JP4013981B2 - Refrigeration air conditioner - Google Patents

Refrigeration air conditioner Download PDF

Info

Publication number
JP4013981B2
JP4013981B2 JP2006040903A JP2006040903A JP4013981B2 JP 4013981 B2 JP4013981 B2 JP 4013981B2 JP 2006040903 A JP2006040903 A JP 2006040903A JP 2006040903 A JP2006040903 A JP 2006040903A JP 4013981 B2 JP4013981 B2 JP 4013981B2
Authority
JP
Japan
Prior art keywords
expander
compressor
gas cooler
refrigerant
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006040903A
Other languages
Japanese (ja)
Other versions
JP2006138631A (en
Inventor
昌之 角田
史武 畝崎
慎一 若本
泰城 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006040903A priority Critical patent/JP4013981B2/en
Publication of JP2006138631A publication Critical patent/JP2006138631A/en
Application granted granted Critical
Publication of JP4013981B2 publication Critical patent/JP4013981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、二酸化炭素など超臨界となる冷媒を用いた冷凍サイクルによる冷凍空調装置に関するものである。   The present invention relates to a refrigeration air conditioner using a refrigeration cycle using a supercritical refrigerant such as carbon dioxide.

図19は従来の超臨界サイクルによる冷凍装置の冷媒回路図である。図において、圧縮機1は原動機12によって駆動され冷媒を圧縮する。圧縮された冷媒ガスは油分離器2にて冷媒に含まれる油を分離した後、ガスクーラ3で冷却されて、膨張機4を流通して圧縮機1に連結した主軸11を駆動しながら膨張し、蒸発器5で加熱され、アキュムレータ6で液を分離してから再び圧縮機1に吸入される。ガスクーラ3と膨張機4との接続配管に設けられた温度センサ7と圧力センサ8により検出されたガスクーラ出口側の冷媒状態量をもとに演算手段9が膨張機4の膨張比制御手段10を制御して膨張機への冷媒供給量を変えることにより、ガスクーラ出口圧力を所定の圧力に制御している(例えば、特許文献1参照。)。   FIG. 19 is a refrigerant circuit diagram of a refrigeration apparatus using a conventional supercritical cycle. In the figure, the compressor 1 is driven by a prime mover 12 to compress the refrigerant. The compressed refrigerant gas is separated by the oil separator 2 from the oil contained in the refrigerant, cooled by the gas cooler 3, and expanded while driving the main shaft 11 connected to the compressor 1 through the expander 4. Then, the liquid is heated by the evaporator 5, separated by the accumulator 6, and then sucked into the compressor 1 again. Based on the refrigerant state quantity at the outlet side of the gas cooler detected by the temperature sensor 7 and the pressure sensor 8 provided in the connecting pipe between the gas cooler 3 and the expander 4, the calculation means 9 controls the expansion ratio control means 10 of the expander 4. The gas cooler outlet pressure is controlled to a predetermined pressure by controlling and changing the amount of refrigerant supplied to the expander (see, for example, Patent Document 1).

また、この変形例として、図20のように膨張機4の主軸11に負荷を可変できる発電機13等を配し、圧縮機1とは独立分離した構成として、負荷の大きさで膨張機4の回転数を変えることにより、ガスクーラ3出口圧力を所定の圧力に制御するものも示されている。   Further, as a modified example, as shown in FIG. 20, a generator 13 or the like that can vary the load is disposed on the main shaft 11 of the expander 4, and the expander 4 is configured with a load that is independent from the compressor 1. Also shown is that the outlet pressure of the gas cooler 3 is controlled to a predetermined pressure by changing the number of revolutions.

同公報によれば、膨張機の形式としてはレシプロ式が示されており、シリンダ内への流体の流入と排出を弁の開口タイミングを制御することにより、膨張機として動作させるとしている。   According to the publication, the reciprocating type is shown as the type of the expander, and the inflow and discharge of the fluid into the cylinder are controlled as the expander by controlling the opening timing of the valve.

特開2000−241033号公報(第4−5頁、第1、6図)Japanese Unexamined Patent Publication No. 2000-244103 (page 4-5, FIGS. 1 and 6)

従来の技術のようにレシプロ式の膨張機では、主軸の回転に同期して弁を開閉するための複雑な機構あるいは電気式切換え弁とその制御装置が必要となる。これを避けるためには、マルチベーン式やスクロール式のように膨張機としての行程容積と内部容積比を持つ形式を用いることが考えられる。   A reciprocating expander as in the prior art requires a complicated mechanism for opening and closing the valve in synchronism with the rotation of the main shaft or an electric switching valve and its control device. In order to avoid this, it is conceivable to use a type having a stroke volume and an internal volume ratio as an expander, such as a multi-vane type or a scroll type.

このような形式の膨張機を図19のような冷媒回路構成で用いるには、膨張機での体積流量を圧縮機側とマッチングさせるために、膨張比制御手段に代わって予膨張弁やバイパス膨張弁が必要となる。しかし、このときの予膨張弁での圧力差分やバイパス流量分は膨張動力回収できない。   In order to use an expander of this type in the refrigerant circuit configuration as shown in FIG. 19, in order to match the volume flow rate in the expander with the compressor side, a pre-expansion valve or bypass expansion is used instead of the expansion ratio control means. A valve is required. However, the pressure difference at the pre-expansion valve and the amount of bypass flow cannot be recovered.

また、図20のような冷媒回路構成で用いると、膨張機は圧縮機と必ずしも同じ回転数で回らなくてもよくなるので、流量マッチングの必要はなくなるが、回収した膨張動力を電気エネルギとして取り出す際に発電機効率がかかる分がロスとなり、効率低下となる。   Further, when used in a refrigerant circuit configuration as shown in FIG. 20, the expander does not necessarily have to rotate at the same rotational speed as the compressor, so there is no need for flow rate matching, but when the recovered expansion power is taken out as electric energy. The amount of generator efficiency required is lost and the efficiency is reduced.

本発明は、かかる課題を解決するためになされたもので、レシプロ式のような弁制御機構を必要としない膨張機を用いながら、流量マッチングや発電機効率による動力回収ロスの影響を極力減らしつつ、圧縮機側の効率も高くなるような冷媒回路構成により、高効率の膨張動力回収超臨界冷凍サイクル装置を得ることを目的とする。   The present invention has been made to solve such problems, and while using an expander that does not require a valve control mechanism such as a reciprocating type, while reducing the influence of power recovery loss due to flow rate matching and generator efficiency as much as possible. An object of the present invention is to obtain a highly efficient expansion power recovery supercritical refrigeration cycle apparatus with a refrigerant circuit configuration that also increases the efficiency on the compressor side.

本発明に係る冷凍空調装置は、複数台の圧縮機と、前記圧縮機で圧縮された高圧の冷媒を冷却するガスクーラと、前記ガスクーラによって冷却されたガスを減圧することにより動力を取り出す膨張機と、前記膨張機により減圧された冷媒を加熱する蒸発器とを備え、前記圧縮機のうち少なくとも1台は前記膨張機の主軸に連結して駆動される第2圧縮機であり、前記膨張機および第2圧縮機は、年間平均エネルギー消費効率に寄与度の大きい運転条件で前記膨張機のバイパスや膨張機入口での予膨張を行わなくてもよいように行程容積が定まったものであるとともに、前記第2圧縮機を他方の圧縮機の吐出側に接続し、複数の運転モードを持つものである。 A refrigerating and air-conditioning apparatus according to the present invention includes a plurality of compressors, a gas cooler that cools a high-pressure refrigerant compressed by the compressor, and an expander that extracts power by decompressing the gas cooled by the gas cooler. An evaporator that heats the refrigerant decompressed by the expander, and at least one of the compressors is a second compressor that is driven by being connected to a main shaft of the expander, and the expander and The second compressor has a stroke volume determined so that it is not necessary to perform pre-expansion at the expander inlet or the bypass of the expander under operating conditions with a large contribution to the annual average energy consumption efficiency , The second compressor is connected to the discharge side of the other compressor and has a plurality of operation modes.

また、本発明に係る冷凍空調装置は、複数台の圧縮機と、前記圧縮機で圧縮された高圧の冷媒を冷却するガスクーラと、前記ガスクーラによって冷却されたガスを減圧することにより動力を取出す膨張機と、前記膨張機により減圧された冷媒を加熱する蒸発器とを備え、前記圧縮機のうち少なくとも1台は前記膨張機で回収した膨張動力により駆動されて他方の圧縮機と直列に接続された第2圧縮機と、前記第2圧縮機と他方の圧縮機の間に配管接続されて冷媒を冷却する第2ガスクーラと、複数の運転モードのうちの暖房運転時に前記第2ガスクーラを迂回する流路を設けたものである。   The refrigerating and air-conditioning apparatus according to the present invention includes a plurality of compressors, a gas cooler that cools the high-pressure refrigerant compressed by the compressor, and an expansion that extracts power by decompressing the gas cooled by the gas cooler. And an evaporator that heats the refrigerant decompressed by the expander, and at least one of the compressors is driven by the expansion power recovered by the expander and connected in series with the other compressor. The second compressor, a second gas cooler that is connected between the second compressor and the other compressor and cools the refrigerant, and bypasses the second gas cooler during heating operation among a plurality of operation modes. A flow path is provided.

本発明に係る冷凍空調装置は、複数台の圧縮機と、前記圧縮機で圧縮された高圧の冷媒を冷却するガスクーラと、前記ガスクーラによって冷却されたガスを減圧することにより動力を取り出す膨張機と、前記膨張機により減圧された冷媒を加熱する蒸発器とを備え、前記圧縮機のうち少なくとも1台は前記膨張機の主軸に連結して駆動される第2圧縮機であり、前記膨張機および第2圧縮機は、年間平均エネルギー消費効率に寄与度の大きい運転条件で前記膨張機のバイパスや膨張機入口での予膨張を行わなくてもよいように行程容積が定まったものであるとともに、前記第2圧縮機を他方の圧縮機の吐出側に接続し、複数の運転モードを持つので、膨張機同軸構成冷媒回路よりもCOP、SEERが良く高効率となるとともに、予膨張弁が不要となり低コストの冷凍空調装置を得ることができる。また、レシプロ式膨張機のように複雑な弁開閉タイミング制御機構を持たない、マルチベーン式やスクロール式など行程容積と膨張容積比が決まった形式の膨張機を用いながら、圧縮側との流量マッチングによる膨張動力の非回収分を同軸の場合と較べて少なくすることができ、簡素な機構、構成で高効率な超臨界サイクルの冷凍空調装置を得ることができる。 A refrigerating and air-conditioning apparatus according to the present invention includes a plurality of compressors, a gas cooler that cools a high-pressure refrigerant compressed by the compressor, and an expander that extracts power by decompressing the gas cooled by the gas cooler. An evaporator that heats the refrigerant decompressed by the expander, and at least one of the compressors is a second compressor that is driven by being connected to a main shaft of the expander, and the expander and The second compressor has a stroke volume determined so that it is not necessary to perform pre-expansion at the expander inlet or the bypass of the expander under operating conditions with a large contribution to the annual average energy consumption efficiency , Since the second compressor is connected to the discharge side of the other compressor and has a plurality of operation modes, the COP and SEER are better and higher efficiency than the refrigerant circuit of the expander coaxial configuration, and the pre-expansion valve is It is possible to obtain a refrigeration and air conditioning device main next low cost. In addition, the flow rate matching with the compression side is performed using an expander with a fixed stroke volume and expansion volume ratio such as a multi-vane type or scroll type that does not have a complicated valve timing control mechanism like a reciprocating type expander. The non-recovery portion of the expansion power due to can be reduced compared to the coaxial case, and a highly efficient supercritical cycle refrigeration air conditioner can be obtained with a simple mechanism and configuration.

また、本発明に係る冷凍空調装置は、複数台の圧縮機と、前記圧縮機で圧縮された高圧の冷媒を冷却するガスクーラと、前記ガスクーラによって冷却されたガスを減圧することにより動力を取出す膨張機と、前記膨張機により減圧された冷媒を加熱する蒸発器とを備え、前記圧縮機のうち少なくとも1台は前記膨張機で回収した膨張動力により駆動されて他方の圧縮機と直列に接続された第2圧縮機と、前記第2圧縮機と他方の圧縮機の間に配管接続されて冷媒を冷却する第2ガスクーラと、複数の運転モードのうちの暖房運転時に前記第2ガスクーラを迂回する流路を設けたので、運転モードの切換えによる逆流時に膨張機の吸入および吐出を同じにして更に運転モードに対応した複数の第2ガスクーラを備えるという複雑な冷媒回路構成を避けることができるので、簡素で低コストの冷凍空調装置を得ることができる。   The refrigerating and air-conditioning apparatus according to the present invention includes a plurality of compressors, a gas cooler that cools the high-pressure refrigerant compressed by the compressor, and an expansion that extracts power by decompressing the gas cooled by the gas cooler. And an evaporator that heats the refrigerant decompressed by the expander, and at least one of the compressors is driven by the expansion power recovered by the expander and connected in series with the other compressor. The second compressor, a second gas cooler that is connected between the second compressor and the other compressor and cools the refrigerant, and bypasses the second gas cooler during heating operation among a plurality of operation modes. Since the flow path is provided, a complicated refrigerant circuit configuration including a plurality of second gas coolers corresponding to the operation mode with the same suction and discharge of the expander at the time of reverse flow by switching of the operation mode It is possible to avoid, it is possible to obtain a refrigerating and air-conditioning apparatus of simple and low cost.

実施の形態1.
図1は本発明の実施の形態1に係る冷凍空調装置を示す冷媒回路図で、(a)が暖房運転時、(b)が冷房運転時を示している。本発明の冷凍空調装置は二軸直列(高段)構成を基本構成とする冷媒回路を有し、冷媒に二酸化炭素を用いている。なお、この二軸直列(高段)構成の冷媒回路については後述する。図1(a)において、ガスクーラ3が室内機側熱交換器、蒸発器5が室外機側熱交換器に相当している。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram showing a refrigeration air-conditioning apparatus according to Embodiment 1 of the present invention, where (a) shows a heating operation and (b) shows a cooling operation. The refrigerating and air-conditioning apparatus according to the present invention has a refrigerant circuit whose basic configuration is a two-axis series (high stage) configuration, and uses carbon dioxide as a refrigerant. The refrigerant circuit having the two-axis series (high stage) configuration will be described later. In FIG. 1A, the gas cooler 3 corresponds to an indoor unit side heat exchanger, and the evaporator 5 corresponds to an outdoor unit side heat exchanger.

図1において、1はモータ12によって駆動される圧縮機、2は油分離器、20は冷房と暖房の流路を切換える四方弁、3はガスクーラ、4は膨張機、5は蒸発器、6はアキュムレータ、14は膨張機4の主軸11に連結して駆動される第二圧縮機、19は膨張機4の下流側に設けられた逆流防止手段、15は膨張機4および逆流防止手段19に並列に接続されたバイパス配管に設けられた第二減圧装置、18は第二圧縮機15を迂回させる流量制御手段18である。   In FIG. 1, 1 is a compressor driven by a motor 12, 2 is an oil separator, 20 is a four-way valve for switching between cooling and heating flow paths, 3 is a gas cooler, 4 is an expander, 5 is an evaporator, and 6 is The accumulator, 14 is a second compressor connected to the main shaft 11 of the expander 4 and driven, 19 is a backflow preventing means provided on the downstream side of the expander 4, and 15 is parallel to the expander 4 and the backflow preventing means 19. A second pressure reducing device 18 provided in the bypass pipe connected to the flow pipe 18 is a flow rate control means 18 for bypassing the second compressor 15.

ここで、本発明に係る冷凍空調装置の基本冷媒回路構成について説明する。
図2は二軸直列(高段)構成の基本冷媒回路であり、二酸化炭素を冷媒として用いることを想定している。図において、モータ12によって駆動される圧縮機1は、膨張機4とは同軸となっておらず、膨張機4の主軸は第2圧縮機14を駆動するようになっている。そして、第2圧縮機14は圧縮機1と冷媒回路において直列に配管接続され、冷媒の二段圧縮を行うように配設されている。圧縮機1と第2圧縮機14で圧縮された冷媒は、第2圧縮機14の吐出側に配管接続された油分離器2から分離した油を、圧縮機1の吸入側、アキュムレータ6の流出後の位置に戻してから、ガスクーラ3で冷却される。そして、ガスクーラ3で冷却された後の高圧冷媒ガスは膨張機4で減圧される際に膨張動力を回収し、この回収動力は主軸11を伝達して第2圧縮機14に伝えられる。膨張機4にて減圧された後の冷媒は、蒸発器5で加熱され、余分な液冷媒を貯留するアキュムレータ6を経由してから、圧縮機1の吸入側に戻る冷媒回路で構成されている。
Here, the basic refrigerant circuit configuration of the refrigerating and air-conditioning apparatus according to the present invention will be described.
FIG. 2 shows a basic refrigerant circuit having a two-axis series (high stage) configuration, and it is assumed that carbon dioxide is used as the refrigerant. In the figure, the compressor 1 driven by the motor 12 is not coaxial with the expander 4, and the main shaft of the expander 4 drives the second compressor 14. And the 2nd compressor 14 is pipe-connected in series in the compressor 1 and a refrigerant circuit, and is arrange | positioned so that a two-stage compression of a refrigerant | coolant may be performed. The refrigerant compressed by the compressor 1 and the second compressor 14 removes the oil separated from the oil separator 2 connected to the discharge side of the second compressor 14 from the suction side of the compressor 1 and the outflow of the accumulator 6. After returning to a later position, the gas cooler 3 is used for cooling. The high-pressure refrigerant gas after being cooled by the gas cooler 3 recovers expansion power when the pressure is reduced by the expander 4, and this recovered power is transmitted to the second compressor 14 through the main shaft 11. The refrigerant after being decompressed by the expander 4 is configured by a refrigerant circuit that is heated by the evaporator 5, passes through the accumulator 6 that stores excess liquid refrigerant, and then returns to the suction side of the compressor 1. .

上記のように構成された冷凍空調装置において、膨張機4は弁開閉制御機構が無く構造が簡素な行程容積、内部容積比が定まった形式のものを用いている。このような膨張機では体積流量によって主軸11の回転数が決まってくるので、第2圧縮機14との回転数のマッチングを取る必要がある。   In the refrigerating and air-conditioning apparatus configured as described above, the expander 4 is of a type that has no valve opening / closing control mechanism and has a simple structure with a stroke volume and an internal volume ratio determined. In such an expander, since the rotational speed of the main shaft 11 is determined by the volume flow rate, it is necessary to match the rotational speed with the second compressor 14.

ここで説明のため、図3に示す膨張機同軸構成との対比を行う。図3は従来例の図19をもとに基本構成を簡略化して示した膨張機同軸構成の基本冷媒回路図である。図3において、膨張機4とモータ12で駆動される圧縮機1とは主軸11によって同軸となっている。この場合、膨張機4と圧縮機1が同一回転数となるように膨張機4と圧縮機1での流量がマッチしなければならない。   Here, for explanation, a comparison with the expander coaxial configuration shown in FIG. 3 is performed. FIG. 3 is a basic refrigerant circuit diagram of an expander coaxial configuration in which the basic configuration is simplified based on FIG. 19 of the conventional example. In FIG. 3, the expander 4 and the compressor 1 driven by the motor 12 are coaxial with the main shaft 11. In this case, the flow rates in the expander 4 and the compressor 1 must match so that the expander 4 and the compressor 1 have the same rotation speed.

ここで、圧縮機1の吸入側における冷媒の比容積をυs、膨張機4入口の比容積をυexi、圧縮機1の行程容積をVst、膨張機4の膨張前状態の閉じ込め容積、いわゆる行程容積をVexとすると、圧縮機側と膨張機側で流量が一致することから、
Vex/υexi=Vst/υs (1)
が成り立たなければならない。上記υexi、υsは運転条件から決まり、様々な運転条件に対して(1)式を満たすためには、Vex、Vstが可変でないかぎり膨張機入口での冷媒の体積流量を調整する必要がある。
たとえば、υexi/υs>Vex/Vstの場合、膨張機側が圧縮機側より速く回転しようとするのでバイパスして膨張機を通過する流量を減らす必要がある。逆に、υexi/υs<Vex/Vstの場合は膨張機側が遅くなってしまうので、ガスクーラを出た冷媒を所定の圧力まで減圧・膨張させて膨張機入口における体積流量を増やすことにより、圧縮機と膨張機の回転数がバランスできる。
Here, the specific volume of the refrigerant on the suction side of the compressor 1 is υs, the specific volume of the inlet of the expander 4 is νexi, the stroke volume of the compressor 1 is Vst, the confined volume of the expander 4 in the pre-expansion state, so-called stroke volume. Is Vex, the flow rates on the compressor side and expander side match,
Vex / υexi = Vst / υs (1)
Must hold. The above υexi and υs are determined from the operating conditions. In order to satisfy the expression (1) for various operating conditions, it is necessary to adjust the volume flow rate of the refrigerant at the expander inlet unless Vex and Vst are variable.
For example, in the case of νexi / υs> Vex / Vst, the expander side tends to rotate faster than the compressor side, so it is necessary to bypass and reduce the flow rate passing through the expander. On the contrary, if υexi / υs <Vex / Vst, the expander side becomes slow. Therefore, the refrigerant discharged from the gas cooler is decompressed and expanded to a predetermined pressure to increase the volume flow rate at the expander inlet. And the rotation speed of the expander can be balanced.

そこで、図4に、図3の冷媒回路を基に圧縮機と膨張機の流量マッチングをとるためにバイパス膨張弁である第2減圧手段15と予膨張弁16を加えた構成の冷媒回路図を示す。図4において、15は膨張機4をバイパスするようにガスクーラ3の出口側から蒸発器5の入口側へ配管接続された途中に設けられた第2減圧手段、16は膨張機4の流入側に接続された予膨張弁であり、その他の部分は図3と同様である。この予膨張弁16における減圧分やバイパス配管の第2減圧手段15を流通する流量分は膨張動力回収に寄与しないので、圧縮機1の行程容積Vstに対して膨張機の行程容積Vexを決める際には、最も効率を向上したい運転条件のときにバイパスも予膨張を行わなくてもよいように、すなわち(1)式を満たすように前記Vexを選ぶのがよい。   Therefore, FIG. 4 is a refrigerant circuit diagram having a configuration in which the second decompression means 15 and the pre-expansion valve 16 which are bypass expansion valves are added to match the flow rate of the compressor and the expander based on the refrigerant circuit of FIG. Show. In FIG. 4, 15 is a second decompression means provided in the middle of the pipe connection from the outlet side of the gas cooler 3 to the inlet side of the evaporator 5 so as to bypass the expander 4, and 16 is on the inflow side of the expander 4. The other components are the same as those in FIG. Since the decompression amount in the pre-expansion valve 16 and the flow amount flowing through the second decompression means 15 of the bypass pipe do not contribute to the recovery of the expansion power, the stroke volume Vex of the expander is determined with respect to the stroke volume Vst of the compressor 1. Therefore, it is preferable to select the Vex so that the bypass and the pre-expansion do not have to be performed under the operating condition where the efficiency is most desired to be improved, that is, the expression (1) is satisfied.

ここで、全流量に対するバイパスされる流量の比率をバイパス比x、ガスクーラ/蒸発器間で減圧する全高低圧差に対する予膨張弁前後の差圧の比率を予膨張率yと定義する。上述の図4の膨張機同軸構成の冷媒回路を備えた冷凍空調装置に対して、空調用途の代表4運転条件のうち、SEER(年間平均エネルギー消費効率)に最も寄与度の大きい暖房中間条件にて、x=y=0%となるように、圧縮機1の行程容積Vstに対する膨張機の行程容積Vexを設定した場合、各条件におけるx,yは、図5に示す数値となる。
以後、COPやSEERなどの効率を比較する場合には、膨張機同軸構成の冷媒回路におけるこのx,yのときの値を基準とする。
Here, the ratio of the bypassed flow rate to the total flow rate is defined as a bypass ratio x, and the ratio of the differential pressure before and after the pre-expansion valve to the total high / low pressure difference that reduces the pressure between the gas cooler / evaporator is defined as the preexpansion rate y. For the refrigerating and air-conditioning apparatus provided with the refrigerant circuit having the expander coaxial configuration in FIG. 4 described above, the heating intermediate condition having the largest contribution to SEER (annual average energy consumption efficiency) among the four representative operating conditions for air conditioning applications. Thus, when the stroke volume Vex of the expander is set with respect to the stroke volume Vst of the compressor 1 so that x = y = 0%, x and y in each condition are numerical values shown in FIG.
Thereafter, when comparing the efficiency of COP and SEER, the values at x and y in the refrigerant circuit of the expander coaxial configuration are used as a reference.

図2のような二軸直列(高段)構成の冷媒回路の場合も、膨張機4と第2圧縮機14との流量のマッチングを図らなければならないのは同様であるが、第2圧縮機14の行程容積をV2とすると、圧縮機1の行程容積Vstに対する膨張機の行程容積Vexと前記V2双方のマッチングが必要となる。
ここで、第2圧縮機14の吸入側における冷媒の比容積をυm、圧縮機の回転数をN1、膨張機/第2圧縮機の回転数をN2とすると、
N2・Vex/υexi=N2・V2/υm=N1・Vst/υs (2)
が成り立つ必要がある。
また、前記υmが膨張機4で回収され第2圧縮機14にて用いられる動力とV2から定まることも考慮しなければならない。即ち、図4の膨張機同軸構成の冷媒回路の場合と同様に、バイパスまたは予膨張によって流量マッチングを図るとすると、バイパス比xあるいは予膨張率yはVst,Vexだけでなく、V2とN1に対するN2の組合せに対して決まることになる。
In the case of a refrigerant circuit having a two-shaft series (high stage) configuration as shown in FIG. 2, the flow rate matching between the expander 4 and the second compressor 14 must be matched, but the second compressor When the stroke volume of 14 is V2, it is necessary to match both the stroke volume Vex of the expander and the V2 with respect to the stroke volume Vst of the compressor 1.
Here, if the specific volume of the refrigerant on the suction side of the second compressor 14 is υm, the rotational speed of the compressor is N1, and the rotational speed of the expander / second compressor is N2,
N2 / Vex / vexi = N2 / V2 / vm = N1-Vst / vs (2)
Need to hold.
Also, it must be taken into account that υm is recovered from the expander 4 and determined from the power used by the second compressor 14 and V2. That is, as in the case of the refrigerant circuit having the expander coaxial configuration in FIG. 4, when the flow rate matching is attempted by bypass or pre-expansion, the bypass ratio x or the pre-expansion rate y is not limited to Vst and Vex, It is determined for the combination of N2.

膨張機同軸構成のときと同様に、SEERに最も寄与度の大きい暖房中間条件でバイパス比x=予膨張率y=0%となるように、Vstに対するVex及びV2を設定すると、各条件における前記x,yは、図6の中段に示す数値となる。
そして、各条件における膨張機同軸構成冷媒回路に対する二軸直列(高段)構成冷媒回路でのCOPとSEERは、図6の下段に示す値のように、僅かながら二軸直列(高段)構成の方が良い。なお、膨張機の膨張容積比については、膨張機同軸の場合も二軸直列の場合も、暖房中間条件で過不足なく膨張して膨張ロスが生じないような値を基準として用いており、以後特にことわらない限り同じである。
As in the case of the expander coaxial configuration, when Vex and V2 with respect to Vst are set so that the bypass ratio x = pre-expansion rate y = 0% in the heating intermediate condition having the largest contribution to SEER, x and y are numerical values shown in the middle of FIG.
The COP and SEER in the biaxial series (high stage) refrigerant circuit with respect to the expander coaxial configuration refrigerant circuit in each condition are slightly biaxial series (high stage) configuration as shown in the lower part of FIG. Is better. As for the expansion volume ratio of the expander, both the case of the expander coaxial and the case of two-shaft series are used as a standard value that does not cause excess and shortage in the heating intermediate condition and causes no expansion loss. The same unless otherwise noted.

また、バイパスのみで予膨張の必要がないことから、図8のように膨張機をバイパスする配管の途中に第2減圧手段15を設けた構成の冷媒回路でよくなる。このときの各条件における膨張機/第2圧縮機と圧縮機それぞれの回転数は、図7に示す回転数となっている。   Further, since there is no need for pre-expansion only by bypass, a refrigerant circuit having a configuration in which the second pressure reducing means 15 is provided in the middle of the pipe bypassing the expander as shown in FIG. 8 is sufficient. The rotational speeds of the expander / second compressor and the compressor under each condition at this time are the rotational speeds shown in FIG.

図9は二軸並列構成の冷媒回路図であり、第2圧縮機を圧縮機1とは冷媒流路において並列に配置し、膨張機/第2圧縮機の主軸11に補助モータ17を備えた場合の基本冷媒回路を示している。このような二軸並列構成の冷媒回路における流量マッチングに関しては、
N2・Vex/υexi=N2・V2/υs+N1・Vst/υs (3)
の関係が必要となる。
なお、全流量に対して膨張機4側で決まるN2に対して第2圧縮機14側の流量が決まるので、残りの流量に見合うN1で圧縮機1が駆動されれば流量はバランスする。このとき、第2圧縮機の流量分の圧縮仕事を膨張機の回収動力で賄えるとは限らないが、補助モータ17によって動力の過不足を吸収できるので、バイパスや予膨張を行わなくてもマッチング可能となる。
FIG. 9 is a refrigerant circuit diagram of a two-axis parallel configuration, in which the second compressor is arranged in parallel with the compressor 1 in the refrigerant flow path, and the auxiliary motor 17 is provided on the main shaft 11 of the expander / second compressor. The basic refrigerant circuit in the case is shown. Regarding flow rate matching in the refrigerant circuit of such a biaxial parallel configuration,
N2 / Vex / vexi = N2 / V2 / vs + Nl / Vst / vs (3)
This relationship is required.
Since the flow rate on the second compressor 14 side is determined with respect to N2 determined on the expander 4 side with respect to the total flow rate, the flow rate is balanced if the compressor 1 is driven with N1 corresponding to the remaining flow rate. At this time, it is not always possible to cover the compression work for the flow rate of the second compressor with the recovered power of the expander. However, since the auxiliary motor 17 can absorb the excess or deficiency of the power, matching is performed without performing bypass or pre-expansion. It becomes possible.

この二軸並列(モータ併用)構成の場合のCOPとSEERにおける膨張機同軸構成に対する比、および膨張機/第2圧縮機と圧縮機のそれぞれの回転数は、図10に示す数値となり、二軸直列構成でバイパスすることにより膨張機/第2圧縮機の回転数N2を低く抑えていた条件でもバイパスしないで全流量を動力回収する分、二軸直列構成よりもCOPが良くなっていることがわかる。   The ratio of the COP and SEER to the expander coaxial configuration in the case of this two-axis parallel (motor combined use) configuration, and the respective rotation speeds of the expander / second compressor and the compressor are the numerical values shown in FIG. By bypassing in the series configuration, the COP is better than the two-shaft series configuration because the entire flow rate is recovered without bypassing even if the rotational speed N2 of the expander / second compressor is kept low. Recognize.

本発明の実施の形態1を示す図1において、四方弁20により冷房運転に切換えると、図1(b)に示すように室内機がガスクーラ3、そして室外機が蒸発器5となる。このとき、膨張機4の前後の冷媒流れの向きが逆転するが、膨張機4の出口側配管に逆流防止手段19を設けているので、膨張機4内を逆流せずに全流量が第2減圧手段15を経由するようになっている。これに伴い、流量制御手段18が開となり圧縮機1から吐出された冷媒は第2圧縮機を迂回するようになっている。   In FIG. 1 showing Embodiment 1 of the present invention, when the cooling operation is switched by the four-way valve 20, the indoor unit becomes the gas cooler 3 and the outdoor unit becomes the evaporator 5 as shown in FIG. At this time, the direction of the refrigerant flow before and after the expander 4 is reversed, but since the backflow prevention means 19 is provided in the outlet side pipe of the expander 4, the total flow rate is the second without flowing back in the expander 4. The pressure reducing means 15 is routed. Along with this, the flow rate control means 18 is opened, and the refrigerant discharged from the compressor 1 bypasses the second compressor.

四方弁を複数個用いることにより、暖房運転と冷房運転の両方共に膨張機を同一方向に流れるような構成も可能であるが、本実施の形態では、逆流時にはバイパスさせる構成をとっているので、簡素化、低コスト化が得られる。一方、同軸構成の冷媒回路の場合は、逆流時にも膨張機を停止させることができないので、冷房運転時と暖房運転時で膨張機における流れの向きが同じとなるように複雑な冷媒回路構成を取らざる得なくなる。   By using a plurality of four-way valves, both the heating operation and the cooling operation can be configured to flow through the expander in the same direction. Simplification and cost reduction can be obtained. On the other hand, in the case of a coaxial refrigerant circuit, the expander cannot be stopped even during reverse flow, so a complicated refrigerant circuit configuration is used so that the flow direction in the expander is the same during cooling operation and heating operation. I have to take it.

このように膨張機4の出口側配管に逆流防止手段19、第2圧縮機14と並列の迂回流路に流量制御手段18を配設することにより、冷房運転と暖房運転の切換えによる逆流時には膨張動力回収を行わないような構成の場合、各条件におけるCOP(成績係数)とSEER(年間平均エネルギ消費効率)を膨張機同軸構成の冷媒回路(図3)のときに対する比は、図11に示す数値となり、動力回収を行わない冷房の条件で5〜10%のCOP低下となるが、その寄与度が低いことからSEERの低下は2%以下と抑えられている。   As described above, by arranging the backflow prevention means 19 in the outlet side piping of the expander 4 and the flow rate control means 18 in the bypass flow path in parallel with the second compressor 14, the expansion is performed at the time of backflow by switching between the cooling operation and the heating operation. In the case of a configuration in which power recovery is not performed, the ratio of COP (coefficient of performance) and SEER (annual average energy consumption efficiency) in each condition to that in the refrigerant circuit (FIG. 3) of the expander coaxial configuration is shown in FIG. It becomes a numerical value, and the COP reduction is 5 to 10% under the condition of cooling without power recovery, but the SEER reduction is suppressed to 2% or less because the contribution is low.

実施の形態2.
本発明の実施の形態2を図12に基づいて説明する。
図12(a),(b)は実施の形態2を示す冷媒回路図であり、(a)は暖房運転時、(b)は冷房運転時を表している。本実施の形態2は、図9で説明してきた二軸並列(モータ併用)構成の冷媒回路が基本構成となっている。図12において、4a,4bはそれぞれ暖房運転用、冷房運転用の膨張機であり、19a,19bは逆流防止手段、17は主軸11に設けられた補助モータである。なお、図1と同一又は相当部には同じ符号を付し説明を省略する。
図12において、第2圧縮機14を圧縮機1と冷媒流路において並列に配置し、ガスクーラ3と蒸発器5との間の配管に2つの並列配設した膨張機4a,4bを備え、これら膨張機の出口側にはそれぞれ逆流防止手段19a,19bが冷房運転と暖房運転の切換えによる冷媒の逆方向流れに対応して設けられた冷媒回路構成となっている。なお、本図では逆流防止手段19a,19bを膨張機の出口側(流出側)に設けるようにしたが、これに限るものでなく、反対側の入口側(流入側)に設置してもよい。また、図12(a)におけるガスクーラ3が室内機、蒸発器5が室外機に相当しており、四方弁20の切換えにより図12(b)の冷房状態になると室内機は蒸発器5、室外機がガスクーラ3となる。
Embodiment 2. FIG.
A second embodiment of the present invention will be described with reference to FIG.
FIGS. 12A and 12B are refrigerant circuit diagrams showing the second embodiment, where FIG. 12A shows a heating operation and FIG. 12B shows a cooling operation. The basic configuration of the second embodiment is a refrigerant circuit having a two-axis parallel (motor combined) configuration described in FIG. In FIG. 12, 4 a and 4 b are expansion devices for heating operation and cooling operation, 19 a and 19 b are backflow prevention means, and 17 is an auxiliary motor provided on the main shaft 11. In addition, the same code | symbol is attached | subjected to FIG. 1 and an equivalent part, and description is abbreviate | omitted.
In FIG. 12, the second compressor 14 is arranged in parallel with the compressor 1 in the refrigerant flow path, and includes two expanders 4a and 4b arranged in parallel on the pipe between the gas cooler 3 and the evaporator 5, Refrigerant circuit configurations are provided on the outlet side of the expander corresponding to the reverse flow of the refrigerant by switching between the cooling operation and the heating operation, respectively. In this figure, the backflow prevention means 19a and 19b are provided on the outlet side (outflow side) of the expander. However, the present invention is not limited to this and may be installed on the opposite inlet side (inflow side). . 12A corresponds to the indoor unit, and the evaporator 5 corresponds to the outdoor unit. When the four-way valve 20 is switched to the cooling state in FIG. 12B, the indoor unit is the evaporator 5 and the outdoor unit. The machine becomes the gas cooler 3.

冷暖房運転の切換えによる膨張機部分の冷媒の逆流に関しては、図12に示すように暖房運転時用の膨張機4aと冷房運転時用の膨張機4bとを同一主軸11上に配設し、それぞれの出口側配管に逆流防止手段19a,19bを設け、暖房運転時は膨張機4a側を冷媒が流通し、冷房運転時は膨張機4b側を冷媒が流通する2WAY膨張機構部とすることにより、冷房運転時と暖房運転時共に膨張動力回収を行うことが可能となり、第2圧縮機14をバイパスするような流量制御手段は不要となる。   Regarding the reverse flow of the refrigerant in the expander portion by switching between the cooling and heating operations, as shown in FIG. 12, an expander 4a for heating operation and an expander 4b for cooling operation are arranged on the same main shaft 11, respectively. By providing a backflow prevention means 19a, 19b on the outlet side pipe of the 2WAY expansion mechanism section in which the refrigerant flows through the expander 4a side during the heating operation and the refrigerant flows through the expander 4b side during the cooling operation, The expansion power can be recovered during both the cooling operation and the heating operation, and a flow rate control means for bypassing the second compressor 14 is not necessary.

また、図9に示す二軸並列(モータ併用)の基本冷媒回路では、膨張機と同軸連動した第2圧縮機の流量と動力の釣合いについては補助モータ17によって吸収できるが、膨張容積比固定による不足膨張及び過膨張ロスを任意の条件に対してなくすことはできない。しかし、本実施の形態2では膨張機を並列に二つ備え2WAY膨張機構部とすることにより、冷房運転と暖房運転のそれぞれの条件に対して膨張ロスがゼロとなるような膨張容積比を設定することが可能である。   In the two-axis parallel (motor combined) basic refrigerant circuit shown in FIG. 9, the balance between the flow rate and power of the second compressor co-operated with the expander can be absorbed by the auxiliary motor 17, but the expansion volume ratio is fixed. Underexpansion and overexpansion loss cannot be eliminated for arbitrary conditions. However, in the second embodiment, the expansion volume ratio is set such that the expansion loss is zero for each condition of the cooling operation and the heating operation by providing two expanders in parallel and using the 2WAY expansion mechanism. Is possible.

本実施の形態において、膨張機4aの膨張容積比は暖房中間条件に、そして膨張機4bは冷房中間条件に合わせた場合のCOPとSEERの膨張機同軸構成の冷媒回路に対する比は、図13に示す数値となり、図9の場合における暖房中間条件で膨張ロスが生じない膨張容積比で求めた値よりも、冷房運転側でも膨張容積比を合わせた分だけ良くなっており、更に高効率となる冷凍空調装置が得られる。   In this embodiment, the ratio of the expansion volume of the expander 4a to the heating intermediate condition and the ratio of the COP and SEER to the refrigerant circuit of the expander coaxial configuration when the expander 4b is adjusted to the cooling intermediate condition are shown in FIG. It is better than the value obtained by the expansion volume ratio at which no expansion loss occurs under the heating intermediate condition in the case of FIG. 9 by the amount of the expansion volume ratio on the cooling operation side, and is further efficient. A refrigeration air conditioner is obtained.

実施の形態3.
本発明の実施の形態3を図14に基づいて説明する。図14(a)は暖房運転時、(b)は冷房運転時を表している。本実施の形態3は、図8で説明してきた二軸直列(高段)構成の冷媒回路が基本となっている。図14において、21は第2ガスクーラ、18は第2ガスクーラをバイパスする配管の流量制御手段である。なお、図1および図12と同一又は相当部には同じ符号を付し説明を省略する。
図14(a)における暖房運転ではガスクーラ3が室内機、蒸発器5が室外機に相当しており、四方弁20の切換えにより図14(b)の冷房運転では蒸発器5が室内機、ガスクーラ3が室外機となる。
Embodiment 3 FIG.
A third embodiment of the present invention will be described with reference to FIG. FIG. 14A shows a heating operation, and FIG. 14B shows a cooling operation. The third embodiment is basically based on a refrigerant circuit having a biaxial series (high stage) configuration described with reference to FIG. In FIG. 14, 21 is a second gas cooler, and 18 is a flow rate control means for piping bypassing the second gas cooler. 1 and 12 are assigned the same reference numerals, and descriptions thereof are omitted.
In the heating operation in FIG. 14A, the gas cooler 3 corresponds to the indoor unit and the evaporator 5 corresponds to the outdoor unit. By switching the four-way valve 20, the evaporator 5 becomes the indoor unit and the gas cooler in the cooling operation of FIG. 3 is an outdoor unit.

暖房運転時用の膨張機4aと冷房運転時用の膨張機4bそれぞれの出口側配管に逆流防止手段19a,19bを備え、冷房運転と暖房運転ともに膨張動力回収を行うことについては、実施の形態2と同様である。本実施の形態3では、更に第2ガスクーラ21を圧縮機1と第2圧縮機14との間の配管に設け、圧縮機1により冷媒を圧縮後、吐出された高圧ガス冷媒を第2圧縮機14で圧縮する前に前記第2ガスクーラ21で冷却する。   An embodiment is described in which backflow prevention means 19a and 19b are provided in the outlet side pipes of the expander 4a for heating operation and the expander 4b for cooling operation, respectively, and the expansion power is recovered in both the cooling operation and the heating operation. Same as 2. In the third embodiment, the second gas cooler 21 is further provided in the pipe between the compressor 1 and the second compressor 14, and after the refrigerant is compressed by the compressor 1, the discharged high-pressure gas refrigerant is used as the second compressor. Before being compressed at 14, the second gas cooler 21 is used for cooling.

ここで、この実施の形態3における冷媒状態について図15を用いて説明する。図15は、中間冷却二段圧縮サイクルを説明するp−h線図であり、横軸にエンタルピh、縦軸に圧力pをとっている。図中のa点は圧縮機1の吸入部、b点は圧縮機1の吐出部、c点は第2ガスクーラ21の出口部、d点は第2圧縮機14の吐出部、e点はガスクーラ3の出口部、f点は膨張機4の出口部のそれぞれの冷媒状態を示している(冷房運転時における)。図に示すように、第2ガスクーラ21を介さずに中間冷却なしで圧縮行程を行った場合(図中のa→b→b’動作)に比べて、中間冷却二段圧縮(図中のa→b圧縮行程の後にc点まで冷却し、高段でc→d圧縮行程を行う)の方が、エンタルピー値で表すと、(hb’−ha)>(hb−ha)+(hd−hc)であることから、圧縮に要する仕事が小さくなり、同一冷凍能力(ha−hf)に対するCOPは良くなる。暖房時は暖房能力が、(hb’−he)から(hb−hc)+(hd−he)となるため、冷房時ほどはCOPは向上しない。   Here, the refrigerant | coolant state in this Embodiment 3 is demonstrated using FIG. FIG. 15 is a ph diagram illustrating an intermediate cooling two-stage compression cycle, in which the horizontal axis represents enthalpy h and the vertical axis represents pressure p. In the figure, point a is the suction part of the compressor 1, point b is the discharge part of the compressor 1, point c is the outlet part of the second gas cooler 21, point d is the discharge part of the second compressor 14, and point e is the gas cooler. The outlet part 3 and the point f indicate the respective refrigerant states at the outlet part of the expander 4 (during cooling operation). As shown in the figure, compared with the case where the compression stroke is performed without the intermediate cooling without using the second gas cooler 21 (a → b → b ′ operation in the figure), the intermediate cooling two-stage compression (a in the figure) (Bb−ha)> (hb−ha) + (hd−hc) is expressed by the enthalpy value in the case of → cooling to the point c after the b compression stroke and performing the c → d compression stroke at a high stage. ), The work required for compression is reduced, and the COP for the same refrigeration capacity (ha-hf) is improved. Since the heating capacity is changed from (hb'-he) to (hb-hc) + (hd-he) during heating, the COP is not improved as during cooling.

また、第2ガスクーラ21を冷房運転及び暖房運転に対応して室外機と室内機間を移動させるわけにはいかないので、第2ガスクーラ21は室外機に設けられ、より効率改善効果の大きい冷房運転時にのみ機能するようになっている。暖房運転時には流量制御手段18が開となって迂回するようになっている。   Further, since the second gas cooler 21 cannot be moved between the outdoor unit and the indoor unit in accordance with the cooling operation and the heating operation, the second gas cooler 21 is provided in the outdoor unit, and the cooling operation having a greater efficiency improvement effect. It only works at times. During the heating operation, the flow rate control means 18 is opened and detoured.

このような二軸直列(高段)2WAY膨張機を有すと共に冷房運転時に中間冷却を備えた冷媒回路でのCOPとSEERの膨張機同軸構成の冷媒回路に対する比は、図16に示す値となり、膨張機の行程容積を冷房と暖房運転の2条件に合わせて第2減圧手段15からのバイパス量を抑え、膨張容積比も冷房と暖房運転の2条件に合わせて膨張ロスを減らしたことによる効果と中間冷却の効果により、実施の形態2の二軸並列(モータ併用)2WAY膨張機並みの良いSEER値となっている。   The ratio of the COP and SEER expansion circuit coaxial configuration in the refrigerant circuit having the two-shaft series (high stage) 2WAY expander and having the intermediate cooling during the cooling operation is the value shown in FIG. This is because the expansion volume ratio is reduced in accordance with the two conditions of cooling and heating operation, the bypass amount from the second decompression means 15 is suppressed, and the expansion volume ratio is also reduced in accordance with the two conditions of cooling and heating operation. Due to the effect and the effect of intermediate cooling, the SEER value is as good as the two-axis parallel (motor combined) 2WAY expander of the second embodiment.

実施の形態4.
本発明の実施の形態4を図17に基づいて説明する。
図17は図1に示した二軸直列(高段)構成を基本とした冷媒回路図であり、(a)が暖房運転時、(b)が冷房運転時を示す。図において、22はイジェクタ、23は第2四方弁であり、図1と同一又は相当部には同じ符号を付し説明を省略する。
Embodiment 4 FIG.
A fourth embodiment of the present invention will be described with reference to FIG.
FIG. 17 is a refrigerant circuit diagram based on the two-axis series (high stage) configuration shown in FIG. 1, wherein (a) shows a heating operation and (b) shows a cooling operation. In the figure, 22 is an ejector, and 23 is a second four-way valve. The same or corresponding parts as those in FIG.

本実施の形態では、第2減圧手段15がイジェクタ22、アキュムレータ6と組合わされて、バイパスや逆流により膨張動力回収されない減圧流量に対してイジェクタ効果によるエネルギ回収を行うようになっている。
図17(a)の暖房運転時には膨張機4で膨張動力回収が行われるが、暖房中間以外の条件のときに、流量マッチングのためバイパスする分はイジェクタ22での回収に用いられる。一方、(b)の冷房運転時は逆流防止手段19により膨張機4への流入はせず、全流量がイジェクタ22を経由して減圧されることになる。
In the present embodiment, the second decompression means 15 is combined with the ejector 22 and the accumulator 6 so as to recover energy by the ejector effect with respect to the decompressed flow rate where the expansion power is not recovered by bypass or reverse flow.
The expansion power recovery is performed by the expander 4 during the heating operation of FIG. 17A, but the amount bypassed for flow rate matching is used for recovery by the ejector 22 under conditions other than the heating intermediate. On the other hand, during the cooling operation of (b), the backflow prevention means 19 does not flow into the expander 4, and the entire flow rate is reduced via the ejector 22.

一般的にはイジェクタのエネルギ効率は膨張機による動力回収効率よりも低く20%程度であるが、イジェクタ効率20%で計算しても、COPとSEERの膨張機同軸構成に対する比は、図18に示す値となり、図1の二軸直列高段(1WAY)構成の冷媒回路に較べて冷房時の全流量と暖房定格時のバイパス流量についてイジェクタ効果の分だけはCOPが改善されている。   In general, the energy efficiency of the ejector is about 20% lower than the power recovery efficiency by the expander. However, even if the ejector efficiency is 20%, the ratio of COP and SEER to the expander coaxial configuration is shown in FIG. The COP is improved by the amount of the ejector effect with respect to the total flow rate during cooling and the bypass flow rate during heating rating as compared to the refrigerant circuit having the two-axis series high stage (1WAY) configuration of FIG.

なお、上述いずれの実施の形態も、冷房または暖房いずれの場合も油分離器2からアキュムレータ6の出口側配管に分離された油を戻すことにより、アキュムレータ6から圧縮機1を経てガスクーラ3の入口近傍の配管部分は油リッチに保たれ、ガスクーラ、蒸発器の熱交換効率を下げずに、油シール効果により圧縮機構部分の効率を向上させることができる。   In any of the above-described embodiments, the oil separated from the oil separator 2 to the outlet side piping of the accumulator 6 is returned to the inlet of the gas cooler 3 from the accumulator 6 through the compressor 1 in both cases of cooling and heating. The nearby piping portion is kept rich in oil, and the efficiency of the compression mechanism portion can be improved by the oil seal effect without lowering the heat exchange efficiency of the gas cooler and the evaporator.

また、本発明の実施の形態1〜4に係る冷凍空調装置は使用する冷媒として地球温暖化係数が1の二酸化炭素を用いているため、オゾン層破壊や地球温暖化など地球環境への悪影響の小さい冷凍空調装置を提供することができる。   In addition, since the refrigeration air conditioners according to Embodiments 1 to 4 of the present invention use carbon dioxide having a global warming potential of 1 as the refrigerant to be used, there is an adverse effect on the global environment such as ozone layer destruction and global warming. A small refrigeration air conditioner can be provided.

本発明の実施の形態1に係る冷凍空調装置の冷媒回路図である。2 is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention. FIG. 本発明の実施の形態1に係わり、二軸直列(高段)構成の基本冷媒回路図である。FIG. 3 is a basic refrigerant circuit diagram of a biaxial series (high stage) configuration according to Embodiment 1 of the present invention. 本発明の実施の形態1に係わり、膨張機同軸構成を説明するための冷媒回路図である。FIG. 4 is a refrigerant circuit diagram for explaining an expander coaxial configuration according to the first embodiment of the present invention. 本発明の実施の形態1に係わり、膨張機同軸構成を示す冷媒回路図である。It is a refrigerant circuit diagram which concerns on Embodiment 1 of this invention and shows an expander coaxial structure. 本発明の実施の形態1に係わり、膨張機同軸構成における基準値を示す表である。It is a table | surface which concerns on Embodiment 1 of this invention and shows the reference value in an expander coaxial structure. 本発明の実施の形態1に係わり、二軸直列(高段)構成の冷媒回路図における特性値を示す表である。It is a table | surface which concerns on Embodiment 1 of this invention, and shows the characteristic value in the refrigerant circuit figure of a biaxial serial (high stage) structure. 本発明の実施の形態1に係わり、二軸直列(高段)構成の冷媒回路図における回転数を表す表である。It is a table | surface showing the rotation speed in the refrigerant circuit figure of 2 axis | shaft serial (high stage) structure in connection with Embodiment 1 of this invention. 本発明の実施の形態1に係わり、膨張機同軸構成を説明するための基本冷媒回路図である。FIG. 3 is a basic refrigerant circuit diagram for explaining an expander coaxial configuration according to the first embodiment of the present invention. 本発明の実施の形態1に係わり、膨張機同軸構成を示す冷媒回路図である。It is a refrigerant circuit diagram which concerns on Embodiment 1 of this invention and shows an expander coaxial structure. 本発明の実施の形態1に係わり、二軸並列(モータ併用)構成の冷媒回路における特性値を示す表である。It is a table | surface which concerns on Embodiment 1 of this invention, and shows the characteristic value in the refrigerant circuit of a 2 axis | shaft parallel (motor combined use) structure. 本発明の実施の形態1に係わり、二軸直列高段(1WAY)構成の冷媒回路における特性値を示す表である。It is a table | surface which concerns on Embodiment 1 of this invention, and shows the characteristic value in the refrigerant circuit of a biaxial serial high stage (1WAY) structure. 本発明の実施の形態2に係る冷凍空調装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention. 本発明の実施の形態2に係わり、膨張機同軸構成に対するCOP比を示す図である。It is a figure which concerns on Embodiment 2 of this invention, and shows a COP ratio with respect to an expander coaxial structure. 本発明の実施の形態3に係る冷凍空調装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention. 本発明の実施の形態3に係わり、中間冷却二段圧縮サイクルを説明するためのp−h線図である。It is a ph diagram for explaining the intermediate cooling two-stage compression cycle according to the third embodiment of the present invention. 本発明の実施の形態3に係わり、膨張機同軸構成に対するCOP比を示す図である。It is a figure which concerns on Embodiment 3 of this invention, and shows a COP ratio with respect to an expander coaxial structure. 本発明の実施の形態4に係る冷凍空調装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 4 of the present invention. 本発明の実施の形態4に係わり、膨張機同軸構成に対するCOP比を示す図である。It is a figure which concerns on Embodiment 4 of this invention, and shows a COP ratio with respect to an expander coaxial structure. 従来の冷凍空調装置の冷媒回路図である。It is a refrigerant circuit diagram of the conventional refrigeration air conditioner. 従来の別の冷凍空調装置の冷媒回路図である。It is a refrigerant circuit diagram of another conventional refrigeration air conditioner.

符号の説明Explanation of symbols

1 圧縮機、 2 油分離器、 3 ガスクーラ、 4、4a、4b 膨張機、 5 蒸発器、 6 アキュムレータ、 7 温度センサ、 8 圧力センサ、 9 演算手段、 10 膨張比制御手段、 11 主軸、 12 原動機(モータ)、 13 発電機、 14 第2圧縮機、 15 第2減圧手段、 16 予膨張弁、 17 補助モータ、 18 流量制御手段、 19、19a、19b 逆流防止手段、 20 四方弁、 21 第2ガスクーラ、 22 イジェクタ、 23 第2四方弁。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Oil separator, 3 Gas cooler, 4, 4a, 4b Expander, 5 Evaporator, 6 Accumulator, 7 Temperature sensor, 8 Pressure sensor, 9 Calculation means, 10 Expansion ratio control means, 11 Main shaft, 12 Motor | power_engine (Motor), 13 generator, 14 second compressor, 15 second decompression means, 16 pre-expansion valve, 17 auxiliary motor, 18 flow rate control means, 19, 19a, 19b backflow prevention means, 20 four-way valve, 21 second Gas cooler, 22 ejector, 23 second four-way valve.

Claims (6)

複数台の圧縮機と、前記圧縮機で圧縮された高圧の冷媒を冷却するガスクーラと、前記ガスクーラによって冷却されたガスを減圧することにより動力を取り出す膨張機と、前記膨張機により減圧された冷媒を加熱する蒸発器とを備え、前記圧縮機のうち少なくとも1台は前記膨張機の主軸に連結して駆動される第2圧縮機であり、前記膨張機および第2圧縮機は、年間平均エネルギー消費効率に寄与度の大きい運転条件で前記膨張機のバイパスや膨張機入口での予膨張を行わなくてもよいように行程容積が定まったものであるとともに、前記第2圧縮機を他方の圧縮機の吐出側に接続し、複数の運転モードを持つことを特徴とする冷凍空調装置。 A plurality of compressors; a gas cooler that cools the high-pressure refrigerant compressed by the compressor; an expander that extracts power by depressurizing the gas cooled by the gas cooler; and the refrigerant depressurized by the expander And at least one of the compressors is a second compressor driven by being connected to a main shaft of the expander, and the expander and the second compressor have an annual average energy The stroke volume is determined so that it is not necessary to bypass the expander or perform pre-expansion at the expander inlet under operating conditions that greatly contribute to consumption efficiency, and the second compressor is compressed with the other compressor. A refrigeration air conditioner connected to the discharge side of the machine and having a plurality of operation modes. 前記運転モードが冷房運転時に前記ガスクーラが室外機側、前記蒸発器が室内機側となるとともに、暖房運転時にその逆となるような流路を切換える四方弁を備えたことを特徴とする請求項1記載の冷凍空調装置。 The gas cooler is an outdoor unit side and the evaporator is an indoor unit side when the operation mode is a cooling operation, and a four-way valve that switches a flow path that is reversed when the operation is heating is provided. The refrigeration air conditioner according to 1. 前記膨張機と並列に配設した第2減圧手段を設けたことを特徴とする請求項1または請求項2記載の冷凍空調装置。 The refrigerating and air-conditioning apparatus according to claim 1, further comprising a second pressure reducing unit disposed in parallel with the expander. 前記第2圧縮機の負荷に対する膨張機の回収動力の不足を補うための補助モータを備えたことを特徴とする請求項1または請求項2記載の冷凍空調装置。 The refrigerating and air-conditioning apparatus according to claim 1, further comprising an auxiliary motor for compensating for a shortage of the recovery power of the expander with respect to the load of the second compressor. 複数台の圧縮機と、前記圧縮機で圧縮された高圧の冷媒を冷却するガスクーラと、前記ガスクーラによって冷却されたガスを減圧することにより動力を取り出す膨張機と、前記膨張機により減圧された冷媒を加熱する蒸発器とを備え、前記圧縮機のうち少なくとも1台は前記膨張機で回収した膨張動力により駆動されて他方の圧縮機と直列に接続された第2圧縮機と、前記第2圧縮機と他方の圧縮機の間に配管接続されて冷媒を冷却する第2ガスクーラと、複数の運転モードのうちの暖房運転時に前記第2ガスクーラを迂回する流路を設けたことを特徴とする冷凍空調装置。 A plurality of compressors; a gas cooler that cools the high-pressure refrigerant compressed by the compressor; an expander that extracts power by depressurizing the gas cooled by the gas cooler; and the refrigerant depressurized by the expander A second compressor connected in series with the other compressor, driven by the expansion power recovered by the expander, and the second compression And a second gas cooler connected between the compressor and the other compressor to cool the refrigerant, and a flow path that bypasses the second gas cooler during heating operation of the plurality of operation modes. Air conditioner. 冷媒として二酸化炭素を用いたことを特徴とする請求項1乃至請求項5のいずれかに記載の冷凍空調装置。 The refrigeration air conditioner according to any one of claims 1 to 5, wherein carbon dioxide is used as a refrigerant.
JP2006040903A 2006-02-17 2006-02-17 Refrigeration air conditioner Expired - Fee Related JP4013981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006040903A JP4013981B2 (en) 2006-02-17 2006-02-17 Refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006040903A JP4013981B2 (en) 2006-02-17 2006-02-17 Refrigeration air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002085147A Division JP4075429B2 (en) 2002-03-26 2002-03-26 Refrigeration air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007138003A Division JP2007255889A (en) 2007-05-24 2007-05-24 Refrigerating air conditioning device

Publications (2)

Publication Number Publication Date
JP2006138631A JP2006138631A (en) 2006-06-01
JP4013981B2 true JP4013981B2 (en) 2007-11-28

Family

ID=36619557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006040903A Expired - Fee Related JP4013981B2 (en) 2006-02-17 2006-02-17 Refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP4013981B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162476A (en) * 2011-12-15 2013-06-19 同方人工环境有限公司 Structure with double thermostatic expansion valves
WO2024072876A3 (en) * 2022-09-28 2024-05-30 Energy Recovery, Inc. Systems comprising a pressure exchanger, associated methods, and associated non-transitory machine-readable storage medium

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007006993B4 (en) * 2006-03-27 2019-12-05 Hanon Systems Carbon dioxide operated vehicle air conditioning system and method of operating the air conditioning system
JP4770746B2 (en) * 2007-01-25 2011-09-14 株式会社富士通ゼネラル Expander provided with pressurizing means, and refrigerant circuit provided with pressurizing means
DE102007029523A1 (en) * 2007-06-25 2009-01-02 Obrist Engineering Gmbh Power / work machine and expander heat exchanger unit
JP4997024B2 (en) * 2007-08-28 2012-08-08 日立アプライアンス株式会社 Heat pump water heater
JP4974851B2 (en) * 2007-11-01 2012-07-11 三菱電機株式会社 Refrigeration air conditioner
JP2009243740A (en) * 2008-03-31 2009-10-22 Fujitsu General Ltd Refrigerating cycle
WO2009147882A1 (en) * 2008-06-05 2009-12-10 三菱電機株式会社 Refrigeration cycle apparatus
JP5334554B2 (en) * 2008-12-15 2013-11-06 三菱電機株式会社 Air conditioner
GB2474259A (en) * 2009-10-08 2011-04-13 Ebac Ltd Vapour compression refrigeration circuit
JP2017172946A (en) * 2016-03-25 2017-09-28 三菱重工サーマルシステムズ株式会社 Air conditioning operation control device, air conditioning system, and air conditioning operation control method and program
JP7143751B2 (en) * 2018-12-17 2022-09-29 富士電機株式会社 Steam generating heat pump device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162476A (en) * 2011-12-15 2013-06-19 同方人工环境有限公司 Structure with double thermostatic expansion valves
WO2024072876A3 (en) * 2022-09-28 2024-05-30 Energy Recovery, Inc. Systems comprising a pressure exchanger, associated methods, and associated non-transitory machine-readable storage medium

Also Published As

Publication number Publication date
JP2006138631A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP4013981B2 (en) Refrigeration air conditioner
JP4075429B2 (en) Refrigeration air conditioner
JP2007255889A (en) Refrigerating air conditioning device
JP5349686B2 (en) Refrigeration cycle equipment
JP4457928B2 (en) Refrigeration equipment
JP4242131B2 (en) Refrigeration cycle equipment
WO2013030896A1 (en) Refrigeration cycle device
JP5478715B2 (en) Refrigeration cycle apparatus and operation method thereof
JP2006071137A (en) Refrigeration unit
US8511112B2 (en) Refrigeration cycle apparatus
JPWO2009147882A1 (en) Refrigeration cycle equipment
JP4192904B2 (en) Refrigeration cycle equipment
JP5127849B2 (en) Refrigeration cycle equipment
JP4827859B2 (en) Air conditioner and operation method thereof
JP4887929B2 (en) Refrigeration equipment
JP4901916B2 (en) Refrigeration air conditioner
JP5414811B2 (en) Positive displacement expander and refrigeration cycle apparatus using the positive displacement expander
JP5895662B2 (en) Refrigeration equipment
JP5403047B2 (en) Refrigeration equipment
JP3863555B2 (en) Refrigeration cycle equipment
JP2013210158A (en) Refrigerating device
JP2001066006A (en) Refrigerant circuit for air conditioner
JP4644278B2 (en) Refrigeration cycle equipment
JP4457831B2 (en) Refrigeration equipment
JP2012107862A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4013981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees