JP2013190154A - Refrigeration apparatus - Google Patents

Refrigeration apparatus Download PDF

Info

Publication number
JP2013190154A
JP2013190154A JP2012056432A JP2012056432A JP2013190154A JP 2013190154 A JP2013190154 A JP 2013190154A JP 2012056432 A JP2012056432 A JP 2012056432A JP 2012056432 A JP2012056432 A JP 2012056432A JP 2013190154 A JP2013190154 A JP 2013190154A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration cycle
compressor
refrigeration
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012056432A
Other languages
Japanese (ja)
Inventor
Toshihiro Sugiyama
智弘 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012056432A priority Critical patent/JP2013190154A/en
Publication of JP2013190154A publication Critical patent/JP2013190154A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration apparatus capable of stably obtaining a high COP by suppressing an influence of an ambient temperature irrespective of a refrigeration cycle using carbon dioxide as coolant.SOLUTION: The refrigeration apparatus 10 includes a first refrigeration cycle 12 which comprises a first compressor 18, a first heat radiator 20, a second compressor 22, a second heat radiator 24 connected with the discharge side of the second compressor 22, a heat exchanger 16 connected with the outlet side of the second heat radiator 24, an expansion device 26 connected with the outlet side of the heat exchanger 16 and a heat sink 28, and uses carbon dioxide as coolant, and a second refrigeration cycle 14 which comprises a compressor 36, a heat radiator 38 and an expansion device 40, and connects a heat exchanger 16 between the outlet side of the expansion device 40 and the compressor 36, wherein the heat exchanger 16 is configured so as to make the coolant of the first refrigeration cycle 12 and the coolant of the second refrigeration cycle 14 heat-exchangeable to each other.

Description

本発明は、圧縮機、放熱器、膨張装置及び吸熱器を主構成機器とする冷凍サイクルを2系統用いた冷凍装置に関する。   The present invention relates to a refrigeration apparatus using two systems of refrigeration cycles having a compressor, a radiator, an expansion device, and a heat absorber as main components.

従来より広く用いられている冷凍装置100の基本的な構成図を図2に示す。冷凍装置100は、圧縮機102、放熱器(凝縮器)104、膨張装置106及び吸熱器(蒸発器)108の主構成機器を配管110で連結し、内部に冷媒が封入されている。このような冷凍装置100は、圧縮機102で断熱圧縮されて高温・高圧になった冷媒を、放熱器104で冷却(放熱)した後、膨張装置106で断熱膨張させて低温・低圧とし、この冷媒を、吸熱器108で加温(吸熱)してから圧縮機102に戻すサイクル(冷凍サイクル)を形成している。   FIG. 2 shows a basic configuration diagram of the refrigeration apparatus 100 that has been widely used conventionally. In the refrigeration apparatus 100, main components such as a compressor 102, a radiator (condenser) 104, an expansion device 106, and a heat absorber (evaporator) 108 are connected by a pipe 110, and a refrigerant is sealed inside. In such a refrigeration apparatus 100, the refrigerant that has been adiabatically compressed by the compressor 102 and cooled to high temperature and high pressure is cooled (heat dissipated) by the radiator 104, and then adiabatically expanded by the expansion device 106 to obtain low temperature and low pressure. A cycle (refrigeration cycle) is formed in which the refrigerant is heated (absorbed) by the heat absorber 108 and then returned to the compressor 102.

冷凍装置100の一般的な設置方法としては、膨張装置106と吸熱器108を冷凍ショーケース等の冷凍や冷却を目的とする機器(利用サイト)に設置し、商品等を所定温度に冷却するために使用し、他の構成機器である圧縮機102や放熱器104は、一つのユニットとして冷凍ショーケース等の機械区画に設置したり、或いは屋外に設置したりしている。   As a general installation method of the refrigeration apparatus 100, the expansion device 106 and the heat absorber 108 are installed in a device (use site) for the purpose of refrigeration and cooling, such as a refrigeration showcase, and the product is cooled to a predetermined temperature. The compressor 102 and the radiator 104, which are other constituent devices, are installed in a machine compartment such as a refrigeration showcase as a unit, or are installed outdoors.

冷凍装置100の冷媒としては、フロン系冷媒や、アンモニアや炭化水素等の自然冷媒が一般的であるが、フロン系冷媒は地球温暖化への影響が大きいので、その使用削減が求められている。一方、自然冷媒は、毒性や強い燃焼性等を有しており、機器コストが高くなる等の問題を持っている。そこで、近年は、地球温暖化への影響が小さく、危険性や安全性等を考慮して二酸化炭素(炭酸ガス)を冷媒として用いることが行われてきている。   The refrigerant of the refrigeration apparatus 100 is generally a chlorofluorocarbon refrigerant or a natural refrigerant such as ammonia or hydrocarbon. However, since the chlorofluorocarbon refrigerant has a great influence on global warming, its use reduction is required. . On the other hand, natural refrigerants have problems such as toxicity and strong flammability, resulting in high equipment costs. Therefore, in recent years, carbon dioxide (carbon dioxide) has been used as a refrigerant in consideration of danger, safety, and the like because it has little influence on global warming.

二酸化炭素は、一般的に知られているp−h(圧力−エンタルピ)線図によれば三重点の温度が低く(約30.9℃)、圧力が高い(約7.4MPa)という特徴があり、冷凍サイクルで高い冷却量を得ようとすると、他の冷媒に比べて非常に高い圧力(例えば、10MPa程度)まで昇圧する必要がある。このため、二酸化炭素冷媒を用いた冷凍サイクルは、冷却熱量/圧縮動力で示される冷凍効率(COP)が低いこと、さらに圧縮機出口での冷媒温度が高くなることが課題となっている。特に、周囲温度が高い場合には、冷却熱量が小さくなり、冷媒を周囲温度よりも高くするために、より高い圧力まで昇圧しなければならず、周囲温度が高い夏季等にはCOPが一層低下することになる。   Carbon dioxide is characterized by a low triple point temperature (about 30.9 ° C.) and high pressure (about 7.4 MPa) according to a generally known ph (pressure-enthalpy) diagram. In order to obtain a high cooling amount in the refrigeration cycle, it is necessary to increase the pressure to a very high pressure (for example, about 10 MPa) compared to other refrigerants. For this reason, the refrigeration cycle using a carbon dioxide refrigerant has a problem that the refrigeration efficiency (COP) indicated by the amount of cooling heat / compression power is low and the refrigerant temperature at the compressor outlet is high. In particular, when the ambient temperature is high, the amount of heat for cooling becomes small, and in order to make the refrigerant higher than the ambient temperature, the pressure must be increased to a higher pressure. Will do.

このような二酸化炭素冷媒での問題について、例えば、特許文献1には、放熱器と膨張装置との間の配管に分岐部を設けて二酸化炭素冷媒を分流させ、支流側の冷媒を別の膨張装置によって膨張させて熱交換器に通して本流側の二酸化炭素冷媒と熱交換させることで、本流側の二酸化炭素冷媒を冷却する構成が開示されている。また、特許文献2には、圧縮機から吐出された二酸化炭素冷媒を、放熱器で放熱させた後、第1の膨張装置で膨張させてから冷却水で冷却し、その後、第2の膨張装置で膨張させてから蒸発器へと導入する構成が開示されている。さらに、特許文献3には、冷媒としてフロン系のR22を用いた冷凍サイクルと、冷媒として二酸化炭素を用いた冷凍サイクルとを備え、R22側の蒸発器と二酸化炭素側の凝縮器とを熱交換可能とした構成が開示されている。   Regarding such a problem with the carbon dioxide refrigerant, for example, in Patent Document 1, a branch portion is provided in a pipe between the radiator and the expansion device to divert the carbon dioxide refrigerant, and another refrigerant on the branch side is expanded. A configuration is disclosed in which the main stream side carbon dioxide refrigerant is cooled by being expanded by an apparatus and passing through a heat exchanger to exchange heat with the main stream side carbon dioxide refrigerant. In Patent Document 2, the carbon dioxide refrigerant discharged from the compressor is radiated by a radiator, then expanded by a first expansion device, cooled by cooling water, and then the second expansion device. The structure which expand | swells by this and introduce | transduces into an evaporator is disclosed. Further, Patent Document 3 includes a refrigeration cycle using a fluorocarbon R22 as a refrigerant and a refrigeration cycle using carbon dioxide as a refrigerant, and exchanges heat between the R22 side evaporator and the carbon dioxide side condenser. A possible configuration is disclosed.

特許第4207235号公報Japanese Patent No. 4207235 特開2006−194569号公報Japanese Patent Laid-Open No. 2006-194568 特開平11−14172号公報Japanese Patent Laid-Open No. 11-14172

ところが、上記特許文献1の構成は、周囲温度によって分流する冷媒量を変化させる必要があり、安定した効率を得るための制御が難しく、さらに、分流された支流側の冷媒も二酸化炭素であることから冷凍効率が低く、システム全体での効率向上を図ることが困難である。また、特許文献2の構成は、低温の冷却水を確保するために、別途冷却水製造系統が必要となってコストが増加し、水を使用するので冷却温度を氷点下まで下げることができず、システム全体での効率向上は限定的なものとなっている。さらに、特許文献3の構成は、二酸化炭素冷媒を用いた冷凍サイクルの凝縮器を、第2の冷媒(フロン系のR22)で直接的に冷却するため、冷却には第2の冷媒を多量に必要とし、第2の冷媒を用いた冷凍サイクルの装置構成の大型化を惹起する。   However, in the configuration of Patent Document 1, it is necessary to change the amount of refrigerant to be diverted depending on the ambient temperature, it is difficult to control to obtain stable efficiency, and the diverted side refrigerant is also carbon dioxide. Therefore, the refrigeration efficiency is low, and it is difficult to improve the efficiency of the entire system. In addition, the configuration of Patent Document 2 requires a separate cooling water production system in order to secure low-temperature cooling water, which increases costs and uses water, so the cooling temperature cannot be lowered to below freezing point. Efficiency gains throughout the system are limited. Furthermore, in the configuration of Patent Document 3, the condenser of the refrigeration cycle using the carbon dioxide refrigerant is directly cooled by the second refrigerant (CFC-based R22). Therefore, a large amount of the second refrigerant is used for cooling. Necessary, causing an increase in the size of the apparatus configuration of the refrigeration cycle using the second refrigerant.

本発明は、上記従来技術の課題を考慮してなされたものであり、二酸化炭素を冷媒として用いた冷凍サイクルであっても、周囲温度の影響を抑えて高いCOPを安定して得ることができる冷凍装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art. Even in a refrigeration cycle using carbon dioxide as a refrigerant, it is possible to stably obtain a high COP while suppressing the influence of the ambient temperature. An object is to provide a refrigeration apparatus.

本発明に係る冷凍装置は、第1圧縮機と、該第1圧縮機の吐出側に接続される第1放熱器と、該第1放熱器の出口側に接続される第2圧縮機と、該第2圧縮機の吐出側に接続される第2放熱器と、該第2放熱器の出口側に接続される熱交換器と、該熱交換器の出口側に接続される第1膨張装置と、該第1膨張装置の出口側に接続される吸熱器とを有し、冷媒として二酸化炭素を用いた第1冷凍サイクルと、圧縮機と、該圧縮機の吐出側に接続される放熱器と、該放熱器の出口側に接続される第2膨張装置とを有し、前記第2膨張装置の出口側と前記圧縮機との間に前記熱交換器を接続した第2冷凍サイクルとを備え、前記熱交換器は、前記第1冷凍サイクルの冷媒と、前記第2冷凍サイクルの冷媒とを熱交換可能であることを特徴とする。   A refrigeration apparatus according to the present invention includes a first compressor, a first radiator connected to a discharge side of the first compressor, a second compressor connected to an outlet side of the first radiator, A second radiator connected to the discharge side of the second compressor, a heat exchanger connected to the outlet side of the second radiator, and a first expansion device connected to the outlet side of the heat exchanger And a heat sink connected to the outlet side of the first expansion device, a first refrigeration cycle using carbon dioxide as a refrigerant, a compressor, and a radiator connected to the discharge side of the compressor And a second expansion device connected to the outlet side of the radiator, and a second refrigeration cycle in which the heat exchanger is connected between the outlet side of the second expansion device and the compressor. The heat exchanger can exchange heat between the refrigerant of the first refrigeration cycle and the refrigerant of the second refrigeration cycle.

このような構成によれば、第1冷凍サイクル側で第1膨張装置に流入する直前に熱交換器を流れる二酸化炭素冷媒を、第2冷凍サイクル側の冷媒が熱交換器で蒸発する際の吸熱作用によって冷却することができるため、第1冷凍サイクルの二酸化炭素冷媒の温度を周囲温度よりも低くすることができ、二酸化炭素冷媒を用いた第1冷凍サイクルのCOPを高めることができる。そして、第2冷凍サイクルには、一般的なフロン系等のCOPが高い冷媒を用いることができるため、システム全体のCOPを高くすることができる。しかも、熱交換器により、二酸化炭素冷媒の第1膨張装置直前の温度を、周囲温度にかかわらず安定させることができるため、周囲温度が高い夏季等であっても高いCOPを安定して得ることができる。   According to such a configuration, the carbon dioxide refrigerant flowing through the heat exchanger immediately before flowing into the first expansion device on the first refrigeration cycle side is absorbed by the heat absorption when the refrigerant on the second refrigeration cycle side evaporates in the heat exchanger. Since it can cool by the action, the temperature of the carbon dioxide refrigerant in the first refrigeration cycle can be made lower than the ambient temperature, and the COP of the first refrigeration cycle using the carbon dioxide refrigerant can be increased. In the second refrigeration cycle, since a refrigerant having a high COP such as a general chlorofluorocarbon can be used, the COP of the entire system can be increased. Moreover, since the temperature immediately before the first expansion device of the carbon dioxide refrigerant can be stabilized by the heat exchanger regardless of the ambient temperature, it is possible to stably obtain a high COP even in the summer when the ambient temperature is high. Can do.

前記熱交換器は、前記第1冷凍サイクルの冷媒と、前記第2冷凍サイクルの冷媒とを対向流とした対向流型熱交換器であると、熱交換効率が向上すると共に、熱交換器から流出する第1冷凍サイクルの二酸化炭素冷媒の温度を、熱交換器に流入する第2冷凍サイクルの冷媒の温度近くまで低下させ、COPを一層向上させることができる。   When the heat exchanger is a counterflow type heat exchanger in which the refrigerant of the first refrigeration cycle and the refrigerant of the second refrigeration cycle are counterflowed, the heat exchange efficiency is improved and the heat exchanger The temperature of the carbon dioxide refrigerant in the first refrigeration cycle flowing out can be lowered to near the temperature of the refrigerant in the second refrigeration cycle flowing into the heat exchanger, and COP can be further improved.

前記第2冷凍サイクルには、二酸化炭素以外の冷媒が用いられると、システム全体でのCOPを向上させることができるため好ましい。二酸化炭素以外の冷媒としては、例えば、フロン系冷媒や自然冷媒等、二酸化炭素よりもCOPが高い冷媒を用いるとよい。   It is preferable that a refrigerant other than carbon dioxide is used for the second refrigeration cycle because COP in the entire system can be improved. As the refrigerant other than carbon dioxide, for example, a refrigerant having a COP higher than that of carbon dioxide such as a fluorocarbon refrigerant or a natural refrigerant may be used.

前記第1冷凍サイクルでの冷媒温度に基づき、前記第2冷凍サイクルの運転状態を制御する制御装置を備えると、第1冷凍サイクルでの冷媒温度に基づき、第2冷凍サイクルの運転の停止等を行うことができるため、システム全体の効率を一層高めることができる。   When a control device is provided that controls the operating state of the second refrigeration cycle based on the refrigerant temperature in the first refrigeration cycle, the operation of the second refrigeration cycle is stopped based on the refrigerant temperature in the first refrigeration cycle. Since it can be performed, the efficiency of the entire system can be further increased.

この場合、前記制御装置は、前記第1冷凍サイクルでの熱交換器の出口での冷媒温度を検出し、該検出した冷媒温度に基づき、前記第2冷凍サイクルでの圧縮機の運転状態を制御する構成とすることが好ましい。そうすると、熱交換器を出る二酸化炭素冷媒の温度を、第2冷凍サイクルによって最適に管理することができ、しかも二酸化炭素冷媒の状況に応じて、第2冷凍サイクルの圧縮機の運転を停止し又は回転数を低下や増加させることができるため、システム全体の効率をより一層高めることができる。   In this case, the control device detects the refrigerant temperature at the outlet of the heat exchanger in the first refrigeration cycle, and controls the operating state of the compressor in the second refrigeration cycle based on the detected refrigerant temperature. It is preferable to adopt a configuration to Then, the temperature of the carbon dioxide refrigerant exiting the heat exchanger can be optimally managed by the second refrigeration cycle, and the operation of the compressor of the second refrigeration cycle is stopped depending on the situation of the carbon dioxide refrigerant, or Since the rotational speed can be reduced or increased, the efficiency of the entire system can be further increased.

本発明によれば、第1冷凍サイクル側で第1膨張装置に流入する直前に熱交換器を流れる二酸化炭素冷媒を、第2冷凍サイクル側の冷媒が熱交換器で蒸発する際の吸熱作用によって冷却することができるため、第1冷凍サイクルの二酸化炭素冷媒の温度を周囲温度よりも低くすることができ、二酸化炭素冷媒を用いた第1冷凍サイクルのCOPを高めることができる。また、熱交換器により、二酸化炭素冷媒の第1膨張装置直前の温度を、周囲温度にかかわらず安定させることができるため、周囲温度が高い夏季等であっても高いCOPを安定して得ることができる。   According to the present invention, the carbon dioxide refrigerant flowing through the heat exchanger immediately before flowing into the first expansion device on the first refrigeration cycle side is absorbed by the endothermic action when the refrigerant on the second refrigeration cycle side evaporates in the heat exchanger. Since it can cool, the temperature of the carbon dioxide refrigerant of a 1st freezing cycle can be made lower than ambient temperature, and COP of the 1st freezing cycle using a carbon dioxide refrigerant can be raised. Further, since the temperature immediately before the first expansion device of the carbon dioxide refrigerant can be stabilized by the heat exchanger regardless of the ambient temperature, a high COP can be stably obtained even in the summer when the ambient temperature is high. Can do.

図1は、本発明の一実施形態に係る冷凍装置の全体構成図である。FIG. 1 is an overall configuration diagram of a refrigeration apparatus according to an embodiment of the present invention. 図2は、従来用いられている一般的な冷凍装置の構成図である。FIG. 2 is a configuration diagram of a general refrigeration apparatus conventionally used.

以下、本発明に係る冷凍装置について好適な実施の形態を挙げ、添付の図面を参照しながら詳細に説明する。   Hereinafter, preferred embodiments of a refrigeration apparatus according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の一実施形態に係る冷凍装置10の全体構成図である。冷凍装置10は、冷媒として二酸化炭素を用いた第1冷凍サイクル(第1系統)12と、冷媒として二酸化炭素以外の冷媒(以下、「第2冷媒」ともいう)を用いた第2冷凍サイクル(第2系統)14との2系統の冷凍サイクルを備え、一方の二酸化炭素冷媒と他方の第2冷媒とを熱交換器16で熱交換させるように構成したシステムである。   FIG. 1 is an overall configuration diagram of a refrigeration apparatus 10 according to an embodiment of the present invention. The refrigeration apparatus 10 includes a first refrigeration cycle (first system) 12 that uses carbon dioxide as a refrigerant, and a second refrigeration cycle that uses a refrigerant other than carbon dioxide (hereinafter also referred to as “second refrigerant”) as a refrigerant ( This is a system that includes two refrigeration cycles (second system) 14 and that heat-exchanges one carbon dioxide refrigerant and the other second refrigerant with a heat exchanger 16.

第1冷凍サイクル12は、第1圧縮機18と、第1圧縮機18の吐出側に接続される第1放熱器(第1凝縮器、中間放熱器)20と、第1放熱器20の出口側に接続される第2圧縮機22と、第2圧縮機22の吐出側に接続される第2放熱器(第2凝縮器)24と、第2放熱器24の出口側に接続される前記熱交換器16と、熱交換器16の出口側に接続される膨張装置(第1膨張装置、膨張弁)26と、膨張装置26の出口側に接続される吸熱器(蒸発器)28とを主構成機器とし、これらの間が配管(冷媒配管)30によって連結されることで冷凍サイクルを構成している。上記の通り、第1冷凍サイクル12には、冷媒として二酸化炭素(炭酸ガス、CO)が用いられる。 The first refrigeration cycle 12 includes a first compressor 18, a first radiator (first condenser, intermediate radiator) 20 connected to the discharge side of the first compressor 18, and an outlet of the first radiator 20. A second compressor 22 connected to the side, a second radiator (second condenser) 24 connected to the discharge side of the second compressor 22, and the outlet connected to the outlet side of the second radiator 24. A heat exchanger 16, an expansion device (first expansion device, expansion valve) 26 connected to the outlet side of the heat exchanger 16, and a heat absorber (evaporator) 28 connected to the outlet side of the expansion device 26 A refrigeration cycle is configured by connecting these components with a pipe (refrigerant pipe) 30 as a main component device. As described above, the first refrigeration cycle 12 uses carbon dioxide (carbon dioxide, CO 2 ) as a refrigerant.

第1冷凍サイクル12では、第1圧縮機18で昇圧されてエンタルピが高くなり、温度が周囲温度よりも高くなった冷媒を、第1放熱器20で該第1放熱器20に付設されたファン(送風装置)32から送られる周囲温度の空気で冷却してエンタルピを下げ、温度を周囲温度付近にする。続いて、この冷媒を第2圧縮機22で所定圧まで昇圧する。第2圧縮機22で昇圧されて高エンタルピ・高温・高圧になった冷媒は、第2放熱器24でファン(送風装置)34から送られる周囲温度の空気で冷却されて低エンタルピとなり、温度が周囲温度付近となる。第2放熱器24を出た冷媒は、熱交換器16の流路16aを通過して冷却された後、膨張装置26で断熱膨張されて低圧となり、周囲温度よりも低温の目標温度となって吸熱器28に流入し、外部から熱を吸収して高エンタルピとなった後、第1圧縮機18に戻ることで冷凍サイクルが形成される。吸熱器28で発生する冷温(冷熱)は、例えばショーケース等の冷却に使用される。   In the first refrigeration cycle 12, the fan whose pressure is increased by the first compressor 18 to increase the enthalpy and the temperature is higher than the ambient temperature is supplied to the first radiator 20 by a fan attached to the first radiator 20. (Blower) Cools with air at an ambient temperature sent from 32 to lower the enthalpy and bring the temperature to the vicinity of the ambient temperature. Subsequently, the refrigerant is boosted to a predetermined pressure by the second compressor 22. The refrigerant that has been pressurized by the second compressor 22 to become high enthalpy, high temperature, and high pressure is cooled by the air at the ambient temperature sent from the fan (blower device) 34 by the second radiator 24 to become low enthalpy, Near ambient temperature. The refrigerant that has exited the second radiator 24 passes through the flow path 16a of the heat exchanger 16 and is cooled. Then, the refrigerant is adiabatically expanded by the expansion device 26 to become a low pressure, and becomes a target temperature lower than the ambient temperature. After flowing into the heat absorber 28 and absorbing heat from the outside to become high enthalpy, the refrigeration cycle is formed by returning to the first compressor 18. The cold temperature (cold heat) generated in the heat absorber 28 is used for cooling a showcase, for example.

一方、第2冷凍サイクル14は、圧縮機36と、圧縮機36の吐出側に接続される放熱器(凝縮器)38と、放熱器38の出口側に接続される膨張装置(第2膨張装置、膨張弁)40と、膨張装置40の出口側に接続される前記熱交換器16とを主構成機器とし、これらの間が配管(冷媒配管)42によって連結されることで冷凍サイクルを構成している。上記の通り、第2冷凍サイクル14には、冷媒として二酸化炭素以外の第2冷媒が用いられる。本実施形態では、第2冷媒として、フロン系のR134aを用いる構成を例示するが、第2冷媒としては、一般的に用いられる二酸化炭素冷媒以外の冷媒であれば特に限定されず、例えば、アンモニアやHC(炭化水素)等の自然冷媒や、各種のフロン系冷媒等が挙げられる。   On the other hand, the second refrigeration cycle 14 includes a compressor 36, a radiator (condenser) 38 connected to the discharge side of the compressor 36, and an expansion device (second expansion device) connected to the outlet side of the radiator 38. , An expansion valve) 40 and the heat exchanger 16 connected to the outlet side of the expansion device 40 are main components, and a pipe (refrigerant pipe) 42 is connected between them to constitute a refrigeration cycle. ing. As described above, the second refrigeration cycle 14 uses the second refrigerant other than carbon dioxide as the refrigerant. In the present embodiment, a configuration using CFC-based R134a is exemplified as the second refrigerant, but the second refrigerant is not particularly limited as long as it is a refrigerant other than a commonly used carbon dioxide refrigerant. For example, ammonia And natural refrigerants such as HC (hydrocarbon) and various chlorofluorocarbon refrigerants.

第2冷凍サイクル14では、圧縮機36で昇圧されてエンタルピが高くなり、温度が周囲温度よりも高くなった第2冷媒を、放熱器38で該放熱器38に付設されたファン(送風装置)43から送られる周囲温度の空気で冷却してエンタルピを下げ、温度を周囲温度付近にする。続いて、この第2冷媒は、膨張装置40で断熱膨張されて低圧・低温の状態として熱交換器16に流入し、流路16bを通過するときに流路16aを流れる第1冷凍サイクル12の二酸化炭素冷媒から熱を吸収して高エンタルピとなった後、圧縮機36に戻ることで冷凍サイクルが形成される。   In the second refrigeration cycle 14, the second refrigerant whose enthalpy is increased by the pressure by the compressor 36 and the temperature becomes higher than the ambient temperature is supplied to the fan (blower) attached to the radiator 38 by the radiator 38. The enthalpy is lowered by cooling with air at an ambient temperature sent from 43, and the temperature is brought to the ambient temperature. Subsequently, the second refrigerant is adiabatically expanded by the expansion device 40 and flows into the heat exchanger 16 in a low-pressure and low-temperature state, and flows through the flow path 16a when passing through the flow path 16b. After absorbing heat from the carbon dioxide refrigerant to become high enthalpy, returning to the compressor 36 forms a refrigeration cycle.

このように、冷凍装置10には、第1冷凍サイクル12の二酸化炭素冷媒と、第2冷凍サイクル14の第2冷媒とを熱交換させる熱交換器16が設けられている。   Thus, the refrigeration apparatus 10 is provided with the heat exchanger 16 that exchanges heat between the carbon dioxide refrigerant of the first refrigeration cycle 12 and the second refrigerant of the second refrigeration cycle 14.

熱交換器16は、配管30が接続されることで第1冷凍サイクル12の二酸化炭素冷媒が流れる流路16aと、配管42が接続されることで第2冷凍サイクル14の第2冷媒が流れる流路16bとを備え、流路16aの二酸化炭素冷媒と流路16bの第2冷媒とを対向流とした対向流型熱交換器である。   The heat exchanger 16 has a flow path 16a through which the carbon dioxide refrigerant in the first refrigeration cycle 12 flows by connecting the pipe 30 and a flow through which the second refrigerant in the second refrigeration cycle 14 flows by connecting the pipe 42. The counter flow type heat exchanger includes a channel 16b and uses a carbon dioxide refrigerant in the channel 16a and a second refrigerant in the channel 16b as counterflows.

従って、熱交換器16では、第2放熱器24で周囲温度付近の温度になって流路16aを流れる二酸化炭素冷媒と、膨張装置40で周囲温度よりも低温となった第2冷媒との間での熱交換により、高温側の二酸化炭素冷媒から低温側の第2冷媒に向かって熱が移動し、二酸化炭素冷媒の温度を周囲温度よりも低くすることができる。しかも、熱交換器16は対向流式で構成されるため、熱交換器16から流出する二酸化炭素冷媒の温度を、熱交換器16に流入する第2冷媒の温度近くまで低下させることが可能である。   Therefore, in the heat exchanger 16, the temperature between the second carbon dioxide refrigerant flowing through the flow path 16a at a temperature near the ambient temperature in the second radiator 24 and the second refrigerant having a temperature lower than the ambient temperature in the expansion device 40. By the heat exchange at, heat is transferred from the high-temperature side carbon dioxide refrigerant toward the low-temperature side second refrigerant, and the temperature of the carbon dioxide refrigerant can be made lower than the ambient temperature. In addition, since the heat exchanger 16 is configured as a counter-flow type, the temperature of the carbon dioxide refrigerant flowing out of the heat exchanger 16 can be lowered to near the temperature of the second refrigerant flowing into the heat exchanger 16. is there.

冷凍装置10には、さらに、第1冷凍サイクル12の熱交換器16の出口側の二酸化炭素冷媒の温度を測定する温度センサ44が設けられ、温度センサ44の検出結果はコントローラ46に送られる。コントローラ46は、温度センサ44による検出温度に基づき、第2冷凍サイクルの運転状態、より具体的には、圧縮機36の運転を制御する制御装置である。勿論、コントローラ46を、第1冷凍サイクル12側の制御も行うように構成してもよく、当該冷凍装置10全体を統括的に制御する制御装置として使用してもよい。   The refrigeration apparatus 10 is further provided with a temperature sensor 44 that measures the temperature of the carbon dioxide refrigerant on the outlet side of the heat exchanger 16 of the first refrigeration cycle 12, and the detection result of the temperature sensor 44 is sent to the controller 46. The controller 46 is a control device that controls the operation state of the second refrigeration cycle, more specifically, the operation of the compressor 36 based on the temperature detected by the temperature sensor 44. Of course, the controller 46 may be configured to perform control on the first refrigeration cycle 12 side, or may be used as a control device that comprehensively controls the refrigeration apparatus 10 as a whole.

上記のように構成される冷凍装置10では、例えば、第1冷凍サイクル12側の膨張装置26及び吸熱器28が、ショーケースや空調用室内機等の利用サイトに設置され、その他の機器は、ユニットとして組み立てて屋外に設置される。   In the refrigeration apparatus 10 configured as described above, for example, the expansion device 26 and the heat absorber 28 on the first refrigeration cycle 12 side are installed at a use site such as a showcase or an indoor unit for air conditioning, It is assembled as a unit and installed outdoors.

次に、本実施形態に係る冷凍装置10の作用について説明する。   Next, the operation of the refrigeration apparatus 10 according to this embodiment will be described.

冷凍装置10の運転時には、上記したように、第1冷凍サイクル12で二酸化炭素冷媒が循環され、第2冷凍サイクル14で第2冷媒が循環され、それぞれ冷凍サイクルが形成される。これにより、当該冷凍装置10を冷凍・冷却装置として利用している場合には、利用サイト、例えば、屋内等に設置されたショーケース等の機器内部に設置された吸熱器28によって商品等の冷凍・冷却を行うことができる。   During the operation of the refrigeration apparatus 10, as described above, the carbon dioxide refrigerant is circulated in the first refrigeration cycle 12, and the second refrigerant is circulated in the second refrigeration cycle 14, thereby forming a refrigeration cycle. As a result, when the refrigeration apparatus 10 is used as a refrigeration / cooling apparatus, a product or the like is refrigerated by a heat absorber 28 installed inside a device such as a showcase installed indoors, for example.・ Cooling can be performed.

この際、冷凍装置10では、第1冷凍サイクル12の二酸化炭素冷媒と、第2冷凍サイクル14の第2冷媒とを熱交換させる熱交換器16を設けており、より具体的には、熱交換器16は、第1冷凍サイクル12側で第2放熱器24と膨張装置26との間を流れる二酸化炭素冷媒と、第2冷凍サイクル14側で膨張装置40と圧縮機36との間を流れる第2冷媒とを熱交換させる。これにより、第1冷凍サイクル12側で第2放熱器24で冷却されて低エンタルピとなり、温度が周囲温度付近となった二酸化炭素冷媒は、第2冷凍サイクル14側で膨張装置40で断熱膨張されて低圧・低温となった第2冷媒の蒸発による吸熱作用によって周囲温度よりも低温化され、熱交換器16に流入する第2冷媒の温度程度の温度となるため、第1冷凍サイクル12のCOPが向上する。つまり、熱交換器16は、第2冷凍サイクル14における吸熱器(蒸発器)としての機能と、第1冷凍サイクル12における3段目の放熱器(凝縮器)としての機能とを有する。   At this time, the refrigeration apparatus 10 is provided with a heat exchanger 16 that exchanges heat between the carbon dioxide refrigerant of the first refrigeration cycle 12 and the second refrigerant of the second refrigeration cycle 14, and more specifically, heat exchange. The cooler 16 has a carbon dioxide refrigerant flowing between the second radiator 24 and the expansion device 26 on the first refrigeration cycle 12 side, and a second flow between the expansion device 40 and the compressor 36 on the second refrigeration cycle 14 side. 2 Exchange heat with refrigerant. As a result, the carbon dioxide refrigerant that has been cooled by the second radiator 24 on the first refrigeration cycle 12 side to become low enthalpy and has a temperature close to the ambient temperature is adiabatically expanded by the expansion device 40 on the second refrigeration cycle 14 side. Since the temperature is lower than the ambient temperature by the endothermic action due to the evaporation of the second refrigerant, which has become low pressure and low temperature, the temperature becomes about the temperature of the second refrigerant flowing into the heat exchanger 16, so the COP of the first refrigeration cycle 12 Will improve. That is, the heat exchanger 16 has a function as a heat absorber (evaporator) in the second refrigeration cycle 14 and a function as a third-stage radiator (condenser) in the first refrigeration cycle 12.

このような冷凍装置10の運転時、コントローラ46の制御下に、温度センサ44による第2放熱器24の出口側(膨張装置26の入口側)の二酸化炭素冷媒の検出温度に基づき、第2冷凍サイクル14の圧縮機36の運転制御がなされ、例えば、必要に応じて、圧縮機36の運転が停止され、又は圧縮機36の回転数を低下させ若しくは増加させる制御が行われる。これにより、熱交換器16を出た二酸化炭素冷媒の温度を、周囲温度にかかわらず安定させることができて第1冷凍サイクル12の効率が向上し、また圧縮機36の運転制御によって第2冷凍サイクル14の効率も向上する。   During the operation of the refrigeration apparatus 10, under the control of the controller 46, the second refrigeration is performed based on the detected temperature of the carbon dioxide refrigerant on the outlet side of the second radiator 24 (inlet side of the expansion device 26) by the temperature sensor 44. The operation control of the compressor 36 in the cycle 14 is performed. For example, the operation of the compressor 36 is stopped or the control for decreasing or increasing the rotational speed of the compressor 36 is performed as necessary. As a result, the temperature of the carbon dioxide refrigerant exiting the heat exchanger 16 can be stabilized regardless of the ambient temperature, the efficiency of the first refrigeration cycle 12 is improved, and the operation of the compressor 36 controls the second refrigeration. The efficiency of the cycle 14 is also improved.

以上のように、本実施形態に係る冷凍装置10によれば、第1冷凍サイクル12の二酸化炭素冷媒と、第2冷凍サイクル14の第2冷媒とを熱交換させる熱交換器16を、第1冷凍サイクル12側では第2放熱器24と膨張装置26との間に設け、第2冷凍サイクル14側では膨張装置40と圧縮機36との間に設けている。   As described above, according to the refrigeration apparatus 10 according to the present embodiment, the heat exchanger 16 that exchanges heat between the carbon dioxide refrigerant of the first refrigeration cycle 12 and the second refrigerant of the second refrigeration cycle 14 is provided with the first On the refrigeration cycle 12 side, it is provided between the second radiator 24 and the expansion device 26, and on the second refrigeration cycle 14 side, it is provided between the expansion device 40 and the compressor 36.

これにより、第1冷凍サイクル12側で膨張装置26に流入する直前の二酸化炭素冷媒を、第2冷凍サイクル14側の第2冷媒の蒸発による吸熱作用によって冷却することができるため、第1冷凍サイクル12の二酸化炭素冷媒の温度を周囲温度よりも低くすることができ、二酸化炭素冷媒を用いた第1冷凍サイクル12のCOPを高めることができる。この際、第2冷凍サイクル14にR134a等の二酸化炭素よりも高いCOPを得られる冷媒を用いることができるため、例えば、上記特許文献1のように、二酸化炭素冷媒を分流して冷却に用いる構成に比べてシステム全体のCOPを高くすることができる。しかも、熱交換器16を設けたことにより、二酸化炭素冷媒の膨張装置26直前の温度を、周囲温度にかかわらず安定させることができるため、周囲温度が高い夏季等であっても高いCOPを安定して得ることができる。   As a result, the carbon dioxide refrigerant immediately before flowing into the expansion device 26 on the first refrigeration cycle 12 side can be cooled by the endothermic action due to evaporation of the second refrigerant on the second refrigeration cycle 14 side. The temperature of the 12 carbon dioxide refrigerant can be made lower than the ambient temperature, and the COP of the first refrigeration cycle 12 using the carbon dioxide refrigerant can be increased. At this time, since a refrigerant capable of obtaining a COP higher than carbon dioxide, such as R134a, can be used for the second refrigeration cycle 14, for example, a configuration in which a carbon dioxide refrigerant is shunted and used for cooling as in Patent Document 1 above. The COP of the entire system can be increased compared to Moreover, since the heat exchanger 16 is provided, the temperature immediately before the carbon dioxide refrigerant expansion device 26 can be stabilized regardless of the ambient temperature, so that a high COP can be stabilized even in the summer when the ambient temperature is high. Can be obtained.

この場合、第2冷凍サイクル14は、全て工場内で製作することができ、ショーケース等の設置現場での組立作業が不要であるため、当該第2冷凍サイクル14からの冷媒漏れを防止できる。従って、第2冷凍サイクル14には、一般的なフロン系冷媒や自然冷媒等、二酸化炭素に比べてCOPが高い冷媒を選択することができ、システム全体のCOPを一層向上させることができる。しかも、第2冷凍サイクル14は、第1冷凍サイクル12側で第1放熱器20と第2放熱器24によって周囲温度程度まで冷却された二酸化炭素冷媒を冷却するだけの冷凍能力を発生可能であればよいため、第2冷凍サイクル14を小型化することができ、配管42の長さも短尺化させることができる。その結果、第2冷凍サイクル14での第2冷媒の使用量も低減することができる。   In this case, all of the second refrigeration cycle 14 can be manufactured in the factory, and assembly work at the installation site such as a showcase is not necessary. Therefore, leakage of the refrigerant from the second refrigeration cycle 14 can be prevented. Therefore, a refrigerant having a higher COP than carbon dioxide, such as a general chlorofluorocarbon refrigerant or a natural refrigerant, can be selected for the second refrigeration cycle 14, and the COP of the entire system can be further improved. In addition, the second refrigeration cycle 14 can generate a refrigeration capacity that only cools the carbon dioxide refrigerant cooled to the ambient temperature by the first radiator 20 and the second radiator 24 on the first refrigeration cycle 12 side. Therefore, the second refrigeration cycle 14 can be downsized, and the length of the pipe 42 can be shortened. As a result, the amount of the second refrigerant used in the second refrigeration cycle 14 can also be reduced.

当該冷凍装置10では、上記のように、第1冷凍サイクル12での冷媒温度に基づき、第2冷凍サイクル14の運転状態を制御するコントローラ46を備えることも有効である。これにより、第1冷凍サイクル12での二酸化炭素冷媒の温度に基づき、第2冷凍サイクル14を停止したり、出力を落とした運転を行ったりすることができるため、システム全体の効率を一層高めることができる。   In the refrigeration apparatus 10, as described above, it is also effective to include the controller 46 that controls the operation state of the second refrigeration cycle 14 based on the refrigerant temperature in the first refrigeration cycle 12. Thereby, based on the temperature of the carbon dioxide refrigerant in the first refrigeration cycle 12, the second refrigeration cycle 14 can be stopped or an operation with reduced output can be performed, thereby further improving the efficiency of the entire system. Can do.

なお、本発明は、上記した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。   It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be freely changed without departing from the gist of the present invention.

例えば、上記実施形態では、第1冷凍サイクル12に、第1圧縮機18と第2圧縮機22とを備え、これらの間に第1放熱器20を設けた構成を例示したが、第1圧縮機18と第2圧縮機22とは、2段圧縮式の圧縮機1台で代替してもよく、この場合には、2段の圧縮部の中間に第1放熱器20と同様な放熱器を接続しておくことが好ましい。他方、第1圧縮機18と第2圧縮機22とに加え、3段目の圧縮機を追加してもよく、この場合には、第2圧縮機22と3段目の圧縮機との間にも必要に応じて放熱器を接続しておくとよく、3段以上の圧縮方式であっても同様である。   For example, in the above embodiment, the first refrigeration cycle 12 includes the first compressor 18 and the second compressor 22, and the first radiator 20 is provided between them. The compressor 18 and the second compressor 22 may be replaced by a single two-stage compression compressor. In this case, a radiator similar to the first radiator 20 is provided between the two-stage compression units. Are preferably connected. On the other hand, in addition to the first compressor 18 and the second compressor 22, a third stage compressor may be added. In this case, the second compressor 22 and the third stage compressor may be In addition, it is preferable to connect a heatsink as necessary, and the same applies to a compression system having three or more stages.

上記実施形態では、主に圧縮機、放熱器、膨張装置及び吸熱器を設けた冷凍回路の構成例を示したが、この冷凍回路には、他の構成要素、例えば、各種弁機構やアキュームレータ、断熱材等を設けてもよいことは勿論である。   In the above embodiment, a configuration example of a refrigeration circuit mainly provided with a compressor, a radiator, an expansion device, and a heat absorber has been shown, but this refrigeration circuit includes other components such as various valve mechanisms and accumulators, Of course, a heat insulating material or the like may be provided.

10、100 冷凍装置
12 第1冷凍サイクル
14 第2冷凍サイクル
16 熱交換器
16a、16b 流路
18 第1圧縮機
20 第1放熱器
22 第2圧縮機
24 第2放熱器
26、40 膨張装置
28 吸熱器
30、42 配管
36 圧縮機
38 放熱器
44 温度センサ
46 コントローラ
DESCRIPTION OF SYMBOLS 10, 100 Refrigeration apparatus 12 1st refrigeration cycle 14 2nd refrigeration cycle 16 Heat exchanger 16a, 16b Flow path 18 1st compressor 20 1st radiator 22 2nd compressor 24 2nd radiator 26, 40 Expansion apparatus 28 Heat absorber 30, 42 Piping 36 Compressor 38 Radiator 44 Temperature sensor 46 Controller

Claims (5)

第1圧縮機と、該第1圧縮機の吐出側に接続される第1放熱器と、該第1放熱器の出口側に接続される第2圧縮機と、該第2圧縮機の吐出側に接続される第2放熱器と、該第2放熱器の出口側に接続される熱交換器と、該熱交換器の出口側に接続される第1膨張装置と、該第1膨張装置の出口側に接続される吸熱器とを有し、冷媒として二酸化炭素を用いた第1冷凍サイクルと、
圧縮機と、該圧縮機の吐出側に接続される放熱器と、該放熱器の出口側に接続される第2膨張装置とを有し、前記第2膨張装置の出口側と前記圧縮機との間に前記熱交換器を接続した第2冷凍サイクルと、
を備え、
前記熱交換器は、前記第1冷凍サイクルの冷媒と、前記第2冷凍サイクルの冷媒とを熱交換可能であることを特徴とする冷凍装置。
A first compressor; a first radiator connected to a discharge side of the first compressor; a second compressor connected to an outlet side of the first radiator; and a discharge side of the second compressor A second radiator connected to the heat exchanger, a heat exchanger connected to the outlet side of the second radiator, a first expansion device connected to the outlet side of the heat exchanger, and the first expansion device A first refrigeration cycle having a heat absorber connected to the outlet side and using carbon dioxide as a refrigerant;
A compressor, a radiator connected to the discharge side of the compressor, and a second expansion device connected to the outlet side of the radiator, the outlet side of the second expansion device and the compressor A second refrigeration cycle in which the heat exchanger is connected between,
With
The refrigeration apparatus, wherein the heat exchanger is capable of exchanging heat between the refrigerant of the first refrigeration cycle and the refrigerant of the second refrigeration cycle.
請求項1記載の冷凍装置において、
前記熱交換器は、前記第1冷凍サイクルの冷媒と、前記第2冷凍サイクルの冷媒とを対向流とした対向流型熱交換器であることを特徴とする冷凍装置。
The refrigeration apparatus according to claim 1, wherein
The refrigeration apparatus, wherein the heat exchanger is a counterflow heat exchanger in which the refrigerant of the first refrigeration cycle and the refrigerant of the second refrigeration cycle are counterflowed.
請求項1又は2記載の冷凍装置において、
前記第2冷凍サイクルには、二酸化炭素以外の冷媒が用いられることを特徴とする冷凍装置。
The refrigeration apparatus according to claim 1 or 2,
A refrigerant other than carbon dioxide is used in the second refrigeration cycle.
請求項1〜3のいずれか1項に記載の冷凍装置において、
前記第1冷凍サイクルでの冷媒温度に基づき、前記第2冷凍サイクルの運転状態を制御する制御装置を備えることを特徴とする冷凍装置。
The refrigeration apparatus according to any one of claims 1 to 3,
A refrigeration apparatus comprising: a control device that controls an operating state of the second refrigeration cycle based on a refrigerant temperature in the first refrigeration cycle.
請求項4記載の冷凍装置において、
前記制御装置は、前記第1冷凍サイクルでの熱交換器の出口での冷媒温度を検出し、該検出した冷媒温度に基づき、前記第2冷凍サイクルでの圧縮機の運転状態を制御することを特徴とする冷凍装置。
The refrigeration apparatus according to claim 4,
The control device detects the refrigerant temperature at the outlet of the heat exchanger in the first refrigeration cycle, and controls the operating state of the compressor in the second refrigeration cycle based on the detected refrigerant temperature. Refrigeration equipment characterized.
JP2012056432A 2012-03-13 2012-03-13 Refrigeration apparatus Pending JP2013190154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012056432A JP2013190154A (en) 2012-03-13 2012-03-13 Refrigeration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012056432A JP2013190154A (en) 2012-03-13 2012-03-13 Refrigeration apparatus

Publications (1)

Publication Number Publication Date
JP2013190154A true JP2013190154A (en) 2013-09-26

Family

ID=49390603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012056432A Pending JP2013190154A (en) 2012-03-13 2012-03-13 Refrigeration apparatus

Country Status (1)

Country Link
JP (1) JP2013190154A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114158811A (en) * 2021-09-26 2022-03-11 太原理工大学 Be applied to high geothermal heat mine phase transition cooling intelligence protection helmet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091074A (en) * 1999-09-24 2001-04-06 Sanyo Electric Co Ltd Cascade-type refrigerating device
JP2005214557A (en) * 2004-01-30 2005-08-11 Sanyo Electric Co Ltd Heating and cooling system
JP2007218459A (en) * 2006-02-15 2007-08-30 Matsushita Electric Ind Co Ltd Refrigerating cycle device and cool box
JP2007278666A (en) * 2006-04-11 2007-10-25 Daikin Ind Ltd Binary refrigerating device
JP2008002759A (en) * 2006-06-23 2008-01-10 Matsushita Electric Ind Co Ltd Binary refrigerating system and cold storage
JP2008020083A (en) * 2006-07-10 2008-01-31 Toshiba Kyaria Kk Binary refrigerating cycle device
JP2008224206A (en) * 2008-04-02 2008-09-25 Mayekawa Mfg Co Ltd Dual refrigerating cycle device
JP2009097847A (en) * 2007-09-28 2009-05-07 Daikin Ind Ltd Refrigerating apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091074A (en) * 1999-09-24 2001-04-06 Sanyo Electric Co Ltd Cascade-type refrigerating device
JP2005214557A (en) * 2004-01-30 2005-08-11 Sanyo Electric Co Ltd Heating and cooling system
JP2007218459A (en) * 2006-02-15 2007-08-30 Matsushita Electric Ind Co Ltd Refrigerating cycle device and cool box
JP2007278666A (en) * 2006-04-11 2007-10-25 Daikin Ind Ltd Binary refrigerating device
JP2008002759A (en) * 2006-06-23 2008-01-10 Matsushita Electric Ind Co Ltd Binary refrigerating system and cold storage
JP2008020083A (en) * 2006-07-10 2008-01-31 Toshiba Kyaria Kk Binary refrigerating cycle device
JP2009097847A (en) * 2007-09-28 2009-05-07 Daikin Ind Ltd Refrigerating apparatus
JP2008224206A (en) * 2008-04-02 2008-09-25 Mayekawa Mfg Co Ltd Dual refrigerating cycle device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114158811A (en) * 2021-09-26 2022-03-11 太原理工大学 Be applied to high geothermal heat mine phase transition cooling intelligence protection helmet
CN114158811B (en) * 2021-09-26 2024-01-30 太原理工大学 Intelligent phase-change cooling protective helmet applied to high-geothermal mine

Similar Documents

Publication Publication Date Title
JP4553964B2 (en) Cooling device for communication equipment and control method thereof
US9513034B2 (en) Multi-type air conditioner
JP5681549B2 (en) Refrigeration cycle method
JP5908183B1 (en) Air conditioner
US20130213078A1 (en) Air-conditioning apparatus
JPWO2016185568A1 (en) Refrigeration equipment
JP2009257706A (en) Refrigerating apparatus
JP2007051841A (en) Refrigeration cycle device
JP6110187B2 (en) Refrigeration cycle equipment
JP2006017427A (en) Cooling system
KR20130081399A (en) A combined refrigerating and freezing system and a control method the same
JP5693247B2 (en) Refrigeration cycle apparatus and refrigerant discharge apparatus
JP2008275249A (en) Refrigerating cycle
WO2013080497A1 (en) Refrigeration cycle device and hot water generating apparatus comprising same
KR101702008B1 (en) Combine air conditioning system for communication equipment
JP6316452B2 (en) Refrigeration cycle equipment
JP2007051788A (en) Refrigerating device
KR20170000029U (en) cascade heat pump
KR101166655B1 (en) Refrigerant circulation apparatus
JP2013190154A (en) Refrigeration apparatus
EP3196557A1 (en) Brine/water heat pump system
KR100613502B1 (en) Heat pump type air conditioner
KR20120090392A (en) Heat pump air conditioning system with defrost function
KR102313304B1 (en) Air conditioner for carbon dioxide
JP6978242B2 (en) Refrigerant circuit equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160412