるべく第2膨張弁7の開度が大きく変更されると冷凍サイクル(a4〜f4)へと移行する。 FIG. 6 shows changes in the refrigeration cycle by the above control. Initially the refrigeration cycle (a 1 ~f 1), when the opening degree of the second expansion valve 7 to reduce the high pressure side pressure is changed greater than the target pressure PH T in the first control, the refrigeration cycle (a 2 ~f 2) to shift to. This refrigeration cycle shifts to the refrigeration cycle (a 3 to f 3 ) when the opening of the first expansion valve 6 is changed to be small in order to ensure a relatively large degree of superheat in the second control. This refrigeration cycle shifts to the refrigeration cycle (a 4 to f 4 ) when the opening degree of the second expansion valve 7 is greatly changed in order to reduce the high-pressure side pressure in the first control performed again.

なお、図6に示したように、冷凍サイクルの高圧側圧力を超臨界状態とすると、冷凍サイクル内での高低圧差が大きくなり、膨張機3のエネルギー回収機能の寄与が大きくなる。これを実現するためには、圧縮機から吐出される冷媒が超臨界状態となるように、圧縮機が冷媒を圧縮するヒートポンプとすればよい。   As shown in FIG. 6, when the high-pressure side pressure of the refrigeration cycle is in a supercritical state, the high-low pressure difference in the refrigeration cycle increases, and the contribution of the energy recovery function of the expander 3 increases. In order to realize this, the compressor may be a heat pump that compresses the refrigerant so that the refrigerant discharged from the compressor is in a supercritical state.

本発明を適用できるヒートポンプの構成は、図1,2の例示に限られない。例えば、図1,2では、管体12が膨張機3および第1膨張弁6をバイパスするバイパス経路を形成していたが、膨張機3のみをバイパスするバイパス経路を形成するように管体11に接続されたヒートポンプ73としてもよい(図7参照)。また、第1膨張弁6が膨張機3の上流側にではなく下流側に配置されたヒートポンプ74としてもよい(図8参照)。さらに、管体12が膨張機3のみをバイパスするバイパス経路を形成し、第1膨張弁6が膨張機3の下流側に配置されたヒートポンプ75としてもよい(図9参照)。これらの構成においても、上記と同様の制御を適用することにより、高圧側圧力PHと過熱度SHとを適切に制御できる。   The configuration of the heat pump to which the present invention can be applied is not limited to the examples shown in FIGS. For example, in FIGS. 1 and 2, the tubular body 12 forms a bypass path that bypasses the expander 3 and the first expansion valve 6, but the tubular body 11 forms a bypass path that bypasses only the expander 3. It is good also as the heat pump 73 connected to (refer FIG. 7). Alternatively, the first expansion valve 6 may be a heat pump 74 disposed not on the upstream side of the expander 3 but on the downstream side (see FIG. 8). Furthermore, the pipe body 12 may form a bypass path that bypasses only the expander 3, and the first expansion valve 6 may be a heat pump 75 arranged on the downstream side of the expander 3 (see FIG. 9). Also in these configurations, the high-pressure side pressure PH and the superheat degree SH can be appropriately controlled by applying the same control as described above.

また、複数のコントローラが分担してコントローラ30の機能を担うこととしてもよい。図10に例示したヒートポンプ76では、第1コントローラ31が圧力PHおよび過熱度SHを制御するために第1膨張弁6および第2膨張弁7の開度を調整する機能を担い(S4〜S8,S10〜S13)、第2コントローラ32が温度センサ23,24からの信号を受けて過熱度SHを算出する機能を担い(S9)、第3コントローラ33が外気温Tを測定し、その結果に応じて第2膨張弁7を開く制御(S1〜S3)を担っている。   A plurality of controllers may share the functions of the controller 30. In the heat pump 76 illustrated in FIG. 10, the first controller 31 has a function of adjusting the opening degree of the first expansion valve 6 and the second expansion valve 7 in order to control the pressure PH and the superheat degree SH (S4 to S8, S10 to S13), the second controller 32 receives the signals from the temperature sensors 23 and 24 and calculates the superheat degree SH (S9), and the third controller 33 measures the outside air temperature T, and according to the result. And controls the opening of the second expansion valve 7 (S1 to S3).

また、四方弁51,53を配置したヒートポンプとしてもよい。図11に例示したヒートポンプ77は、四方弁51,53の切り替えにより、暖房運転と冷房運転とを選択できる空調機として使用できる。暖房運転時には、四方弁51,53において実線で示した経路が選択され、室内熱交換器52が放熱器、室外熱交換器54が蒸発器としてそれぞれ機能する。冷房運転時には、四方弁51,53において破線で示した経路が選択され、室外熱交換器54が放熱器、室内熱交換器52が蒸発器としてそれぞれ機能する。このヒートポンプ77においても、上記に例示したとおりの制御を適用すれば、高圧側圧力PHと過熱度SHとを適切に制御できる。   Moreover, it is good also as a heat pump which has arrange | positioned the four-way valves 51 and 53. FIG. The heat pump 77 illustrated in FIG. 11 can be used as an air conditioner that can select a heating operation and a cooling operation by switching the four-way valves 51 and 53. During the heating operation, the path indicated by the solid line is selected in the four-way valves 51 and 53, and the indoor heat exchanger 52 functions as a radiator and the outdoor heat exchanger 54 functions as an evaporator. During the cooling operation, the paths indicated by broken lines are selected in the four-way valves 51 and 53, the outdoor heat exchanger 54 functions as a radiator, and the indoor heat exchanger 52 functions as an evaporator. Also in this heat pump 77, if the control as exemplified above is applied, the high pressure side pressure PH and the superheat degree SH can be appropriately controlled.

上記に例示した制御では、圧縮機から吐出される冷媒の圧力Pd(PH)を測定し、あるいはこの圧力PHを算出するために圧縮機から吐出された冷媒の温度が測定される。これを利用し、ヒートポンプの異常時対応を行ってもよい。異常時対応は、具体的には、上記に例示した構成を有するヒートポンプにおいて、圧力PHが所定の限界圧力を超える場合、および/または圧縮機1から吐出される冷媒の温度が所定の限界温度を超える場合には、コントローラ30が異常と認識し、第1膨張弁6および/または第2膨張弁7の開度を所定の開度以上に大きく調整する対応をとることにより実施できる。ここで、所定の開度は、第1制御および第2制御で定められている制御範囲を超える大きさの開度に設定するとよい。この対応により、冷媒の圧力および温度を素早く低下させることができる。   In the control exemplified above, the pressure Pd (PH) of the refrigerant discharged from the compressor is measured, or the temperature of the refrigerant discharged from the compressor is measured in order to calculate the pressure PH. This may be used to deal with an abnormality in the heat pump. Specifically, in the case of a heat pump having the above-described configuration, the response to an abnormality is performed when the pressure PH exceeds a predetermined limit pressure and / or the temperature of the refrigerant discharged from the compressor 1 reaches a predetermined limit temperature. If it exceeds, the controller 30 recognizes that it is abnormal, and can be implemented by adjusting the opening of the first expansion valve 6 and / or the second expansion valve 7 to be larger than a predetermined opening. Here, the predetermined opening degree may be set to an opening degree that exceeds a control range determined by the first control and the second control. With this measure, the pressure and temperature of the refrigerant can be quickly reduced.

このように制御すると、運転状態の急激な変化や何らかの要因により、冷媒の高圧側圧力PHや温度が異常値に達した場合においても、その異常値を短時間で解消することが可能となる。なお、限界圧力および限界温度は、冷媒やヒートポンプの構成などによって異なるが、冷媒として二酸化炭素を用いた場合について述べると、限界圧力としては12MPa、限界温度としては115℃を例示できる。   By controlling in this way, even when the high pressure side pressure PH or temperature of the refrigerant reaches an abnormal value due to a sudden change in the operating state or some factor, the abnormal value can be eliminated in a short time. The limit pressure and limit temperature vary depending on the refrigerant and the configuration of the heat pump. However, when carbon dioxide is used as the refrigerant, the limit pressure can be exemplified as 12 MPa and the limit temperature as 115 ° C.

上記のような異常時対応を行うべく、本発明のヒートポンプは、圧力PHが所定の限界圧力を超える場合、または圧縮機から吐出される冷媒の温度が所定の限界温度を超える場合に、制御装置が、第1絞り装置および第2絞り装置から選ばれる少なくとも一方の開度を、第1制御および第2制御における開度の変更範囲を超えて大きく変更することが好ましい。   In order to cope with the above-described abnormality, the heat pump of the present invention provides a control device when the pressure PH exceeds a predetermined limit pressure or when the temperature of the refrigerant discharged from the compressor exceeds a predetermined limit temperature. However, it is preferable that at least one of the openings selected from the first throttle device and the second throttle device is largely changed beyond the opening change range in the first control and the second control.

図12および図13に、冷媒として二酸化炭素を用いて冷凍サイクルの高圧側の圧力を二酸化炭素の臨界圧力を超えるように設定した場合(図12)と、冷媒としてフロンを用いた場合(図13)とにおける、蒸発器内の冷媒と空気(被加熱媒体)との温度変化を示す。いずれの場合も冷媒は、温度T0で放熱器に流入し、空気との熱交換により空気を加熱する。二酸化炭素を冷媒とした場合の温度差ΔTは、フロンを冷媒とした場合の温度差ΔTよりも大きくなる。これは、フロンと異なり、二酸化炭素が放熱器内で相変化しないためである。二酸化炭素は、被加熱媒体を高い温度に加熱するための冷媒として適している。 12 and 13, when carbon dioxide is used as the refrigerant and the pressure on the high pressure side of the refrigeration cycle is set to exceed the critical pressure of carbon dioxide (FIG. 12), and when chlorofluorocarbon is used as the refrigerant (FIG. 13). ) Shows the temperature change between the refrigerant in the evaporator and the air (heated medium). In either case, the refrigerant flows into the radiator at the temperature T 0 and heats the air by heat exchange with the air. The temperature difference ΔT when carbon dioxide is used as the refrigerant is larger than the temperature difference ΔT when fluorocarbon is used as the refrigerant. This is because, unlike Freon, carbon dioxide does not change phase in the radiator. Carbon dioxide is suitable as a refrigerant for heating the heated medium to a high temperature.

本発明は、空調機、給湯機、食器乾燥機、生ゴミ乾燥処理機などとして有用なヒートポンプの改良を実現するものとして高い利用価値を有する。   INDUSTRIAL APPLICABILITY The present invention has a high utility value as an improvement of a heat pump useful as an air conditioner, a water heater, a tableware dryer, a garbage drying processor, and the like.

本発明のヒートポンプの構成の一例を示す図である。It is a figure which shows an example of a structure of the heat pump of this invention. 本発明のヒートポンプの構成の別の例を示す図である。It is a figure which shows another example of a structure of the heat pump of this invention. 制御装置が実施する制御の一例を示すフローチャートである。It is a flowchart which shows an example of the control which a control apparatus implements. 外気温Tと圧縮機の吐出冷媒圧力Pdとの関係を圧縮機の吐出冷媒温度Tdごとに示す図である。It is a figure which shows the relationship between the outside temperature T and the discharge refrigerant | coolant pressure Pd of a compressor for every discharge refrigerant | coolant temperature Td of a compressor. 制御装置が実施する制御の別の例を示すフローチャートである。It is a flowchart which shows another example of the control which a control apparatus implements. 制御装置が実施する制御に伴う冷凍サイクルの変化を例示するモリエル線図である。It is a Mollier diagram which illustrates the change of the refrigerating cycle accompanying control performed by a control device. 本発明のヒートポンプの構成のまた別の例を示す図である。It is a figure which shows another example of a structure of the heat pump of this invention. 本発明のヒートポンプの構成のまた別の例を示す図である。It is a figure which shows another example of a structure of the heat pump of this invention. 本発明のヒートポンプの構成のまた別の例を示す図である。It is a figure which shows another example of a structure of the heat pump of this invention. 本発明のヒートポンプの構成のまた別の例を示す図である。It is a figure which shows another example of a structure of the heat pump of this invention. 四方弁を備えた本発明のヒートポンプの構成の例を示す図である。It is a figure which shows the example of a structure of the heat pump of this invention provided with the four-way valve. 冷媒としてフロンを用いた場合の、放熱器における冷媒の位置と冷媒の温度との関係を示す図である。It is a figure which shows the relationship between the position of the refrigerant | coolant in a heat radiator, and the temperature of a refrigerant | coolant at the time of using CFC as a refrigerant | coolant. 冷媒として二酸化炭素を用いた場合の、放熱器における冷媒の位置と冷媒の温度との関係を示す図である。It is a figure which shows the relationship between the position of the refrigerant | coolant in a heat radiator, and the temperature of a refrigerant | coolant at the time of using a carbon dioxide as a refrigerant | coolant. 従来のヒートポンプの構成を示す図である。It is a figure which shows the structure of the conventional heat pump. 従来のヒートポンプにおいて実施されていた制御に伴う冷凍サイクルの変化を示すモリエル線図である。It is a Mollier diagram which shows the change of the refrigerating cycle accompanying the control implemented in the conventional heat pump.

Claims (13)

圧縮機と、放熱器と、膨張機と、蒸発器と、
前記圧縮機、前記放熱器、前記膨張機、および前記蒸発器をこの順に経由して冷媒が循環する循環経路、ならびに前記膨張機を経由することなく前記放熱器から前記蒸発器へと冷媒が流れるバイパス経路、を形成する管体と、
前記放熱器と前記膨張機との間または前記膨張機と前記蒸発器との間の前記循環経路に配置された、開度が可変である第1絞り装置と、
前記バイパス経路に配置された、開度が可変である第2絞り装置と、
前記第1絞り装置の開度および前記第2絞り装置の開度を調整する制御装置と、を有し、
前記圧縮機と前記膨張機とが、同じ回転数で回転するように直結され
前記制御装置が、
前記循環経路を循環する冷媒の高圧側圧力PHと、ヒートポンプの成績係数が最適となる値に基づいて定められる所定値PHTとの差が所定範囲PHDR内にない場合には、前記圧力PHと前記所定値PHTとの差の絶対値が小さくなるように前記第2絞り装置の開度を変更する、第1制御を実施し、
前記第1制御を終了した後に、
前記圧縮機に流入する冷媒の過熱度SHと、予め定められた正の値である所定値SHTとの差が所定範囲SHDR内にない場合には、前記過熱度SHと前記所定値SHTとの差の絶対値が小さくなるように前記第1絞り装置の開度を変更する、第2制御を実施する、
ヒートポンプ。
A compressor, a radiator, an expander, an evaporator,
The refrigerant flows from the radiator to the evaporator without passing through the compressor, the radiator, the expander, and the circulation path through which the refrigerant circulates in this order, and without passing through the expander. A tube forming a bypass path;
A first expansion device that is arranged in the circulation path between the radiator and the expander or between the expander and the evaporator;
A second expansion device arranged in the bypass path and having a variable opening;
A controller for adjusting the opening of the first throttle device and the opening of the second throttle device;
The compressor and the expander are directly connected to rotate at the same rotational speed ,
The control device is
Wherein the high-pressure side pressure PH of the refrigerant circulating through the circulation path, when the difference between the predetermined value PH T coefficient of performance of the heat pump is determined based on the values for the optimization is not within a predetermined range PH DR, the pressure PH the absolute value of the difference between the predetermined value PH T changes the opening degree of the second throttle device so as to reduce, and performing a first control and,
After finishing the first control,
And the degree of superheat SH of the refrigerant flowing into the compressor, when the difference between the predetermined value SH T is a positive predetermined value is not within a predetermined range SH DR, the said degree of superheat SH predetermined value SH Changing the opening of the first throttling device so that the absolute value of the difference from T is small, and performing a second control;
heat pump.
前記制御装置が、
前記第1制御において、前記圧力PHと前記所定値PHTとの差が前記所定範囲PHDR内となるように、前記第2絞り装置の開度を変更する、請求項1に記載のヒートポンプ。
The control device is
Wherein the first control, as the difference between the predetermined value PH T and the pressure PH is within the predetermined range PH DR, changing the opening of the second throttle device, a heat pump according to claim 1.
前記制御装置が、
前記第2制御において、前記過熱度SHと前記所定値SHTとの差が前記所定範囲SHDR内となるように、前記第1絞り装置の開度を変更する、請求項1に記載のヒートポンプ。
The control device is
In the second control, as the difference between the degree of superheat SH and the predetermined value SH T is within the predetermined range SH DR, changing the opening of the first throttle device, a heat pump according to claim 1 .
前記制御装置が、
前記第2制御を終了した後に、
前記圧力PHと前記所定値PHTとの差が所定範囲PHDR内にない場合には、
前記第1制御をさらに実施する、請求項1に記載のヒートポンプ。
The control device is
After finishing the second control,
If the difference between the predetermined value PH T and the pressure PH is not within a predetermined range PH DR is
The heat pump according to claim 1, further performing the first control.
前記第1制御において、
前記圧力PHが前記所定値PHTよりも高く、かつ前記圧力PHと前記所定値PHTとの差が前記所定範囲PHDR内にない場合には、前記第2絞り装置の開度が大きくされ、
前記圧力PHが前記所定値PHTよりも低く、かつ前記圧力PHと前記所定値PHTとの差が前記所定範囲PHDR内にない場合には、前記第2絞り装置の開度が小さくされる、
請求項1に記載のヒートポンプ。
In the first control,
It said pressure PH is higher than the predetermined value PH T, and if the difference between the pressure PH and the predetermined value PH T is not within said predetermined range PH DR is the opening of the second throttle device are greatly ,
Wherein when the pressure PH is lower than the predetermined value PH T, and the difference between the pressure PH and the predetermined value PH T is not within said predetermined range PH DR is the opening of the second throttle device is small The
The heat pump according to claim 1.
前記第2制御において、
前記過熱度SHが前記所定値SHTよりも高く、かつ前記過熱度SHと前記所定値SHTとの差が前記所定範囲SHDR内にない場合には、前記第1絞り装置の開度が大きくされ、
前記過熱度SHが前記所定値SHTよりも低く、かつ前記過熱度SHと前記所定値SHTとの差が前記所定範囲SHDR内にない場合には、前記第1絞り装置の開度が小さくされる、
請求項1に記載のヒートポンプ。
In the second control,
The degree of superheat SH is higher than the predetermined value SH T, and if the difference between the degree of superheat SH and the predetermined value SH T is not within said predetermined range SH DR is the opening of the first throttle device Enlarged,
The degree of superheat SH is lower than the predetermined value SH T, and if the difference between the degree of superheat SH and the predetermined value SH T is not within said predetermined range SH DR is the opening of the first throttle device Made smaller,
The heat pump according to claim 1.
前記所定値SHTを0℃を超え20℃以下の範囲にある数値とする、請求項1に記載のヒートポンプ。 Wherein the predetermined value SH T and values in the range of 20 ° C. or less exceed 0 ° C., a heat pump according to claim 1. 前記過熱度SHを特定するために、前記圧縮機に流入する冷媒の温度を検出する第1温度検出手段および前記蒸発器における冷媒の温度を検出する第2温度検出手段をさらに有する、請求項1に記載のヒートポンプ。   The first temperature detection means for detecting the temperature of the refrigerant flowing into the compressor and the second temperature detection means for detecting the temperature of the refrigerant in the evaporator in order to specify the degree of superheat SH. The heat pump described in 1. 前記圧力PHを特定するために、前記圧縮機から吐出される冷媒の圧力を検出する圧力検出手段をさらに有する、請求項1に記載のヒートポンプ。   The heat pump according to claim 1, further comprising pressure detection means for detecting a pressure of refrigerant discharged from the compressor in order to specify the pressure PH. 前記圧力PHを特定するために、系外の温度を検出する第3温度検出手段と、前記圧縮機から吐出される冷媒の温度を検出する第4温度検出手段と、をさらに有する、請求項1に記載のヒートポンプ。   The apparatus further comprises third temperature detecting means for detecting a temperature outside the system and fourth temperature detecting means for detecting the temperature of the refrigerant discharged from the compressor in order to specify the pressure PH. The heat pump described in 1. 前記制御装置が、
前記圧力PHと前記所定値PHTとを直接対比することなく、
前記圧力PHに関連づけられる所定の特性RPと、前記所定値PHTに関連づけられる、当該特性RPについての所定値RPTと、を対比することにより、
前記圧力PHと前記所定値PHTとの差が前記所定範囲PHDR内にあるか否か、を判断する、請求項1に記載のヒートポンプ。
The control device is
Without comparing the predetermined value PH T and the pressure PH directly,
By comparing the predetermined characteristic RP associated with the pressure PH with the predetermined value RP T for the characteristic RP associated with the predetermined value PH T ,
Wherein whether or not the difference between the pressure PH and the predetermined value PH T is within said predetermined range PH DR, determining the heat pump according to claim 1.
前記圧力PHが所定の限界圧力を超える場合、または前記圧縮機から吐出される冷媒の温度が所定の限界温度を超える場合に、
前記制御装置が、前記第1絞り装置および前記第2絞り装置から選ばれる少なくとも一方の開度を、前記第1制御および前記第2制御における開度の変更範囲を超えて大きく変更する、請求項1に記載のヒートポンプ。
When the pressure PH exceeds a predetermined limit pressure, or when the temperature of the refrigerant discharged from the compressor exceeds a predetermined limit temperature,
The control device largely changes at least one opening selected from the first throttle device and the second throttle device beyond a change range of the opening in the first control and the second control. The heat pump according to 1.
前記圧縮機から吐出される冷媒が超臨界状態となるように、前記圧縮機が冷媒を圧縮する、請求項1に記載のヒートポンプ。   The heat pump according to claim 1, wherein the compressor compresses the refrigerant so that the refrigerant discharged from the compressor is in a supercritical state.
JP2006546772A 2004-12-09 2005-12-09 heat pump Expired - Fee Related JP3929067B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004356560 2004-12-09
JP2004356560 2004-12-09
PCT/JP2005/022655 WO2006062190A1 (en) 2004-12-09 2005-12-09 Heat pump

Publications (2)

Publication Number Publication Date
JP3929067B2 true JP3929067B2 (en) 2007-06-13
JPWO2006062190A1 JPWO2006062190A1 (en) 2008-06-12

Family

ID=36578010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006546772A Expired - Fee Related JP3929067B2 (en) 2004-12-09 2005-12-09 heat pump

Country Status (4)

Country Link
US (1) US20070068178A1 (en)
JP (1) JP3929067B2 (en)
CN (1) CN100422661C (en)
WO (1) WO2006062190A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221261A (en) * 2011-07-18 2011-10-19 江苏天舒电器有限公司 Flow-changing low-temperature air-compensation air source heat pump water heater and control method thereof

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101014812A (en) * 2004-09-01 2007-08-08 松下电器产业株式会社 Heat pump
JP5055884B2 (en) * 2006-08-03 2012-10-24 ダイキン工業株式会社 Air conditioner
JP4755618B2 (en) * 2007-03-12 2011-08-24 パナソニック株式会社 Refrigeration cycle equipment
JP4898556B2 (en) * 2007-05-23 2012-03-14 株式会社日立ハイテクノロジーズ Plasma processing equipment
JP5125261B2 (en) * 2007-06-29 2013-01-23 ダイキン工業株式会社 Refrigeration equipment
JP2009014210A (en) * 2007-06-29 2009-01-22 Daikin Ind Ltd Refrigerating device
EP2244037A4 (en) * 2008-02-20 2012-04-25 Panasonic Corp Refrigeration cycle device
US8327651B2 (en) * 2009-07-07 2012-12-11 Hamilton Sundstrand Corporation Transcritical fluid cooling for aerospace applications
JP2011069570A (en) * 2009-09-28 2011-04-07 Fujitsu General Ltd Heat pump cycle device
KR101224054B1 (en) * 2010-09-30 2013-01-22 엘지전자 주식회사 Clothes treating apparatus and operating method thereof
AU2012237106B2 (en) 2011-03-29 2016-01-07 Lg Electronics Inc. Controlling method for clothes dryer
JP5677570B2 (en) * 2011-06-14 2015-02-25 三菱電機株式会社 Air conditioner
US20140020637A1 (en) * 2012-07-22 2014-01-23 Ofir Yamin Apparatus for using cast-off heat to warm water from household water heater
EP2908070B1 (en) * 2012-10-10 2020-08-05 Mitsubishi Electric Corporation Air conditioning device
US8931288B2 (en) * 2012-10-19 2015-01-13 Lennox Industries Inc. Pressure regulation of an air conditioner
US9389000B2 (en) 2013-03-13 2016-07-12 Rheem Manufacturing Company Apparatus and methods for pre-heating water with air conditioning unit or heat pump
US10288325B2 (en) * 2013-03-14 2019-05-14 Rolls-Royce Corporation Trans-critical vapor cycle system with improved heat rejection
US9676484B2 (en) 2013-03-14 2017-06-13 Rolls-Royce North American Technologies, Inc. Adaptive trans-critical carbon dioxide cooling systems
US9718553B2 (en) * 2013-03-14 2017-08-01 Rolls-Royce North America Technologies, Inc. Adaptive trans-critical CO2 cooling systems for aerospace applications
WO2014143194A1 (en) * 2013-03-14 2014-09-18 Rolls-Royce Corporation Adaptive trans-critical co2 cooling systems for aerospace applications
US10132529B2 (en) 2013-03-14 2018-11-20 Rolls-Royce Corporation Thermal management system controlling dynamic and steady state thermal loads
US10302342B2 (en) 2013-03-14 2019-05-28 Rolls-Royce Corporation Charge control system for trans-critical vapor cycle systems
JP6091614B2 (en) * 2013-06-20 2017-03-08 三菱電機株式会社 Heat pump equipment
US10041702B2 (en) * 2014-09-02 2018-08-07 Rheem Manufacturing Company Apparatus and method for hybrid water heating and air cooling and control thereof
US20170016659A1 (en) * 2015-07-14 2017-01-19 Nortek Global Hvac Llc Refrigerant charge and control method for heat pump systems
US20170021700A1 (en) * 2015-07-23 2017-01-26 Ford Global Technologies, Llc Method of preventing damage to a compressor in a vehicle
KR102346627B1 (en) * 2015-09-30 2022-01-05 엘지전자 주식회사 An air conditioning system and a method for controlling the same
US11187437B2 (en) * 2019-01-09 2021-11-30 Heatcraft Refrigeration Products Llc Cooling system
CN110762915B (en) * 2019-10-31 2021-03-19 南开大学 Intelligent defrosting method of refrigeration system based on opening degree of electronic expansion valve
CN112944743A (en) * 2019-12-09 2021-06-11 杭州三花研究院有限公司 Control method and control system
CN112503811B (en) * 2020-12-10 2021-12-10 珠海格力电器股份有限公司 Control method of electronic expansion valve and heat pump system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617151A (en) * 1969-08-18 1971-11-02 Drilling Well Control Inc Fluid flow controlling valve and system
US3914952A (en) * 1972-06-26 1975-10-28 Sparlan Valve Company Valve control means and refrigeration systems therefor
US4742689A (en) * 1986-03-18 1988-05-10 Mydax, Inc. Constant temperature maintaining refrigeration system using proportional flow throttling valve and controlled bypass loop
DE4027269A1 (en) * 1990-08-29 1992-03-05 Vdo Schindling THROTTLE VALVE CONNECTOR
US5704219A (en) * 1995-08-01 1998-01-06 Nippondenso Co., Ltd. Air conditioning apparatus
JP2000234814A (en) * 1999-02-17 2000-08-29 Aisin Seiki Co Ltd Vapor compressed refrigerating device
US6807163B1 (en) * 1999-04-01 2004-10-19 Ericsson Inc. Adaptive rate channel scanning method for TDMA wireless communications
JP2001116371A (en) * 1999-10-20 2001-04-27 Daikin Ind Ltd Air conditioner
JP2004003692A (en) * 2002-05-30 2004-01-08 Daikin Ind Ltd Refrigerating device
JP4410980B2 (en) * 2002-09-19 2010-02-10 三菱電機株式会社 Refrigeration air conditioner
JP3897681B2 (en) * 2002-10-31 2007-03-28 松下電器産業株式会社 Method for determining high-pressure refrigerant pressure of refrigeration cycle apparatus
US7701900B2 (en) * 2005-02-03 2010-04-20 Control4 Corporation Device discovery and channel selection in a wireless networking environment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221261A (en) * 2011-07-18 2011-10-19 江苏天舒电器有限公司 Flow-changing low-temperature air-compensation air source heat pump water heater and control method thereof

Also Published As

Publication number Publication date
CN100422661C (en) 2008-10-01
CN1957213A (en) 2007-05-02
US20070068178A1 (en) 2007-03-29
WO2006062190A1 (en) 2006-06-15
JPWO2006062190A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP3929067B2 (en) heat pump
JP5421717B2 (en) Refrigeration cycle apparatus and hot water heater
JP3916170B2 (en) heat pump
JP5533491B2 (en) Refrigeration cycle apparatus and hot water heater
EP2631562B1 (en) Heat pump-type air-warming device
JP5816789B2 (en) Refrigeration cycle apparatus and hot water heating apparatus including the same
JP5278451B2 (en) Refrigeration cycle apparatus and hot water heater using the same
WO2014080612A1 (en) Refrigeration cycle device and hot water-producing device provided therewith
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
JP5906440B2 (en) Refrigeration cycle equipment
JP2011174672A (en) Refrigerating cycle device and hot water heating apparatus
WO2014091909A1 (en) Heat pump-type heating device
JP2005291622A (en) Refrigerating cycle device and its control method
JPH074756A (en) Air-conditioning device
JP2003222414A (en) Transition critical steam compression type device and method for optimizing coefficient of performance of transition critical steam compression type device
EP1869375A2 (en) Method of determining optimal coefficient of performance in a transcritical vapor compression system
JP2017155944A (en) Refrigeration cycle device and hot water heating device including the same
JP3632645B2 (en) Heat pump water heater
JP4140625B2 (en) Heat pump water heater and control method of heat pump water heater
JP5233960B2 (en) Refrigeration cycle apparatus and hot water heater using the same
JP2002228282A (en) Refrigerating device
JP5440100B2 (en) Refrigeration cycle apparatus and hot water heater using the same
JP4857903B2 (en) Water heater
KR102177952B1 (en) Air conditioner
JP2017166709A (en) Refrigeration cycle device and hot water heating device including the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees