JP2009156563A - Self-balancing condensing and evaporating heat exchanger device, refrigerating cycle incorporating it, and partial recovery device for condensate using the same - Google Patents

Self-balancing condensing and evaporating heat exchanger device, refrigerating cycle incorporating it, and partial recovery device for condensate using the same Download PDF

Info

Publication number
JP2009156563A
JP2009156563A JP2007338935A JP2007338935A JP2009156563A JP 2009156563 A JP2009156563 A JP 2009156563A JP 2007338935 A JP2007338935 A JP 2007338935A JP 2007338935 A JP2007338935 A JP 2007338935A JP 2009156563 A JP2009156563 A JP 2009156563A
Authority
JP
Japan
Prior art keywords
primary side
condensate
secondary side
heat exchanger
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007338935A
Other languages
Japanese (ja)
Inventor
Hiroaki Matsushita
紘晃 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAC KK
Mac KK
Original Assignee
MAC KK
Mac KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAC KK, Mac KK filed Critical MAC KK
Priority to JP2007338935A priority Critical patent/JP2009156563A/en
Publication of JP2009156563A publication Critical patent/JP2009156563A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger device capable of generating expansion, evaporation process correlated with condensation and liquefaction of high pressure gas by itself, and capable of maintaining heat balance by a synergistic effect of both generated heat of condensation latent heat and evaporation latent heat during phase change of the high pressure gas. <P>SOLUTION: In the self-balancing condensing and evaporating heat exchanger device, a heat exchange plate is provided in the middle to partition off a primary side and secondary side, both of which are equipped with an inlet and outlet, and it is regarded as a heat exchanger of a composition serially connecting the outlet of the primary side and the inlet of the secondary side by a connection pipe via an expansion valve. High-pressure high-temperature un-condensed gas is introduced into the inlet of the primary side, it is passed through the connection pipe from the primary side, it is decompressed by the expansion valve, the high-pressure high-temperature gas is decompressed and cooled by a throttling expansion effect, it is introduced into the secondary side inlet, a process of cooling the secondary side by the throttling expansion effect to a lower temperature than a condensation temperature of the high-pressure gas is repeated, and an amount of a condensed liquid is increased to maintain the heat balance. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は中間に熱交換プレートを備えた熱交換器装置、特にその熱交換器装置で自らが気体の凝縮、蒸発を熱平衡して行なう事ができ、流入される気体の高圧を減衰させて、冷凍サイクルに組み込んだ場合、冷凍機(圧縮機)を高圧から防護して安定した作動を確保する事ができ、加えて、大概的に気体から液体への相変化を容易に実行することを可能とする自己平衡する凝縮、蒸発熱交換器装置及びそれを組み込んだ冷凍サイクルとそれを用いた凝縮液(液化ガス)の一部回収装置に関する。   The present invention is a heat exchanger device provided with a heat exchange plate in the middle, and in particular, the heat exchanger device itself can perform gas condensation and evaporation in thermal equilibrium, and attenuates the high pressure of the inflowing gas, When incorporated in a refrigeration cycle, the refrigerator (compressor) can be protected from high pressures to ensure stable operation, and in addition, it is generally possible to easily perform a phase change from gas to liquid. The present invention relates to a self-equilibrating condensation and evaporative heat exchanger device, a refrigeration cycle incorporating the same, and a partial recovery device for condensate (liquefied gas) using the same.

一般的に、中間に熱交換プレートを備えた熱交換器装置は、その中間プレートの一方側に熱媒体となる流体を通し、他方側にその熱媒体により冷却あるいは加熱される流体を通し、熱交換プレートを介して伝熱し、使用に供するものとしている。   In general, a heat exchanger apparatus having a heat exchange plate in the middle passes a fluid serving as a heat medium on one side of the intermediate plate, and passes a fluid cooled or heated by the heat medium on the other side. Heat is transferred through the exchange plate and used for use.

一方、一般的な冷凍サイクルは高圧、高温の冷媒ガスを吐出する冷凍機(圧縮機)と、これを凝縮する凝縮器(コンデンサ)と一次側に膨張弁を備えた冷却器(蒸発器、エバポレータ)とより構成され、時に、この冷却器に冷媒ガスが流入する前に予冷する予冷器(インタークーラー)を備えることもある。   On the other hand, a general refrigeration cycle is a refrigerator (compressor) that discharges high-pressure and high-temperature refrigerant gas, a condenser (condenser) that condenses the refrigerant, and a cooler (evaporator, evaporator) that has an expansion valve on the primary side. ) And sometimes a precooler (intercooler) that precools the refrigerant gas before it flows into the cooler.

この冷媒ガスに求められる特性は沸点が低いこと、即ち、冷却到達温度が低いこと、臨界温度が常温であること、即ち、常温で凝縮できること、蒸発潜熱が大きいこと、即ち、冷媒の単位重量あたりの冷却熱量が大きいこと、蒸気密度が大きい、即ち、装置容積が小さくて済むこと、圧縮比が小さいこと、即ち、圧縮動力が小さくて済むことであり、最後に分解性、腐食性、毒性のないことである。   The characteristics required for this refrigerant gas are a low boiling point, that is, a low cooling temperature, a critical temperature of room temperature, that is, condensation at room temperature, a large latent heat of vaporization, that is, per unit weight of the refrigerant. The amount of heat of cooling is large, the vapor density is large, that is, the volume of the apparatus is small, the compression ratio is small, that is, the compression power is small, and finally it is degradable, corrosive, and toxic. It is not.

この条件に適合するものとしてフロン系、プロパン、液化炭酸ガスが知られているが、プロパンは可燃性があること、液化炭酸ガスは高圧力での使用が必要とされることから、特殊な場合を除いてフロン系が使用されるのが一般的である。   Fluorocarbons, propane, and liquefied carbon dioxide are known to meet these conditions, but propane is flammable and liquefied carbon dioxide requires use at high pressure, so it is a special case. In general, chlorofluorocarbons are used except for.

しかし、フロン系は地球オゾン層の破壊につながるものとして大気中への放散が規制され、その結果冷凍装置のような閉鎖された環境でもその漏洩や廃棄等に伴なってフロン系が使用できなくなった。   However, chlorofluorocarbons are restricted from being released into the atmosphere as they lead to the destruction of the global ozone layer. As a result, chlorofluorocarbons cannot be used even in closed environments such as refrigeration equipment due to leakage or disposal. It was.

そこで、フロン系に代わるものとしてプロパンの可燃性を抑える不活性材として液化炭酸ガスを混入させて使用する混合冷媒が考え出された。しかし、この混合冷媒は確かに効果はあるものの、現在の圧縮冷凍機における圧力負荷規制等にも起因して、得られる冷却、冷凍の低温には限界があり、それ以上の超低温を得ることは不可能となっている。   Then, the refrigerant mixture which mixes and uses liquefied carbon dioxide gas as an inert material which suppresses the combustibility of propane as an alternative to a Freon system was devised. However, although this mixed refrigerant is indeed effective, there are limits to the cooling and freezing temperatures that can be obtained due to the pressure load regulations in current compression refrigerators, etc. It is impossible.

また、上記した混合冷媒を用いて超低温を得るためには凝縮器を縦列させて用い、冷媒の往路と復路で前記凝縮器を通過させることとして段階的に温度を下げていく方式のものが知られているが、この場合には装置が大規模なものとなってしまい、現実的に構築設定するにはかなりの困難がある。   In addition, in order to obtain ultra-low temperature using the above-mentioned mixed refrigerant, there is a system in which condensers are used in cascade, and the temperature is lowered stepwise by passing the condenser through the refrigerant forward and backward paths. However, in this case, the apparatus becomes large-scale, and it is quite difficult to actually construct and set.

さらには、従来、空気を含めた意味での各種ガスを液化するには大規模で複雑な装置や工程を必要としているもので、そのために、種々の冷凍工法等に使用される液化ガスは価格が高騰してしまい、加えて、ボンベに収容して現場に搬入する必要性もあるものとなっている。
特開2006−64331号公報 特開2004−361033号公報
Furthermore, conventionally, in order to liquefy various gases including air, large-scale and complicated devices and processes are required. For this reason, liquefied gas used in various refrigeration methods is priced. In addition, it has become necessary to accommodate in a cylinder and carry it to the site.
JP 2006-64331 A Japanese Patent Laid-Open No. 2004-361033

本発明が解決しようとする問題点は、従来の圧縮冷凍機を用いる冷凍サイクルにあっては混合冷媒を使用しても得られる低温に限界があり、低沸点冷媒としての炭酸ガスを用いるには圧縮冷凍機に係る圧力負荷が大きくなりすぎて困難であるという点であり、さらには、従来、ガスを液化するためには大規模で複雑な装置を必要としている点であり、従来それらを解決する事ができ、自らが高圧ガスを凝縮、液化と相関する、膨張、蒸発工程を生成させる事ができ、高圧ガスの相変化時の凝縮潜熱と、蒸発潜熱の両発生熱の相乗効果で熱平衡を保つことができる熱交換器装置が存在していなかったという点である。   The problem to be solved by the present invention is that in a refrigeration cycle using a conventional compression refrigerator, there is a limit to the low temperature obtained even if a mixed refrigerant is used, and in order to use carbon dioxide as a low boiling point refrigerant This is the point that the pressure load related to the compression refrigerator becomes too large and difficult, and furthermore, conventionally, in order to liquefy the gas, a large-scale and complicated device is required. The self-condensation and liquefaction of the high-pressure gas can be generated, and the expansion and evaporation process can be generated. The heat balance is achieved by the synergistic effect of both the latent heat of condensation during the phase change of the high-pressure gas and the heat generated by both the latent heat of evaporation. There is no heat exchanger device that can maintain the temperature.

上記した問題点を解決するために、本発明に係る自己平衡する凝縮、蒸発熱交換器装置は中間に熱交換プレートを備えて一次側と二次側に区分し、その一次側と二次側に各々流入口と流出口を備え、一次側の流出口と二次側の流入口は途中に膨張弁を介して連結パイプで直列に連結させた構成の熱交換器とし、前記した一次側の流入口に圧縮され高圧、高温となっている未凝縮ガスを導入し、この時点で一次側では冷却された凝縮液は皆無であり、この一次側から前記した連結パイプを通じ、膨張弁で減圧し、高圧、高温ガスを絞り膨張作用で減圧、冷却し、これを二次側流入口へ導入し、この二次側を絞り膨張作用によって当該高圧ガスの凝縮温度より低温に冷却し、前記熱交換プレートを介して対向する一次側を冷却し、一次側の未凝縮高圧ガスを凝縮液化し、この未凝縮高圧ガスが冷却されることで凝縮潜熱を増幅し、一次側で冷却された凝縮蒸気、凝縮液を生成し、この生成された凝縮蒸気、凝縮液は相関する二次側の蒸発潜熱の増幅に寄与し、前記した凝縮蒸気、凝縮液は連結パイプを通じて、膨張弁で断熱膨張を発生させ、蒸発潜熱を増幅し、完全凝縮液を生成させるものとし、前記過程を繰り返し、経時変化して凝縮液の増量、蒸発冷却能力を確立させることを特徴とし、前記した一次側凝縮潜熱は二次側蒸発潜熱によって補完され、二次側蒸発潜熱は一次側凝縮潜熱で補完されて、一次側、二次側の取得潜熱は相乗効果を発揮しながら熱平衡して継続しながら経時変化してその効果を拡大していくことを特徴としている。   In order to solve the above problems, the self-equilibrium condensing and evaporating heat exchanger apparatus according to the present invention has a heat exchange plate in the middle and is divided into a primary side and a secondary side, and the primary side and the secondary side Each having an inlet and an outlet, and the primary outlet and the secondary inlet are connected in series with a connecting pipe through an expansion valve in the middle of the heat exchanger. The uncondensed gas that has been compressed at the inlet and is at high pressure and high temperature is introduced. At this time, there is no condensed liquid cooled on the primary side, and the pressure is reduced by the expansion valve from the primary side through the connecting pipe. The high-pressure, high-temperature gas is reduced and cooled by the expansion expansion action, introduced into the secondary side inlet, the secondary side is cooled to a temperature lower than the condensation temperature of the high-pressure gas by the expansion expansion action, and the heat exchange The primary side facing through the plate is cooled, and the primary side is not condensed. The pressure gas is condensed and liquefied, and the uncondensed high-pressure gas is cooled to amplify the latent heat of condensation and produce condensed vapor and condensate cooled on the primary side. The generated condensate and condensate are correlated. The condensed vapor and condensate described above contribute to the amplification of the secondary side latent heat of vaporization, the adiabatic expansion is generated by the expansion valve through the connection pipe, the latent heat of vaporization is amplified, and a complete condensate is generated, It is characterized in that the process is repeated and the amount of condensate increases and evaporative cooling capacity is established over time, and the primary side condensation latent heat is supplemented by the secondary side latent heat, and the secondary side latent heat is the primary side condensation latent heat. The acquisition latent heat on the primary side and the secondary side is complemented by the above, and is characterized by the fact that the effect is expanded over time while continuing to achieve thermal equilibrium while exhibiting a synergistic effect.

また、上記した熱交換器装置を組み込んだ冷凍サイクルは冷凍機と凝縮器と一次側に膨張弁を備えた冷却器とを少なくとも備え、冷媒を循環させる冷凍サイクルに於いて、前記した凝縮器の二次側に切り替えバルブを備えてバイパス路を有し、そのバイパス路に前記した自己平衡する凝縮、蒸発熱交換器装置を組み込んだことを特徴とし、前記した冷凍サイクルにはインタークーラーを備え、そのインタークーラーの一次側に冷媒を通してから冷却器へ送り、その冷却器からの冷媒はインタークーラーの二次側を通して冷凍機へ戻すことを特徴とし、前記した冷凍サイクルの凝縮器の一次側に切り替えバルブを備えてホットガスラインと切り替え可能とし、そのホットガスラインからホットガスを冷却器へ送ることでデフロスト作用と冷媒の高圧減衰とを凝縮器の二次側の切り替えバルブの切り替えで兼用する事ができることを特徴とし、前記したホットガスラインとの切り替えバルブの一次側に圧力スイッチを備え、その圧力スイッチでの高圧検出で冷媒流路の切り替えがなされることを特徴としている。   In addition, a refrigeration cycle incorporating the above-described heat exchanger device includes at least a refrigerator, a condenser, and a cooler having an expansion valve on the primary side, and in the refrigeration cycle in which the refrigerant is circulated, It has a bypass path with a switching valve on the secondary side, and the above-described self-equilibrium condensation and evaporation heat exchanger device is incorporated in the bypass path, and the above-described refrigeration cycle includes an intercooler, The refrigerant is fed to the primary side of the intercooler and then sent to the cooler, and the refrigerant from the cooler is returned to the refrigerator through the secondary side of the intercooler, and a switching valve is provided on the primary side of the condenser of the refrigeration cycle. The hot gas line can be switched, and the hot gas is sent from the hot gas line to the cooler. A pressure switch is provided on the primary side of the switching valve for the hot gas line described above, and the pressure switch can be used for both pressure attenuation and switching of the switching valve on the secondary side of the condenser. Thus, the refrigerant flow path is switched.

さらに、上記した熱交換器装置を用いた凝縮液の一部を回収する装置は前記した連結パイプの一部に凝縮液の回収容器を接続してあることを特徴としている。   Furthermore, the apparatus for recovering a part of the condensate using the heat exchanger apparatus described above is characterized in that a condensate recovery container is connected to a part of the connecting pipe.

本願発明は上記のように構成されている。請求項1、請求項2に記載の発明によれば、気体を自己平衡して凝縮、蒸発させること、即ち、液化し、さらに気化する事が圧縮機による圧送力のみで実現できる。この原理は、気体が凝縮、液化及び液体から蒸発、気化する相変化時に凝縮潜熱及び蒸発潜熱が発生し、同時に気体の温度変化時に相関する圧力変化も発生するということである。そのため、この熱交換器装置は多岐に亘る産業分野で応用利用する事ができることとなり、従来の複雑で大規模な装置、システムの必要性を解消する事ができる。   The present invention is configured as described above. According to the first and second aspects of the present invention, self-equilibrating, condensing and evaporating the gas, that is, liquefying and further vaporizing can be realized only by a pumping force by the compressor. The principle is that latent heat of condensation and latent heat of vaporization are generated at the time of phase change in which gas is condensed, liquefied, and evaporated and vaporized from the liquid, and at the same time, a correlated pressure change is also generated at the time of gas temperature change. Therefore, this heat exchanger apparatus can be applied and utilized in a wide variety of industrial fields, and the need for conventional complicated and large-scale apparatuses and systems can be eliminated.

また、本願の請求項3乃至請求項6に記載の発明によれば、請求項1、請求項2に記載の熱交換器装置をバイパス路に設け、また、ホットガスラインを設けて各々切り替えバルブで冷媒の流路を切り替える事ができるため、冷媒ガスの高圧減衰を行なって圧縮冷凍機への圧力負荷を少なくすることと、冷却器(蒸発器)のデフロスト作用を兼用する事ができる冷凍サイクルとする事ができる。   Moreover, according to the invention of Claim 3 thru | or 6 of this application, the heat exchanger apparatus of Claim 1 and Claim 2 is provided in a bypass, Moreover, a hot gas line is provided and each switching valve is provided. The refrigerant flow path can be switched with the refrigeration cycle, which can reduce the pressure load on the compression refrigerator by performing high-pressure attenuation of the refrigerant gas, and can also serve as the defrosting action of the cooler (evaporator) Can be.

さらに、本願の請求項7に記載の発明によれば、請求項1、請求項2に記載の熱交換器装置を用いて、一次側から二次側へ流通流体を送る連結パイプから凝縮、液化されたガスを回収する事ができる。これによって、容易に液化ガスの生成と収容ができ、その他、空気中からドレンを取ることで除湿機等としても応用が可能となる。   Further, according to the invention described in claim 7 of the present application, using the heat exchanger device according to claim 1 and claim 2, condensation and liquefaction are performed from a connecting pipe that feeds a circulating fluid from the primary side to the secondary side. The collected gas can be recovered. As a result, the liquefied gas can be easily generated and stored, and other applications such as a dehumidifier can be made by removing the drain from the air.

図面として示し、実施例で説明したように構成することで実現した。   This was realized by configuring as illustrated in the drawings and described in the examples.

次に、本発明に係る自己平衡凝縮、蒸発熱交換器装置の機構と原理を図1乃至図3を参照して説明し、図4によって冷凍サイクルを、図5によって液化されたガスの一部回収装置を説明する。図1(A)は本発明に係る自己平衡凝縮、蒸発熱交換器装置の初期状態を示す図、図1(B)は同じくその状態のp−h線図、図2(A)は同じく凝縮蒸発生成開始状態を示す図、図2(B)は同じくその状態のp−h線図、図3(A)は経時変化後の完全凝縮液生成状態を示す図、図3(B)は同じくその状態のp−h線図、図4はこの自己平衡凝縮、蒸発熱交換器装置を組み込んだ冷凍サイクルを示す回路図である。   Next, the mechanism and principle of the self-equilibrium condensation / evaporation heat exchanger apparatus according to the present invention will be described with reference to FIGS. 1 to 3. FIG. 4 shows the refrigeration cycle, and FIG. 5 shows a part of the liquefied gas. The recovery device will be described. FIG. 1A is a diagram showing an initial state of a self-equilibrium condensation and evaporation heat exchanger apparatus according to the present invention, FIG. 1B is a ph diagram of that state, and FIG. FIG. 2 (B) is a ph diagram of the state, FIG. 3 (A) is a diagram showing a complete condensate generation state after change with time, and FIG. 3 (B) is the same. FIG. 4 is a circuit diagram showing a refrigeration cycle incorporating this self-equilibrium condensation and evaporative heat exchanger apparatus.

まず、図1乃至図3にあってEXは自己平衡凝縮、蒸発熱交換器装置を示している。この熱交換器装置EXは中間に熱交換プレートKを備えて一次側B(冷却凝縮部)と二次側H(蒸発気化部)とに区分されている。まず、未凝縮の圧縮高圧ガス1aを予冷器(凝縮器)Jを通して一次側Bの流入口Aより導入する。冷却された凝縮液Cは初期状態では皆無である(図1(A)参照)。この一次側Bを通過したガスは経時的に冷却、凝縮された高圧ガス2aとなって一次側Bの流出口Dより吐出され、連結パイプEを通り、膨張弁Fによって減圧される。この膨張弁Fによって高圧高温ガスが絞り膨張作用によって減圧、冷却される(図1(B)参照)。尚、この図1(B)にあってp1は設定した減圧圧力を示し、p2は装置作動初期の高圧圧力を示している。   First, in FIGS. 1 to 3, EX denotes a self-equilibrium condensation / evaporation heat exchanger apparatus. This heat exchanger apparatus EX includes a heat exchange plate K in the middle, and is divided into a primary side B (cooling condensing part) and a secondary side H (evaporation vaporizing part). First, uncondensed compressed high-pressure gas 1a is introduced from an inlet A on the primary side B through a precooler (condenser) J. There is no cooled condensate C in the initial state (see FIG. 1A). The gas that has passed through the primary side B becomes high-pressure gas 2a that has been cooled and condensed over time, is discharged from the outlet D on the primary side B, passes through the connection pipe E, and is decompressed by the expansion valve F. The high-pressure high-temperature gas is decompressed and cooled by the expansion expansion action by the expansion valve F (see FIG. 1B). In FIG. 1B, p1 indicates the set pressure reduction pressure, and p2 indicates the high pressure at the initial stage of operation of the apparatus.

この膨張弁Fで膨張、蒸発した低圧ガス3aは二次側Hの流入口Gから導入する。二次側Hは絞り膨張作用により、当該ガスの凝縮温度より低温に冷却させ、熱交換プレートKを介して対向する一次側Bに流入してくる高圧ガスを凝縮液化する(図2(A)参照)。この際、一次側Bでは未凝縮ガスが冷却されて凝縮潜熱を増巾させる。そして、一次側Bでは冷却された凝縮蒸発凝縮液Cが生成される(図2(B)参照)。この冷却された凝縮液Cは熱交換プレートKを介して対向し、相関する二次側Hの蒸発潜熱の増巾に寄与する。   The low-pressure gas 3a expanded and evaporated by the expansion valve F is introduced from the inlet G on the secondary side H. The secondary side H is cooled to a temperature lower than the condensing temperature of the gas by the expansion action, and condenses and liquefies the high-pressure gas flowing into the opposing primary side B via the heat exchange plate K (FIG. 2A). reference). At this time, on the primary side B, the uncondensed gas is cooled to increase the latent heat of condensation. Then, on the primary side B, a cooled condensed evaporation condensate C is generated (see FIG. 2B). The cooled condensate C faces through the heat exchange plate K and contributes to the increase of the latent heat of vaporization on the secondary side H that is correlated.

冷却された凝縮液Cは連結パイプEを通り、膨張弁Fで断熱膨張を発生させ、蒸発潜熱を増巾して完全凝縮液を生成する(図3(A)、(B)を参照)。この工程を順次高圧ガスを送りながら繰り返し、経時変化して凝縮液の増量、蒸発冷却能力を確立するに至る。   The cooled condensate C passes through the connecting pipe E, generates adiabatic expansion by the expansion valve F, increases the latent heat of vaporization, and generates a complete condensate (see FIGS. 3A and 3B). This process is repeated while sequentially sending high-pressure gas, and changes over time lead to the increase of the condensate and evaporative cooling capacity.

この自己平衡凝縮、蒸発熱交換器装置EXにおける一次側Bの凝縮潜熱は二次側Hの蒸発潜熱によって補完され、二次側Hの蒸発潜熱は一次側Bの凝縮潜熱によって補完される。即ち、一次側Bと二次側Hの取得する潜熱は相乗効果を発揮しながら熱平衡して、継続しながら経時変化して拡大する。   In this self-equilibrium condensation and evaporative heat exchanger apparatus EX, the latent heat of condensation on the primary side B is supplemented by the latent heat of evaporation on the secondary side H, and the latent heat of evaporation on the secondary side H is supplemented by the latent heat of condensation on the primary side B. That is, the latent heat acquired by the primary side B and the secondary side H is in thermal equilibrium while exhibiting a synergistic effect, and changes with time and expands continuously.

つまり、図1〜図2は凝縮液Cが皆無の状態から生成させる工程で、図3は凝縮、蒸発の両相変化が十分に発揮され、継続が可能な状態に確立される工程となる。   That is, FIGS. 1 to 2 are steps for generating the condensate C from a state where there is no condensate C, and FIG. 3 is a step for establishing a state in which both phase changes of condensation and evaporation are sufficiently exhibited and can be continued.

また、各p−h線図にあってp1は前記したように設定した減圧圧力で、即ち、相関する蒸発温度であり、p2は絞り膨張時、即ち、装置作動初期の高圧圧力、p3は絞り膨張冷却により凝縮液化が増量進行後、湿り蒸発断熱膨張を開始した高圧圧力、p4は十分に高圧ガスが凝縮液化して断熱膨張蒸発を連続している時の高圧圧力を示し、各圧力の関係式はp2>p3>p4となり、一次側Bの高圧ガスが凝縮減圧することで達成する。高圧ガス圧はすべて同一圧力p4となり減衰される。   In each ph diagram, p1 is the decompression pressure set as described above, that is, the correlated evaporation temperature, p2 is the high pressure at the time of expansion of the expansion, that is, the initial operation of the apparatus, and p3 is the throttle pressure. After the condensate liquefaction has increased by expansion and cooling, the high pressure at which the wet evaporation adiabatic expansion has started, p4 indicates the high pressure when the high pressure gas is sufficiently condensed and liquefied and adiabatic expansion and evaporation are continued, and the relationship between the pressures The equation is p2> p3> p4, which is achieved by condensing and decompressing the high-pressure gas on the primary side B. All the high-pressure gas pressures are attenuated to the same pressure p4.

次いで、図4を参照して前記した熱交換器装置11(EX)を組み込んだ冷凍サイクルについて説明する。この冷凍サイクルは圧縮冷凍機1を有しており、この圧縮冷凍機1から高圧高温の冷媒ガスを吐出する。通常の冷却作動時にあっては、この圧縮冷凍機1から吐出された冷媒ガスは後述するデフロスト用との切り替えバルブ2を介して通常流路(A1)へ導かれ、凝縮器3で凝縮されて(流路A2)、インタークーラー(予冷器)4の一次側を通って膨張弁5へ入り(流路A3)、ここで減圧、冷却されて冷却器(蒸発器)6へ流入し、その冷却器6によって冷却作用を行なう。   Next, a refrigeration cycle incorporating the heat exchanger apparatus 11 (EX) described above will be described with reference to FIG. This refrigeration cycle has a compression refrigerator 1, and discharges high-pressure and high-temperature refrigerant gas from the compression refrigerator 1. During the normal cooling operation, the refrigerant gas discharged from the compression refrigerator 1 is guided to the normal flow path (A1) through a switching valve 2 for defrosting described later, and is condensed by the condenser 3. (Flow path A2), enters the expansion valve 5 through the primary side of the intercooler (precooler) 4 (flow path A3), where it is depressurized and cooled, and flows into the cooler (evaporator) 6. The cooler 6 performs the cooling action.

冷却器6を通った冷媒は後述するデフロスト作用時の切り替えバルブ7を介してインタークーラー4の二次側へ流入し(流路A4)、このインタークーラー4を通過した後に圧縮冷凍機1へと戻り(流路A5)、循環することとなる。   The refrigerant that has passed through the cooler 6 flows into the secondary side of the intercooler 4 through the switching valve 7 during defrosting described later (flow path A4), and after passing through the intercooler 4, returns to the compression refrigerator 1 ( The flow path A5) is circulated.

また、前記した切り替えバルブ2、7、10はいずれもソレノイドバルブを想定しており、2は吐出側を3ポートとし、7は吸引側を3ポートとしている。切り替えバルブ2の一次側に設けられた圧力スイッチ9が圧縮冷凍機1からの吐出ガスの不凝縮のための高圧を検知すると、切り替えバルブ10が開かれ、冷媒の流路は通常のA2に加えバイパス路C1へも冷媒の一部が分流して導かれていく。この切り替えバルブ10とバイパス路C1によって熱交換器装置11(EX)を組み込むと、常温にあって、安全圧力以下では凝縮することのできない低沸点冷媒(炭酸ガスや非共沸混合冷媒)を使用して超低温を得ることを目的とする場合に好適となる。熱交換器装置11(EX)へ分流された冷媒ガスは流路A1からC1を通り、前述した作用をなして、熱交換器装置11(EX)の二次側流出口から通常の流路A5へ合流して圧縮冷凍機1へ吸引される。   In addition, the switching valves 2, 7, and 10 are assumed to be solenoid valves, with 2 having 3 ports on the discharge side and 7 having 3 ports on the suction side. When the pressure switch 9 provided on the primary side of the switching valve 2 detects a high pressure for non-condensation of the discharge gas from the compression refrigerator 1, the switching valve 10 is opened and the refrigerant flow path is added to the normal A2 A part of the refrigerant is also branched and guided to the bypass C1. When the heat exchanger device 11 (EX) is incorporated by the switching valve 10 and the bypass passage C1, a low-boiling point refrigerant (carbon dioxide gas or non-azeotropic refrigerant mixture) that is at room temperature and cannot be condensed below a safe pressure is used. Thus, it is suitable for the purpose of obtaining an ultra-low temperature. The refrigerant gas branched to the heat exchanger apparatus 11 (EX) passes through the flow paths A1 to C1 to perform the above-described action, and from the secondary side outlet of the heat exchanger apparatus 11 (EX) to the normal flow path A5. And is sucked into the compression refrigerator 1.

この冷媒の流れは熱交換器装置11(EX)によって、高圧側ガスの凝縮を進め、高圧回路の全体としても低圧に減衰する。切り替えバルブ10が開放され、熱交換器装置11(EX)の作用によって高圧側が低圧となれば圧力スイッチ9の検知によって切り替えバルブ10は閉じられ、通常の冷凍サイクルに回復し、冷却作用を安全圧力で継続する。熱交換器装置11(EX)を通過して圧縮冷凍機1に吸引される冷媒は高圧高温ガスから凝縮、蒸発作用を行なった低圧、低温ガスとなる冷凍サイクルを完了したガスであるため、圧縮冷凍機1に障害を与えることはない。   This refrigerant flow is condensed by the high-pressure side gas by the heat exchanger device 11 (EX) and attenuated to a low pressure as a whole of the high-pressure circuit. When the switching valve 10 is opened and the high pressure side becomes low pressure by the action of the heat exchanger device 11 (EX), the switching valve 10 is closed by the detection of the pressure switch 9 and is restored to the normal refrigeration cycle, and the cooling action is made safe pressure Continue on. The refrigerant that passes through the heat exchanger apparatus 11 (EX) and is sucked into the compression refrigerator 1 is a gas that has completed the refrigeration cycle that has been condensed and evaporated from the high-pressure and high-temperature gas to become a low-pressure and low-temperature gas. There is no obstacle to the refrigerator 1.

また、この冷凍サイクルは切り替え弁2を開放することで冷却器6をデフロストすることもできるものとなっている。このデフロスト作用を行なう場合、切り替え弁2を開くと、圧縮冷凍機1から吐出されたホットガスはホットガスライン8を通り、そのままダイレクトに冷却器6へ流入され、この冷却器6をホットガスによって加熱し、除霜する(流路B1)。このデフロスト作用を終えたガスは切り替え弁7によって流路B2へ導かれ、熱交換器装置11(EX)の一次側へ送られる(流路B3)。そして、熱交換器装置11(EX)を通ったガスは前記した流路C2と共通となる流路B4を通り、流路5へ入り圧縮冷凍機1へ吸引される。   Further, this refrigeration cycle can defrost the cooler 6 by opening the switching valve 2. When performing the defrosting operation, when the switching valve 2 is opened, the hot gas discharged from the compression refrigerator 1 passes through the hot gas line 8 and directly flows into the cooler 6 as it is. Heat and defrost (flow path B1). The gas that has finished the defrosting action is guided to the flow path B2 by the switching valve 7 and sent to the primary side of the heat exchanger apparatus 11 (EX) (flow path B3). Then, the gas that has passed through the heat exchanger device 11 (EX) enters the flow path 5 through the flow path B4 that is the same as the flow path C2, and is sucked into the compression refrigerator 1.

このデフロスト方法は、圧縮冷凍機1の圧縮仕事熱と、冷媒の持つ圧縮高温ガスと凝縮潜熱を利用することによる省エネルギーのものとなり、他の電気ヒーター等の加熱装置を付加する必要のない簡便な装置となり、冷媒の冷凍サイクルを安全に連続して行なえるものとしている。   This defrosting method saves energy by using the compression work heat of the compression refrigerator 1 and the compressed high-temperature gas and condensation latent heat of the refrigerant, and does not require any additional heating device such as an electric heater. It becomes a device, and the refrigerant refrigeration cycle can be performed safely and continuously.

さらに、図5を参照して本発明に係る自己平衡凝縮、蒸発熱交換器装置を用いた凝縮液の一部を回収する装置を説明する。図5は前記した装置を示す図で、図3(A)と対応するが、この図5にあっては圧縮機K1とガス吸入口Lを付加してある。ガス吸入口Lから圧縮機K1で吸引され、吐出されたガスは予冷器(凝縮器)Jで予冷する。この際の予冷温度は他の冷却装置を付加して、液化目的の気体の物性に応じて決定する事ができるものとし、自己平衡凝縮、蒸発熱交換器装置EXを通過させ、一次側Bで凝縮液化したガスCを膨張弁Fで蒸発気化させる前段階、即ち、連結パイプEの一部に凝縮液の回収容器(ボンベ)をつなぎ、前記した凝縮液の一部を回収する。未回収となる凝縮液は熱交換器装置EXの二次側Hで蒸発ガスとなり、二次側流出口Iより放出される。   Furthermore, with reference to FIG. 5, the apparatus which collect | recovers a part of condensate using the self-equilibrium condensation and evaporative heat exchanger apparatus which concerns on this invention is demonstrated. FIG. 5 is a view showing the above-described apparatus, and corresponds to FIG. 3A. In FIG. 5, a compressor K1 and a gas inlet L are added. The gas sucked and discharged from the gas inlet L by the compressor K1 is precooled by a precooler (condenser) J. The precooling temperature at this time can be determined according to the physical properties of the gas to be liquefied by adding another cooling device, passed through the self-equilibrium condensation and evaporative heat exchanger device EX, and on the primary side B A condensate recovery container (cylinder) is connected to a part of the connection pipe E before vaporizing the condensed liquid C by the expansion valve F, that is, a part of the condensate is recovered. The unrecovered condensate becomes evaporating gas on the secondary side H of the heat exchanger apparatus EX and is discharged from the secondary side outlet I.

この凝縮液の一部を回収する装置を利用すると、空気をはじめガスの液化が容易に、しかも安価に実現する事ができ、空調設備に応用すると、ドレンを除去する除湿装置として機能させることもできることとなる。   By using a device that recovers a part of this condensate, liquefaction of gas, including air, can be realized easily and inexpensively. When applied to air conditioning equipment, it can function as a dehumidifier that removes drainage. It will be possible.

本願発明に係る自己平衡凝縮、蒸発熱交換器装置は上記のように構成されている。実施例としてこれを組み込んだ冷凍サイクルと凝縮液の一部を回収する装置を示したが、この他にも気液の相変化を強制的に実現させ、その相変化時に生じる潜熱を利用する事ができる装置、システムに幅広く応用実施する事ができ、多岐に亘る産業分野での実施が可能となる。   The self-equilibrium condensing and evaporating heat exchanger apparatus according to the present invention is configured as described above. As an example, a refrigeration cycle incorporating this and an apparatus for recovering a part of the condensate have been shown, but in addition to this, a gas-liquid phase change is forcibly realized and the latent heat generated during the phase change is used. It can be applied to a wide range of devices and systems, and can be implemented in a wide variety of industrial fields.

本発明に係る自己平衡凝縮、蒸発熱交換器装置の初期状態を示す図である。It is a figure which shows the initial state of the self-equilibrium condensation and evaporation heat exchanger apparatus which concerns on this invention. その状態のp−h線図である。It is a ph diagram in this state. 凝縮蒸発生成開始状態を示す図である。It is a figure which shows a condensation evaporation production | generation start state. その状態のp−h線図である。It is a ph diagram in this state. 経時変化後の完全凝縮液生成状態を示す図である。It is a figure which shows the complete condensate production | generation state after a time-dependent change. その状態のp−h線図である。It is a ph diagram in this state. この自己平衡凝縮、蒸発熱交換器装置を組み込んだ冷凍サイクルを示す回路図である。It is a circuit diagram which shows the refrigerating cycle incorporating this self-equilibrium condensation and evaporative heat exchanger apparatus. 自己平衡凝縮、蒸発熱交換器装置を用いた凝縮液の一部を回収する装置を示す図である。It is a figure which shows the apparatus which collect | recovers some condensates using a self-equilibrium condensation and evaporative heat exchanger apparatus.

符号の説明Explanation of symbols

1 圧縮冷凍機
2 切り替えバルブ
3 凝縮器
4 インタークーラー
5 膨張弁
6 冷却器
7 切り替えバルブ
8 ホットガスライン
9 圧力スイッチ
10 切り替えバルブ
11 自己平衡凝縮、蒸発熱交換器装置
12 膨張弁
1a 圧縮、高圧ガス
2a 冷却、凝縮された高圧ガス
3a 膨張、蒸発した低圧ガス
4a 冷却工程を終了した低圧ガス
EX 自己平衡凝縮、蒸発熱交換器装置
A 熱交換器一次側流入口
B 一次側
C 冷却された凝縮液
D 熱交換器一次側流出口
E 連結パイプ
F 膨張弁
G 熱交換器二次側流入口
H 二次側
I 熱交換器二次側流出口
K 熱交換中間プレート
K1 圧縮機
L ガス吸入口
M 凝縮液回収容器
DESCRIPTION OF SYMBOLS 1 Compression refrigerator 2 Switching valve 3 Condenser 4 Intercooler 5 Expansion valve 6 Cooler 7 Switching valve 8 Hot gas line 9 Pressure switch 10 Switching valve 11 Self-equilibrium condensation, evaporative heat exchanger apparatus 12 Expansion valve 1a Compression, high pressure gas 2a Cooled and condensed high pressure gas 3a Expanded and evaporated low pressure gas 4a Cooling process finished low pressure gas EX Self-equilibrium condensation and evaporative heat exchanger device A Heat exchanger primary side inlet B Primary side C Cooled condensate D Heat exchanger primary outlet E Connection pipe F Expansion valve G Heat exchanger secondary inlet H Secondary side I Heat exchanger secondary outlet K Heat exchange intermediate plate K1 Compressor L Gas inlet M Condensate Collection container

Claims (7)

中間に熱交換プレートを備えて一次側と二次側に区分し、その一次側と二次側に各々流入口と流出口を備え、一次側の流出口と二次側の流入口は途中に膨張弁を介して連結パイプで直列に連結させた構成の熱交換器とし、前記した一次側の流入口に圧縮され高圧、高温となっている未凝縮ガスを導入し、この時点で一次側では冷却された凝縮液は皆無であり、この一次側から前記した連結パイプを通じ、膨張弁で減圧し、高圧、高温ガスを絞り膨張作用で減圧、冷却し、これを二次側流入口へ導入し、この二次側を絞り膨張作用によって当該高圧ガスの凝縮温度より低温に冷却し、前記熱交換プレートを介して対向する一次側を冷却し、一次側の未凝縮高圧ガスを凝縮液化し、この未凝縮高圧ガスが冷却されることで凝縮潜熱を増幅し、一次側で冷却された凝縮蒸気、凝縮液を生成し、この生成された凝縮蒸気、凝縮液は相関する二次側の蒸発潜熱の増幅に寄与し、前記した凝縮蒸気、凝縮液は連結パイプを通じて、膨張弁で断熱膨張を発生させ、蒸発潜熱を増幅し、完全凝縮液を生成させるものとし、前記過程を繰り返し、経時変化して凝縮液の増量、蒸発冷却能力を確立させることを特徴とする自己平衡する凝縮、蒸発熱交換器装置。   It has a heat exchange plate in the middle and is divided into a primary side and a secondary side, and has an inlet and an outlet on the primary side and the secondary side, respectively, and the primary side outlet and the secondary side inlet are on the way The heat exchanger is configured to be connected in series with a connecting pipe via an expansion valve, and the uncondensed gas that is compressed and compressed into the primary inlet is introduced into the primary side at this point. There is no cooled condensate, and the pressure is reduced by the expansion valve from the primary side through the connecting pipe described above, the high pressure and high temperature gas is reduced and cooled by the expansion expansion action, and this is introduced into the secondary side inlet. The secondary side is cooled to a temperature lower than the condensing temperature of the high-pressure gas by a constriction expansion action, the primary side opposed through the heat exchange plate is cooled, and the uncondensed high-pressure gas on the primary side is condensed and liquefied. As the uncondensed high-pressure gas is cooled, the latent heat of condensation is amplified and the primary Condensed vapor and condensate cooled in this way are generated, and the generated condensate vapor and condensate contribute to the amplification of the correlated latent heat of vaporization, and the condensed vapor and condensate expand through the connecting pipe. Self-equilibrium characterized by generating adiabatic expansion with a valve, amplifying latent heat of vaporization and generating complete condensate, repeating the above process, and increasing the amount of condensate over time and establishing evaporative cooling capacity Condensing, evaporating heat exchanger device. 前記した一次側凝縮潜熱は二次側蒸発潜熱によって補完され、二次側蒸発潜熱は一次側凝縮潜熱で補完されて、一次側、二次側の取得潜熱は相乗効果を発揮しながら熱平衡して継続しながら経時変化してその効果を拡大していくことを特徴とする請求項1に記載の自己平衡する凝縮、蒸発熱交換器装置。   The primary side condensation latent heat is supplemented by the secondary side latent heat, the secondary side latent heat is complemented by the primary side condensation latent heat, and the acquired latent heats of the primary side and the secondary side are in thermal equilibrium while exhibiting a synergistic effect. 2. The self-equilibrium condensing and evaporating heat exchanger device according to claim 1, wherein the effect is expanded with the lapse of time while continuing. 冷凍機と凝縮器と一次側に膨張弁を備えた冷却器とを少なくとも備え、冷媒を循環させる冷凍サイクルに於いて、前記した凝縮器の二次側に切り替えバルブを備えてバイパス路を有し、そのバイパス路に前記した自己平衡する凝縮、蒸発熱交換器装置を組み込んだことを特徴とする冷凍サイクル。   In a refrigeration cycle that includes at least a refrigerator, a condenser, and a cooler having an expansion valve on the primary side, and circulates the refrigerant, a switching valve is provided on the secondary side of the condenser, and a bypass path is provided. A refrigerating cycle comprising the self-equilibrium condensing and evaporating heat exchanger device incorporated in the bypass path. 前記した冷凍サイクルにはインタークーラーを備え、そのインタークーラーの一次側に冷媒を通してから冷却器へ送り、その冷却器からの冷媒はインタークーラーの二次側を通して冷凍機へ戻すことを特徴とする請求項3に記載の冷凍サイクル。   The refrigeration cycle is provided with an intercooler, and the refrigerant is passed through the primary side of the intercooler and then sent to the cooler, and the refrigerant from the cooler is returned to the refrigerator through the secondary side of the intercooler. The refrigeration cycle described. 前記した冷凍サイクルの凝縮器の一次側に切り替えバルブを備えてホットガスラインと切り替え可能とし、そのホットガスラインからホットガスを冷却器へ送ることでデフロスト作用と冷媒の高圧減衰とを凝縮器の二次側の切り替えバルブの切り替えで兼用する事ができることを特徴とする請求項3または請求項4に記載の冷媒サイクル。   A switching valve is provided on the primary side of the condenser of the refrigeration cycle described above so that it can be switched to a hot gas line. By sending hot gas from the hot gas line to the cooler, the defrosting action and the high-pressure attenuation of the refrigerant can be achieved. 5. The refrigerant cycle according to claim 3, wherein the refrigerant cycle can be shared by switching of the secondary side switching valve. 前記したホットガスラインとの切り替えバルブの一次側に圧力スイッチを備え、その圧力スイッチでの高圧検出で冷媒流路の切り替えがなされることを特徴とする請求項3、請求項4または請求項5に記載の冷凍サイクル。   6. A pressure switch is provided on the primary side of the switching valve for the hot gas line, and the refrigerant flow path is switched by detecting a high pressure with the pressure switch. The refrigeration cycle described in 1. 前記した連結パイプの一部に凝縮液の回収容器を接続してあることを特徴とする自己平衡する凝縮、蒸発熱交換器装置を用いたガスの凝縮液の一部を回収する装置。   An apparatus for recovering a part of a gas condensate using a self-equilibrium condensing and evaporating heat exchanger device, wherein a condensate recovery container is connected to a part of the connecting pipe.
JP2007338935A 2007-12-28 2007-12-28 Self-balancing condensing and evaporating heat exchanger device, refrigerating cycle incorporating it, and partial recovery device for condensate using the same Pending JP2009156563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007338935A JP2009156563A (en) 2007-12-28 2007-12-28 Self-balancing condensing and evaporating heat exchanger device, refrigerating cycle incorporating it, and partial recovery device for condensate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007338935A JP2009156563A (en) 2007-12-28 2007-12-28 Self-balancing condensing and evaporating heat exchanger device, refrigerating cycle incorporating it, and partial recovery device for condensate using the same

Publications (1)

Publication Number Publication Date
JP2009156563A true JP2009156563A (en) 2009-07-16

Family

ID=40960769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007338935A Pending JP2009156563A (en) 2007-12-28 2007-12-28 Self-balancing condensing and evaporating heat exchanger device, refrigerating cycle incorporating it, and partial recovery device for condensate using the same

Country Status (1)

Country Link
JP (1) JP2009156563A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183968A (en) * 2014-03-26 2015-10-22 株式会社マック Air dryer device
CN110961538A (en) * 2019-12-27 2020-04-07 浙江博汇汽车部件有限公司 Cooling system of hot stamping die

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118157A (en) * 1977-03-25 1978-10-16 Toyoda Machine Works Ltd Measuring apparatus for displacement of center in measured article with surface of circular arc or cylinder
JPH0953871A (en) * 1995-08-11 1997-02-25 Sanyo Electric Co Ltd Freezer
JP2001021229A (en) * 1999-07-07 2001-01-26 Yamaha Motor Co Ltd Refrigerant circulation type heat transfer device
JP2004361033A (en) * 2003-06-06 2004-12-24 Mac:Kk Defrosting method and its system
JP2005077047A (en) * 2003-09-03 2005-03-24 Mac:Kk Hot gas type temperature control device
JP2005114267A (en) * 2003-10-09 2005-04-28 Mac:Kk Freezer device using natural refrigerant
JP2006064331A (en) * 2004-08-30 2006-03-09 Mac:Kk Refrigeration method and refrigeration unit by nonazeotropic refrigerant mixture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118157A (en) * 1977-03-25 1978-10-16 Toyoda Machine Works Ltd Measuring apparatus for displacement of center in measured article with surface of circular arc or cylinder
JPH0953871A (en) * 1995-08-11 1997-02-25 Sanyo Electric Co Ltd Freezer
JP2001021229A (en) * 1999-07-07 2001-01-26 Yamaha Motor Co Ltd Refrigerant circulation type heat transfer device
JP2004361033A (en) * 2003-06-06 2004-12-24 Mac:Kk Defrosting method and its system
JP2005077047A (en) * 2003-09-03 2005-03-24 Mac:Kk Hot gas type temperature control device
JP2005114267A (en) * 2003-10-09 2005-04-28 Mac:Kk Freezer device using natural refrigerant
JP2006064331A (en) * 2004-08-30 2006-03-09 Mac:Kk Refrigeration method and refrigeration unit by nonazeotropic refrigerant mixture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183968A (en) * 2014-03-26 2015-10-22 株式会社マック Air dryer device
CN110961538A (en) * 2019-12-27 2020-04-07 浙江博汇汽车部件有限公司 Cooling system of hot stamping die

Similar Documents

Publication Publication Date Title
JP4973872B2 (en) CO2 refrigerator
JP3604973B2 (en) Cascade type refrigeration equipment
WO2012066763A1 (en) Freezer
WO2013018148A1 (en) Refrigeration device
JP3614330B2 (en) Supercritical vapor compression refrigeration cycle
WO1999010686A1 (en) Cooling cycle
WO2007034939A1 (en) Thermal converter for condensation and refrigeration system using the same
JPH07190571A (en) Refrigerator using non-azeotropic mixture refrigerant
JP4841288B2 (en) Refrigeration equipment
WO2006027330A1 (en) Co2 compression refrigeration apparatus for low temperature applications
JP2008164288A (en) Refrigerating device
JP2006266523A (en) Cycle system obtained by incorporating multistage ejector in cold region-corresponding heat pump utilizing mixed refrigerant of dimethyl ether and carbon dioxide
JP2004286289A (en) Refrigerant cycle device
JP4841287B2 (en) Refrigeration equipment
JP5506638B2 (en) Refrigeration equipment
JP2009156563A (en) Self-balancing condensing and evaporating heat exchanger device, refrigerating cycle incorporating it, and partial recovery device for condensate using the same
JP2000146372A (en) Refrigerant recovering apparatus
JP2006003023A (en) Refrigerating unit
JP6288942B2 (en) Refrigeration equipment
JP2013002737A (en) Refrigeration cycle device
JP2002168536A (en) Air conditioner
US9599371B2 (en) Installation and method for the production of cold and/or heat
JP2004226018A (en) Refrigeration unit
JP6682081B1 (en) Freezing method
JP4108656B2 (en) Refrigeration method with non-azeotropic refrigerant mixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120106