JP4294351B2 - CO2 refrigeration cycle - Google Patents

CO2 refrigeration cycle Download PDF

Info

Publication number
JP4294351B2
JP4294351B2 JP2003075026A JP2003075026A JP4294351B2 JP 4294351 B2 JP4294351 B2 JP 4294351B2 JP 2003075026 A JP2003075026 A JP 2003075026A JP 2003075026 A JP2003075026 A JP 2003075026A JP 4294351 B2 JP4294351 B2 JP 4294351B2
Authority
JP
Japan
Prior art keywords
stage
low
refrigeration cycle
compressor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003075026A
Other languages
Japanese (ja)
Other versions
JP2004279014A (en
Inventor
克己 藤間
朝郁 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2003075026A priority Critical patent/JP4294351B2/en
Publication of JP2004279014A publication Critical patent/JP2004279014A/en
Application granted granted Critical
Publication of JP4294351B2 publication Critical patent/JP4294351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Lubricants (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a CO<SB>2</SB>refrigerating cycle of a cascade two-stage compression type using CO<SB>2</SB>as refrigerant for cooling and heating operation at the same time, allowing efficient utilization of energy by using lubricating oil for a compressor separately to be non-compatible and compatible. <P>SOLUTION: The cascade two-stage compression CO<SB>2</SB>refrigerating cycle according to the first invention comprises a low-stage CO<SB>2</SB>refrigerating cycle 18 consisting of a low-stage evaporator 10, a low-stage compressor 11, a cascade condenser 12, and a (low-stage) expansion valve 13, to be operated by CO<SB>2</SB>refrigerant in a region including a low temperature saturated region, and a high-stage compressor 14, a gas cooler 15, a (high-stage) expansion valve 16 and a high-stage evaporator 17. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、CO冷凍サイクルに関し、特に冷温熱源と高温熱源とを併せ持つCO冷凍サイクルで、単一潤滑油を使用した一段膨張方式や二段膨張方式の二段圧縮CO冷凍サイクルや、異種潤滑油を使用したカスケード式二段圧縮のCO冷凍サイクルに関する。
【0002】
【従来の技術】
近年地球環境保護に対するフロン系冷媒の規制から、オゾン層破壊、地球温暖化等で特異の存在にあるCO(二酸化炭素)を使用した効率的CO冷凍サイクルの出現が期待されている。
また、エネルギの効率的利用の見地から冷熱と温熱を同時に供給できる多用途熱供給システムの出現が期待されている。
【0003】
従来より、マイナス数十度の低温度の冷却を行うための手段として、高温側の高段サイクルと低温側の低段サイクルをカスケードコンデンサを介して組み合わせた二元冷凍サイクルが使用されている。
上記二元冷凍サイクルを形成するカスケード式二段圧縮冷凍サイクルとしては、例えばアンモニア冷媒を使用する高段側アンモニア冷凍回路と、COを冷媒として使用する低段側CO冷凍回路とより構成し、上記カスケード式二段圧縮冷凍サイクルはコンビニエンスストア、スーパーマーケット等の店舗に設けられ、前記アンモニア冷凍回路と、蒸発器を除くCO冷凍回路と、カスケードコンデンサとよりなるコンデンシングユニットを店舗の屋外に配設し、CO冷凍回路の蒸発器は店舗内のショーケースに設置される構成にしている。
【0004】
上記高段側アンモニア冷凍回路と低段側CO冷凍回路とを組み合わせた冷却装置に係わる提案がある。(例えば特許文献1参照。)
上記提案は、図4に示すように下記構成よりなる。
則ち、図に見るように、本提案に係わるカスケード式二段圧縮冷凍サイクルは、アンモニア冷凍回路51とCO冷凍回路53とよりなり、カスケードコンデンサ54を介して組み合わされている。
上記アンモニア冷凍回路51は、高段側圧縮機55、凝縮器56、アンモニア受液器57、膨張弁58、カスケードコンデンサ54がこの順に形成され、
CO冷凍回路53は、カスケードコンデンサ54、CO受液器60、蒸発器61をこの順に形成している。
そして、上記二段圧縮冷凍サイクルはコンビニエンスストア、スーパーマーケット等の店舗に設けられ、前記アンモニア冷凍回路51と、蒸発器61を除くCO冷凍回路53と、カスケードコンデンサ54とよりなるコンデンシングユニットCを店舗の屋外に配設し、CO冷凍回路53の蒸発器61は店舗内のショーケースSに設置される構成にしている。
【0005】
そして、上記カスケード式二段圧縮冷凍サイクルにおいては、高段側のアンモニア冷凍回路51に設けられた高段側圧縮機55によりアンモニア冷媒を循環させ、カスケードコンデンサ54で低段側のCO冷凍回路53を流れるCOガスを奪熱により液化させ、液化したCO液冷媒をショーケースS内の蒸発器61へ流入させこれを気化させて、液化と気化によりCO冷媒の自然循環と蒸発器61より冷熱を放出する構成にしている。
【0006】
上記カスケード式二段圧縮冷凍サイクルの高段側アンモニア冷凍回路51の事故による低段側CO冷凍回路53の過大な圧力上昇が惹起された場合は、該過大圧力を逃し弁62より排出させ、安全運転を図るようにしたものである。
【0007】
一方従来の蒸気圧縮式冷凍サイクルに使用される冷媒の脱フロン対策のひとつとして、COを使用した冷凍サイクルが提案され、臨界点の低いCOを冷媒として使用するため、その冷凍サイクルは臨界点を越える超臨界域を含むサイクルとなり、一般に下記問題点を内蔵する。
則ち、液相冷媒が圧縮機に吸入されて圧縮機の損傷を招く問題と、サイクルの効率低下の問題がある。
前者の問題点は、COを使用した通常のCOサイクルの場合は超臨界高温高圧COガスを冷却するガスクーラ出口側のCO温度に基づいてガスクーラ出口側圧力を減圧弁の開度によって調整しているため、蒸発器出口側の過熱度が不十分となり、圧縮機に液相冷媒が吸入される。
【0008】
この提案は、上記問題点に鑑みなされたものである。該提案の一実施例として二段膨張二段圧縮冷凍サイクルを形成させ、高段側圧縮機の仕事量を小さくしてCOサイクルの冷凍能力を増大させ、且つ成績係数の向上を図っている。
則ち、図5(A)に見るように、高段側圧縮機71b、ガスクーラ72、高段側減圧弁73、中間冷却器74、低段側減圧弁75、低段側蒸発器76、低段側圧縮機71aとより構成する。
なお、前記高段側減圧弁73の開度はガスクーラ72の出口側に設けた温度センサ73aと圧力センサ73bの検出値に基づき制御装置73cにより調整し、前記低段側減圧弁75の開度は感温筒75aを介して調節する構成にしてある。
則ち、本実施例の場合は、平衡運転時、ガスクーラの出口高サイドCOガスの全量を高段側減圧弁73を介して中間冷却器74で中間圧力まで減圧し、ついで該中間冷却器74の底部の前記中間圧力の液冷媒を低段側減圧弁75で減圧して低段側蒸発器76へ流入させている。
【0009】
上記冷凍サイクルの作動状況は、図5(B)のp−h線図に示す。
則ち、点Aで、高段側圧縮機71bへ流入する中間冷却器74からの中間圧COガスと低段側圧縮機71aの点A’の吐出ガスの冷却ガスとが合流して吸入され、点Bで超臨界高圧高温COガスがガスクーラ72に流入し、点Cでガスクーラで外気により冷却された低温超臨界高圧COガスを高段側減圧弁73に流入させ中間圧まで減圧する。ついで、点Dで前記減圧により形成された気液二相状態のCOは中間圧過熱気相COを形成して点Aで高段側圧縮機71bへ流入するとともに、点Eで液冷媒を形成するとともに形成された液冷媒を低段側減圧弁75で感温筒75aを介して適当圧制御し点Fまで減圧する。ついで低段側蒸発器76を経由して点Gで過熱蒸気を形成して低段側圧縮機71aへ流入する。
【0010】
上記構成により、低段側減圧弁75には飽和液以下の比エンタルピーを有する液相COが流入するので、低段側蒸発器76の出入口の比エンタルピー差を大きくすることができる。また、中間冷却器74で分離された気相COを高段側圧縮機71bへ導入させ、COサイクルの冷凍効率の向上を図っている。
なお、上記提案では、低段側蒸発器76で約0℃程度の冷熱を得ている。
【0011】
また、COを冷媒とするCO冷凍サイクルにおいては、冷媒COは超臨界域を含む状態に置かれ、圧縮機においては吐出温度が上昇し易い問題があり、使用する圧縮機用潤滑油について吐出温度の上昇によるオイル劣化の問題がある。
また、COはナフテン系やパラフィン系の鉱油、アルキルベンゼン油、エーテル油、エステル油、ポリオキシアルキレングリコール油、カーボネート油、等の圧縮機用潤滑油とは一定の温度範囲では溶解するが、運転開始より低温を得る広範囲の温度域においても完全溶解しない問題(圧縮機へのオイルリターン)がある。
【0012】
上記問題解決のための種々なる提案がなされ、中には、使用する冷媒に対し化学構造的に圧縮機用潤滑油と近く、COと共沸性の高い炭化水素であるエタンを少量範囲で混合する低温作動体を使用して、圧縮機吐出温度の低減と共存する圧縮機用オイルのオイルリターンに対する提案もある。
上記オイルリターンに関し、前記超臨界CO冷凍サイクルにおける圧縮機用潤滑油に係わる提案がされている。(例えば特許文献3参照。)
【0013】
上記提案は、図6(A)に示すような圧縮機81、ガスクーラ82、減圧弁83、蒸発器84よりなる超臨界CO冷凍サイクルにおいて、蒸発器84から流入するCOと余剰の液相CO及び圧縮機81を潤滑する潤滑油を貯留する構成よりなるアキュームレータ85を設ける構成とし、前記潤滑油には当該冷凍サイクルの圧力が臨界圧力以上のときは相溶性が臨界圧力以下のときのそれよりも高い値を持つものを使用し、蒸発器84側の低圧側では相溶性が低いため分離状態にある液相の潤滑油と液相COとが個別に存在する。そのため、図6(B)に見るようにタンク86内には比重の大きい液相潤滑油が下部に溜りその上に液相COが貯留される。なお圧縮機81には前記アキュームレータ85内に投入されたU字型吸入管87を設け、該U字型吸入管87の湾曲下部に設けた吸入孔87aより、前記分離貯留状態にある液相潤滑油と液相COを吸入出来る構成にしている。
【0014】
上記構成により、当該冷凍サイクルの圧力が臨界圧力より低い側は、液相COが圧縮機へ送り込まれることが無く、潤滑油のみを圧縮機81内へ導入し、成績係数の悪化及び圧縮機81の損傷を防止できる。
また、臨界圧力より高いガスクーラ等の超臨界圧力側では潤滑油の相溶性が高くなり、潤滑油はCOとともにガスクーラ内を流通するので、潤滑油のガスクーラ内の滞留を防ぐとともに、冷凍能力の向上を図るようにしている。
【0015】
【特許文献1】
特開2002−243290公報
【特許文献2】
特開平10−115470号公報
【特許文献3】
特開平11−94380号公報
【0016】
上記先行技術を見るに、文献1は、高段側に設けたアンモニア冷凍回路と低段側に設けたCO冷凍回路をカスケードコンデンサを介して組み合わせたカスケード式二段圧縮冷凍サイクルに係わるもので、高段側アンモニア冷凍回路での事故発生に対処する低段側CO冷凍回路の安全対策に関するものであって、当該カスケード冷凍サイクルにおける高段側、低段側で使用する圧縮機油に関する記載は無い。
また、文献2は、臨界圧力を越えるCO冷凍サイクルの回路構成に係わるもので、その一実施例としてCOを冷媒とする二段膨張二段圧縮冷凍サイクルの回路構成と作動状況が記載されているが、高段側、低段側に使用する潤滑油についての記載は無い。なお、この場合の冷凍サイクルはカーエアコンを対象とするもので、低段蒸発器により生成される冷熱源は約0℃程度を対象としたものである。
また、文献3は、COを冷媒としたCO冷凍サイクルにおける、潤滑油の臨界圧以上と臨界圧以下ではその相溶性を変える潤滑油の取り扱いについて記載したもので、ガスクーラ側の高圧側では相溶性の高くなる使用潤滑油の性状により潤滑油は冷媒とともに移動しガスクーラ中の滞留を防ぎ、蒸発器出口の低圧側では前記潤滑油の相溶性の低くなる性状と特殊アクチュエータを使用することにより、分離した潤滑油を別個取り出して、圧縮機への液冷媒の吸入を防ぐとともに分離した潤滑油を取り出し供給するようにしたものである。
【0017】
【発明が解決しようとする課題】
ところで、前記したように、
近年地球環境保護に対するフロン系冷媒の規制から、自然冷媒のひとつであり、オゾン層破壊係数が零で、地球温暖化係数が1であるCO(二酸化炭素)を使用した冷凍サイクルが使用されるようになり、その効率の改善が強く要求されている。また、エネルギの効率的利用の見地から冷熱と温熱を同時に供給できる多用途熱供給システムの出現が期待されている。
【0018】
しかし、前記したように、従来技術においては、臨界点の低いCOを冷媒として使用することによる利点よりも、その使用による当該冷凍サイクルの受けるCOサイクルの高圧化、冷凍効率の低下、潤滑油に対する個々の問題の解決に終始しているものが多く見受けられる。
本願発明は、COを冷媒として使用することによりもたらされる利点を利用して、非相溶性、ないし相溶性の性状を持つ圧縮機用潤滑油の好適な使い分けにより、エネルギの効率利用を可能とする冷温熱同時供給可能のCO冷凍サイクルの提供を目的としたものである。
【0019】
【課題を解決するための手段】
そこで、本発明のCO冷凍サイクルに係わる第1の発明は、超臨界域を含む領域で作動する高段CO冷凍サイクルと低温飽和域を含む領域で作動する低段CO冷凍サイクルとをカスケードコンデンサを介して組み合わせたカスケード式二段圧縮CO冷凍サイクルにおいて、
前記高段側CO 冷凍サイクルに設けられた圧縮機によりCO 冷媒を循環させ、カスケードコンデンサで高段側の蒸発器により低段側CO 冷凍サイクルを流れるCO ガスを奪熱により液化させ、液化したCO 液冷媒を低段側蒸発器へ流入させこれを気化させ、冷熱源を形成させて、前記高段側CO 冷凍サイクルのガスクーラより約75〜85℃の温熱を得るとともに、前記低段側CO 冷凍サイクルの冷熱源より−50〜−75℃の冷熱を得るようにして、高段側CO 冷凍サイクルの高温CO 冷媒の循環には非相溶性の圧縮機用潤滑油を、低段側CO 冷凍サイクルの低温CO 冷媒の循環には相溶性の圧縮機用潤滑油となるように、前記カスケードコンデンサを介して異種の圧縮機用潤滑油を使用する構成としたことを特徴とする。
【0020】
上記本発明の第1の発明は、それぞれCOを冷媒とする二組みのCO冷凍サイクルを用意して、カスケードコンデンサを介して組合せ、前記CO冷凍サイクルの一方を超臨界域を含む領域で作動する高段側CO冷凍サイクルを形成させ、他方を低温飽和域を含む領域で作動する低段側CO冷凍サイクルを形成させ、
高段側CO冷凍サイクルに設けられた圧縮機によりCO冷媒を循環させ、カスケードコンデンサで高段側の蒸発器により低段側CO冷凍サイクルを流れるCOガスを奪熱により液化させ、液化したCO液冷媒を低段側蒸発器へ流入させこれを気化させ、冷熱源を形成させて、前記高段側超臨界CO冷凍サイクルのガスクーラより約75〜85℃の温熱を得るとともに、前記冷熱源より−50〜−75℃の冷熱を得るようにしたものである。
そして、高段側CO冷凍サイクルの高温CO冷媒の循環には非相溶性の圧縮機用潤滑油を使用し、低段側CO冷凍サイクルの低温CO冷媒の循環には相溶性の圧縮機用潤滑油を使用し、前記カスケードコンデンサを介して前記非相溶性と相溶性の異種の圧縮機用潤滑油の使用を可能とし、安全運転、高効率の、冷温熱熱源を形成する冷凍サイクルを得るようにしたものである。
【0021】
また、本発明のCO冷凍サイクルに係わる第2の発明は、蒸発器で蒸発されたCO 冷媒ガスを低段圧縮機で圧縮するとともに前記低段圧縮機の吐出しガスを中間冷却器で冷却した後に高段圧縮機で圧縮させるとともに、該高段圧縮機の吐出側にガスクーラを設けた二段圧縮CO冷凍サイクルにおいて、
前記ガスクーラの吐出側CO ガスの顕熱の一部を利用して低段圧縮機の低温吸入ガスを加熱する熱交換器を設け、更に前記中間冷却器では、ガスクーラで冷却され且つ前記熱交換器を経由したCO ガスの一部をバイパスさせ、中間冷却用膨張弁により中間圧力まで減圧流入させて、二段圧縮CO 冷凍サイクルに非相溶性の潤滑油を使用可能に構成したことを特徴とする。
【0022】
上記本発明の第2の発明は、COを冷媒として使用するとともに、前記構成によりCOに対し非相溶性の潤滑油を使用し、2段階に分割圧縮して二段圧縮CO冷凍サイクルを形成したもので、圧縮効率の向上と高段圧縮温度の低下を行なったものである。
【0023】
【0024】
【0025】
本発明の2段圧縮CO冷凍サイクルに使用する潤滑油は、冷媒として使用するCOに対して非相溶性オイルを使用して、高段側では高圧高温ガスより油分離器において分離させ、分離した非相溶性オイルを回収して高段圧縮機の吸入側へ還流させる構成とし、低段側では高段側の高サイドの高温ガスの顕熱により低段蒸発器の下流側蒸発ガスを加熱して非相溶性オイルの流動性を高め油分離器よりの低段圧縮機への還流を良好にする構成にしたものである。
【0026】
【発明の実施の形態】
以下、本発明の実施例の形態を、図示例と共に説明する。ただし、この実施例に記載されている構成部品の寸法、形状、その相対的位置等は特に特定的な記載がないかぎりは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例にすぎない。以下図面に基づいて本発明の詳細を説明する。
図1は本発明の第1の発明のカスケード式二段圧縮CO冷凍サイクルの概略構成を示す図で、図2は図1のp−h線図である。
図3は、本発明の第2の発明である一段膨張二段圧縮CO冷凍サイクルの概略構成を示す図である。
【0027】
図1に見るように、本発明の第1の発明であるカスケード式二段圧縮CO冷凍サイクルは、
低段側蒸発器10、低段側圧縮機11、カスケードコンデンサ12、膨張弁13とよりなり、低温飽和域を含む領域で作動する低段側CO冷凍サイクル18と、
高段側圧縮機14、ガスクーラ15、膨張弁16、高段側蒸発器17とよりなり、超臨界域を含む領域で作動する高段側CO冷凍サイクル19とより構成し、
前記低段側の凝縮器を形成するカスケードコンデンサ12に高段側の蒸発器17を内蔵させ、低段側冷凍サイクルを流れるCOガスを奪熱により液化させ、液化したCO液冷媒を低段側蒸発器10へ流入させこれを気化させて、冷熱源を形成させて、冷熱源より−50〜−75℃の冷熱を得るとともに、前記超臨界CO域を含む領域で作動する高段側CO冷凍サイクル19のガスクーラ15より約75〜85℃の温熱を得る構成とし、冷温熱を同時に供給できる冷凍サイクルを構成する。
【0028】
そして、高段側CO冷凍サイクル19の高温CO冷媒の循環には非相溶性の圧縮機潤滑油を使用し、低段側CO冷凍サイクル18の低温CO冷媒の循環には相溶性の圧縮機潤滑油を使用し、前記カスケードコンデンサ12を介して前記非相溶性と相溶性の異種の圧縮機潤滑油の使用を可能とし、安全運転、高効率の、冷熱源と温熱源の同時供給を可能とする冷凍サイクルを得るようにしたものである。
【0029】
図2には、図1のカスケード式二段圧縮方式のCO冷凍サイクルのp−h線図が示され、図に見るように高段側CO冷凍サイクル19に設けられた高段側圧縮機14によりCO冷媒を▲5▼より▲6▼に昇圧させ高圧高温の超臨界COガスを形成させ、ついで▲6▼から▲7▼に掛けガスクーラ15により冷却されるとともに顕熱による高温熱源を形成し、ついで▲7▼より▲8▼に掛け膨張弁16による減圧により液化COを形成する。ついで▲8▼から▲5▼に掛けてのカスケードコンデンサ12に内蔵する高段側蒸発器17による蒸発過程での奪熱が行なわれ、該カスケードコンデンサ12を通過する低段側CO冷凍サイクル18の▲2▼から▲3▼に掛けCOガスを約10℃程度の温度差を以て冷却した後、▲3▼から▲4▼に掛け膨張弁13により減圧二相化をさせ、二相化COの低段側蒸発器10への流入により気化をさせ、冷熱源を形成する。
【0030】
図3は、本発明の第2の発明である一段膨張二段圧縮CO冷凍サイクルの概略構成を示す図である。
図3に見るように、第2の発明の一段膨張二段圧縮CO冷凍サイクルは、低段圧縮機21、油分離器21a、中間冷却器22、熱交換器24、中間冷却用膨張弁25、ガスクーラ26、油分離器27a、高段圧縮機27、低段膨張弁28、低段蒸発器29とより構成し、冷媒にはCOを使用し、非相溶性オイルを潤滑油として使用し、前記高段圧縮機27と低段圧縮機21の二つの圧縮機で2回に分割して圧縮をして、1回の圧縮比を小さくして圧縮効率の低下を防止している。さらに、低段圧縮機21による圧縮後の吐出しガスを中間冷却器22で冷却した後、高段圧縮機27により再度圧縮することにより高段圧縮後の吐出し温度を低下させている。
【0031】
則ち、低段蒸発器29での冷媒蒸発は低段圧縮機21で中間圧力まで圧縮された過熱冷媒蒸気となり、油分離器21aを経由して中間冷却器22へ導入される。
該中間冷却器22では、ガスクーラ26で冷却され且つ熱交換器24を経由した高サイドのCOガスの一部をバイパスさせ、中間冷却用膨張弁25により中間圧力まで減圧流入させている。
そして、上記減圧冷却により、前記低段圧縮機21よりの過熱蒸気を飽和状態に戻し高段圧縮機27へ吸入させ、ガスクーラ26からの高サイドのCOガスを過冷却して蒸発器29での冷凍効果の向上を図っている。
且つ前記ガスクーラ26よりの高温熱源の供給と、低段蒸発器29よりの冷温熱源の同時供給を可能としている。
【0032】
なお、前記したようにガスクーラ26よりの高サイドの作動流体を熱交換器24に導入し過熱蒸気となし、非相溶性オイルの使用に対応できる構成にしてある。
【0033】
【発明の効果】
本発明は上記構成により下記効果を奏する。
CO冷媒の使用と、単一潤滑油を使用した一段膨張方式や二段膨張方式の二段圧縮CO冷凍サイクルや、異種潤滑油を使用したカスケード式二段圧縮CO冷凍サイクルの使用により、冷温熱源と高温熱源の同時供給を可能とするCO冷凍サイクルを提供できる。
【図面の簡単な説明】
【図1】 本発明の第1の発明のカスケード式二段圧縮CO冷凍サイクルの概略構成を示す図である。
【図2】 図1のp−h線図である。
【図3】 本発明の第2の発明である一段膨張二段圧縮CO冷凍サイクルの概略構成を示す図である。
【図4】 従来のカスケード式二段圧縮冷凍サイクルの一実施例の概略構成を示す図である。
【図5】 (A)は従来の一段膨張二段圧縮CO冷凍サイクルの一実施例の概略構成を示す図で、(B)は(A)のp−h線図である。
【図6】 (A)は従来のCO冷凍サイクルにおけるリターンオイル装置を設けた回路図で、(B)は(A)のリターンオイル装置の概略構成を示す図である。
【符号の説明】
10 低段側蒸発器
11 低段側圧縮機
12 カスケードコンデンサ
13、16 膨張弁
14 高段側圧縮機
15 ガスクーラ
17 高段側蒸発器
21 低段圧縮機
21a、27a 油分離器
22 中間冷却器
24 熱交換器
25 中間冷却用膨張弁
26 ガスクーラ
27 高段圧縮機
28 低段膨張弁
29 低段蒸発器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a CO 2 refrigeration cycle, and in particular, a CO 2 refrigeration cycle having both a cold heat source and a high temperature heat source, a single-stage expansion method using a single lubricating oil, a two-stage expansion method two-stage compression CO 2 refrigeration cycle, The present invention relates to a cascade type two-stage compression CO 2 refrigeration cycle using different types of lubricating oils.
[0002]
[Prior art]
In recent years, due to regulations on fluorocarbon refrigerants for protecting the global environment, the emergence of an efficient CO 2 refrigeration cycle using CO 2 (carbon dioxide) that is peculiar to ozone layer destruction, global warming, and the like is expected.
In addition, from the standpoint of efficient use of energy, the emergence of a versatile heat supply system that can simultaneously supply cold and hot heat is expected.
[0003]
Conventionally, as a means for performing cooling at a low temperature of minus several tens of degrees, a dual refrigeration cycle in which a high-stage high-stage cycle and a low-temperature-side low stage cycle are combined via a cascade capacitor has been used.
The cascade type two-stage compression refrigeration cycle forming the binary refrigeration cycle includes, for example, a high-stage ammonia refrigeration circuit using ammonia refrigerant and a low-stage CO 2 refrigeration circuit using CO 2 as a refrigerant. The cascade type two-stage compression refrigeration cycle is provided in a store such as a convenience store or a supermarket, and a condensing unit comprising the ammonia refrigeration circuit, a CO 2 refrigeration circuit excluding an evaporator, and a cascade condenser is provided outside the store. The evaporator of the CO 2 refrigeration circuit is installed in a showcase in the store.
[0004]
There is a proposal related to a cooling device that combines the high-stage ammonia refrigeration circuit and the low-stage CO 2 refrigeration circuit. (For example, refer to Patent Document 1.)
The proposal has the following configuration as shown in FIG.
That is, as shown in the figure, the cascade type two-stage compression refrigeration cycle according to the present proposal includes an ammonia refrigeration circuit 51 and a CO 2 refrigeration circuit 53, which are combined via a cascade capacitor 54.
In the ammonia refrigeration circuit 51, a high-stage compressor 55, a condenser 56, an ammonia receiver 57, an expansion valve 58, and a cascade capacitor 54 are formed in this order.
The CO 2 refrigeration circuit 53 includes a cascade capacitor 54, a CO 2 receiver 60, and an evaporator 61 in this order.
The two-stage compression refrigeration cycle is provided in a store such as a convenience store or a supermarket. A condensing unit C including the ammonia refrigeration circuit 51, a CO 2 refrigeration circuit 53 excluding the evaporator 61, and a cascade capacitor 54 is provided. The evaporator 61 of the CO 2 refrigeration circuit 53 is disposed outside the store, and is configured to be installed in a showcase S in the store.
[0005]
In the cascade type two-stage compression refrigeration cycle, the ammonia refrigerant is circulated by the high-stage compressor 55 provided in the high-stage ammonia refrigeration circuit 51, and the low-stage CO 2 refrigeration circuit is circulated by the cascade condenser 54. The CO 2 gas flowing through 53 is liquefied by deprivation heat, and the liquefied CO 2 liquid refrigerant flows into the evaporator 61 in the showcase S to be vaporized, and the natural circulation and evaporator of the CO 2 refrigerant are liquefied and vaporized. 61 is configured to release cold heat.
[0006]
When an excessive pressure rise in the low-stage CO 2 refrigeration circuit 53 is caused by an accident in the high-stage ammonia refrigeration circuit 51 of the cascade type two-stage compression refrigeration cycle, the excessive pressure is discharged from the relief valve 62, It is intended for safe driving.
[0007]
On the other hand as one of CFC measures of refrigerants used in conventional vapor compression refrigeration cycle, the refrigeration cycle using CO 2 is proposed, in order to use the low CO 2 of the critical point as a refrigerant, the refrigeration cycle is critical The cycle includes a supercritical region exceeding the point, and generally includes the following problems.
That is, there is a problem that the liquid-phase refrigerant is sucked into the compressor and causes the compressor to be damaged, and a problem that the efficiency of the cycle is lowered.
The former problem is that in the case of a normal CO 2 cycle using CO 2 , the pressure on the gas cooler outlet side is determined by the opening of the pressure reducing valve based on the CO 2 temperature on the gas cooler outlet side that cools the supercritical high-temperature high-pressure CO 2 gas. Due to the adjustment, the degree of superheat on the outlet side of the evaporator becomes insufficient, and the liquid refrigerant is sucked into the compressor.
[0008]
This proposal has been made in view of the above problems. As an embodiment of the proposal, a two-stage expansion two-stage compression refrigeration cycle is formed, the work capacity of the high-stage compressor is reduced, the refrigeration capacity of the CO 2 cycle is increased, and the coefficient of performance is improved. .
That is, as shown in FIG. 5A, the high stage compressor 71b, the gas cooler 72, the high stage side pressure reducing valve 73, the intermediate cooler 74, the low stage side pressure reducing valve 75, the low stage side evaporator 76, the low stage side evaporator It comprises the stage side compressor 71a.
The opening degree of the high-stage pressure reducing valve 73 is adjusted by the control device 73c based on the detected values of the temperature sensor 73a and the pressure sensor 73b provided on the outlet side of the gas cooler 72, and the opening degree of the low-stage pressure reducing valve 75 is adjusted. Is configured to be adjusted via a temperature sensing cylinder 75a.
That is, in the case of the present embodiment, during the equilibrium operation, the total amount of the high-side CO 2 gas at the outlet of the gas cooler is reduced to the intermediate pressure by the intermediate cooler 74 via the high-stage pressure reducing valve 73, and then the intermediate cooler The intermediate-pressure liquid refrigerant at the bottom of 74 is decompressed by the low-stage pressure reducing valve 75 and flows into the low-stage evaporator 76.
[0009]
The operating state of the refrigeration cycle is shown in the ph diagram of FIG.
That is, at the point A, the intermediate pressure CO 2 gas from the intermediate cooler 74 flowing into the high stage side compressor 71b and the cooling gas of the discharge gas at the point A ′ of the low stage side compressor 71a merge and are sucked. At point B, the supercritical high-pressure high-temperature CO 2 gas flows into the gas cooler 72, and at point C, the low-temperature supercritical high-pressure CO 2 gas cooled by the outside air in the gas cooler flows into the high-stage pressure reducing valve 73 to reduce the pressure to the intermediate pressure. To do. Next, the CO 2 in the gas-liquid two-phase state formed by the pressure reduction at the point D forms an intermediate pressure superheated gas phase CO 2 and flows into the high-stage compressor 71b at the point A, and at the point E, the liquid refrigerant. And the pressure of the formed liquid refrigerant is reduced to the point F by the low pressure reducing valve 75 through the temperature sensing cylinder 75a. Next, superheated steam is formed at point G via the low-stage evaporator 76 and flows into the low-stage compressor 71a.
[0010]
With the above configuration, since the liquid phase CO 2 having a specific enthalpy equal to or lower than that of the saturated liquid flows into the low stage side pressure reducing valve 75, the specific enthalpy difference at the inlet / outlet of the low stage side evaporator 76 can be increased. In addition, the vapor phase CO 2 separated by the intercooler 74 is introduced into the high stage compressor 71b to improve the refrigeration efficiency of the CO 2 cycle.
In the above proposal, cold heat of about 0 ° C. is obtained by the low-stage evaporator 76.
[0011]
In the CO 2 refrigeration cycle for the CO 2 refrigerant, the refrigerant CO 2 is placed in a state containing a supercritical region, in the compressor has likely problems discharge temperature rises, the lubricant for the compressor to be used There is a problem of oil deterioration due to an increase in discharge temperature.
CO 2 dissolves in a certain temperature range with compressor lubricants such as naphthenic and paraffinic mineral oils, alkylbenzene oils, ether oils, ester oils, polyoxyalkylene glycol oils, carbonate oils, etc. There is a problem (oil return to the compressor) that does not completely dissolve even in a wide temperature range that obtains a lower temperature than the start.
[0012]
Various proposals for solving the above problems have been made. Among them, ethane, which is a hydrocarbon structurally close to compressor lubricating oil and highly azeotropic with CO 2 , is used in a small amount range. There is also a proposal for an oil return of compressor oil that coexists with a reduction in compressor discharge temperature using a low temperature working body to be mixed.
With regard to the oil return, there have been proposals relating to a lubricating oil for a compressor in the supercritical CO 2 refrigeration cycle. (For example, refer to Patent Document 3.)
[0013]
The above proposal is based on a supercritical CO 2 refrigeration cycle including a compressor 81, a gas cooler 82, a pressure reducing valve 83, and an evaporator 84 as shown in FIG. 6A, and CO 2 flowing from the evaporator 84 and an excess liquid phase. The accumulator 85 is configured to store the lubricating oil that lubricates the CO 2 and the compressor 81. When the pressure of the refrigeration cycle is higher than the critical pressure, the lubricating oil has a compatibility lower than the critical pressure. Those having higher values are used, and since the compatibility is low on the low pressure side on the evaporator 84 side, liquid phase lubricating oil and liquid phase CO 2 in a separated state exist separately. Therefore, as shown in FIG. 6B, in the tank 86, the liquid phase lubricating oil having a large specific gravity is accumulated in the lower portion, and the liquid phase CO 2 is accumulated thereon. The compressor 81 is provided with a U-shaped suction pipe 87 introduced into the accumulator 85, and liquid phase lubrication in the separated and stored state from a suction hole 87 a provided at the lower curved portion of the U-shaped suction pipe 87. The oil and liquid phase CO 2 can be inhaled.
[0014]
With the above configuration, on the side where the pressure of the refrigeration cycle is lower than the critical pressure, the liquid phase CO 2 is not fed into the compressor, and only the lubricating oil is introduced into the compressor 81, resulting in deterioration of the coefficient of performance and the compressor. 81 can be prevented from being damaged.
Also, on the supercritical pressure side such as a gas cooler that is higher than the critical pressure, the compatibility of the lubricating oil becomes high, and the lubricating oil circulates in the gas cooler together with CO 2 , so that the lubricating oil is prevented from staying in the gas cooler and has a refrigerating capacity. I try to improve.
[0015]
[Patent Document 1]
JP-A-2002-243290 [Patent Document 2]
JP-A-10-115470 [Patent Document 3]
JP-A-11-94380 [0016]
Looking at the above prior art, Document 1 relates to a cascade type two-stage compression refrigeration cycle in which an ammonia refrigeration circuit provided on the high stage side and a CO 2 refrigeration circuit provided on the low stage side are combined via a cascade capacitor. , Which relates to safety measures for the low-stage CO 2 refrigeration circuit for coping with the occurrence of an accident in the high-stage ammonia refrigeration circuit, the description relating to the compressor oil used on the high-stage side and the low-stage side in the cascade refrigeration cycle No.
Reference 2 relates to the circuit configuration of the CO 2 refrigeration cycle exceeding the critical pressure. As one example, the circuit configuration and operating conditions of the two-stage expansion two-stage compression refrigeration cycle using CO 2 as a refrigerant are described. However, there is no description of the lubricating oil used on the high and low stages. In this case, the refrigeration cycle is intended for car air conditioners, and the cold heat source generated by the low-stage evaporator is intended for about 0 ° C.
Reference 3 describes the handling of lubricating oil that changes its compatibility between the critical pressure of the lubricating oil and the critical pressure in the CO 2 refrigeration cycle using CO 2 as a refrigerant. On the high pressure side of the gas cooler, Due to the nature of the used lubricating oil, which becomes highly compatible, the lubricating oil moves together with the refrigerant to prevent stagnation in the gas cooler, and on the low pressure side of the evaporator outlet, the properties that make the lubricating oil less compatible and the use of a special actuator The separated lubricating oil is taken out separately to prevent the liquid refrigerant from being sucked into the compressor, and the separated lubricating oil is taken out and supplied.
[0017]
[Problems to be solved by the invention]
By the way, as mentioned above,
In recent years, refrigeration cycles using CO 2 (carbon dioxide), which is one of natural refrigerants and has an ozone depletion coefficient of zero and a global warming coefficient of 1, have been used due to the regulation of fluorocarbon refrigerants for protecting the global environment. Therefore, there is a strong demand for improvement in efficiency. In addition, from the standpoint of efficient use of energy, the emergence of a versatile heat supply system that can simultaneously supply cold and hot heat is expected.
[0018]
However, as described above, in the prior art, rather than the advantage of using CO 2 having a low critical point as a refrigerant, the CO 2 cycle received by the refrigeration cycle due to its use is increased in pressure, reduced in refrigeration efficiency, and lubricated. There are many things that have been solved all the time to solve individual problems with oil.
The present invention makes it possible to make efficient use of energy by appropriately using a lubricating oil for a compressor having incompatible or compatible properties by utilizing the advantages brought about by using CO 2 as a refrigerant. The purpose is to provide a CO 2 refrigeration cycle capable of simultaneously supplying cold and hot heat.
[0019]
[Means for Solving the Problems]
Therefore, the first related to CO 2 refrigeration cycle of the present invention is directed, and a low-stage CO 2 refrigeration cycle that operates in a region including a high-stage CO 2 refrigeration cycle and the low temperature saturation zone to operate in a region including the supercritical region In a cascaded two-stage compression CO 2 refrigeration cycle combined through a cascade condenser,
The high-stage CO 2 is circulated CO 2 refrigerant by the compressor provided in the refrigerating cycle, is liquefied by Datsunetsu CO 2 gas flowing through the low-stage CO 2 refrigeration cycle by the high-stage-side evaporator cascade condenser The liquefied CO 2 liquid refrigerant flows into the low-stage evaporator and is vaporized to form a cold heat source to obtain a heat of about 75 to 85 ° C. from the gas cooler of the high-stage CO 2 refrigeration cycle, said to obtain a cold heat of -50 to-75 ° C. than cold heat source of the low-stage CO 2 refrigeration cycle, the circulation of the hot CO 2 refrigerant of the high-stage CO 2 refrigeration cycle lubricating compressor incompatible A different type of lubricating oil for the compressor is used via the cascade condenser so that the oil becomes a compatible lubricating oil for the compressor in the circulation of the low-temperature CO 2 refrigerant in the low-stage CO 2 refrigeration cycle ; Octopus The features.
[0020]
In the first aspect of the present invention, two sets of CO 2 refrigeration cycles each using CO 2 as a refrigerant are prepared and combined through a cascade capacitor, and one of the CO 2 refrigeration cycles includes a supercritical region. in the high-stage CO 2 refrigeration cycle that operates by forming causes the other to form a low-stage CO 2 refrigeration cycle operates in a region including a cold saturated zone,
Circulating the CO 2 refrigerant by the compressor provided in the high-stage CO 2 refrigeration cycle, the CO 2 gas flowing through the low-stage CO 2 refrigeration cycle by the evaporator of the high-stage cascade condenser is liquefied by Datsunetsu, The liquefied CO 2 liquid refrigerant flows into the low-stage evaporator and is vaporized to form a cold heat source to obtain a heat of about 75 to 85 ° C. from the gas cooler of the high-stage supercritical CO 2 refrigeration cycle. , -50 to -75 ° C cold is obtained from the cold source.
Then, using a compressor lubricating oil incompatible for circulation of hot CO 2 refrigerant of the high-stage CO 2 refrigeration cycle, the circulation of the low-temperature CO 2 refrigerant in the low-stage CO 2 refrigeration cycle compatibility using the compressor lubricating oil, via the cascade condenser allows the use of a compressor lubricating oil of the incompatible compatible heterogeneous safe driving, high efficiency, to form a cold heat heat source frozen A cycle is obtained.
[0021]
The second invention related to the CO 2 refrigeration cycle of the present invention compresses the CO 2 refrigerant gas evaporated by the evaporator with a low stage compressor and discharges the low stage compressor with an intermediate cooler. In a two-stage compression CO 2 refrigeration cycle in which a high-stage compressor is compressed after cooling and a gas cooler is provided on the discharge side of the high-stage compressor ,
A heat exchanger for heating the low-temperature intake gas of the low-stage compressor using a part of the sensible heat of the CO 2 gas on the discharge side of the gas cooler is provided, and the intermediate cooler is cooled by the gas cooler and the heat exchange A part of the CO 2 gas that has passed through the vessel is bypassed, and the decompression flow is made to flow to an intermediate pressure by the expansion valve for intermediate cooling, so that incompatible lubricating oil can be used in the two-stage compression CO 2 refrigeration cycle. Features.
[0022]
The second invention of the present invention uses CO 2 as a refrigerant and uses a lubricating oil that is incompatible with CO 2 according to the above-described configuration , and performs two-stage compression by two-stage compression CO 2 refrigeration cycle. The compression efficiency is improved and the high-stage compression temperature is lowered.
[0023]
[0024]
[0025]
The lubricating oil used in the two-stage compressed CO 2 refrigeration cycle of the present invention uses an oil that is incompatible with CO 2 used as a refrigerant, and is separated from a high-pressure high-temperature gas in an oil separator on the high stage side, The separated incompatible oil is collected and recirculated to the suction side of the high-stage compressor. On the low-stage side, the downstream-side evaporated gas from the low-stage evaporator is removed by the sensible heat of the high-side high-temperature gas on the high-stage side. It is configured to improve the flowability of the incompatible oil by heating to improve the reflux from the oil separator to the lower stage compressor.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the form of the Example of this invention is demonstrated with the example of illustration. However, unless otherwise specified, the dimensions, shapes, relative positions, and the like of the components described in this embodiment are merely illustrative examples, and are not intended to limit the scope of the present invention. Absent. The details of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of a cascade type two-stage compression CO 2 refrigeration cycle of the first invention of the present invention, and FIG. 2 is a ph diagram of FIG.
FIG. 3 is a diagram showing a schematic configuration of a one-stage expansion two-stage compression CO 2 refrigeration cycle according to the second invention of the present invention.
[0027]
As shown in FIG. 1, the cascade type two-stage compression CO 2 refrigeration cycle which is the first invention of the present invention is
A low stage side CO 2 refrigeration cycle 18 comprising a low stage side evaporator 10, a low stage side compressor 11, a cascade condenser 12 and an expansion valve 13, and operating in a region including a low temperature saturation region;
The high stage side compressor 14, the gas cooler 15, the expansion valve 16, and the high stage side evaporator 17, and a high stage side CO 2 refrigeration cycle 19 that operates in a region including the supercritical region,
The cascade condenser 12 forming the low-stage side condenser is provided with a high-stage side evaporator 17 so that the CO 2 gas flowing through the low-stage side refrigeration cycle is liquefied by deprived heat and the liquefied CO 2 liquid refrigerant is reduced. A high temperature stage that operates in a region including the supercritical CO 2 region, while flowing into the stage-side evaporator 10 and vaporizing it to form a cold heat source to obtain cold heat of −50 to −75 ° C. from the cold heat source. A refrigeration cycle is configured in which a temperature of about 75 to 85 ° C. is obtained from the gas cooler 15 of the side CO 2 refrigeration cycle 19 and cold and heat can be supplied simultaneously.
[0028]
An incompatible compressor lubricating oil is used for circulation of the high temperature CO 2 refrigerant in the high stage CO 2 refrigeration cycle 19, and compatibility is used for circulation of the low temperature CO 2 refrigerant in the low stage CO 2 refrigeration cycle 18. This compressor lubricant oil can be used, and the incompatible and compatible compressor lubricant oils can be used via the cascade capacitor 12, and safe operation and high efficiency can be performed simultaneously with a cold source and a hot source. A refrigeration cycle that can be supplied is obtained.
[0029]
FIG. 2 shows a ph diagram of the cascaded two-stage compression type CO 2 refrigeration cycle of FIG. 1, and as shown in the figure, the high stage side compression provided in the high stage CO 2 refrigeration cycle 19 is shown. The pressure of the CO 2 refrigerant is increased from (5) to (6) by the machine 14 to form a high-pressure and high-temperature supercritical CO 2 gas, which is then cooled by the gas cooler 15 from (6) to (7) and at a high temperature due to sensible heat. A heat source is formed, and then, from (7) to (8), liquefied CO 2 is formed by pressure reduction by the expansion valve 16. Next, heat removal in the evaporation process by the high-stage evaporator 17 built in the cascade condenser 12 from (8) to (5) is performed, and the low-stage CO 2 refrigeration cycle 18 passing through the cascade condenser 12 is performed. From (2) to (3) above, the CO 2 gas is cooled with a temperature difference of about 10 ° C., and then from (3) to (4), the expansion valve 13 is used to reduce the pressure to two-phase. 2 is vaporized by the flow into the lower stage evaporator 10 to form a cold heat source.
[0030]
FIG. 3 is a diagram showing a schematic configuration of a one-stage expansion two-stage compression CO 2 refrigeration cycle according to the second invention of the present invention.
As shown in FIG. 3, the single-stage expansion two-stage compression CO 2 refrigeration cycle of the second invention includes a low-stage compressor 21, an oil separator 21 a, an intermediate cooler 22, a heat exchanger 24, and an intermediate cooling expansion valve 25. The gas cooler 26, the oil separator 27a, the high stage compressor 27, the low stage expansion valve 28, and the low stage evaporator 29. The refrigerant is CO 2 and the incompatible oil is used as the lubricating oil. The two compressors of the high-stage compressor 27 and the low-stage compressor 21 are divided into two parts and compressed, and the compression ratio is reduced by one to prevent a reduction in compression efficiency. Further, the discharge gas after being compressed by the low-stage compressor 21 is cooled by the intermediate cooler 22 and then compressed again by the high-stage compressor 27, thereby reducing the discharge temperature after the high-stage compression.
[0031]
That is, the refrigerant evaporation in the low stage evaporator 29 becomes superheated refrigerant vapor compressed to an intermediate pressure by the low stage compressor 21, and is introduced into the intermediate cooler 22 via the oil separator 21a.
In the intermediate cooler 22, a part of the high-side CO 2 gas that is cooled by the gas cooler 26 and passes through the heat exchanger 24 is bypassed, and is decompressed to the intermediate pressure by the intermediate cooling expansion valve 25.
Then, by the above-mentioned reduced pressure cooling, the superheated steam from the low stage compressor 21 is returned to the saturated state and sucked into the high stage compressor 27, the high side CO 2 gas from the gas cooler 26 is supercooled, and the evaporator 29 The refrigeration effect is improved.
In addition, it is possible to supply a high-temperature heat source from the gas cooler 26 and a cold-heat source from the low-stage evaporator 29 simultaneously.
[0032]
As described above, the working fluid on the high side from the gas cooler 26 is introduced into the heat exchanger 24 to form superheated steam, which is adapted to use incompatible oil.
[0033]
【The invention's effect】
The present invention has the following effects by the above configuration.
By using a CO 2 refrigerant, a two-stage compression CO 2 refrigeration cycle using a single-stage expansion system or a two-stage expansion system using a single lubricant, or a cascade-type two-stage compression CO 2 refrigeration cycle using a different type of lubricant In addition, it is possible to provide a CO 2 refrigeration cycle that enables simultaneous supply of a cold / hot heat source and a high-temperature heat source.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a cascade type two-stage compression CO 2 refrigeration cycle according to a first invention of the present invention.
FIG. 2 is a ph diagram of FIG.
FIG. 3 is a diagram showing a schematic configuration of a one-stage expansion two-stage compression CO 2 refrigeration cycle according to the second invention of the present invention.
FIG. 4 is a diagram showing a schematic configuration of an example of a conventional cascade type two-stage compression refrigeration cycle.
5A is a diagram showing a schematic configuration of an example of a conventional one-stage expansion two-stage compression CO 2 refrigeration cycle, and FIG. 5B is a ph diagram of FIG. 5A.
6A is a circuit diagram provided with a return oil device in a conventional CO 2 refrigeration cycle, and FIG. 6B is a diagram showing a schematic configuration of the return oil device of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Low stage side evaporator 11 Low stage side compressor 12 Cascade condenser 13, 16 Expansion valve 14 High stage side compressor 15 Gas cooler 17 High stage side evaporator 21 Low stage compressor 21a, 27a Oil separator 22 Intermediate cooler 24 Heat exchanger 25 Intermediate cooling expansion valve 26 Gas cooler 27 High stage compressor 28 Low stage expansion valve 29 Low stage evaporator

Claims (2)

超臨界域を含む領域で作動する高段CO冷凍サイクルと低温飽和域を含む領域で作動する低段CO冷凍サイクルとをカスケードコンデンサを介して組み合わせたカスケード式二段圧縮CO冷凍サイクルにおいて、
前記高段側CO 冷凍サイクルに設けられた圧縮機によりCO 冷媒を循環させ、カスケードコンデンサで高段側の蒸発器により低段側CO 冷凍サイクルを流れるCO ガスを奪熱により液化させ、液化したCO 液冷媒を低段側蒸発器へ流入させこれを気化させ、冷熱源を形成させて、前記高段側CO 冷凍サイクルのガスクーラより約75〜85℃の温熱を得るとともに、前記低段側CO 冷凍サイクルの冷熱源より−50〜−75℃の冷熱を得るようにして、高段側CO 冷凍サイクルの高温CO 冷媒の循環には非相溶性の圧縮機用潤滑油を、低段側CO 冷凍サイクルの低温CO 冷媒の循環には相溶性の圧縮機用潤滑油となるように、前記カスケードコンデンサを介して異種の圧縮機用潤滑油を使用する構成としたことを特徴とするCO冷凍サイクル。
In the high-stage CO 2 refrigeration cycle and the low temperature saturated region cascaded two-stage compression CO 2 refrigeration cycle in combination through a cascade condenser and a low-stage CO 2 refrigeration cycle that operates in a region including operating in a region including the supercritical region ,
The high-stage CO 2 is circulated CO 2 refrigerant by the compressor provided in the refrigerating cycle, is liquefied by Datsunetsu CO 2 gas flowing through the low-stage CO 2 refrigeration cycle by the high-stage-side evaporator cascade condenser The liquefied CO 2 liquid refrigerant flows into the low-stage evaporator and is vaporized to form a cold heat source to obtain a heat of about 75 to 85 ° C. from the gas cooler of the high-stage CO 2 refrigeration cycle, said to obtain a cold heat of -50 to-75 ° C. than cold heat source of the low-stage CO 2 refrigeration cycle, the circulation of the hot CO 2 refrigerant of the high-stage CO 2 refrigeration cycle lubricating compressor incompatible A different type of lubricating oil for the compressor is used via the cascade condenser so that the oil becomes a compatible lubricating oil for the compressor in the circulation of the low-temperature CO 2 refrigerant in the low-stage CO 2 refrigeration cycle ; Octopus CO 2 refrigeration cycle, wherein.
蒸発器で蒸発されたCO 冷媒ガスを低段圧縮機で圧縮するとともに前記低段圧縮機の吐出しガスを中間冷却器で冷却した後に高段圧縮機で圧縮させるとともに、該高段圧縮機の吐出側にガスクーラを設けた二段圧縮CO冷凍サイクルにおいて、
前記ガスクーラの吐出側CO ガスの顕熱の一部を利用して低段圧縮機の低温吸入ガスを加熱する熱交換器を設け、更に前記中間冷却器では、ガスクーラで冷却され且つ前記熱交換器を経由したCO ガスの一部をバイパスさせ、中間冷却用膨張弁により中間圧力まで減圧流入させて、二段圧縮CO 冷凍サイクルに非相溶性の潤滑油を使用可能に構成したことを特徴とするCO冷凍サイクル。
The CO 2 refrigerant gas evaporated by the evaporator is compressed by a low-stage compressor, and the discharge gas of the low-stage compressor is cooled by an intermediate cooler and then compressed by a high-stage compressor, and the high-stage compressor In a two-stage compression CO 2 refrigeration cycle in which a gas cooler is provided on the discharge side of
A heat exchanger for heating the low-temperature intake gas of the low-stage compressor using a part of the sensible heat of the CO 2 gas on the discharge side of the gas cooler is provided, and the intermediate cooler is cooled by the gas cooler and the heat exchange A part of the CO 2 gas that has passed through the vessel is bypassed, and the decompression flow is made to flow to an intermediate pressure by the expansion valve for intermediate cooling, so that incompatible lubricating oil can be used in the two-stage compression CO 2 refrigeration cycle. Characteristic CO 2 refrigeration cycle.
JP2003075026A 2003-03-19 2003-03-19 CO2 refrigeration cycle Expired - Fee Related JP4294351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003075026A JP4294351B2 (en) 2003-03-19 2003-03-19 CO2 refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003075026A JP4294351B2 (en) 2003-03-19 2003-03-19 CO2 refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2004279014A JP2004279014A (en) 2004-10-07
JP4294351B2 true JP4294351B2 (en) 2009-07-08

Family

ID=33290439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003075026A Expired - Fee Related JP4294351B2 (en) 2003-03-19 2003-03-19 CO2 refrigeration cycle

Country Status (1)

Country Link
JP (1) JP4294351B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023066808A1 (en) * 2021-10-18 2023-04-27 Thermo Electron Led Gmbh Cooling system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841288B2 (en) * 2006-03-29 2011-12-21 三洋電機株式会社 Refrigeration equipment
US8887524B2 (en) 2006-03-29 2014-11-18 Sanyo Electric Co., Ltd. Refrigerating apparatus
JP4841287B2 (en) * 2006-03-29 2011-12-21 三洋電機株式会社 Refrigeration equipment
JP4964160B2 (en) * 2008-02-04 2012-06-27 三菱電機株式会社 Refrigeration cycle equipment
US20100326100A1 (en) * 2008-02-19 2010-12-30 Carrier Corporation Refrigerant vapor compression system
WO2010067434A1 (en) * 2008-12-11 2010-06-17 学校法人同志社 Heat collecting method and heat collecting device for solar heat
RU2496063C2 (en) 2009-04-17 2013-10-20 Шарп Кабусики Кайся Refrigerator with low-temperature separation, and refrigerating storage device
US9016080B2 (en) * 2011-03-18 2015-04-28 Denso International America, Inc. Battery heating and cooling system
CN104321598B (en) * 2012-08-20 2016-05-18 三菱电机株式会社 Refrigerating device
CN104334982A (en) * 2012-08-23 2015-02-04 三菱电机株式会社 Refrigerating device
JP5770157B2 (en) * 2012-12-28 2015-08-26 三菱電機株式会社 Refrigeration equipment
JP2015178919A (en) 2014-03-19 2015-10-08 サンデンホールディングス株式会社 Refrigeration device
CN103940156B (en) * 2014-05-04 2017-01-18 江苏苏净集团有限公司 Cascade heat pump drying system and control method thereof
JPWO2016059837A1 (en) * 2014-10-16 2017-08-03 サンデンホールディングス株式会社 Heat pump heating system
EP3415758B1 (en) * 2016-02-09 2019-06-05 Mitsubishi Heavy Industries Compressor Corporation Booster system
CN109210817A (en) * 2018-10-22 2019-01-15 重庆优玛泰思特仪器有限公司 Three-level cascade refrigeration system
CN111189247A (en) * 2020-01-07 2020-05-22 浙江英诺绿能科技有限公司 Carbon dioxide subcritical refrigeration system and control method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3414825B2 (en) * 1994-03-30 2003-06-09 東芝キヤリア株式会社 Air conditioner
JPH08189714A (en) * 1995-01-13 1996-07-23 Daikin Ind Ltd Binary refrigerating device
JP3813702B2 (en) * 1996-08-22 2006-08-23 株式会社日本自動車部品総合研究所 Vapor compression refrigeration cycle
JPH1130599A (en) * 1997-07-09 1999-02-02 Toyo Eng Works Ltd Heat accumulation quantity of two-dimensional cooling facility utilizing heat accumulation of dry ice and the two-dimensional cooling facility
JP3365273B2 (en) * 1997-09-25 2003-01-08 株式会社デンソー Refrigeration cycle
JPH11142007A (en) * 1997-11-06 1999-05-28 Nippon Soken Inc Refrigerating cycle
JP2001019944A (en) * 1999-07-09 2001-01-23 Matsushita Electric Ind Co Ltd Low-temperature working fluid and refrigerating cycle apparatus using the same
JP3604973B2 (en) * 1999-09-24 2004-12-22 三洋電機株式会社 Cascade type refrigeration equipment
JP2001153476A (en) * 1999-11-30 2001-06-08 Sanyo Electric Co Ltd Refrigerating plant
JP3510587B2 (en) * 2000-12-06 2004-03-29 三菱重工業株式会社 Cooling cycle for air conditioner and lubricating oil for cooling cycle
JP2002180075A (en) * 2000-12-12 2002-06-26 Nippon Mitsubishi Oil Corp Refrigerating machine oil for carbon dioxide refrigerant and fluid composition for refrigerating machine
JP2002243290A (en) * 2001-02-16 2002-08-28 Sanden Corp Refrigeration unit
JP2003013860A (en) * 2001-06-29 2003-01-15 Sanyo Electric Co Ltd Two stage compression type compressor and refrigerating device using the same
JP2003074999A (en) * 2001-08-31 2003-03-12 Daikin Ind Ltd Refrigerating machine
JP4233843B2 (en) * 2002-10-31 2009-03-04 パナソニック株式会社 Refrigeration cycle equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023066808A1 (en) * 2021-10-18 2023-04-27 Thermo Electron Led Gmbh Cooling system

Also Published As

Publication number Publication date
JP2004279014A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JP4294351B2 (en) CO2 refrigeration cycle
Arpagaus et al. Multi-temperature heat pumps: A literature review
US7818971B2 (en) CO2 cooling and heating apparatus and method having multiple refrigerating cycle circuits
EP2818530B1 (en) Refrigeration cycle utilizing a mixed inert component refrigerant
JP6177424B2 (en) Refrigeration cycle equipment
JP6279069B2 (en) Refrigeration cycle equipment
US20100313582A1 (en) High efficiency r744 refrigeration system and cycle
US20120234026A1 (en) High efficiency refrigeration system and cycle
JPH11248264A (en) Refrigerating machine
CN103635761A (en) Refrigerating device
KR101811957B1 (en) Cascade Heat Pump with Two Stage Expansion Structure using CO2 Refrigerant and Method for Circulating thereof
KR20070046967A (en) Refrigerating apparatus
KR20150076775A (en) Dual refrigerating system
JP2007093017A (en) Refrigerating apparatus
JP2009299911A (en) Refrigeration device
JP7524523B2 (en) Dual refrigeration unit
JP6388260B2 (en) Refrigeration equipment
JP6253370B2 (en) Refrigeration cycle equipment
US7582223B2 (en) Refrigerant composition for refrigeration systems
JP2008267732A (en) Air-conditioning device
EP0138041B1 (en) Chemically assisted mechanical refrigeration process
JP2002168536A (en) Air conditioner
JP3966262B2 (en) Freezer refrigerator
JP5934931B2 (en) Tank for refrigeration cycle apparatus and refrigeration cycle apparatus including the same
JP3028817B2 (en) Refrigeration cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees