JP4233843B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4233843B2
JP4233843B2 JP2002318130A JP2002318130A JP4233843B2 JP 4233843 B2 JP4233843 B2 JP 4233843B2 JP 2002318130 A JP2002318130 A JP 2002318130A JP 2002318130 A JP2002318130 A JP 2002318130A JP 4233843 B2 JP4233843 B2 JP 4233843B2
Authority
JP
Japan
Prior art keywords
oil
compressor
refrigerant
expander
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002318130A
Other languages
Japanese (ja)
Other versions
JP2004150749A (en
Inventor
和生 中谷
義和 川邉
典穂 岡座
晃 鶸田
雄二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002318130A priority Critical patent/JP4233843B2/en
Publication of JP2004150749A publication Critical patent/JP2004150749A/en
Application granted granted Critical
Publication of JP4233843B2 publication Critical patent/JP4233843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備えた冷凍サイクル装置に関する。
【0002】
【従来の技術】
圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備えた冷凍サイクル装置において、圧縮機と膨張機との潤滑オイルを確保するために、圧縮機の出口側の配管にオイル分離器を設け、このオイル分離器で分離したオイルを、圧縮機の吸入側と、膨張機の入口側に供給する構成が提案されている(例えば特許文献1参照)。
【0003】
【特許文献1】
特開2001−141315号公報
【0004】
【発明が解決しようとする課題】
しかしながら、オイル分離器で分離したオイルを、圧縮機の吸入側と、膨張機の入口側に供給するためには、分割供給するために、オイル戻し管にそれぞれ弁か必要となり、分流制御も困難である。
【0005】
そこで本発明は、従来のように分流制御を行うことなく、圧縮機と膨張機との潤滑を円滑に行うことを目的とする。
【0006】
【課題を解決するための手段】
請求項1記載の本発明の冷凍サイクル装置は、冷媒として二酸化炭素を用い、圧縮機と第1の熱交換器と膨張機と第2の熱交換器とを備えた冷凍サイクル装置であって、前記膨張機の冷媒流出側配管に第1オイル分離器を設け、前記第1オイル分離器で分離したオイルを前記圧縮機の吸入側配管に戻すとともに、前記圧縮機の吐出側配管に第2オイル分離器を設け、前記第2オイル分離器で分離したオイルを前記膨張機の冷媒流入側配管に戻すことを特徴とする。
請求項2記載の本発明の冷凍サイクル装置は、冷媒として二酸化炭素を用い、圧縮機と第1の熱交換器と膨張機と第2の熱交換器と補助圧縮機とを備え、前記補助圧縮機を前記圧縮機の吸入側配管に接続し、前記膨張機で回収した動力によって前記補助圧縮機を駆動する冷凍サイクル装置であって、前記膨張機の冷媒流出側配管に第1オイル分離器を設け、前記第1オイル分離器で分離したオイルを前記補助圧縮機の吸入側配管に戻すとともに、前記圧縮機の吐出側配管に第2オイル分離器を設け、前記第2オイル分離器で分離したオイルを前記膨張機の冷媒流入側配管に戻すことを特徴とする。
請求項3記載の本発明の冷凍サイクル装置は、冷媒として二酸化炭素を用い、圧縮機と第1の熱交換器と膨張機と第2の熱交換器と補助圧縮機とを備え、前記補助圧縮機を前記圧縮機の吐出側配管に接続し、前記膨張機で回収した動力によって前記補助圧縮機を駆動する冷凍サイクル装置であって、前記膨張機の冷媒流出側配管に第1オイル分離器を設け、前記第1オイル分離器で分離したオイルを前記圧縮機の吸入側配管に戻すとともに、前記補助圧縮機の吐出側配管に第2オイル分離器を設け、前記第2オイル分離器で分離したオイルを前記膨張機の冷媒流入側配管に戻すことを特徴とする。
請求項4記載の本発明は、請求項1から請求項3のいずれかに記載の冷凍サイクル装置において、前記第1オイル分離器の第1オイル戻し管に絞り装置を設けたことを特徴とする。
請求項5記載の本発明は、請求項1から請求項3のいずれかに記載の冷凍サイクル装置において、前記第2オイル分離器の第2オイル戻し管に絞り装置を設けたことを特徴とする。
請求項6記載の本発明は、請求項1に記載の冷凍サイクル装置において、前記圧縮機の吐出側配管と吸入側配管とが接続される第1四方弁と、前記膨張機の冷媒流入側配管と冷媒流出側配管とが接続される第2四方弁4とを備え、前記第1オイル分離器を前記膨張機の冷媒流出口から前記第2四方弁までの間の配管に設け、前記第1オイル分離器の第1オイル戻し管を、前記第1四方弁から前記圧縮機の吸入口までの間の配管に設けたことを特徴とする。
請求項7記載の本発明は、請求項2に記載の冷凍サイクル装置において、前記圧縮機の吐出側配管と前記補助圧縮機の吸入側配管とが接続される第1四方弁と、前記膨張機の冷媒流入側配管と冷媒流出側配管とが接続される第2四方弁4とを備え、前記第1オイル分離器を前記膨張機の冷媒流出口から前記第2四方弁までの間の配管に設け、前記第1オイル分離器の第1オイル戻し管を、前記第1四方弁から前記補助圧縮機の吸入口までの間の配管に設けたことを特徴とする。
請求項8記載の本発明は、請求項3に記載の冷凍サイクル装置において、前記補助圧縮機の吐出側配管と前記圧縮機の吸入側配管とが接続される第1四方弁と、前記膨張機の冷媒流入側配管と冷媒流出側配管とが接続される第2四方弁4とを備え、前記第1オイル分離器を前記膨張機の冷媒流出口から前記第2四方弁までの間の配管に設け、前記第1オイル分離器の第1オイル戻し管を、前記第1四方弁から前記圧縮機の吸入口までの間の配管に設けたことを特徴とする。
請求項9記載の本発明は、請求項1に記載の冷凍サイクル装置において、前記圧縮機の吐出側配管と吸入側配管とが接続される第1四方弁と、前記膨張機の冷媒流入側配管と冷媒流出側配管とが接続される第2四方弁とを備え、前記第2オイル分離器を前記圧縮機の吐出口から前記第1四方弁までの間の配管に設け、前記第2オイル分離器の第2オイル戻し管を、前記第2四方弁から前記膨張機の冷媒流入口までの間の配管に設けたことを特徴とする。
請求項10記載の本発明は、請求項2に記載の冷凍サイクル装置において、前記圧縮機の吐出側配管と前記補助圧縮機の吸入側配管とが接続される第1四方弁と、前記膨張機の冷媒流入側配管と冷媒流出側配管とが接続される第2四方弁とを備え、前記第2オイル分離器を前記圧縮機の吐出口から前記第1四方弁までの間の配管に設け、前記第2オイル分離器の第2オイル戻し管を、前記第2四方弁から前記膨張機の冷媒流入口までの間の配管に設けたことを特徴とする。
請求項11記載の本発明は、請求項3に記載の冷凍サイクル装置において、前記補助圧縮機の吐出側配管と前記圧縮機の吸入側配管とが接続される第1四方弁と、前記膨張機の冷媒流入側配管と冷媒流出側配管とが接続される第2四方弁とを備え、前記第2オイル分離器を前記補助圧縮機の吐出口から前記第1四方弁までの間の配管に設け、前記第2オイル分離器の第2オイル戻し管を、前記第2四方弁から前記膨張機の冷媒流入口までの間の配管に設けたことを特徴とする。
請求項12記載の本発明は、請求項1から請求項3のいずれかに記載の冷凍サイクル装置において、オイルとして、PAG、AB、ナフテン系鉱油などの前記冷媒と溶解性の低いオイルを用いたことを特徴とする。
【0007】
【発明の実施の形態】
本発明による第1の実施の形態は、膨張機の冷媒流出側配管に第1オイル分離器を設け、第1オイル分離器で分離したオイルを圧縮機の吸入側配管に戻すとともに、圧縮機の吐出側配管に第2オイル分離器を設け、第2オイル分離器で分離したオイルを膨張機の冷媒流入側配管に戻すものである。
本実施の形態によれば、圧縮機の吐出冷媒中のオイルで膨張機の摺動部を潤滑することで、膨張機にオイル溜めを設けることなく膨張部と軸との潤滑を行うことができ、圧縮機と膨張機との一体化が容易となる。また、蒸発器にオイルが流入しないので蒸発器でのオイル溜まりがなく、蒸発器の熱伝達の低下を防止でき、COPを向上させることができる。また、放熱器にオイルが流入しないので放熱器でのオイル溜まりがなく、放熱器の熱伝達の低下を防止でき、COPを向上させることができる。
本発明による第2の実施の形態は、膨張機の冷媒流出側配管に第1オイル分離器を設け、第1オイル分離器で分離したオイルを補助圧縮機の吸入側配管に戻すとともに、圧縮機の吐出側配管に第2オイル分離器を設け、第2オイル分離器で分離したオイルを膨張機の冷媒流入側配管に戻すものである。
本実施の形態によれば、圧縮機の吐出冷媒中のオイルで膨張機の摺動部を潤滑することで、膨張機にオイル溜めを設けることなく膨張部と軸との潤滑を行うことができ、膨張機と補助圧縮機との一体化が容易となる。また、蒸発器にオイルが流入しないので蒸発器でのオイル溜まりがなく、蒸発器の熱伝達の低下を防止でき、COPを向上させることができる。また、放熱器にオイルが流入しないので放熱器でのオイル溜まりがなく、放熱器の熱伝達の低下を防止でき、COPを向上させることができる。
本発明による第3の実施の形態は、膨張機の冷媒流出側配管に第1オイル分離器を設け、第1オイル分離器で分離したオイルを圧縮機の吸入側配管に戻すとともに、補助圧縮機の吐出側配管に第2オイル分離器を設け、第2オイル分離器で分離したオイルを膨張機の冷媒流入側配管に戻すものである。
本実施の形態によれば、圧縮機の吐出冷媒中のオイルで膨張機の摺動部を潤滑することで、膨張機にオイル溜めを設けることなく膨張部と軸との潤滑を行うことができ、膨張機と補助圧縮機との一体化が容易となる。また、蒸発器にオイルが流入しないので蒸発器でのオイル溜まりがなく、蒸発器の熱伝達の低下を防止でき、COPを向上させることができる。また、本実施の形態によれば、放熱器にオイルが流入しないので放熱器でのオイル溜まりがなく、放熱器の熱伝達の低下を防止でき、COPを向上させることができる。
本発明による第4の実施の形態は、第1から第3の実施の形態において、第1オイル分離器の第1オイル戻し管に絞り装置を設けたものである。
本実施の形態によれば、この絞り装置により適切なオイル戻し量を確保することができる。
本発明による第5の実施の形態は、第1から第3の実施の形態において、第2オイル分離器の第2オイル戻し管に絞り装置を設けたものである。
本実施の形態によれば、この絞り装置により適切なオイル戻し量を確保することができる。
本発明による第6の実施の形態は、第1の実施の形態において、圧縮機の吐出側配管と吸入側配管とが接続される第1四方弁と、膨張機の冷媒流入側配管と冷媒流出側配管とが接続される第2四方弁とを備え、第1オイル分離器を膨張機の冷媒流出口から第2四方弁までの間の配管に設け、第1オイル分離器の第1オイル戻し管を、第1四方弁から圧縮機の吸入口までの間の配管に設けたものである。
本実施の形態によれば、第1四方弁の切り替えによって冷房運転モードと暖房運転モードとを利用することができる冷凍サイクルにおいて、圧縮機の吐出冷媒中のオイルで膨張機の摺動部を潤滑することができる。また、蒸発器にオイルが流入しないので蒸発器でのオイル溜まりがなく、蒸発器の熱伝達の低下を防止でき、COPを向上させることができる。
本発明による第7の実施の形態は、第2の実施の形態において、圧縮機の吐出側配管と補助圧縮機の吸入側配管とが接続される第1四方弁と、膨張機の冷媒流入側配管と冷媒流出側配管とが接続される第2四方弁とを備え、第1オイル分離器を膨張機の冷媒流出口から第2四方弁までの間の配管に設け、第1オイル分離器の第1オイル戻し管を、第1四方弁から補助圧縮機の吸入口までの間の配管に設けたものである。
本実施の形態によれば、第1四方弁の切り替えによって冷房運転モードと暖房運転モードとを利用することができる冷凍サイクルにおいて、圧縮機の吐出冷媒中のオイルで膨張機の摺動部を潤滑することができる。また、蒸発器にオイルが流入しないので蒸発器でのオイル溜まりがなく、蒸発器の熱伝達の低下を防止でき、COPを向上させることができる。
本発明による第8の実施の形態は、第3の実施の形態において、補助圧縮機の吐出側配管と圧縮機の吸入側配管とが接続される第1四方弁と、膨張機の冷媒流入側配管と冷媒流出側配管とが接続される第2四方弁とを備え、第1オイル分離器を膨張機の冷媒流出口から第2四方弁までの間の配管に設け、第1オイル分離器の第1オイル戻し管を、第1四方弁から圧縮機の吸入口までの間の配管に設けたものである。
本実施の形態によれば、第1四方弁の切り替えによって冷房運転モードと暖房運転モードとを利用することができる冷凍サイクルにおいて、圧縮機の吐出冷媒中のオイルで膨張機の摺動部を潤滑することができる。また、蒸発器にオイルが流入しないので蒸発器でのオイル溜まりがなく、蒸発器の熱伝達の低下を防止でき、COPを向上させることができる。
本発明による第9の実施の形態は、第1の実施の形態において、圧縮機の吐出側配管と吸入側配管とが接続される第1四方弁と、膨張機の冷媒流入側配管と冷媒流出側配管とが接続される第2四方弁とを備え、第2オイル分離器を圧縮機の吐出口から第1四方弁までの間の配管に設け、第2オイル分離器の第2オイル戻し管を、第2四方弁から膨張機の冷媒流入口までの間の配管に設けたものである。
本実施の形態によれば、第1四方弁の切り替えによって冷房運転モードと暖房運転モードとを利用することができる冷凍サイクルにおいて、放熱器にオイルが流入しないので放熱器でのオイル溜まりがなく、放熱器の熱伝達の低下を防止でき、COPを向上させることができる。
本発明による第10の実施の形態は、第2の実施の形態において、圧縮機の吐出側配管と補助圧縮機の吸入側配管とが接続される第1四方弁と、膨張機の冷媒流入側配管と冷媒流出側配管とが接続される第2四方弁とを備え、第2オイル分離器を圧縮機の吐出口から第1四方弁までの間の配管に設け、第2オイル分離器の第2オイル戻し管を、第2四方弁から膨張機の冷媒流入口までの間の配管に設けたものである。
本実施の形態によれば、第1四方弁の切り替えによって冷房運転モードと暖房運転モードとを利用することができる冷凍サイクルにおいて、放熱器にオイルが流入しないので放熱器でのオイル溜まりがなく、放熱器の熱伝達の低下を防止でき、COPを向上させることができる。
本発明による第11の実施の形態は、第3の実施の形態において、補助圧縮機の吐出側配管と圧縮機の吸入側配管とが接続される第1四方弁と、膨張機の冷媒流入側配管と冷媒流出側配管とが接続される第2四方弁とを備え、第2オイル分離器を補助圧縮機の吐出口から第1四方弁までの間の配管に設け、第2オイル分離器の第2オイル戻し管を、第2四方弁から膨張機の冷媒流入口までの間の配管に設けたものである。
本実施の形態によれば、第1四方弁の切り替えによって冷房運転モードと暖房運転モードとを利用することができる冷凍サイクルにおいて、放熱器にオイルが流入しないので放熱器でのオイル溜まりがなく、放熱器の熱伝達の低下を防止でき、COPを向上させることができる。
本発明による第12の実施の形態は、第1から第3の実施の形態において、オイルとして、PAG、AB、ナフテン系鉱油などの冷媒と溶解性の低いオイルを用いたものである。
本実施の形態によれば、冷媒と溶解性の低いオイルを用いることで、オイル分離器でのオイル分離を確実にし、蒸発器や放熱器での熱伝達の効率低下を防止することができ、COPの向上を図ることができる。
【0008】
【実施例】
以下、本発明の一実施例による冷凍サイクル装置を、ヒートポンプ式冷暖房型空気調和装置について、図面を参照して説明する。
図1は、本実施例によるヒートポンプ式冷暖房型空気調和装置の構成図である。
図に示すように、本実施例によるヒートポンプ式冷暖房型空気調和装置は、冷媒としてCO2冷媒を使用し、モータ11を有する圧縮機1と、室外側熱交換器3と、膨張機6と、室内側熱交換器8とを配管で接続した冷媒回路から構成される。圧縮機1等の摺動部潤滑用のオイルとしては、PAG、AB、ナフテン系鉱油などの冷媒と溶解性の低いオイルを用いる。
また膨張機6の流入側には予膨張弁5が設けられている。
また予膨張弁5及び膨張機6と並列に、予膨張弁5及び膨張機6をバイパスするバイパス回路が設けられ、このバイパス回路に制御弁7が設けられている。
また、膨張機6の駆動軸と圧縮機1の駆動軸とは連結されており、圧縮機1は膨張機6で回収した動力を駆動に利用している。
そしてこの冷媒回路には、圧縮機1の吐出側配管と吸入側配管とが接続される第1四方弁2と、予膨張弁5の冷媒流入側配管と膨張機6の冷媒流出側配管とが接続されるとともにバイパス回路が接続される第2四方弁4とを備えている。
第1オイル分離器54は、膨張機6の冷媒流出側の配管であって、バイパス回路との合流部から第2四方弁4までの間の配管に設けられている。そして、この第1オイル分離器54で分離したオイルは、第1オイル戻し管55によって第1四方弁2から圧縮機1の吸入口までの間の配管に戻される。また、第1オイル戻し管55には絞り装置56を設けている。
第2オイル分離器51は、圧縮機1の吐出口から第1四方弁2までの間の配管に設けられている。そして、この第2オイル分離器51で分離したオイルは、第2オイル戻し管52によって第2四方弁2から膨張機6の流入口までの間の配管に戻される。なお、この第2オイル戻し管52はバイパス回路との分岐部よりも下流側配管に設けることが好ましい。また、第2オイル戻し管52には絞り装置53を設けている。
【0009】
本実施例によるヒートポンプ式冷暖房型空気調和装置の動作について以下に説明する。
まず、室外側熱交換器3を放熱器、室内側熱交換器8を蒸発器として用いる冷房運転モードについて説明する。この冷房運転モードでの冷媒流れを、図中実線矢印で示す。
冷房運転モード時の冷媒は、モータ11で駆動される圧縮機1により高温高圧に圧縮されて吐出され、第1四方弁2を経て、室外側熱交換器3に導入される。室外側熱交換器3では、CO2冷媒は、超臨界状態であるので、気液二相状態とはならずに、空気や水などの外部流体に放熱する。その後CO2冷媒は、第2四方弁4を経て予膨張弁5及び膨張機6に導入され、予膨張弁5及び膨張機6で減圧される。この減圧時に膨張機6で回収した動力は圧縮機1の駆動に用いられる。このとき、例えば室外側熱交換器3の出口側で検出した高圧冷媒圧力に応じて制御弁7の開度を調整してバイパス回路に流す冷媒量を制御する。また、検出した高圧冷媒圧力に応じて予膨張弁5の開度を調整して膨張弁6に流れる冷媒量を制御する。
予膨張弁5及び膨張機6にて減圧されたCO2冷媒は、第2四方弁4を経由して室内側熱交換器8に導かれ、室内側熱交換器8にて蒸発して吸熱する。この吸熱によって室内の冷房が行われる。蒸発を終えた冷媒は圧縮機1に吸入される。
【0010】
次に、室外側熱交換器3を蒸発器、室内側熱交換器8を放熱器として用いる暖房運転モードについて説明する。この暖房運転モードでの冷媒流れを、図中波線矢印で示す。
暖房運転モード時の冷媒は、モータ11で駆動される圧縮機1により高温高圧に圧縮されて吐出され、第1四方弁2を経て、室内側熱交換器8に導入される。室内側熱交換器8では、CO2冷媒は、超臨界状態であるので、気液二相状態とはならずに、空気や水などの外部流体に放熱し、この放熱を利用して例えば室内暖房が行われる。その後CO2冷媒は、予膨張弁5及び膨張機6に導入され、予膨張弁5及び膨張機6で減圧される。この減圧時に膨張機6で回収した動力は圧縮機1の駆動に用いられる。このとき、例えば室内側熱交換器8の出口側で検出した高圧冷媒圧力に応じて制御弁7の開度を調整してバイパス回路に流す冷媒量を制御する。また、検出した高圧冷媒圧力に応じて予膨張弁5の開度を調整して膨張弁6に流れる冷媒量を制御する。
予膨張弁5及び膨張機6にて減圧されたCO2冷媒は、第2四方弁4を経由して室外側熱交換器3に導かれ、室外側熱交換器3にて蒸発して吸熱し、蒸発を終えた冷媒は第1四方弁2を経由して圧縮機1に吸入される。
【0011】
次に、上記冷暖房運転時におけるオイルの流れについて説明する。
圧縮機1の内部にはオイル溜めを備え、所定量のオイルが蓄えられている。このオイルによって圧縮機1内の潤滑が行われている。このオイルの一部は、冷媒とともに吐出される。吐出されたオイルは、第2オイル分離器51にて冷媒と分離され、分離されたオイルは、第2オイル戻し管52によって膨張機6の冷媒流入側の配管に戻される。従って、膨張機6はこのオイルによって潤滑される。また、第2オイル分離器51で分離したオイルは、第2オイル戻し管52によって放熱器(冷房運転モードにおける室外側熱交換器3、暖房運転モードにおける室内側熱交換器8)をバイパスするので、放熱器にオイルが流入しないので放熱器でのオイル溜まりがなく、放熱器の熱伝達の効率低下を防止でき、COPを向上させることができる。
一方、膨張機6で潤滑に使われたオイルは、冷媒とともに流出する。流出したオイルは、第1オイル分離器54にて冷媒と分離され、分離されたオイルは、第1オイル戻し管55によって圧縮機1の吸入側配管に戻される。従って、第1オイル分離器54で分離したオイルは、第1オイル戻し管55によって蒸発器(冷房運転モードにおける室内側熱交換器8、暖房運転モードにおける室外側熱交換器3)をバイパスするので、蒸発器にオイルが流入しないので蒸発器でのオイル溜まりがなく、蒸発器の熱伝達の効率低下を防止でき、COPを向上させることができる。また、圧縮機1の吐出冷媒中のオイルで膨張機6の摺動部を潤滑することで、膨張機6にオイル溜めを設けることなく潤滑を行うことができ、圧縮機1と膨張機6との一体化が容易となる。
また、PAG、AB、ナフテン系鉱油などの冷媒と溶解性の低いオイルを用いることで、オイル分離器51、54でのオイル分離を確実にし、蒸発器や放熱器での熱伝達の効率低下を防止することができ、COPの向上を図ることができる。
【0012】
以下、本発明の他の実施例による冷凍サイクル装置を、ヒートポンプ式冷暖房型空気調和装置について、図面を参照して説明する。
図2は、本実施例によるヒートポンプ式冷暖房型空気調和装置の構成図である。
図に示すように、本実施例によるヒートポンプ式冷暖房型空気調和装置は、冷媒としてCO2冷媒を使用し、モータ11を有する圧縮機1と、室外側熱交換器3と、膨張機6と、室内側熱交換器8と、補助圧縮機10とを配管で接続した冷媒回路から構成される。圧縮機1等の摺動部潤滑用のオイルとしては、PAG、AB、ナフテン系鉱油などの冷媒と溶解性の低いオイルを用いる。
また膨張機6の流入側配管には予膨張弁5が設けられている。
また予膨張弁5及び膨張機6と並列に、予膨張弁5及び膨張機6をバイパスするバイパス回路が設けられ、このバイパス回路に制御弁7が設けられている。
また、膨張機6の駆動軸と補助圧縮機10の駆動軸とは連結されており、補助圧縮機10は膨張機6で回収した動力によって駆動される。
そしてこの冷媒回路には、圧縮機1の吐出側配管と補助圧縮機10の吸入側配管とが接続される第1四方弁2と、予膨張弁5の冷媒流入側配管と膨張機6の冷媒流出側配管とが接続されるとともにバイパス回路が接続される第2四方弁4とを備えている。
第1オイル分離器54は、膨張機6の冷媒流出側の配管であって、バイパス回路との合流部から第2四方弁4までの間の配管に設けられている。そして、この第1オイル分離器54で分離したオイルは、第1オイル戻し管55によって第1四方弁2から圧縮機1の吸入口までの間の配管に戻される。また、第1オイル戻し管55には絞り装置56を設けている。
第2オイル分離器51は、圧縮機1の吐出口から第1四方弁2までの間の配管に設けられている。そして、この第2オイル分離器51で分離したオイルは、第2オイル戻し管52によって第2四方弁2から膨張機6の流入口までの間の配管に戻される。なお、この第2オイル戻し管52はバイパス回路との分岐部よりも下流側配管に設けることが好ましい。また、第2オイル戻し管52には絞り装置53を設けている。
【0013】
本実施例によるヒートポンプ式冷暖房型空気調和装置の動作について以下に説明する。
まず、室外側熱交換器3を放熱器、室内側熱交換器8を蒸発器として用いる冷房運転モードについて説明する。この冷房運転モードでの冷媒流れを、図中実線矢印で示す。
冷房運転モード時の冷媒は、モータ11で駆動される圧縮機1により高温高圧に圧縮されて吐出され、第1四方弁2を経て、室外側熱交換器3に導入される。室外側熱交換器3では、CO2冷媒は、超臨界状態であるので、気液二相状態とはならずに、空気や水などの外部流体に放熱する。その後CO2冷媒は、予膨張弁5及び膨張機6に導入され、予膨張弁5及び膨張機6で減圧される。この減圧時に膨張機6で回収した動力は補助圧縮機10の駆動に用いられる。このとき、例えば室外側熱交換器3の出口側で検出した高圧冷媒圧力に応じて制御弁7の開度を調整してバイパス回路に流す冷媒量を制御する。また、検出した高圧冷媒圧力に応じて予膨張弁5の開度を調整して膨張弁6に流れる冷媒量を制御する。
予膨張弁5及び膨張機6にて減圧されたCO2冷媒は、第2四方弁4を経由して室内側熱交換器8に導かれ、室内側熱交換器8にて蒸発して吸熱する。この吸熱によって室内の冷房が行われる。蒸発を終えた冷媒は、第1四方弁2を経て補助圧縮機10に導かれ、補助圧縮機10によって過給(チャージャ)され圧縮機1に吸入される。
【0014】
次に、室外側熱交換器3を蒸発器、室内側熱交換器8を放熱器として用いる暖房運転モードについて説明する。この暖房運転モードでの冷媒流れを、図中波線矢印で示す。
暖房運転モード時の冷媒は、モータ11で駆動される圧縮機1により高温高圧に圧縮されて吐出され、第1四方弁2を経て、室内側熱交換器8に導入される。室内側熱交換器8では、CO2冷媒は、超臨界状態であるので、気液二相状態とはならずに、空気や水などの外部流体に放熱し、この放熱を利用して例えば室内暖房が行われる。その後CO2冷媒は、予膨張弁5及び膨張機6に導入され、予膨張弁5及び膨張機6で減圧される。この減圧時に膨張機6で回収した動力は補助圧縮機10の駆動に用いられる。このとき、例えば室内側熱交換器8の出口側で検出した高圧冷媒圧力に応じて制御弁7の開度を調整してバイパス回路に流す冷媒量を制御する。また、検出した高圧冷媒圧力に応じて予膨張弁5の開度を調整して膨張弁6に流れる冷媒量を制御する。
予膨張弁5及び膨張機6にて減圧されたCO2冷媒は、第2四方弁4を経由して室外側熱交換器3に導かれ、室外側熱交換器3にて蒸発して吸熱し、蒸発を終えた冷媒は第1四方弁2を経由して補助圧縮機10に導かれ、補助圧縮機10によって過給(チャージャ)され圧縮機1に吸入される。
【0015】
次に、上記冷暖房運転時におけるオイルの流れについて説明する。
圧縮機1の内部にはオイル溜めを備え、所定量のオイルが蓄えられている。このオイルによって圧縮機1内の潤滑が行われている。このオイルの一部は、冷媒とともに吐出される。吐出されたオイルは、第2オイル分離器51にて冷媒と分離され、分離されたオイルは、第2オイル戻し管52によって膨張機6の冷媒流入側の配管に戻される。従って、膨張機6はこのオイルによって潤滑される。また、第2オイル分離器51で分離したオイルは、第2オイル戻し管52によって放熱器(冷房運転モードにおける室外側熱交換器3、暖房運転モードにおける室内側熱交換器8)をバイパスするので、放熱器にオイルが流入しないので放熱器でのオイル溜まりがなく、放熱器の熱伝達の効率低下を防止でき、COPを向上させることができる。
一方、膨張機6で潤滑に使われたオイルは、冷媒とともに流出する。流出したオイルは、第1オイル分離器54にて冷媒と分離され、分離されたオイルは、第1オイル戻し管55によって補助圧縮機10の吸入側配管に戻される。従って、補助圧縮機10はこのオイルによって潤滑され、補助圧縮機10から吐出される冷媒は再び圧縮機1内に戻る。また、第1オイル分離器54で分離したオイルは、第1オイル戻し管55によって蒸発器(冷房運転モードにおける室内側熱交換器8、暖房運転モードにおける室外側熱交換器3)をバイパスするので、蒸発器にオイルが流入しないので蒸発器でのオイル溜まりがなく、蒸発器の熱伝達の効率低下を防止でき、COPを向上させることができる。また、圧縮機1の吐出冷媒中のオイルで膨張機6や補助圧縮機10の摺動部を潤滑することで、膨張機6や補助圧縮機10にオイル溜めを設けることなく潤滑を行うことができ、補助圧縮機10と膨張機6との一体化が容易となる。
また、PAG、AB、ナフテン系鉱油などの冷媒と溶解性の低いオイルを用いることで、オイル分離器51、54でのオイル分離を確実にし、蒸発器や放熱器での熱伝達の効率低下を防止することができ、COPの向上を図ることができる。
【0016】
以下、本発明の他の実施例による冷凍サイクル装置を、ヒートポンプ式冷暖房型空気調和装置について、図面を参照して説明する。
図3は、本実施例によるヒートポンプ式冷暖房型空気調和装置の構成図である。
図に示すように、本実施例によるヒートポンプ式冷暖房型空気調和装置は、冷媒としてCO2冷媒を使用し、モータ11を有する圧縮機1と、補助圧縮機10と、室外側熱交換器3と、膨張機6と、室内側熱交換器8とを配管で接続した冷媒回路から構成される。圧縮機1等の摺動部潤滑用のオイルとしては、PAG、AB、ナフテン系鉱油などの冷媒と溶解性の低いオイルを用いる。
また膨張機6の流入側配管には予膨張弁5が設けられている。
また予膨張弁5及び膨張機6と並列に、予膨張弁5及び膨張機6をバイパスするバイパス回路が設けられ、このバイパス回路に制御弁7が設けられている。
また、膨張機6の駆動軸と補助圧縮機10の駆動軸とは連結されており、補助圧縮機10は膨張機6で回収した動力によって駆動される。
そしてこの冷媒回路には、圧縮機1の吸入側配管と補助圧縮機10の吐出側配管とが接続される第1四方弁2と、予膨張弁5の吸入側配管と膨張機6の吐出側配管とが接続されるとともにバイパス回路が接続される第2四方弁4とを備えている。
第1オイル分離器54は、膨張機6の冷媒流出側の配管であって、バイパス回路との合流部から第2四方弁4までの間の配管に設けられている。そして、この第1オイル分離器54で分離したオイルは、第1オイル戻し管55によって第1四方弁2から圧縮機1の吸入口までの間の配管に戻される。また、第1オイル戻し管55には絞り装置56を設けている。
第2オイル分離器51は、圧縮機1の吐出口から第1四方弁2までの間の配管に設けられている。そして、この第2オイル分離器51で分離したオイルは、第2オイル戻し管52によって第2四方弁2から膨張機6の流入口までの間の配管に戻される。なお、この第2オイル戻し管52はバイパス回路との分岐部よりも下流側配管に設けることが好ましい。また、第2オイル戻し管52には絞り装置53を設けている。
【0017】
本実施例によるヒートポンプ式冷暖房型空気調和装置の動作について以下に説明する。
まず、室外側熱交換器3を放熱器、室内側熱交換器8を蒸発器として用いる冷房運転モードについて説明する。この冷房運転モードでの冷媒流れを、図中実線矢印で示す。
冷房運転モード時の冷媒は、モータ11で駆動される圧縮機1により高温高圧に圧縮されて吐出され、補助圧縮機10に導かれ、補助圧縮機10によって更に過圧(エクスプレッサ)された後に、第1四方弁2を経て、室外側熱交換器3に導入される。室外側熱交換器3では、CO2冷媒は、超臨界状態であるので、気液二相状態とはならずに、空気や水などの外部流体に放熱する。その後CO2冷媒は、予膨張弁5及び膨張機6に導入され、予膨張弁5及び膨張機6で減圧される。この減圧時に膨張機6で回収した動力は補助圧縮機10の駆動に用いられる。このとき、例えば室外側熱交換器3の出口側で検出した高圧冷媒圧力に応じて制御弁7の開度を調整してバイパス回路に流す冷媒量を制御する。また、検出した高圧冷媒圧力に応じて予膨張弁5の開度を調整して膨張弁6に流れる冷媒量を制御する。
予膨張弁5及び膨張機6にて減圧されたCO2冷媒は、第2四方弁4を経由して室内側熱交換器8に導かれ、室内側熱交換器8にて蒸発して吸熱する。この吸熱によって室内の冷房が行われる。蒸発を終えた冷媒は、第1四方弁2を経て圧縮機1に吸入される。
【0018】
次に、室外側熱交換器3を蒸発器、室内側熱交換器8を放熱器として用いる暖房運転モードについて説明する。この暖房運転モードでの冷媒流れを、図中波線矢印で示す。
暖房運転モード時の冷媒は、モータ11で駆動される圧縮機1により高温高圧に圧縮されて吐出され、補助圧縮機10に導かれ、補助圧縮機10によって更に過圧(エクスプレッサ)された後に、第1四方弁2を経て、室内側熱交換器8に導入される。室内側熱交換器8では、CO2冷媒は、超臨界状態であるので、気液二相状態とはならずに、空気や水などの外部流体に放熱し、この放熱を利用して例えば室内暖房が行われる。その後CO2冷媒は、予膨張弁5及び膨張機6に導入され、予膨張弁5及び膨張機6で減圧される。この減圧時に膨張機6で回収した動力は補助圧縮機10の駆動に用いられる。このとき、例えば室内側熱交換器8の出口側で検出した高圧冷媒圧力に応じて制御弁7の開度を調整してバイパス回路に流す冷媒量を制御する。また、検出した高圧冷媒圧力に応じて予膨張弁5の開度を調整して膨張弁6に流れる冷媒量を制御する。
予膨張弁5及び膨張機6にて減圧されたCO2冷媒は、第2四方弁4を経由して室外側熱交換器3に導かれ、室外側熱交換器3にて蒸発して吸熱し、蒸発を終えた冷媒は第1四方弁2を経由して圧縮機1に吸入される。
【0019】
次に、上記冷暖房運転時におけるオイルの流れについて説明する。
圧縮機1の内部にはオイル溜めを備え、所定量のオイルが蓄えられている。このオイルによって圧縮機1内の潤滑が行われている。このオイルの一部は、冷媒とともに吐出される。吐出されたオイルは、冷媒とともに補助圧縮機10に導入されて補助圧縮機10内の潤滑を行う。そして補助圧縮機10から吐出されたオイルは、第2オイル分離器51にて冷媒と分離され、分離されたオイルは、第2オイル戻し管52によって膨張機6の冷媒流入側の配管に戻される。従って、膨張機6はこのオイルによって潤滑される。また、第2オイル分離器51で分離したオイルは、第2オイル戻し管52によって放熱器(冷房運転モードにおける室外側熱交換器3、暖房運転モードにおける室内側熱交換器8)をバイパスするので、放熱器にオイルが流入しないので放熱器でのオイル溜まりがなく、放熱器の熱伝達の効率低下を防止でき、COPを向上させることができる。
一方、膨張機6で潤滑に使われたオイルは、冷媒とともに流出する。流出したオイルは、第1オイル分離器54にて冷媒と分離され、分離されたオイルは、第1オイル戻し管55によって圧縮機1の吸入側配管に戻され、再び圧縮機1内に戻る。第1オイル分離器54で分離したオイルは、第1オイル戻し管55によって蒸発器(冷房運転モードにおける室内側熱交換器8、暖房運転モードにおける室外側熱交換器3)をバイパスするので、蒸発器にオイルが流入しないので蒸発器でのオイル溜まりがなく、蒸発器の熱伝達の効率低下を防止でき、COPを向上させることができる。また、圧縮機1の吐出冷媒中のオイルで膨張機6や補助圧縮機10の摺動部を潤滑することで、膨張機6や補助圧縮機10にオイル溜めを設けることなく潤滑を行うことができ、補助圧縮機10と膨張機6との一体化が容易となる。
また、PAG、AB、ナフテン系鉱油などの冷媒と溶解性の低いオイルを用いることで、オイル分離器51、54でのオイル分離を確実にし、蒸発器や放熱器での熱伝達の効率低下を防止することができ、COPの向上を図ることができる。
【0020】
上記それぞれの実施例では、ヒートポンプ式冷暖房型空気調和装置を用いて説明したが、室外側熱交換器3を第1の熱交換器、室内側熱交換器8を第2の熱交換器とし、これら第1の熱交換器や第2の熱交換器を、温冷水器や蓄冷熱器などに利用したその他の冷凍サイクル装置であってもよい。
また、上記それぞれの実施例では、膨張機6の駆動軸を、圧縮機1又は補助圧縮機10の駆動軸と連結し、膨張機6で回収した動力を圧縮機1又は補助圧縮機10の駆動に利用する場合を説明したが、膨張機6の駆動軸に発電機を設けて電力に変換して利用してもよい。
また、それぞれの実施例において、高圧冷媒圧力の検出には圧力センサーを用いることができる。
【0021】
【発明の効果】
以上のように、本発明によれば、圧縮機の吐出冷媒中のオイルで膨張機の摺動部を潤滑することで、膨張機にオイル溜めを設けることなく膨張部と軸との潤滑を行うことができ、圧縮機と膨張機との一体化が容易となる。
また本発明によれば、放熱器や蒸発器にオイルが流入しないので放熱器や蒸発器でのオイル溜まりがなく、放熱器や蒸発器の熱伝達の効率低下を防止でき、COPを向上させることができる。
また本発明によれば、冷媒と溶解性の低いオイルを用いることで、オイル分離器でのオイル分離を確実にし、蒸発器や放熱器での熱伝達の効率低下を防止することができ、COPの向上を図ることができる。
【図面の簡単な説明】
【図1】 本発明の一実施例によるヒートポンプ式冷暖房型空気調和装置の構成図
【図2】 本発明の他の実施例によるヒートポンプ式冷暖房型空気調和装置の構成図
【図3】 本発明の他の実施例によるヒートポンプ式冷暖房型空気調和装置の構成図
【符号の説明】
1 圧縮機
2 第1四方弁
3 室外側熱交換器
4 第2四方弁
5 予膨張弁
6 膨張機
7 制御弁
8 室内側熱交換器
10 補助圧縮機
11 モータ
51 第2オイル分離器
52 第2オイル戻し管
53 絞り装置
54 第2オイル分離器
55 第2オイル戻し管
56 絞り装置
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a refrigeration cycle apparatus using carbon dioxide as a refrigerant and including a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger.
[0002]
[Prior art]
  In a refrigeration cycle apparatus including a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger, oil is supplied to piping on the outlet side of the compressor in order to secure lubricating oil between the compressor and the expander. There has been proposed a configuration in which a separator is provided and oil separated by the oil separator is supplied to the suction side of the compressor and the inlet side of the expander (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
          JP 2001-141315 A
[0004]
[Problems to be solved by the invention]
  However, in order to supply the oil separated by the oil separator to the suction side of the compressor and the inlet side of the expander, a separate valve is required for the oil return pipe, so that the flow control is difficult. It is.
[0005]
  Therefore, an object of the present invention is to smoothly perform lubrication between the compressor and the expander without performing diversion control as in the prior art.
[0006]
[Means for Solving the Problems]
  The refrigeration cycle apparatus of the present invention according to claim 1 uses carbon dioxide as a refrigerant,First heat exchangerAnd the expanderSecond heat exchangerA first oil separator is provided in the refrigerant outflow side piping of the expander, and the oil separated by the first oil separator is returned to the suction side piping of the compressor.In addition, a second oil separator is provided in the discharge side pipe of the compressor, and the oil separated by the second oil separator is returned to the refrigerant inflow side pipe of the expander.It is characterized by that.
  The refrigeration cycle apparatus of the present invention according to claim 2 uses carbon dioxide as a refrigerant,First heat exchangerAnd the expanderSecond heat exchangerAnd an auxiliary compressor, wherein the auxiliary compressor is connected to a suction side pipe of the compressor, and the auxiliary compressor is driven by the power recovered by the expander. A first oil separator is provided in the refrigerant outflow side pipe, and the oil separated by the first oil separator is returned to the suction side pipe of the auxiliary compressor.In addition, a second oil separator is provided in the discharge side pipe of the compressor, and the oil separated by the second oil separator is returned to the refrigerant inflow side pipe of the expander.It is characterized by that.
  The refrigeration cycle apparatus of the present invention described in claim 3 uses carbon dioxide as a refrigerant,First heat exchangerAnd the expanderSecond heat exchangerAnd an auxiliary compressor, wherein the auxiliary compressor is connected to a discharge side pipe of the compressor, and the auxiliary compressor is driven by the power recovered by the expander. A first oil separator is provided in the refrigerant outflow side pipe, and the oil separated by the first oil separator is returned to the suction side pipe of the compressor.In addition, a second oil separator is provided in the discharge side piping of the auxiliary compressor, and the oil separated by the second oil separator is returned to the refrigerant inflow side piping of the expander.It is characterized by that.
  According to a fourth aspect of the present invention, in the refrigeration cycle apparatus according to any one of the first to third aspects, a throttling device is provided in the first oil return pipe of the first oil separator. .
  Claim 5The invention described isClaim 1FromClaim 3In the refrigeration cycle apparatus according to any one of the above, a throttling device is provided in the second oil return pipe of the second oil separator.
  Claim 6In the refrigeration cycle apparatus according to claim 1, the present invention described is a first four-way valve to which a discharge side pipe and a suction side pipe of the compressor are connected, a refrigerant inflow side pipe and a refrigerant outflow of the expander. A second four-way valve 4 connected to a side pipe, wherein the first oil separator is provided in a pipe between the refrigerant outlet of the expander and the second four-way valve, and the first oil separator The first oil return pipe is provided in a pipe from the first four-way valve to the suction port of the compressor.
  Claim 7In the refrigeration cycle apparatus according to claim 2, the present invention described is a first four-way valve to which a discharge side pipe of the compressor and a suction side pipe of the auxiliary compressor are connected, and a refrigerant inflow of the expander A second four-way valve 4 to which a side pipe and a refrigerant outflow side pipe are connected, and the first oil separator is provided in a pipe between the refrigerant outlet of the expander and the second four-way valve, The first oil return pipe of the first oil separator is provided in a pipe from the first four-way valve to the suction port of the auxiliary compressor.
  Claim 8In the refrigeration cycle apparatus according to claim 3, the present invention described is a first four-way valve to which a discharge side pipe of the auxiliary compressor and a suction side pipe of the compressor are connected, and a refrigerant inflow of the expander A second four-way valve 4 to which a side pipe and a refrigerant outflow side pipe are connected, and the first oil separator is provided in a pipe between the refrigerant outlet of the expander and the second four-way valve, The first oil return pipe of the first oil separator is provided in a pipe from the first four-way valve to the suction port of the compressor.
  Claim 9The invention described isClaim 1In the refrigeration cycle apparatus according to claim 2, a first four-way valve to which a discharge side pipe and a suction side pipe of the compressor are connected, and a refrigerant inflow side pipe and a refrigerant outflow side pipe of the expander are connected to each other. A second oil separator is provided in a pipe from a discharge port of the compressor to the first four-way valve, and a second oil return pipe of the second oil separator is provided to the second oil separator. It is provided in piping between the four-way valve and the refrigerant inlet of the expander.
  Claim 10The invention described isClaim 2In the refrigeration cycle apparatus according to claim 1, a first four-way valve to which a discharge side pipe of the compressor and a suction side pipe of the auxiliary compressor are connected, a refrigerant inflow side pipe and a refrigerant outflow side pipe of the expander A second oil separator connected to the second oil separator, the second oil separator being provided in a pipe from the discharge port of the compressor to the first four-way valve, and a second oil return pipe of the second oil separator. Is provided in a pipe from the second four-way valve to the refrigerant inlet of the expander.
  Claim 11The invention described isClaim 3In the refrigeration cycle apparatus according to claim 1, a first four-way valve to which a discharge side pipe of the auxiliary compressor and a suction side pipe of the compressor are connected, a refrigerant inflow side pipe and a refrigerant outflow side pipe of the expander A second four-way valve to be connected, the second oil separator is provided in a pipe from the discharge port of the auxiliary compressor to the first four-way valve, and a second oil return of the second oil separator A pipe is provided in a pipe between the second four-way valve and the refrigerant inlet of the expander.
  Claim 12In the refrigeration cycle apparatus according to any one of claims 1 to 3, the present invention described is characterized in that the oil such as PAG, AB, naphthenic mineral oil or the like and an oil having low solubility are used as the oil. And
[0007]
DETAILED DESCRIPTION OF THE INVENTION
  In the first embodiment of the present invention, a first oil separator is provided in the refrigerant outflow side piping of the expander, and the oil separated by the first oil separator is returned to the suction side piping of the compressor.At the same time, a second oil separator is provided in the discharge side piping of the compressor, and the oil separated by the second oil separator is returned to the refrigerant inflow side piping of the expander.
  According to the present embodiment, by lubricating the sliding portion of the expander with oil in the refrigerant discharged from the compressor, the expansion portion and the shaft can be lubricated without providing an oil reservoir in the expander. The compressor and the expander can be easily integrated. Further, since oil does not flow into the evaporator, there is no oil accumulation in the evaporator, and heat transfer of the evaporator can be prevented from being lowered, and COP can be improved.In addition, since oil does not flow into the radiator, there is no oil accumulation in the radiator, a decrease in heat transfer of the radiator can be prevented, and COP can be improved.
  In the second embodiment of the present invention, a first oil separator is provided in the refrigerant outflow side piping of the expander, and the oil separated by the first oil separator is returned to the suction side piping of the auxiliary compressor.In addition, a second oil separator is provided in the discharge side piping of the compressor, and the oil separated by the second oil separator is returned to the refrigerant inflow side piping of the expander.Is.
  According to the present embodiment, by lubricating the sliding portion of the expander with oil in the refrigerant discharged from the compressor, the expansion portion and the shaft can be lubricated without providing an oil reservoir in the expander. The expansion device and the auxiliary compressor can be easily integrated. Further, since oil does not flow into the evaporator, there is no oil accumulation in the evaporator, and heat transfer of the evaporator can be prevented from being lowered, and COP can be improved.In addition, since oil does not flow into the radiator, there is no oil accumulation in the radiator, a decrease in heat transfer of the radiator can be prevented, and COP can be improved.
  In the third embodiment of the present invention, a first oil separator is provided in the refrigerant outflow side piping of the expander, and the oil separated by the first oil separator is returned to the suction side piping of the compressor.In addition, a second oil separator is provided in the discharge side piping of the auxiliary compressor, and the oil separated by the second oil separator is returned to the refrigerant inflow side piping of the expander.Is.
  According to the present embodiment, by lubricating the sliding portion of the expander with oil in the refrigerant discharged from the compressor, the expansion portion and the shaft can be lubricated without providing an oil reservoir in the expander. The expansion device and the auxiliary compressor can be easily integrated. Further, since oil does not flow into the evaporator, there is no oil accumulation in the evaporator, and heat transfer of the evaporator can be prevented from being lowered, and COP can be improved.Moreover, according to this Embodiment, since oil does not flow into a radiator, there is no oil accumulation in a radiator, the fall of the heat transfer of a radiator can be prevented, and COP can be improved.
  In the fourth embodiment according to the present invention, a throttling device is provided in the first oil return pipe of the first oil separator in the first to third embodiments.
  According to the present embodiment, an appropriate oil return amount can be ensured by this throttling device.
  According to the invention5thThe embodiment of1st to 3rdIn this embodiment, the second oil return pipe of the second oil separator is provided with a throttle device.
  According to the present embodiment, an appropriate oil return amount can be ensured by this throttling device.
  According to the invention6thIn the first embodiment, the first four-way valve to which the discharge side piping and the suction side piping of the compressor are connected, and the refrigerant inflow side piping and the refrigerant outflow side piping of the expander are connected in the first embodiment. The first oil separator is provided in a pipe from the refrigerant outlet of the expander to the second four-way valve, and the first oil return pipe of the first oil separator is connected to the first oil separator. It is provided in the pipe from the four-way valve to the compressor inlet.
  According to the present embodiment, in the refrigeration cycle in which the cooling operation mode and the heating operation mode can be used by switching the first four-way valve, the sliding portion of the expander is lubricated with the oil in the refrigerant discharged from the compressor. can do. Further, since oil does not flow into the evaporator, there is no oil accumulation in the evaporator, and heat transfer of the evaporator can be prevented from being lowered, and COP can be improved.
  According to the invention7thIn the second embodiment, in the second embodiment, the first four-way valve to which the discharge side piping of the compressor and the suction side piping of the auxiliary compressor are connected, the refrigerant inflow side piping and the refrigerant outflow side of the expander A first oil separator is provided in a pipe between the refrigerant outlet of the expander and the second four-way valve, and a first oil return pipe of the first oil separator is provided. Is provided in the pipe from the first four-way valve to the suction port of the auxiliary compressor.
  According to the present embodiment, in the refrigeration cycle in which the cooling operation mode and the heating operation mode can be used by switching the first four-way valve, the sliding portion of the expander is lubricated with the oil in the refrigerant discharged from the compressor. can do. Further, since oil does not flow into the evaporator, there is no oil accumulation in the evaporator, and heat transfer of the evaporator can be prevented from being lowered, and COP can be improved.
  According to the invention8thIn the third embodiment, in the third embodiment, the first four-way valve to which the discharge side piping of the auxiliary compressor and the suction side piping of the compressor are connected, the refrigerant inflow side piping and the refrigerant outflow side of the expander A first oil separator is provided in a pipe between the refrigerant outlet of the expander and the second four-way valve, and a first oil return pipe of the first oil separator is provided. Is provided in a pipe from the first four-way valve to the suction port of the compressor.
  According to the present embodiment, in the refrigeration cycle in which the cooling operation mode and the heating operation mode can be used by switching the first four-way valve, the sliding portion of the expander is lubricated with the oil in the refrigerant discharged from the compressor. can do. Further, since oil does not flow into the evaporator, there is no oil accumulation in the evaporator, and heat transfer of the evaporator can be prevented from being lowered, and COP can be improved.
  According to the invention9thThe embodiment ofFirstIn the embodiment, the first four-way valve to which the discharge side pipe and the suction side pipe of the compressor are connected, and the second four-way valve to which the refrigerant inflow side pipe and the refrigerant outflow side pipe of the expander are connected. A second oil separator is provided in a pipe between the discharge port of the compressor and the first four-way valve, and a second oil return pipe of the second oil separator is provided from the second four-way valve to the refrigerant inlet of the expander. It is provided in the pipe between.
  According to the present embodiment, in the refrigeration cycle in which the cooling operation mode and the heating operation mode can be used by switching the first four-way valve, oil does not flow into the radiator, so there is no oil accumulation in the radiator. A decrease in heat transfer of the radiator can be prevented, and COP can be improved.
  According to the invention10thThe embodiment ofSecondIn the embodiment, the first four-way valve to which the discharge side piping of the compressor and the suction side piping of the auxiliary compressor are connected, and the refrigerant inflow side piping and the refrigerant outflow side piping of the expander are connected to the second. A second oil separator is provided in the pipe from the discharge port of the compressor to the first four-way valve, and the second oil return pipe of the second oil separator is connected to the expander from the second four-way valve. It is provided in the pipe between the refrigerant inlet.
  According to the present embodiment, in the refrigeration cycle in which the cooling operation mode and the heating operation mode can be used by switching the first four-way valve, oil does not flow into the radiator, so there is no oil accumulation in the radiator. A decrease in heat transfer of the radiator can be prevented, and COP can be improved.
  According to the inventionEleventhThe embodiment isThirdIn the embodiment, the first four-way valve to which the discharge side piping of the auxiliary compressor and the suction side piping of the compressor are connected, and the refrigerant inflow side piping and the refrigerant outflow side piping of the expander are connected to the second. A second oil separator is provided in the pipe from the discharge port of the auxiliary compressor to the first four-way valve, and the second oil return pipe of the second oil separator is expanded from the second four-way valve. It is provided in the pipe between the refrigerant inlet of the machine.
  According to the present embodiment, in the refrigeration cycle in which the cooling operation mode and the heating operation mode can be used by switching the first four-way valve, oil does not flow into the radiator, so there is no oil accumulation in the radiator. A decrease in heat transfer of the radiator can be prevented, and COP can be improved.
  According to the invention12thIn the first to third embodiments, the embodiment uses a refrigerant such as PAG, AB, and naphthenic mineral oil and an oil having low solubility as the oil.
  According to the present embodiment, by using a low-solubility oil with a refrigerant, it is possible to ensure oil separation in the oil separator, and prevent a decrease in efficiency of heat transfer in the evaporator and radiator, The COP can be improved.
[0008]
【Example】
  Hereinafter, a refrigeration cycle apparatus according to an embodiment of the present invention will be described with reference to the drawings for a heat pump type air conditioning apparatus.
  FIG. 1 is a configuration diagram of a heat pump air-conditioning type air conditioner according to the present embodiment.
  As shown in the figure, the heat pump air-conditioning type air conditioner according to the present embodiment uses CO as a refrigerant.2It is composed of a refrigerant circuit using a refrigerant and having a compressor 1 having a motor 11, an outdoor heat exchanger 3, an expander 6, and an indoor heat exchanger 8 connected by piping. As the oil for lubricating the sliding portion of the compressor 1 or the like, a refrigerant such as PAG, AB or naphthenic mineral oil and an oil having low solubility are used.
  A pre-expansion valve 5 is provided on the inflow side of the expander 6.
  A bypass circuit that bypasses the pre-expansion valve 5 and the expander 6 is provided in parallel with the pre-expansion valve 5 and the expander 6, and a control valve 7 is provided in the bypass circuit.
  Moreover, the drive shaft of the expander 6 and the drive shaft of the compressor 1 are connected, and the compressor 1 uses the power recovered by the expander 6 for driving.
  The refrigerant circuit includes a first four-way valve 2 to which a discharge side pipe and a suction side pipe of the compressor 1 are connected, a refrigerant inflow side pipe of the pre-expansion valve 5 and a refrigerant outflow side pipe of the expander 6. And a second four-way valve 4 to which a bypass circuit is connected.
  The first oil separator 54 is a pipe on the refrigerant outflow side of the expander 6, and is provided in a pipe between the junction with the bypass circuit and the second four-way valve 4. The oil separated by the first oil separator 54 is returned to the pipe between the first four-way valve 2 and the suction port of the compressor 1 by the first oil return pipe 55. The first oil return pipe 55 is provided with a throttle device 56.
  The second oil separator 51 is provided in a pipe between the discharge port of the compressor 1 and the first four-way valve 2. The oil separated by the second oil separator 51 is returned to the pipe between the second four-way valve 2 and the inlet of the expander 6 by the second oil return pipe 52. The second oil return pipe 52 is preferably provided on the downstream side of the branch with the bypass circuit. The second oil return pipe 52 is provided with a throttle device 53.
[0009]
  The operation of the heat pump type air conditioning apparatus according to this embodiment will be described below.
  First, the cooling operation mode using the outdoor heat exchanger 3 as a radiator and the indoor heat exchanger 8 as an evaporator will be described. The refrigerant flow in the cooling operation mode is indicated by solid line arrows in the figure.
  The refrigerant in the cooling operation mode is compressed and discharged at high temperature and high pressure by the compressor 1 driven by the motor 11, and is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, the CO2Since the refrigerant is in a supercritical state, it does not enter a gas-liquid two-phase state but radiates heat to an external fluid such as air or water. Then CO2The refrigerant is introduced into the pre-expansion valve 5 and the expander 6 through the second four-way valve 4 and is decompressed by the pre-expansion valve 5 and the expander 6. The power recovered by the expander 6 during this decompression is used to drive the compressor 1. At this time, for example, the opening of the control valve 7 is adjusted in accordance with the high-pressure refrigerant pressure detected on the outlet side of the outdoor heat exchanger 3, and the amount of refrigerant flowing through the bypass circuit is controlled. Further, the amount of refrigerant flowing through the expansion valve 6 is controlled by adjusting the opening of the pre-expansion valve 5 according to the detected high-pressure refrigerant pressure.
  CO depressurized by the pre-expansion valve 5 and the expander 62The refrigerant is guided to the indoor heat exchanger 8 via the second four-way valve 4, and evaporates and absorbs heat in the indoor heat exchanger 8. Indoor cooling is performed by this heat absorption. The refrigerant that has been evaporated is sucked into the compressor 1.
[0010]
  Next, the heating operation mode using the outdoor heat exchanger 3 as an evaporator and the indoor heat exchanger 8 as a radiator will be described. The refrigerant flow in the heating operation mode is indicated by a wavy arrow in the figure.
  The refrigerant in the heating operation mode is compressed and discharged at high temperature and high pressure by the compressor 1 driven by the motor 11, and is introduced into the indoor heat exchanger 8 through the first four-way valve 2. In the indoor heat exchanger 8, the CO2Since the refrigerant is in a supercritical state, it does not enter a gas-liquid two-phase state, but dissipates heat to an external fluid such as air or water, and for example, room heating is performed using this heat dissipation. Then CO2The refrigerant is introduced into the pre-expansion valve 5 and the expander 6 and decompressed by the pre-expansion valve 5 and the expander 6. The power recovered by the expander 6 during this decompression is used to drive the compressor 1. At this time, for example, the opening amount of the control valve 7 is adjusted according to the high-pressure refrigerant pressure detected on the outlet side of the indoor heat exchanger 8 to control the amount of refrigerant flowing through the bypass circuit. Further, the amount of refrigerant flowing through the expansion valve 6 is controlled by adjusting the opening of the pre-expansion valve 5 according to the detected high-pressure refrigerant pressure.
  CO depressurized by the pre-expansion valve 5 and the expander 62The refrigerant is guided to the outdoor heat exchanger 3 via the second four-way valve 4, evaporates and absorbs heat in the outdoor heat exchanger 3, and the refrigerant that has finished evaporation passes through the first four-way valve 2. And sucked into the compressor 1.
[0011]
  Next, the flow of oil during the air conditioning operation will be described.
  An oil reservoir is provided inside the compressor 1 to store a predetermined amount of oil. The oil in the compressor 1 is lubricated. A part of this oil is discharged together with the refrigerant. The discharged oil is separated from the refrigerant in the second oil separator 51, and the separated oil is returned to the refrigerant inflow side pipe of the expander 6 by the second oil return pipe 52. Therefore, the expander 6 is lubricated by this oil. Further, the oil separated by the second oil separator 51 bypasses the radiator (the outdoor heat exchanger 3 in the cooling operation mode and the indoor heat exchanger 8 in the heating operation mode) by the second oil return pipe 52. Since the oil does not flow into the radiator, there is no oil accumulation in the radiator, the heat transfer efficiency of the radiator can be prevented from being lowered, and the COP can be improved.
  On the other hand, the oil used for lubrication in the expander 6 flows out together with the refrigerant. The oil that has flowed out is separated from the refrigerant by the first oil separator 54, and the separated oil is returned to the suction side pipe of the compressor 1 by the first oil return pipe 55. Therefore, the oil separated by the first oil separator 54 bypasses the evaporator (the indoor heat exchanger 8 in the cooling operation mode and the outdoor heat exchanger 3 in the heating operation mode) by the first oil return pipe 55. Since the oil does not flow into the evaporator, there is no oil accumulation in the evaporator, the efficiency of heat transfer of the evaporator can be prevented from decreasing, and the COP can be improved. Further, by lubricating the sliding portion of the expander 6 with the oil in the refrigerant discharged from the compressor 1, lubrication can be performed without providing an oil reservoir in the expander 6, and the compressor 1, the expander 6, Can be easily integrated.
  In addition, by using refrigerants such as PAG, AB, naphthenic mineral oil and oils with low solubility, oil separation in the oil separators 51 and 54 is ensured, and the efficiency of heat transfer in the evaporator and radiator is reduced. Can be prevented, and COP can be improved.
[0012]
  Hereinafter, a refrigeration cycle apparatus according to another embodiment of the present invention will be described with reference to the drawings for a heat pump type air conditioning apparatus.
  FIG. 2 is a configuration diagram of the heat pump type air conditioning apparatus according to the present embodiment.
  As shown in the figure, the heat pump air-conditioning type air conditioner according to the present embodiment uses CO as a refrigerant.2It is composed of a refrigerant circuit that uses a refrigerant and includes a compressor 1 having a motor 11, an outdoor heat exchanger 3, an expander 6, an indoor heat exchanger 8, and an auxiliary compressor 10 connected by piping. The As the oil for lubricating the sliding portion of the compressor 1 or the like, a refrigerant such as PAG, AB or naphthenic mineral oil and an oil having low solubility are used.
  A pre-expansion valve 5 is provided on the inflow side piping of the expander 6.
  A bypass circuit that bypasses the pre-expansion valve 5 and the expander 6 is provided in parallel with the pre-expansion valve 5 and the expander 6, and a control valve 7 is provided in the bypass circuit.
  Further, the drive shaft of the expander 6 and the drive shaft of the auxiliary compressor 10 are connected, and the auxiliary compressor 10 is driven by the power recovered by the expander 6.
  In this refrigerant circuit, the first four-way valve 2 to which the discharge side pipe of the compressor 1 and the suction side pipe of the auxiliary compressor 10 are connected, the refrigerant inflow side pipe of the pre-expansion valve 5 and the refrigerant of the expander 6 are connected. A second four-way valve 4 connected to the outflow side pipe and connected to the bypass circuit is provided.
  The first oil separator 54 is a pipe on the refrigerant outflow side of the expander 6, and is provided in a pipe between the junction with the bypass circuit and the second four-way valve 4. The oil separated by the first oil separator 54 is returned to the pipe between the first four-way valve 2 and the suction port of the compressor 1 by the first oil return pipe 55. The first oil return pipe 55 is provided with a throttle device 56.
  The second oil separator 51 is provided in a pipe between the discharge port of the compressor 1 and the first four-way valve 2. The oil separated by the second oil separator 51 is returned to the pipe between the second four-way valve 2 and the inlet of the expander 6 by the second oil return pipe 52. The second oil return pipe 52 is preferably provided on the downstream side of the branch with the bypass circuit. The second oil return pipe 52 is provided with a throttle device 53.
[0013]
  The operation of the heat pump type air conditioning apparatus according to this embodiment will be described below.
  First, the cooling operation mode using the outdoor heat exchanger 3 as a radiator and the indoor heat exchanger 8 as an evaporator will be described. The refrigerant flow in the cooling operation mode is indicated by solid line arrows in the figure.
  The refrigerant in the cooling operation mode is compressed and discharged at high temperature and high pressure by the compressor 1 driven by the motor 11, and is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, the CO2Since the refrigerant is in a supercritical state, it does not enter a gas-liquid two-phase state but radiates heat to an external fluid such as air or water. Then CO2The refrigerant is introduced into the pre-expansion valve 5 and the expander 6 and decompressed by the pre-expansion valve 5 and the expander 6. The power recovered by the expander 6 during this decompression is used to drive the auxiliary compressor 10. At this time, for example, the opening of the control valve 7 is adjusted in accordance with the high-pressure refrigerant pressure detected on the outlet side of the outdoor heat exchanger 3, and the amount of refrigerant flowing through the bypass circuit is controlled. Further, the amount of refrigerant flowing through the expansion valve 6 is controlled by adjusting the opening of the pre-expansion valve 5 according to the detected high-pressure refrigerant pressure.
  CO depressurized by the pre-expansion valve 5 and the expander 62The refrigerant is guided to the indoor heat exchanger 8 via the second four-way valve 4, and evaporates and absorbs heat in the indoor heat exchanger 8. Indoor cooling is performed by this heat absorption. The evaporated refrigerant is led to the auxiliary compressor 10 through the first four-way valve 2, supercharged (charged) by the auxiliary compressor 10, and sucked into the compressor 1.
[0014]
  Next, the heating operation mode using the outdoor heat exchanger 3 as an evaporator and the indoor heat exchanger 8 as a radiator will be described. The refrigerant flow in the heating operation mode is indicated by a wavy arrow in the figure.
  The refrigerant in the heating operation mode is compressed and discharged at high temperature and high pressure by the compressor 1 driven by the motor 11, and is introduced into the indoor heat exchanger 8 through the first four-way valve 2. In the indoor heat exchanger 8, the CO2Since the refrigerant is in a supercritical state, it does not enter a gas-liquid two-phase state, but dissipates heat to an external fluid such as air or water, and for example, room heating is performed using this heat dissipation. Then CO2The refrigerant is introduced into the pre-expansion valve 5 and the expander 6 and decompressed by the pre-expansion valve 5 and the expander 6. The power recovered by the expander 6 during this decompression is used to drive the auxiliary compressor 10. At this time, for example, the opening amount of the control valve 7 is adjusted according to the high-pressure refrigerant pressure detected on the outlet side of the indoor heat exchanger 8 to control the amount of refrigerant flowing through the bypass circuit. Further, the amount of refrigerant flowing through the expansion valve 6 is controlled by adjusting the opening of the pre-expansion valve 5 according to the detected high-pressure refrigerant pressure.
  CO depressurized by the pre-expansion valve 5 and the expander 62The refrigerant is guided to the outdoor heat exchanger 3 via the second four-way valve 4, evaporates and absorbs heat in the outdoor heat exchanger 3, and the refrigerant that has finished evaporation passes through the first four-way valve 2. Then, it is guided to the auxiliary compressor 10, supercharged (charged) by the auxiliary compressor 10, and sucked into the compressor 1.
[0015]
  Next, the flow of oil during the air conditioning operation will be described.
  An oil reservoir is provided inside the compressor 1 to store a predetermined amount of oil. The oil in the compressor 1 is lubricated. A part of this oil is discharged together with the refrigerant. The discharged oil is separated from the refrigerant in the second oil separator 51, and the separated oil is returned to the refrigerant inflow side pipe of the expander 6 by the second oil return pipe 52. Therefore, the expander 6 is lubricated by this oil. Further, the oil separated by the second oil separator 51 bypasses the radiator (the outdoor heat exchanger 3 in the cooling operation mode and the indoor heat exchanger 8 in the heating operation mode) by the second oil return pipe 52. Since the oil does not flow into the radiator, there is no oil accumulation in the radiator, the heat transfer efficiency of the radiator can be prevented from being lowered, and the COP can be improved.
  On the other hand, the oil used for lubrication in the expander 6 flows out together with the refrigerant. The oil that has flowed out is separated from the refrigerant by the first oil separator 54, and the separated oil is returned to the suction side pipe of the auxiliary compressor 10 by the first oil return pipe 55. Accordingly, the auxiliary compressor 10 is lubricated by the oil, and the refrigerant discharged from the auxiliary compressor 10 returns to the compressor 1 again. Further, the oil separated by the first oil separator 54 bypasses the evaporator (the indoor heat exchanger 8 in the cooling operation mode and the outdoor heat exchanger 3 in the heating operation mode) by the first oil return pipe 55. Since the oil does not flow into the evaporator, there is no oil accumulation in the evaporator, the efficiency of heat transfer of the evaporator can be prevented from decreasing, and the COP can be improved. Moreover, lubrication can be performed without providing an oil reservoir in the expander 6 or the auxiliary compressor 10 by lubricating the sliding portions of the expander 6 or the auxiliary compressor 10 with oil in the refrigerant discharged from the compressor 1. The auxiliary compressor 10 and the expander 6 can be easily integrated.
  In addition, by using refrigerants such as PAG, AB, naphthenic mineral oil and oils with low solubility, oil separation in the oil separators 51 and 54 is ensured, and the efficiency of heat transfer in the evaporator and radiator is reduced. Can be prevented, and COP can be improved.
[0016]
  Hereinafter, a refrigeration cycle apparatus according to another embodiment of the present invention will be described with reference to the drawings for a heat pump type air conditioning apparatus.
  FIG. 3 is a configuration diagram of the heat pump air-conditioning type air conditioner according to the present embodiment.
  As shown in the figure, the heat pump air-conditioning type air conditioner according to the present embodiment uses CO as a refrigerant.2It is composed of a refrigerant circuit using a refrigerant and having a compressor 1 having a motor 11, an auxiliary compressor 10, an outdoor heat exchanger 3, an expander 6, and an indoor heat exchanger 8 connected by piping. The As the oil for lubricating the sliding portion of the compressor 1 or the like, a refrigerant such as PAG, AB or naphthenic mineral oil and an oil having low solubility are used.
  A pre-expansion valve 5 is provided on the inflow side piping of the expander 6.
  A bypass circuit that bypasses the pre-expansion valve 5 and the expander 6 is provided in parallel with the pre-expansion valve 5 and the expander 6, and a control valve 7 is provided in the bypass circuit.
  Further, the drive shaft of the expander 6 and the drive shaft of the auxiliary compressor 10 are connected, and the auxiliary compressor 10 is driven by the power recovered by the expander 6.
  The refrigerant circuit includes a first four-way valve 2 to which a suction side pipe of the compressor 1 and a discharge side pipe of the auxiliary compressor 10 are connected, a suction side pipe of the pre-expansion valve 5 and a discharge side of the expander 6. And a second four-way valve 4 to which a bypass circuit is connected.
  The first oil separator 54 is a pipe on the refrigerant outflow side of the expander 6, and is provided in a pipe between the junction with the bypass circuit and the second four-way valve 4. The oil separated by the first oil separator 54 is returned to the pipe between the first four-way valve 2 and the suction port of the compressor 1 by the first oil return pipe 55. The first oil return pipe 55 is provided with a throttle device 56.
  The second oil separator 51 is provided in a pipe between the discharge port of the compressor 1 and the first four-way valve 2. The oil separated by the second oil separator 51 is returned to the pipe between the second four-way valve 2 and the inlet of the expander 6 by the second oil return pipe 52. The second oil return pipe 52 is preferably provided on the downstream side of the branch with the bypass circuit. The second oil return pipe 52 is provided with a throttle device 53.
[0017]
  The operation of the heat pump type air conditioning apparatus according to this embodiment will be described below.
  First, the cooling operation mode using the outdoor heat exchanger 3 as a radiator and the indoor heat exchanger 8 as an evaporator will be described. The refrigerant flow in the cooling operation mode is indicated by solid line arrows in the figure.
  The refrigerant in the cooling operation mode is compressed and discharged at a high temperature and a high pressure by the compressor 1 driven by the motor 11, guided to the auxiliary compressor 10, and further overpressure (expressor) by the auxiliary compressor 10. Then, it is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, the CO2Since the refrigerant is in a supercritical state, it does not enter a gas-liquid two-phase state but radiates heat to an external fluid such as air or water. Then CO2The refrigerant is introduced into the pre-expansion valve 5 and the expander 6 and decompressed by the pre-expansion valve 5 and the expander 6. The power recovered by the expander 6 during this decompression is used to drive the auxiliary compressor 10. At this time, for example, the opening of the control valve 7 is adjusted in accordance with the high-pressure refrigerant pressure detected on the outlet side of the outdoor heat exchanger 3, and the amount of refrigerant flowing through the bypass circuit is controlled. Further, the amount of refrigerant flowing through the expansion valve 6 is controlled by adjusting the opening of the pre-expansion valve 5 according to the detected high-pressure refrigerant pressure.
  CO depressurized by the pre-expansion valve 5 and the expander 62The refrigerant is guided to the indoor heat exchanger 8 via the second four-way valve 4, and evaporates and absorbs heat in the indoor heat exchanger 8. Indoor cooling is performed by this heat absorption. The evaporated refrigerant is sucked into the compressor 1 through the first four-way valve 2.
[0018]
  Next, the heating operation mode using the outdoor heat exchanger 3 as an evaporator and the indoor heat exchanger 8 as a radiator will be described. The refrigerant flow in the heating operation mode is indicated by a wavy arrow in the figure.
  The refrigerant in the heating operation mode is compressed and discharged at a high temperature and high pressure by the compressor 1 driven by the motor 11, is guided to the auxiliary compressor 10, and is further overpressured (expressor) by the auxiliary compressor 10. Then, it is introduced into the indoor heat exchanger 8 through the first four-way valve 2. In the indoor heat exchanger 8, the CO2Since the refrigerant is in a supercritical state, it does not enter a gas-liquid two-phase state, but dissipates heat to an external fluid such as air or water, and for example, room heating is performed using this heat dissipation. Then CO2The refrigerant is introduced into the pre-expansion valve 5 and the expander 6 and decompressed by the pre-expansion valve 5 and the expander 6. The power recovered by the expander 6 during this decompression is used to drive the auxiliary compressor 10. At this time, for example, the opening amount of the control valve 7 is adjusted according to the high-pressure refrigerant pressure detected on the outlet side of the indoor heat exchanger 8 to control the amount of refrigerant flowing through the bypass circuit. Further, the amount of refrigerant flowing through the expansion valve 6 is controlled by adjusting the opening of the pre-expansion valve 5 according to the detected high-pressure refrigerant pressure.
  CO depressurized by the pre-expansion valve 5 and the expander 62The refrigerant is guided to the outdoor heat exchanger 3 via the second four-way valve 4, evaporates and absorbs heat in the outdoor heat exchanger 3, and the refrigerant that has finished evaporation passes through the first four-way valve 2. And sucked into the compressor 1.
[0019]
  Next, the flow of oil during the air conditioning operation will be described.
  An oil reservoir is provided inside the compressor 1 to store a predetermined amount of oil. The oil in the compressor 1 is lubricated. A part of this oil is discharged together with the refrigerant. The discharged oil is introduced into the auxiliary compressor 10 together with the refrigerant to lubricate the auxiliary compressor 10. The oil discharged from the auxiliary compressor 10 is separated from the refrigerant in the second oil separator 51, and the separated oil is returned to the refrigerant inflow side pipe of the expander 6 by the second oil return pipe 52. . Therefore, the expander 6 is lubricated by this oil. Further, the oil separated by the second oil separator 51 bypasses the radiator (the outdoor heat exchanger 3 in the cooling operation mode and the indoor heat exchanger 8 in the heating operation mode) by the second oil return pipe 52. Since the oil does not flow into the radiator, there is no oil accumulation in the radiator, the heat transfer efficiency of the radiator can be prevented from being lowered, and the COP can be improved.
  On the other hand, the oil used for lubrication in the expander 6 flows out together with the refrigerant. The oil that has flowed out is separated from the refrigerant in the first oil separator 54, and the separated oil is returned to the suction-side piping of the compressor 1 by the first oil return pipe 55 and returns to the compressor 1 again. Since the oil separated by the first oil separator 54 bypasses the evaporator (the indoor heat exchanger 8 in the cooling operation mode and the outdoor heat exchanger 3 in the heating operation mode) by the first oil return pipe 55, it evaporates. Since oil does not flow into the evaporator, there is no oil accumulation in the evaporator, and it is possible to prevent a reduction in the efficiency of heat transfer of the evaporator and improve COP. Moreover, lubrication can be performed without providing an oil reservoir in the expander 6 or the auxiliary compressor 10 by lubricating the sliding portions of the expander 6 or the auxiliary compressor 10 with oil in the refrigerant discharged from the compressor 1. The auxiliary compressor 10 and the expander 6 can be easily integrated.
  In addition, by using refrigerants such as PAG, AB, naphthenic mineral oil and oils with low solubility, oil separation in the oil separators 51 and 54 is ensured, and the efficiency of heat transfer in the evaporator and radiator is reduced. Can be prevented, and COP can be improved.
[0020]
  In each of the above embodiments, the heat pump air-conditioning type air conditioner has been described. However, the outdoor heat exchanger 3 is a first heat exchanger, and the indoor heat exchanger 8 is a second heat exchanger. Other refrigeration cycle apparatuses using the first heat exchanger and the second heat exchanger for a hot water cooler, a regenerator, and the like may be used.
  In each of the above embodiments, the drive shaft of the expander 6 is connected to the drive shaft of the compressor 1 or the auxiliary compressor 10, and the power recovered by the expander 6 is used to drive the compressor 1 or the auxiliary compressor 10. However, the generator may be provided on the drive shaft of the expander 6 and converted into electric power for use.
  In each embodiment, a pressure sensor can be used to detect the high-pressure refrigerant pressure.
[0021]
【The invention's effect】
  As described above, according to the present invention, the sliding portion of the expander is lubricated with the oil in the refrigerant discharged from the compressor, so that the expansion portion and the shaft are lubricated without providing an oil reservoir in the expander. Therefore, the compressor and the expander can be easily integrated.
  In addition, according to the present invention, since oil does not flow into the radiator or the evaporator, there is no oil accumulation in the radiator or the evaporator, the heat transfer efficiency of the radiator or the evaporator can be prevented from being lowered, and the COP can be improved. Can do.
  In addition, according to the present invention, by using a refrigerant and low-solubility oil, oil separation in the oil separator can be ensured, and a decrease in efficiency of heat transfer in the evaporator or radiator can be prevented. Can be improved.
[Brief description of the drawings]
FIG. 1 is a block diagram of a heat pump type air conditioning apparatus according to an embodiment of the present invention.
FIG. 2 is a block diagram of a heat pump type air conditioning apparatus according to another embodiment of the present invention.
FIG. 3 is a block diagram of a heat pump type air conditioning apparatus according to another embodiment of the present invention.
[Explanation of symbols]
    1 Compressor
    2 First four-way valve
    3 outdoor heat exchanger
    4 Second four-way valve
    5 Pre-expansion valve
    6 Expander
    7 Control valve
    8 Indoor heat exchanger
  10 Auxiliary compressor
  11 Motor
  51 Second oil separator
  52 Second oil return pipe
  53 Aperture device
  54 Second oil separator
  55 Second oil return pipe
  56 Aperture device

Claims (12)

冷媒として二酸化炭素を用い、圧縮機と第1の熱交換器と膨張機と第2の熱交換器とを備えた冷凍サイクル装置であって、前記膨張機の冷媒流出側配管に第1オイル分離器を設け、前記第1オイル分離器で分離したオイルを前記圧縮機の吸入側配管に戻すとともに、前記圧縮機の吐出側配管に第2オイル分離器を設け、前記第2オイル分離器で分離したオイルを前記膨張機の冷媒流入側配管に戻すことを特徴とする冷凍サイクル装置。A refrigeration cycle apparatus using carbon dioxide as a refrigerant and including a compressor, a first heat exchanger, an expander, and a second heat exchanger , wherein a first oil separation is provided in a refrigerant outflow side pipe of the expander And the oil separated by the first oil separator is returned to the suction side piping of the compressor, and the second oil separator is provided to the discharge side piping of the compressor, and separated by the second oil separator. The refrigeration cycle apparatus is characterized in that the recovered oil is returned to the refrigerant inflow side piping of the expander . 冷媒として二酸化炭素を用い、圧縮機と第1の熱交換器と膨張機と第2の熱交換器と補助圧縮機とを備え、前記補助圧縮機を前記圧縮機の吸入側配管に接続し、前記膨張機で回収した動力によって前記補助圧縮機を駆動する冷凍サイクル装置であって、前記膨張機の冷媒流出側配管に第1オイル分離器を設け、前記第1オイル分離器で分離したオイルを前記補助圧縮機の吸入側配管に戻すとともに、前記圧縮機の吐出側配管に第2オイル分離器を設け、前記第2オイル分離器で分離したオイルを前記膨張機の冷媒流入側配管に戻すことを特徴とする冷凍サイクル装置。Using carbon dioxide as a refrigerant, comprising a compressor, a first heat exchanger, an expander, a second heat exchanger, and an auxiliary compressor, and connecting the auxiliary compressor to a suction side pipe of the compressor; A refrigeration cycle apparatus for driving the auxiliary compressor by power recovered by the expander, wherein a first oil separator is provided in a refrigerant outflow side pipe of the expander, and the oil separated by the first oil separator is removed. In addition to returning to the suction side piping of the auxiliary compressor, a second oil separator is provided in the discharge side piping of the compressor, and the oil separated by the second oil separator is returned to the refrigerant inflow side piping of the expander. A refrigeration cycle apparatus characterized by. 冷媒として二酸化炭素を用い、圧縮機と第1の熱交換器と膨張機と第2の熱交換器と補助圧縮機とを備え、前記補助圧縮機を前記圧縮機の吐出側配管に接続し、前記膨張機で回収した動力によって前記補助圧縮機を駆動する冷凍サイクル装置であって、前記膨張機の冷媒流出側配管に第1オイル分離器を設け、前記第1オイル分離器で分離したオイルを前記圧縮機の吸入側配管に戻すとともに、前記補助圧縮機の吐出側配管に第2オイル分離器を設け、前記第2オイル分離器で分離したオイルを前記膨張機の冷媒流入側配管に戻すことを特徴とする冷凍サイクル装置。Using carbon dioxide as a refrigerant, comprising a compressor, a first heat exchanger, an expander, a second heat exchanger, and an auxiliary compressor, and connecting the auxiliary compressor to a discharge side pipe of the compressor; A refrigeration cycle apparatus for driving the auxiliary compressor by power recovered by the expander, wherein a first oil separator is provided in a refrigerant outflow side pipe of the expander, and the oil separated by the first oil separator is removed. In addition to returning to the suction side piping of the compressor, a second oil separator is provided in the discharge side piping of the auxiliary compressor, and the oil separated by the second oil separator is returned to the refrigerant inflow side piping of the expander. A refrigeration cycle apparatus characterized by. 前記第1オイル分離器の第1オイル戻し管に絞り装置を設けたことを特徴とする請求項1から請求項3のいずれかに記載の冷凍サイクル装置。  The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein a throttling device is provided in the first oil return pipe of the first oil separator. 前記第2オイル分離器の第2オイル戻し管に絞り装置を設けたことを特徴とする請求項1から請求項3のいずれかに記載の冷凍サイクル装置。Refrigeration cycle apparatus according to any one of claims 1 to 3, characterized in that a throttle device to the second oil return pipe of the second oil separator. 前記圧縮機の吐出側配管と吸入側配管とが接続される第1四方弁と、前記膨張機の冷媒流入側配管と冷媒流出側配管とが接続される第2四方弁4とを備え、前記第1オイル分離器を前記膨張機の冷媒流出口から前記第2四方弁までの間の配管に設け、前記第1オイル分離器の第1オイル戻し管を、前記第1四方弁から前記圧縮機の吸入口までの間の配管に設けたことを特徴とする請求項1に記載の冷凍サイクル装置。  A first four-way valve to which a discharge side pipe and a suction side pipe of the compressor are connected; and a second four-way valve 4 to which a refrigerant inflow side pipe and a refrigerant outflow side pipe of the expander are connected, A first oil separator is provided in a pipe between the refrigerant outlet of the expander and the second four-way valve, and a first oil return pipe of the first oil separator is connected from the first four-way valve to the compressor. The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is provided in a pipe extending to a suction port. 前記圧縮機の吐出側配管と前記補助圧縮機の吸入側配管とが接続される第1四方弁と、前記膨張機の冷媒流入側配管と冷媒流出側配管とが接続される第2四方弁4とを備え、前記第1オイル分離器を前記膨張機の冷媒流出口から前記第2四方弁までの間の配管に設け、前記第1オイル分離器の第1オイル戻し管を、前記第1四方弁から前記補助圧縮機の吸入口までの間の配管に設けたことを特徴とする請求項2に記載の冷凍サイクル装置。  A first four-way valve to which a discharge side pipe of the compressor and a suction side pipe of the auxiliary compressor are connected, and a second four-way valve 4 to which a refrigerant inflow side pipe and a refrigerant outflow side pipe of the expander are connected. The first oil separator is provided in a pipe from the refrigerant outlet of the expander to the second four-way valve, and the first oil return pipe of the first oil separator is provided in the first four-way The refrigeration cycle apparatus according to claim 2, wherein the refrigeration cycle apparatus is provided in a pipe from a valve to a suction port of the auxiliary compressor. 前記補助圧縮機の吐出側配管と前記圧縮機の吸入側配管とが接続される第1四方弁と、前記膨張機の冷媒流入側配管と冷媒流出側配管とが接続される第2四方弁4とを備え、前記第1オイル分離器を前記膨張機の冷媒流出口から前記第2四方弁までの間の配管に設け、前記第1オイル分離器の第1オイル戻し管を、前記第1四方弁から前記圧縮機の吸入口までの間の配管に設けたことを特徴とする請求項3に記載の冷凍サイクル装置。  A first four-way valve to which the discharge side piping of the auxiliary compressor and the suction side piping of the compressor are connected, and a second four-way valve 4 to which the refrigerant inflow side piping and the refrigerant outflow side piping of the expander are connected. The first oil separator is provided in a pipe from the refrigerant outlet of the expander to the second four-way valve, and the first oil return pipe of the first oil separator is provided in the first four-way The refrigeration cycle apparatus according to claim 3, wherein the refrigeration cycle apparatus is provided in a pipe from a valve to an inlet of the compressor. 前記圧縮機の吐出側配管と吸入側配管とが接続される第1四方弁と、前記膨張機の冷媒流入側配管と冷媒流出側配管とが接続される第2四方弁とを備え、前記第2オイル分離器を前記圧縮機の吐出口から前記第1四方弁までの間の配管に設け、前記第2オイル分離器の第2オイル戻し管を、前記第2四方弁から前記膨張機の冷媒流入口までの間の配管に設けたことを特徴とする請求項1に記載の冷凍サイクル装置。A first four-way valve to which a discharge side pipe and a suction side pipe of the compressor are connected; and a second four-way valve to which a refrigerant inflow side pipe and a refrigerant outflow side pipe of the expander are connected. A second oil separator is provided in a pipe between the discharge port of the compressor and the first four-way valve, and a second oil return pipe of the second oil separator is connected to the refrigerant of the expander from the second four-way valve. The refrigeration cycle apparatus according to claim 1 , wherein the refrigeration cycle apparatus is provided in a pipe between the inlet and the inlet. 前記圧縮機の吐出側配管と前記補助圧縮機の吸入側配管とが接続される第1四方弁と、前記膨張機の冷媒流入側配管と冷媒流出側配管とが接続される第2四方弁とを備え、前記第2オイル分離器を前記圧縮機の吐出口から前記第1四方弁までの間の配管に設け、前記第2オイル分離器の第2オイル戻し管を、前記第2四方弁から前記膨張機の冷媒流入口までの間の配管に設けたことを特徴とする請求項2に記載の冷凍サイクル装置。A first four-way valve to which a discharge side pipe of the compressor and a suction side pipe of the auxiliary compressor are connected; a second four-way valve to which a refrigerant inflow side pipe and a refrigerant outflow side pipe of the expander are connected; The second oil separator is provided in a pipe between the discharge port of the compressor and the first four-way valve, and the second oil return pipe of the second oil separator is connected to the second four-way valve. The refrigeration cycle apparatus according to claim 2 , wherein the refrigeration cycle apparatus is provided in a pipe extending to a refrigerant inlet of the expander. 前記補助圧縮機の吐出側配管と前記圧縮機の吸入側配管とが接続される第1四方弁と、前記膨張機の冷媒流入側配管と冷媒流出側配管とが接続される第2四方弁とを備え、前記第2オイル分離器を前記補助圧縮機の吐出口から前記第1四方弁までの間の配管に設け、前記第2オイル分離器の第2オイル戻し管を、前記第2四方弁から前記膨張機の冷媒流入口までの間の配管に設けたことを特徴とする請求項3に記載の冷凍サイクル装置。A first four-way valve to which a discharge side pipe of the auxiliary compressor and a suction side pipe of the compressor are connected; a second four-way valve to which a refrigerant inflow side pipe and a refrigerant outflow side pipe of the expander are connected; The second oil separator is provided in a pipe from the discharge port of the auxiliary compressor to the first four-way valve, and the second oil return pipe of the second oil separator is provided in the second four-way valve. The refrigeration cycle apparatus according to claim 3 , wherein the refrigeration cycle apparatus is provided in a pipe from a refrigerant inlet to a refrigerant inlet of the expander. オイルとして、PAG、AB、ナフテン系鉱油などの前記冷媒と溶解性の低いオイルを用いたことを特徴とする請求項1から請求項3のいずれかに記載の冷凍サイクル装置。  The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the refrigerant is an oil having low solubility with the refrigerant such as PAG, AB, or naphthenic mineral oil.
JP2002318130A 2002-10-31 2002-10-31 Refrigeration cycle equipment Expired - Fee Related JP4233843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002318130A JP4233843B2 (en) 2002-10-31 2002-10-31 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002318130A JP4233843B2 (en) 2002-10-31 2002-10-31 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2004150749A JP2004150749A (en) 2004-05-27
JP4233843B2 true JP4233843B2 (en) 2009-03-04

Family

ID=32461342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002318130A Expired - Fee Related JP4233843B2 (en) 2002-10-31 2002-10-31 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4233843B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4294351B2 (en) * 2003-03-19 2009-07-08 株式会社前川製作所 CO2 refrigeration cycle
JP2006071257A (en) * 2004-08-06 2006-03-16 Daikin Ind Ltd Refrigeration cycle device
JP2006132818A (en) * 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd Control method for refrigerating cycle device, and refrigerating cycle device using the same
JP4569406B2 (en) * 2005-07-20 2010-10-27 パナソニック株式会社 Refrigeration cycle equipment
JP2007205651A (en) * 2006-02-02 2007-08-16 Sanden Corp Refrigerating system and vehicular air conditioner
JP4765675B2 (en) * 2006-03-03 2011-09-07 パナソニック株式会社 Refrigeration cycle equipment
JP4821599B2 (en) * 2006-12-26 2011-11-24 株式会社富士通ゼネラル Refrigerant circuit
JP4997024B2 (en) * 2007-08-28 2012-08-08 日立アプライアンス株式会社 Heat pump water heater
JP2009210248A (en) * 2008-02-06 2009-09-17 Daikin Ind Ltd Refrigeration device
GB2474259A (en) * 2009-10-08 2011-04-13 Ebac Ltd Vapour compression refrigeration circuit

Also Published As

Publication number Publication date
JP2004150749A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP3897681B2 (en) Method for determining high-pressure refrigerant pressure of refrigeration cycle apparatus
JP4075429B2 (en) Refrigeration air conditioner
JP4013981B2 (en) Refrigeration air conditioner
WO2007063798A1 (en) Freezing apparatus
JPWO2011036741A1 (en) Refrigeration cycle equipment
JP4233843B2 (en) Refrigeration cycle equipment
EP1876401A1 (en) Refrigeration device
JP4046136B2 (en) Refrigeration equipment
JP2019015434A (en) Air conditioner
WO2009098899A1 (en) Refrigeration system
EP3770531A1 (en) Air-conditioning apparatus
JP5999624B2 (en) Accumulator and air conditioner using the same
JP2008002743A (en) Refrigerating device
JP4307878B2 (en) Refrigerant cycle equipment
KR20090031139A (en) Air conditioner and control method thereof
JP4581795B2 (en) Refrigeration equipment
JP2013210158A (en) Refrigerating device
JP5895662B2 (en) Refrigeration equipment
JP2004286322A (en) Refrigerant cycle device
JP2021021508A (en) Air-conditioning apparatus
JP2007147228A (en) Refrigerating device
JP4245363B2 (en) Cooling system
JP2001349629A (en) Heat pump device
JP2007205595A (en) Air conditioner
JP6634590B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees