JP2005077088A - Condensation machine - Google Patents

Condensation machine Download PDF

Info

Publication number
JP2005077088A
JP2005077088A JP2004245552A JP2004245552A JP2005077088A JP 2005077088 A JP2005077088 A JP 2005077088A JP 2004245552 A JP2004245552 A JP 2004245552A JP 2004245552 A JP2004245552 A JP 2004245552A JP 2005077088 A JP2005077088 A JP 2005077088A
Authority
JP
Japan
Prior art keywords
region
refrigerant
condenser
supercooled liquid
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004245552A
Other languages
Japanese (ja)
Inventor
Soo Hong Ki
キ スー ホン
Sim Won Chin
シム ウォン チン
Don Suu Muun
ドン スー ムーン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of JP2005077088A publication Critical patent/JP2005077088A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a proper ratio of a supercooled liquid area capable of increasing a two-phase area having excellent heat transfer, and capable of enhancing a cooling capacity and a performance index, in a passage for heat-exchanging a gaseous refrigerant introduced into a condenser. <P>SOLUTION: In this condenser where the refrigerant introduced from a compressor coexists under a superheated vapor condition, a two-phase condition and a supercooled liquid condition, the plurality of refrigerant passages in at least one of a superheated vapor area and the two-phase area is coupled to be connected to the supercooled liquid area formed in a rear end of the two-phase area. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、凝縮機に関し、特に、圧縮機から導入された冷媒が、過熱蒸気状態、二相状態、及び、過冷液状態で共存する場合において、過熱蒸気領域及び二相領域の少なくとも一つにおける複数の冷媒経路を結合させて過冷液領域へ冷媒を出力し、適正な過冷液領域の比率を提供する凝縮機に関する。   The present invention relates to a condenser, and in particular, when a refrigerant introduced from a compressor coexists in a superheated steam state, a two-phase state, and a supercooled liquid state, at least one of a superheated steam region and a two-phase region. It is related with the condenser which couple | bonds the several refrigerant | coolant path | route in and outputs a refrigerant | coolant to a supercooled liquid area | region, and provides the ratio of a suitable supercooled liquid area | region.

一般に圧縮冷凍サイクルは、圧縮機5、凝縮機1、膨脹バルブ3及び蒸発器4によって完成するようになるが、最近になって、このサイクルを形成する空調機等の消費電力を最大に低下させなければならない要求がさらに注目されている。   In general, the compression refrigeration cycle is completed by the compressor 5, the condenser 1, the expansion valve 3, and the evaporator 4. Recently, however, the power consumption of the air conditioner and the like forming this cycle has been reduced to the maximum. More attention is being paid to the requirements that must be made.

従って、このような圧縮冷凍サイクルを形成する主要構成要素のそれぞれに対する性能改善を含んだいろいろの努力が推進されてきた。   Accordingly, various efforts have been promoted, including performance improvements for each of the major components that make up such a compression refrigeration cycle.

図1は、一般的な圧縮冷凍サイクルの主要機関を示す図面である。   FIG. 1 is a drawing showing a main engine of a general compression refrigeration cycle.

図面を参照すると、一般に空調機などは圧縮冷凍サイクルによって生成される冷気によってその性能を発揮する。   Referring to the drawings, in general, an air conditioner or the like exhibits its performance by cold air generated by a compression refrigeration cycle.

さらに詳細には、低温低圧の気体冷媒が高温高圧の気体冷媒に変換される圧縮機5、前記高温高圧の気体冷媒が中温高圧の液体冷媒に変換される凝縮機1、前記中温高圧の液体冷媒が低温低圧の液体冷媒に変換される膨脹バルブ3及び前記低温低圧の液体冷媒が低温低圧の気体冷媒に変換される蒸発器4によって冷凍サイクルが完成するようになる。   More specifically, the compressor 5 converts low-temperature low-pressure gas refrigerant into high-temperature high-pressure gas refrigerant, the condenser 1 converts the high-temperature high-pressure gas refrigerant into medium-temperature high-pressure liquid refrigerant, and the medium-temperature high-pressure liquid refrigerant. The refrigeration cycle is completed by the expansion valve 3 that converts the low-temperature and low-pressure liquid refrigerant into the low-temperature and low-pressure liquid refrigerant and the evaporator 4 that converts the low-temperature and low-pressure liquid refrigerant into the low-temperature and low-pressure gas refrigerant.

そして、前記凝縮機1には外気を供給するために冷却ファン2を設置することとなる。   The condenser 1 is provided with a cooling fan 2 to supply outside air.

ここで、圧縮機5から高温高圧の気体冷媒の供給を受けた凝縮機1は、これを再び中温高圧の液体冷媒に変換させて膨脹バルブ3に送ることとなる。   Here, the condenser 1 that has been supplied with the high-temperature and high-pressure gas refrigerant from the compressor 5 again converts it into a medium-temperature and high-pressure liquid refrigerant and sends it to the expansion valve 3.

この時に、前記凝縮機1内では蒸気状態及び二相状態の順に作動流体の状態が変化する。   At this time, in the condenser 1, the state of the working fluid changes in the order of the vapor state and the two-phase state.

そして蒸気状態や二相状態の場合には、圧力降下が液状態に比べて非常に大きいために、圧力降下を減らすために多くの分枝経路が設けられている。   In the case of the vapor state or the two-phase state, the pressure drop is much larger than that in the liquid state, so that many branch paths are provided to reduce the pressure drop.

一般に、同じ質量が流動するとすれば、気体は液体に比べて体積が約1000倍になり、従って、気体の流動速度も約1000倍となり、この場合において、圧力降下が発生して前記圧縮機5はさらに多くの仕事をしなければならないので、これを避けるためにチューブを分枝させる。   Generally, if the same mass flows, the volume of the gas is about 1000 times that of the liquid, and thus the flow rate of the gas is also about 1000 times. In this case, a pressure drop occurs and the compressor 5 Since you have to do more work, branch the tube to avoid this.

より詳細に説明すると、蒸気又は二相の液体の場合は、液体に比べて流速が速いために、単一チューブを続けて流れるようにすることよりも、多くのチューブに分けて流れるようにすること、すなわち、分枝されたチューブを流れるようにすることが有利である。   More specifically, in the case of a vapor or two-phase liquid, the flow rate is higher than that of the liquid, so that it is divided into many tubes rather than continuously flowing through a single tube. It is advantageous to flow through the branched tube.

流量が分散されるのでそれだけ圧力降下が減るようになる。すなわち、高流量である時より低流量である時の圧力降下が小さいためである。   Since the flow rate is dispersed, the pressure drop is reduced accordingly. That is, the pressure drop when the flow rate is low is smaller than when the flow rate is high.

また、流体は、単一チューブより短い複数の分岐チューブを流れ、同じ流量を有するために、圧力降下が減るようになる。   Also, the fluid flows through multiple branch tubes that are shorter than a single tube and has the same flow rate, so that the pressure drop is reduced.

圧力降下が減るという意味は、それだけ圧縮機の仕事が減るという意味であるので圧縮機消費電力が減少するようになる。   The meaning that the pressure drop is reduced means that the work of the compressor is reduced accordingly, so that the power consumption of the compressor is reduced.

一方、液体の場合には流速も遅くて熱伝逹率も二相状態に比べて10分の1にしかならないので分岐して流す必要がない。   On the other hand, in the case of a liquid, the flow rate is slow and the heat transfer rate is only 1/10 of that in the two-phase state, so there is no need to branch and flow.

すなわち、液体領域が多いほど熱伝逹率が良い二相領域が減る。こうして、決められた熱交換器大きさでは、より損傷を受ける。   That is, the more the liquid region, the smaller the two-phase region having a good heat transfer rate. Thus, the determined heat exchanger size is more damaged.

従って、これを克服するためには、十分に液体を集めて、より短いチューブを流せばよい。すなわち、チューブは分岐され又は結合される。これを目的にするのが過冷チューブである。   Therefore, to overcome this, it is sufficient to collect enough liquid and run a shorter tube. That is, the tubes are branched or joined. The purpose of this is a supercooled tube.

ここで性能指数を見れば、一般に性能指数(COP)は、冷房能力あるいは暖房能力値を使われた消費電力で除算した値であって、国内(韓国)の場合は、空調機等において第一等級の認証を受けようとするならば、前記性能指数が少なくとも3.54を維持しなければならない。   Looking at the performance index here, the performance index (COP) is generally a value obtained by dividing the cooling capacity or heating capacity value by the power consumption used. If you are going to get grade certification, the figure of merit should keep at least 3.54.

ここで前述の性能指数を向上させるために、前記圧縮冷凍サイクルを形成する主要構成要素のそれぞれに対する性能改善以外にも蒸発圧力を高める代わり凝縮圧を低下させて圧力差を小さくすることによって前記圧縮機5の仕事を少なくさせることなどが提案されているが、これには一定の限界がある。   Here, in order to improve the above-mentioned performance index, in addition to improving the performance of each of the main components forming the compression refrigeration cycle, the compression is reduced by reducing the pressure difference by lowering the condensation pressure instead of increasing the evaporation pressure. It has been proposed to reduce the work of the machine 5, but this has certain limits.

図2は、冷媒が凝縮機に導入されて過熱蒸気領域、二相領域及び過冷液領域を介して出力されることを示した図面である。   FIG. 2 is a diagram illustrating that the refrigerant is introduced into the condenser and output through the superheated steam region, the two-phase region, and the supercooled liquid region.

図面に見られるように、分枝されて過熱蒸気領域に流入する冷媒は、それぞれの二相領域を通過して分枝された状態でそれぞれの過冷液領域を介して出力される。   As can be seen in the drawing, the refrigerant branched and flowing into the superheated steam region is output through the respective supercooled liquid regions in a state of branching through the respective two-phase regions.

従って、前述したように、過冷液領域である液体では、流速も遅くて熱伝逹率も二相領域に比べて10分の1にしかならないので分岐して流す必要が無いにもかかわらず、それぞれのチューブを介して出力するようになっていることによって液体領域が多くなって、熱伝逹率が良い二相領域が減るので決められた熱交換器大きさでは性能低下及び消費電力が多くなる。   Therefore, as described above, in the liquid in the supercooled liquid region, the flow rate is slow and the heat transfer rate is only 1/10 compared to the two-phase region, so there is no need to branch and flow. Since the liquid region increases due to the output through each tube and the two-phase region with good heat conductivity decreases, the performance degradation and power consumption are reduced at the determined heat exchanger size. Become more.

本発明の目的は、凝縮機に導入された気体冷媒を熱交換する通路において、良好な熱伝逹を有する二相領域を増加させ、冷房能力及び性能指数を高めることができる過冷液領域の適正比率を提供することである。   The object of the present invention is to increase the two-phase region having good heat transfer in the passage for exchanging the gas refrigerant introduced into the condenser, and improve the cooling capacity and the performance index. It is to provide an appropriate ratio.

本発明のもう一つの目的は、二相領域から出力される冷媒の複数の冷媒経路を結合させて過冷液領域へ延長することである。   Another object of the present invention is to combine a plurality of refrigerant paths of refrigerant output from the two-phase region and extend to the supercooled liquid region.

本発明のさらにもう一つの目的は、圧縮冷凍サイクルを行う凝縮機に過冷液領域をさらに設けることによって、空調機等の冷房能力を増加させることができるようにすることである。   Still another object of the present invention is to allow the cooling capacity of an air conditioner or the like to be increased by further providing a supercooled liquid region in a condenser that performs a compression refrigeration cycle.

本発明は、圧縮機と、前記圧縮機から導入された冷媒が、過熱蒸気状態、二相状態及び過冷液状態で共存する凝縮機とを有する装置において、過熱蒸気領域及び二相領域の少なくとも一つにおける複数の冷媒経路を結合して前記二相領域の後端に形成された過冷液領域へ延長する凝縮機を提供する。   The present invention provides an apparatus having a compressor and a condenser in which a refrigerant introduced from the compressor coexists in a superheated steam state, a two-phase state, and a supercooled liquid state, and includes at least a superheated steam region and a two-phase region. There is provided a condenser that combines a plurality of refrigerant paths in one and extends to a supercooled liquid region formed at a rear end of the two-phase region.

また、本発明の一つの実施形態では、凝縮機の過冷液領域の長さは、全冷媒経路の長さの7%〜20%の比率範囲である。   Moreover, in one embodiment of this invention, the length of the supercooled liquid area | region of a condenser is a ratio range of 7%-20% of the length of all the refrigerant paths.

結合された冷媒経路を介して過冷液領域へ冷媒を出力するので、実質的に熱伝逹効率が良い二相領域が大きくなり、また適正比率の過冷液領域を提供することによって過冷度が増加して実質的にエアコンの性能及び消費電力を向上させることができる。   Since the refrigerant is output to the supercooled liquid region via the combined refrigerant path, the two-phase region having substantially good heat transfer efficiency is increased, and the supercooled liquid region is provided by providing an appropriate ratio. Thus, the air conditioner performance and power consumption can be substantially improved.

以下、本発明による凝縮機の望ましい実施形態に対して添付した図面に基づいて説明する。   Hereinafter, preferred embodiments of a condenser according to the present invention will be described with reference to the accompanying drawings.

図3は、本発明による凝縮機を有する構造を概略的に示したブロック図であり、図4A及び図4Bは、凝縮機での冷媒の状態と、冷媒が通過する経路及び領域とを示した図面であり、図5は過冷液チューブ比率と性能指数との関係を示したグラフ及び図表である。   FIG. 3 is a block diagram schematically showing a structure having a condenser according to the present invention, and FIGS. 4A and 4B show the state of the refrigerant in the condenser and the path and region through which the refrigerant passes. FIG. 5 is a graph and chart showing the relationship between the supercooled liquid tube ratio and the figure of merit.

まず、図3に関して説明する。   First, FIG. 3 will be described.

室内機(図示せず)から出力される冷媒は、サービスバルブ及び圧縮機の吐出バルブを介して一つ以上の冷媒経路に分枝して凝縮機1に入力される。   The refrigerant output from the indoor unit (not shown) is branched into one or more refrigerant paths via the service valve and the discharge valve of the compressor, and input to the condenser 1.

本発明の分枝された冷媒経路は、過熱蒸気領域チューブ、二相領域チューブを経由し、過冷液領域では結合されている。   The branched refrigerant path of the present invention is coupled in the supercooled liquid region via the superheated steam region tube and the two-phase region tube.

また、前記過冷液領域チューブの適正領域比率が全体チューブ長さの7から20%である時に、エアコンの性能指数及び消費電力の効率が最高になる。   In addition, when the proper area ratio of the supercooled liquid area tube is 7 to 20% of the total tube length, the performance index and the power consumption efficiency of the air conditioner are maximized.

本発明による凝縮機1内では蒸気、二相、液体の順に作動流体の状態が変化する。   In the condenser 1 according to the present invention, the state of the working fluid changes in the order of vapor, two-phase, and liquid.

そして、液体の場合には、圧力降下が蒸気及び二相に比べて相対的に低く、圧力降下を減らすために液体を分岐する必要はない。   And in the case of liquids, the pressure drop is relatively low compared to vapor and two-phase, and there is no need to branch the liquid to reduce the pressure drop.

一般に、同じ質量が流動するとすれば、液体は気体に比べて体積が約1/1000であり、従って、液体の流動速度も大体1/1000にしかならないので、液体は分枝しなくても良い。   In general, if the same mass flows, the liquid has a volume of about 1/1000 compared to the gas, and therefore the liquid flow rate is only about 1/1000, so the liquid does not have to branch. .

図4A及び図4Bは、本発明において、冷媒が凝縮機に複数の経路(二経路または三経路)で導入されて過熱蒸気領域、二相領域及び過冷液領域を介して出力されることを示した図面である。   4A and 4B show that in the present invention, the refrigerant is introduced into the condenser through a plurality of paths (two paths or three paths) and is output through the superheated steam region, the two-phase region, and the supercooled liquid region. FIG.

図面に見られるように、分枝されて過熱蒸気領域に流入する冷媒は、それぞれの二相領域を通過して結合された冷媒経路の過冷液領域に流入して、膨脹バルブに出力される。   As seen in the drawing, the refrigerant that is branched and flows into the superheated steam region flows into the supercooled liquid region of the combined refrigerant path through the respective two-phase regions and is output to the expansion valve. .

前記過冷液領域チューブの適正領域比率が、全体チューブ長さの7から20%である時に、エアコンの性能指数及び消費電力の効率が最高になる。   When the appropriate area ratio of the supercooled liquid area tube is 7 to 20% of the total tube length, the performance index and power consumption efficiency of the air conditioner are maximized.

図5A及び図5Bは、過冷液チューブ比率と性能指数等との関係を示したグラフ及び図表である。   5A and 5B are graphs and charts showing the relationship between the supercooled liquid tube ratio and the figure of merit.

図3では凝縮機1内の全体チューブの数を2列26段にしており、この時の前記全体チューブに対するそれぞれの過冷液チューブ比率と性能指数との関係を実験によって求めれば、過冷液チューブを2段(この時の全体チューブに対する過冷液チューブの比率は7%である)にした場合には、使われた消費電力が569Wであり、冷房能力は2692Wと測定され、この時の性能指数は4.73であることが分かる。   In FIG. 3, the number of the total tubes in the condenser 1 is 26 rows and two rows, and if the relationship between the ratio of the respective supercooled liquid tubes to the total tubes and the figure of merit is determined by experiment, When the tube is in two stages (the ratio of the supercooled liquid tube to the total tube at this time is 7%), the power consumption used is 569 W and the cooling capacity is measured as 2692 W. It can be seen that the figure of merit is 4.73.

そして、過冷液チューブを4段(この時の全体チューブに対する過冷液チューブの比率は15%である)にした場合には、使われた消費電力が567Wであり、冷房能力は2745Wと測定され、この時の性能指数は4.84に若干増加する。過冷液チューブを6段(この時の全体チューブに対する過冷液チューブの比率は23%である)にした場合には、使われた消費電力が586Wであり、冷房能力は2726Wと測定され、この時の性能指数は4.65に再び減少する。   And when the supercooled liquid tube is made up of four stages (the ratio of the supercooled liquid tube to the total tube at this time is 15%), the power consumption used is 567 W, and the cooling capacity is measured as 2745 W. The figure of merit at this time slightly increases to 4.84. When the supercooled liquid tube has 6 stages (the ratio of the supercooled liquid tube to the total tube at this time is 23%), the power consumption used is 586 W, and the cooling capacity is measured as 2726 W. The figure of merit at this time decreases again to 4.65.

以上のように、凝縮機内に設置する過冷液チューブの比率を全体凝縮機内のチューブの7%〜20%の範囲にする時に最適の性能指数が得られることが分かる。   As described above, it can be seen that the optimum figure of merit can be obtained when the ratio of the supercooled liquid tubes installed in the condenser is in the range of 7% to 20% of the tubes in the whole condenser.

このように、本発明は、二相領域で出力される冷媒経路を結合して過冷液領域に出力する構造と、前記過冷液領域の適正比率とを提供することによって、前記二相領域が増えて熱伝逹効率、性能指数及び消費電力を向上させることができる。   As described above, the present invention provides a structure in which the refrigerant paths output in the two-phase region are combined and output to the supercooled liquid region, and an appropriate ratio of the supercooled liquid region, thereby providing the two-phase region The heat transfer efficiency, the figure of merit and the power consumption can be improved.

以上で本発明の望ましい実施形態が説明されたが、本発明は多様な変化と変更及び均等物を用いることができる。本発明においては、前記実施形態を適切に変形して同一に応用できることが明確である。   Although the preferred embodiments of the present invention have been described above, various changes, modifications, and equivalents may be used for the present invention. In the present invention, it is clear that the above-described embodiment can be appropriately modified and applied in the same way.

例えば、凝縮作用をする冷蔵庫及びその他同様の機能を遂行する製品にも本発明は適用可能である。   For example, the present invention can be applied to a refrigerator that performs a condensing action and other products that perform similar functions.

従って、前記記載内容は特許請求範囲の限界により本発明の範囲が限られるのでない。   Accordingly, the scope of the present invention is not limited by the limitations of the claims.

冷媒を用いるエアコン及び冷蔵庫のような産業分野に適用可能である。   The present invention is applicable to industrial fields such as air conditioners and refrigerators using refrigerants.

一般的な圧縮冷凍サイクルの主要機関を示す図面である。It is drawing which shows the main engines of a general compression refrigeration cycle. 冷媒が凝縮機に導入されて過熱蒸気領域、二相領域及び過冷液領域を介して出力されることを示した図面である。6 is a diagram illustrating that a refrigerant is introduced into a condenser and output through a superheated steam region, a two-phase region, and a supercooled liquid region. 本発明による凝縮機を有する構造を概略的に示したブロック図である。It is the block diagram which showed roughly the structure which has the condenser by this invention. 二経路の場合における凝縮機での冷媒状態と冷媒が通過する経路及び領域とを示した図面である。It is drawing which showed the refrigerant | coolant state in a condenser in the case of a two path | route, and the path | route and area | region where a refrigerant | coolant passes. 三経路の場合における凝縮機での冷媒状態と冷媒が通過する経路及び領域とを示した図面である。It is drawing which showed the refrigerant | coolant state in a condenser in the case of a three path | route, and the path | route and area | region where a refrigerant | coolant passes. 過冷却チューブの比率と性能指数等との関係を示した図表である。It is the graph which showed the relationship between the ratio of a supercooling tube, a figure of merit, etc. 過冷却チューブの比率と性能指数等との関係を示したグラフである。It is the graph which showed the relationship between the ratio of a supercooling tube, a figure of merit, etc.

符号の説明Explanation of symbols

1 凝縮機
3 膨張バルブ
4 蒸発機
5 圧縮機
1 Condenser 3 Expansion Valve 4 Evaporator 5 Compressor

Claims (10)

前記圧縮機から流入した冷媒が過熱蒸気状態、二相状態及び過冷液状態で共存する凝縮機であって、
過熱液領域及び二相領域の少なくとも一つの領域における複数の冷媒経路を結合して過冷液領域へ接続されていることを特徴とする凝縮機。
The refrigerant flowing in from the compressor coexists in a superheated steam state, a two-phase state and a supercooled liquid state,
A condenser characterized in that a plurality of refrigerant paths in at least one of the superheated liquid region and the two-phase region are connected to the supercooled liquid region.
前記二相領域から出力される冷媒の複数の冷媒経路が結合されて前記二相領域のチューブの後端に形成された前記過冷液領域へ接続されることを特徴とする請求項1に記載の凝縮機。   The plurality of refrigerant paths of refrigerant output from the two-phase region are combined and connected to the supercooled liquid region formed at the rear end of the tube in the two-phase region. Condenser. 前記二相領域から出力される冷媒の複数の冷媒経路が結合されて前記過冷液領域に接続され、前記二相領域の冷媒経路が増加することを特徴とする請求項2に記載の凝縮機。   3. The condenser according to claim 2, wherein a plurality of refrigerant paths of the refrigerant output from the two-phase region are combined and connected to the supercooled liquid region, and the refrigerant path in the two-phase region is increased. . 前記二相領域が増加することによって熱伝逹効率が増加することを特徴とする請求項3に記載の凝縮機。   The condenser according to claim 3, wherein the heat transfer efficiency is increased by increasing the two-phase region. 一つ以上に分枝して前記過熱蒸気領域に流入する冷媒が、それぞれの前記二相領域を通過して、一つ以上に結合された冷媒経路の前記過冷液領域へ流入し、温度及び圧力の少なくとも一つを低下させるための手段へ出力されることを特徴とする請求項1に記載の凝縮機。   The refrigerant branching into one or more and flowing into the superheated steam region passes through each of the two-phase regions and flows into the supercooled liquid region of the refrigerant path coupled to one or more, and the temperature and The condenser according to claim 1, wherein the condenser is output to a means for reducing at least one of the pressures. 温度及び圧力の少なくとも一つを低下させるための前記手段は、膨脹バルブを有することを特徴とする請求項5に記載の凝縮機。   6. A condenser according to claim 5, wherein the means for reducing at least one of temperature and pressure comprises an expansion valve. 前記過冷液領域は、前記凝縮機の冷媒経路領域の7%〜23%の比率範囲であることを特徴とする請求項1に記載の凝縮機。   The condenser according to claim 1, wherein the supercooled liquid region has a ratio range of 7% to 23% of a refrigerant path region of the condenser. 前記過冷液領域のチューブは、全体チューブ長さの7%〜20%の適正比率範囲を有し、それにより、空調機において、性能指数及び消費電力の効率が最適となることを特徴とする請求項7に記載の凝縮機。   The tube in the supercooled liquid region has an appropriate ratio range of 7% to 20% of the total tube length, and thereby, the performance index and the power consumption efficiency are optimized in the air conditioner. The condenser according to claim 7. 前記凝縮機の全体チューブの数は、2列26段であり、前記過冷液領域のチューブが2段である場合には前記全体チューブに対する比率は7%であって、前記過冷液領域のチューブが4段である場合には前記全体チューブに対する比率は15%であって、前記過冷液領域のチューブが6段である場合には前記全体チューブに対する比率は23%であることを特徴とする請求項7に記載の凝縮機。   The total number of tubes of the condenser is 26 in 2 rows, and when the supercooled liquid region tube is in two stages, the ratio to the total tube is 7%. When the number of tubes is four, the ratio to the whole tube is 15%, and when the number of tubes in the supercooled liquid region is six, the ratio to the whole tube is 23%. The condenser according to claim 7. 前記二相領域から出力される冷媒の冷媒経路が結合され、冷媒が一つ以上の結合された冷媒経路を介して前記過冷液領域に入力されることを可能とすることを特徴とする請求項1に記載の凝縮機。   The refrigerant path of the refrigerant output from the two-phase region is combined, and the refrigerant can be input to the supercooled liquid region through one or more combined refrigerant paths. Item 4. The condenser according to Item 1.
JP2004245552A 2003-09-02 2004-08-25 Condensation machine Pending JP2005077088A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030061149A KR20050023758A (en) 2003-09-02 2003-09-02 Condenser

Publications (1)

Publication Number Publication Date
JP2005077088A true JP2005077088A (en) 2005-03-24

Family

ID=34132223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245552A Pending JP2005077088A (en) 2003-09-02 2004-08-25 Condensation machine

Country Status (5)

Country Link
US (1) US20050044882A1 (en)
EP (1) EP1512925A3 (en)
JP (1) JP2005077088A (en)
KR (1) KR20050023758A (en)
CN (1) CN100494814C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102954626A (en) * 2012-11-08 2013-03-06 南京师范大学 Multi-branch indoor heat exchanger for synchronous heat exchange

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490722B1 (en) 2004-07-23 2005-05-19 엘지전자 주식회사 A condenser of refrigerator
KR100710352B1 (en) 2004-11-23 2007-04-23 엘지전자 주식회사 Bypassing strainer for refrigerant in air-conditioner ? controlling method for the same
US7365973B2 (en) 2006-01-19 2008-04-29 American Power Conversion Corporation Cooling system and method
US8672732B2 (en) 2006-01-19 2014-03-18 Schneider Electric It Corporation Cooling system and method
US8327656B2 (en) * 2006-08-15 2012-12-11 American Power Conversion Corporation Method and apparatus for cooling
US8322155B2 (en) 2006-08-15 2012-12-04 American Power Conversion Corporation Method and apparatus for cooling
US9568206B2 (en) 2006-08-15 2017-02-14 Schneider Electric It Corporation Method and apparatus for cooling
US7681404B2 (en) 2006-12-18 2010-03-23 American Power Conversion Corporation Modular ice storage for uninterruptible chilled water
US8425287B2 (en) 2007-01-23 2013-04-23 Schneider Electric It Corporation In-row air containment and cooling system and method
ES2612328T3 (en) 2007-05-15 2017-05-16 Schneider Electric It Corporation Methods and systems to manage power and cooling of an installation
US8219362B2 (en) 2009-05-08 2012-07-10 American Power Conversion Corporation System and method for arranging equipment in a data center
US8688413B2 (en) 2010-12-30 2014-04-01 Christopher M. Healey System and method for sequential placement of cooling resources within data center layouts
US9830410B2 (en) 2011-12-22 2017-11-28 Schneider Electric It Corporation System and method for prediction of temperature values in an electronics system
CN104137105B (en) 2011-12-22 2017-07-11 施耐德电气It公司 Impact analysis on temporal event to the temperature in data center
CN102798203B (en) * 2012-08-29 2014-08-27 海信(山东)空调有限公司 Air-conditioning outdoor unit condenser and air-conditioning outdoor unit with condenser
US9791221B1 (en) * 2012-10-30 2017-10-17 Whirlpool Corporation Condenser assembly system for an appliance
JP6351494B2 (en) * 2014-12-12 2018-07-04 日立ジョンソンコントロールズ空調株式会社 Air conditioner
CN105987539B (en) * 2015-02-03 2018-09-18 上海海立电器有限公司 Air conditioner and its heat exchanger
JP6573484B2 (en) 2015-05-29 2019-09-11 日立ジョンソンコントロールズ空調株式会社 Heat exchanger
CN106322853B (en) * 2015-06-30 2019-02-05 青岛海尔空调器有限总公司 A kind of single-cooling type condenser pipe system, air conditioner and its application method
CN105972845A (en) * 2016-03-16 2016-09-28 合肥天鹅制冷科技有限公司 Energy-saving economical high-temperature-resistant air conditioner refrigerating system
CN107300266B (en) * 2017-06-12 2019-10-15 广东美的制冷设备有限公司 Air-conditioning system, the control method of air-conditioning system
CN111373205B (en) * 2017-11-29 2021-08-10 三菱电机株式会社 Air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191262A (en) * 1992-11-06 1994-07-12 Nippondenso Co Ltd Refrigerating device
JPH109714A (en) * 1996-06-25 1998-01-16 Hitachi Ltd Freezer
JPH10205920A (en) * 1997-01-24 1998-08-04 Calsonic Corp Condenser

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3843305A1 (en) * 1988-12-22 1990-06-28 Thermal Waerme Kaelte Klima CONDENSER FOR A VEHICLE AIR CONDITIONING REFRIGERANT
US5224358A (en) * 1990-10-04 1993-07-06 Nippondenso Co., Ltd. Refrigerating apparatus and modulator
DE4238853C2 (en) * 1992-11-18 2001-05-03 Behr Gmbh & Co Condenser for an air conditioning system of a vehicle
FR2754886B1 (en) * 1996-10-23 1998-12-31 Valeo Thermique Moteur Sa COIL CONDENSER FOR REFRIGERATION CIRCUIT, ESPECIALLY OF MOTOR VEHICLE
JP3116996B2 (en) * 1996-10-30 2000-12-11 株式会社デンソー Recipient integrated refrigerant condenser
JP3185687B2 (en) * 1996-11-13 2001-07-11 ダイキン工業株式会社 Heat exchanger
KR100264815B1 (en) * 1997-06-16 2000-09-01 신영주 Multi-stage air and liquid separable type condenser
US6009719A (en) * 1998-05-06 2000-01-04 York International Corporation System for thermal treating of food products
DE19918616C2 (en) * 1998-10-27 2001-10-31 Valeo Klimatechnik Gmbh Condenser for condensing the internal refrigerant of an automotive air conditioning system
JP2002031436A (en) * 2000-05-09 2002-01-31 Sanden Corp Sub-cooling type condenser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191262A (en) * 1992-11-06 1994-07-12 Nippondenso Co Ltd Refrigerating device
JPH109714A (en) * 1996-06-25 1998-01-16 Hitachi Ltd Freezer
JPH10205920A (en) * 1997-01-24 1998-08-04 Calsonic Corp Condenser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102954626A (en) * 2012-11-08 2013-03-06 南京师范大学 Multi-branch indoor heat exchanger for synchronous heat exchange

Also Published As

Publication number Publication date
US20050044882A1 (en) 2005-03-03
CN1590924A (en) 2005-03-09
EP1512925A2 (en) 2005-03-09
KR20050023758A (en) 2005-03-10
EP1512925A3 (en) 2007-12-26
CN100494814C (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP2005077088A (en) Condensation machine
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
KR100905995B1 (en) Air conditioner
CN102414522B (en) Transcritical thermally activated cooling, heating and refrigerating system
US6658888B2 (en) Method for increasing efficiency of a vapor compression system by compressor cooling
JP2007198693A (en) Cascade type heat pump system
EP2147265B8 (en) Refrigerating device and method for circulating a refrigerating fluid associated with it
JPWO2014181399A1 (en) Dual refrigeration equipment
CN101979938A (en) Backheating method and backheating structure for heat pump air conditioner
WO2011105270A1 (en) Refrigeration cycle device
JP2011117724A (en) Refrigerating or air-conditioning device using vapor compression refrigerating cycle, and control method thereof
CN105004100A (en) Single-refrigerant loop and multiple-suction pressure steam compression refrigeration/heat pump system
JP2000171117A (en) Refrigerating machine
Minh et al. Improved vapour compression refrigeration cycles: literature review and their application to heat pumps
CN108759139B (en) Primary throttling intermediate incomplete cooling refrigeration system with intermediate temperature evaporator
JP5270523B2 (en) Freezer refrigerator
JP2002188865A (en) Multiple stage compression type refrigerating machine
JP4326004B2 (en) Air conditioner
JP4814823B2 (en) Refrigeration equipment
KR20120139007A (en) Double-wall pipe type internal heat exchanger
JP2022545486A (en) heat pump
JP2008267731A (en) Air-conditioning device
KR100805424B1 (en) Condenser having double refrigerant pass and refrigerating plant used the condenser
CN212057820U (en) Refrigeration system
JPH109714A (en) Freezer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005