JP2012107862A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2012107862A
JP2012107862A JP2012045328A JP2012045328A JP2012107862A JP 2012107862 A JP2012107862 A JP 2012107862A JP 2012045328 A JP2012045328 A JP 2012045328A JP 2012045328 A JP2012045328 A JP 2012045328A JP 2012107862 A JP2012107862 A JP 2012107862A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
expander
heat exchanger
internal heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012045328A
Other languages
Japanese (ja)
Inventor
Takashi Okazaki
多佳志 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012045328A priority Critical patent/JP2012107862A/en
Publication of JP2012107862A publication Critical patent/JP2012107862A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration cycle device which can keep the inlet temperature of an expansion valve high to improve the unit efficiency of an expansion device, in the refrigeration cycle device configured to recover the power of the expansion device by coaxially connecting a compressor to the expansion device.SOLUTION: The refrigeration cycle device includes: a main refrigerant circuit 6 including a first compressor 1, a radiator 2, an expansion device 3a and an evaporator 4, which are successively connected through piping, and also including a second compressor 3b which is driven by power recovered by the expansion device 3a to receive and compress part of refrigerant flowing from the evaporator 4 to the first compressor 1; and a bypass circuit 7 bypassing the expansion device 3a and including an internal heat exchanger 5a and a flow control valve 12. The internal heat exchanger 5a performs heat exchange between high-pressure refrigerant which has entered the bypass circuit 7 flowing through the radiator 2 and a low-pressure two-phase refrigerant obtained after part of the refrigerant flowing through the either a radiator outlet or the internal heat exchanger outlet is depressed with the flow control valve 12.

Description

本発明は、超臨界流体を用いる冷凍サイクル装置に関するものであり、特に圧縮機と膨張機とを同軸で連結し、膨張機の動力を回収する冷凍サイクル装置の構成に関するものである。   The present invention relates to a refrigeration cycle apparatus using a supercritical fluid, and more particularly to a configuration of a refrigeration cycle apparatus in which a compressor and an expander are connected coaxially and power of the expander is recovered.

従来の冷凍サイクル装置として、「冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された冷媒を冷却する放熱器と、前記放熱器で冷却された冷媒が通過する内部熱交換器と、前記圧縮機と一軸で直結して設けられ、前記内部熱交換器を通過した冷媒を膨張させる膨張機と、前記膨張機で膨張した冷媒を加熱する蒸発器とを接続する主冷媒回路と、前記内部熱交換器と前記膨張機の間の前記主冷媒回路より分岐し、冷媒流量を制御する第1の流量制御弁と、前記放熱器で冷却され、前記内部熱交換器を通過する冷媒と前記第1の流量制御弁を通過した冷媒とで熱交換させる前記内部熱交換器とを順に経由して、前記膨張機と前記蒸発器との間の前記主冷媒回路に接続された第1のバイパス流路とを有する冷凍サイクル装置。」がある(例えば、特許文献1参照)。   As a conventional refrigeration cycle apparatus, “a compressor that compresses refrigerant, a radiator that cools the refrigerant compressed by the compressor, an internal heat exchanger through which the refrigerant cooled by the radiator passes, and the compression A main refrigerant circuit that is connected directly to the compressor and expands the refrigerant that has passed through the internal heat exchanger, and an evaporator that heats the refrigerant expanded by the expander; and the internal heat A first flow control valve that branches from the main refrigerant circuit between the exchanger and the expander and controls a refrigerant flow rate; a refrigerant that is cooled by the radiator and passes through the internal heat exchanger; The first bypass flow path connected to the main refrigerant circuit between the expander and the evaporator via the internal heat exchanger that exchanges heat with the refrigerant that has passed through the flow control valve A refrigeration cycle apparatus having References 1).

この技術では、圧縮機と膨張機とを同軸で連結したサブ圧縮機一体型膨張機を備えた冷凍サイクル装置における制約であった、「密度比=一定」(密度比=膨張機流入冷媒密度/圧縮機流入冷媒密度)の制約を回避しつつ、動力回収量を高く保つことができるというものである。   In this technology, “density ratio = constant” (density ratio = expanding refrigerant inflow refrigerant density / The power recovery amount can be kept high while avoiding the restriction on the compressor inflow refrigerant density.

この技術では、流量制御弁によりバイパス回路を流れる冷媒流量を制御することで、膨張機流入冷媒密度/圧縮機流入冷媒密度の比である密度比が一定となる運転条件の制約を回避できるだけでなく、放熱器出口側の冷媒とバイパス流路の冷媒とで内部熱交換を行うことにより、動力回収に寄与しないバイパス流路を流れる冷媒を最小限に抑制することができる。すなわち、密度比一定の制約を回避しながら、高効率の冷凍サイクルを実現できるというものであった。   In this technology, the flow rate of the refrigerant flowing through the bypass circuit is controlled by the flow rate control valve, thereby not only avoiding the restriction of the operating condition in which the density ratio, which is the ratio of the refrigerant density entering the compressor / the refrigerant density entering the compressor, is constant. By performing internal heat exchange between the refrigerant on the radiator outlet side and the refrigerant in the bypass channel, the refrigerant flowing through the bypass channel that does not contribute to power recovery can be minimized. That is, a high-efficiency refrigeration cycle can be realized while avoiding the restriction of a constant density ratio.

特開2008−14602号公報(請求項1、第1図)JP 2008-14602 A (Claim 1, FIG. 1)

ところで、膨張機での動力回収量は冷媒の入口温度によって変化し、一般には温度が高くなるほど動力回収量は増加し、サブ圧縮機一体型膨張機の効果が高くなることが知られている。これはCO2 のような超臨界状態で膨張機に流入する場合、冷媒が高温であるほどガス的性質を持ち、低温であるほど液的性質を持つことに起因する。即ち、膨張機に流入する冷媒の状態がガスに近い場合、膨張過程でより大きく膨張し、多くの膨張動力が回収されるのに対し、膨張機に流入する冷媒の状態が液に近い場合、膨張過程での膨張量は小さくそれに応じて回収される膨張動力回収量も低下する。よって、膨張機の入口の冷媒温度を高くすることが望ましい。しかしながら、従来例では、放熱器から流出した高圧の冷媒を内部熱交換器を通過させ、内部熱交換器において低圧の冷媒と熱交換させて冷却した後、膨張弁に流入させているため、膨張弁に流入する温度が下がってしまう。このため、膨張機の効果が小さくなるとともに、スクロール要のサブ圧縮機一体型構造の場合、単体効率(動作効率)が低下するという課題があった。 Incidentally, it is known that the power recovery amount in the expander varies depending on the refrigerant inlet temperature, and generally the power recovery amount increases as the temperature increases, and the effect of the sub-compressor integrated expander increases. This is because when the refrigerant flows into the expander in a supercritical state such as CO 2 , the refrigerant has a gas property as the temperature is high, and has a liquid property as the temperature is low. That is, when the state of the refrigerant flowing into the expander is close to gas, it expands more in the expansion process and much expansion power is recovered, whereas when the state of the refrigerant flowing into the expander is close to liquid, The expansion amount in the expansion process is small, and the expansion power recovery amount recovered accordingly is also reduced. Therefore, it is desirable to increase the refrigerant temperature at the inlet of the expander. However, in the conventional example, the high-pressure refrigerant that has flowed out of the radiator is allowed to pass through the internal heat exchanger, heat-exchanged with the low-pressure refrigerant in the internal heat exchanger, cooled, and then flowed into the expansion valve. The temperature flowing into the valve will drop. For this reason, the effect of the expander is reduced, and in the case of the sub-compressor integrated structure that requires scrolling, there is a problem that the single unit efficiency (operating efficiency) decreases.

本発明はこのような点に鑑みなされたもので、圧縮機と膨張機とを同軸で連結し、膨張機の動力を回収する冷凍サイクル装置において、膨張弁の入口温度を高く保つことができ、膨張機の単体効率を向上することが可能な冷凍サイクル装置を得ることを目的とする。   The present invention has been made in view of such points, and in a refrigeration cycle apparatus that coaxially connects a compressor and an expander to recover the power of the expander, the inlet temperature of the expansion valve can be kept high, It aims at obtaining the refrigerating-cycle apparatus which can improve the single-piece | unit efficiency of an expander.

本発明に係る冷凍サイクル装置は、第1圧縮機、放熱器、膨張機および蒸発器が順次配管で接続されると共に、膨張機で回収した動力により駆動され、蒸発器から第1圧縮機に向かう冷媒の一部を受け入れて圧縮する第2圧縮機を備えた主冷媒回路と、膨張機をバイパスし内部熱交換器および流量制御弁を備えたバイパス回路とを備え、内部熱交換器は、放熱器から流出してバイパス回路に流れ込んだ高圧冷媒と、放熱器出口または内部熱交換器出口から流出した冷媒の一部を流量制御弁にて減圧した後の低圧二相冷媒とを熱交換するものである。   In the refrigeration cycle apparatus according to the present invention, a first compressor, a radiator, an expander, and an evaporator are sequentially connected by a pipe, and are driven by power recovered by the expander, and travel from the evaporator to the first compressor. A main refrigerant circuit including a second compressor that receives and compresses a part of the refrigerant; and a bypass circuit that bypasses the expander and includes an internal heat exchanger and a flow rate control valve. Heat exchange between the high-pressure refrigerant that has flowed out of the condenser and flowed into the bypass circuit, and the low-pressure two-phase refrigerant that has been partially depressurized by the flow control valve from the radiator outlet or the internal heat exchanger outlet It is.

この発明は、低外気など膨張動力が小さく暖房能力が必要な条件では、膨張機をバイパスして内部熱交換器により暖房能力を増加させ、膨張動力が大きく回収効果が大きい条件ではバイパスを閉止して動力回収を行うことにより、環境条件に対応し、能力優先あるいは効率優先を運転切替えで実現する冷凍サイクル装置である。また、膨張機の密度比(膨張機入口密度/圧縮機入口密度)が小さくでき、膨張機の単体効率が向上する。   The present invention bypasses the expander and increases the heating capacity by the internal heat exchanger under conditions where the expansion power is small, such as low outside air, and the bypass is closed under conditions where the expansion power is large and the recovery effect is large. This is a refrigeration cycle apparatus that achieves capacity priority or efficiency priority by switching operation by performing power recovery in response to environmental conditions. Moreover, the density ratio (expander inlet density / compressor inlet density) of the expander can be reduced, and the single unit efficiency of the expander is improved.

この発明の実施の形態1における冷凍サイクル装置を示す図である。It is a figure which shows the refrigerating-cycle apparatus in Embodiment 1 of this invention. 図1のサブ圧縮機一体型膨張機の断面を示す図である。It is a figure which shows the cross section of the sub compressor integrated expander of FIG. この発明の実施の形態2における冷凍サイクル装置を示す図である。It is a figure which shows the refrigerating-cycle apparatus in Embodiment 2 of this invention. この発明の実施の形態3における冷凍サイクル装置を示す図である。It is a figure which shows the refrigerating-cycle apparatus in Embodiment 3 of this invention.

実施の形態1.
図1は、本発明の実施の形態1における冷凍サイクル装置の構成を示す図である。図1に示すように、本実施の形態1に係る冷凍サイクル装置は、冷媒ガスを圧縮するための第1圧縮機1、放熱器2、冷媒を減圧して二相状態の湿り蒸気とする膨張機3a、蒸発器4、内部熱交換器5の低圧側流路が順次配管で接続された主冷媒回路6を有している。また、主冷媒回路6は、膨張機3aと同軸に接続され、膨張機3aで回収した動力により駆動される第2圧縮機3bを備えている。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a refrigeration cycle apparatus in Embodiment 1 of the present invention. As shown in FIG. 1, the refrigeration cycle apparatus according to Embodiment 1 includes a first compressor 1 for compressing refrigerant gas, a radiator 2, and expansion of the refrigerant to reduce the refrigerant into two-phase wet steam. It has a main refrigerant circuit 6 in which the low-pressure side flow paths of the machine 3a, the evaporator 4, and the internal heat exchanger 5 are sequentially connected by piping. The main refrigerant circuit 6 includes a second compressor 3b that is coaxially connected to the expander 3a and is driven by power collected by the expander 3a.

また、膨張機3aをバイパスするバイパス回路7を備えている。バイパス回路7は、内部熱交換器5と流量制御弁としての開閉弁10とを有しており、放熱器2から流出した冷媒の一部をバイパス回路7の内部熱交換器5の高圧側および開閉弁10を介して膨張機3a出口部に合流させる。内部熱交換器5は、放熱器2から流出してバイパス回路7に流れ込んだ高圧冷媒と、蒸発器4出口の低圧冷媒とを熱交換する。なお、ここでは内部熱交換器5の低圧側冷媒を蒸発器4出口の冷媒としたが、第1圧縮機1と第2圧縮機3bの吸入密度に差をつけるため、第1圧縮機1の吸入冷媒または第2圧縮機3bの吸入冷媒の少なくともどちらか一方としても良い。   Moreover, the bypass circuit 7 which bypasses the expander 3a is provided. The bypass circuit 7 has an internal heat exchanger 5 and an on-off valve 10 as a flow control valve, and a part of the refrigerant flowing out of the radiator 2 is removed from the high-pressure side of the internal heat exchanger 5 of the bypass circuit 7 and It is made to merge with the exit part of the expander 3a via the on-off valve 10. The internal heat exchanger 5 exchanges heat between the high-pressure refrigerant flowing out of the radiator 2 and flowing into the bypass circuit 7 and the low-pressure refrigerant at the outlet of the evaporator 4. Here, the low-pressure side refrigerant of the internal heat exchanger 5 is the refrigerant at the outlet of the evaporator 4, but in order to make a difference in the suction density of the first compressor 1 and the second compressor 3b, It may be at least one of the suction refrigerant and the suction refrigerant of the second compressor 3b.

膨張機3aと第2圧縮機3bは上述したように同軸に接続され、サブ圧縮機一体型膨張機3として一体構造を形成している。主冷媒回路6において第2圧縮機3bの吸入側が第1圧縮機1の吸入側と並列になるように設置されており、第2圧縮機3bの吐出側が第1圧縮機1の圧縮室に連通して設けたインジェクションポートに接続されている。これにより、第2圧縮機3bの吐出冷媒は、第1圧縮機1のインジェクションポートから、圧縮途中の圧縮室内に注入される。冷凍サイクル装置の内部には冷媒として例えば臨界温度(約31℃)以上で超臨界状態となる二酸化炭素が封入されている。   The expander 3a and the second compressor 3b are coaxially connected as described above, and form an integral structure as the sub-compressor-integrated expander 3. In the main refrigerant circuit 6, the suction side of the second compressor 3 b is installed in parallel with the suction side of the first compressor 1, and the discharge side of the second compressor 3 b communicates with the compression chamber of the first compressor 1. Connected to the injection port. As a result, the refrigerant discharged from the second compressor 3b is injected from the injection port of the first compressor 1 into the compression chamber in the middle of compression. For example, carbon dioxide that is in a supercritical state at a critical temperature (about 31 ° C.) or higher is sealed inside the refrigeration cycle apparatus as a refrigerant.

サブ圧縮機一体型膨張機3の詳細構造について図2に示す。膨張機3aおよび第2圧縮機3bは、ともにスクロール構造を採用した膨張機ユニットであり、膨張機3aは膨張機用固定スクロール351と膨張機用揺動スクロール352とから構成され、第2圧縮機3bは第2圧縮機用固定スクロール361と第2圧縮機用揺動スクロール362とから構成されている。これらのスクロールの中心部には軸308が上下方向に貫通しており、軸308の両端部にはバランスウェイト309a、309bが設けられている。軸308は膨張機用軸受け部351b、第2圧縮機用軸受け部361bで支持されている。また、膨張機3aの揺動スクロール352の背面と第2圧縮機3bの揺動スクロール362の背面とが背面合わせ構造となっている。   The detailed structure of the sub compressor-integrated expander 3 is shown in FIG. The expander 3a and the second compressor 3b are both expander units adopting a scroll structure, and the expander 3a includes an expander fixed scroll 351 and an expander swing scroll 352, and the second compressor 3 b includes a second compressor fixed scroll 361 and a second compressor swing scroll 362. A shaft 308 passes through the center of these scrolls in the vertical direction, and balance weights 309 a and 309 b are provided at both ends of the shaft 308. The shaft 308 is supported by an expander bearing portion 351b and a second compressor bearing portion 361b. Further, the back surface of the swing scroll 352 of the expander 3a and the back surface of the swing scroll 362 of the second compressor 3b have a back-to-back structure.

膨張機用固定スクロール351は、鏡板から上方に渦巻歯351aが立設された構成を有している。膨張機用揺動スクロール352は、膨張機用固定スクロール351と対向する下面に、膨張機用固定スクロール351の渦巻歯351aが噛み合う膨張機側渦巻歯352aが立設され、膨張機用固定スクロール351と共に膨張機3aを構成している。   The expander fixed scroll 351 has a configuration in which spiral teeth 351a are erected upward from the end plate. The expander swing scroll 352 is provided with an expander-side spiral tooth 352a that is engaged with the spiral teeth 351a of the expander fixed scroll 351 on the lower surface facing the expander fixed scroll 351. In addition, the expander 3a is configured.

また、第2圧縮機用固定スクロール361も、鏡板から下方に渦巻歯361aが立設された構成を有している。第2圧縮機用揺動スクロール362は、第2圧縮機用固定スクロール361と対向する上面に第2圧縮機用固定スクロール361の渦巻歯361aと噛み合う第2圧縮機側渦巻歯362aが立設され、第2圧縮機用固定スクロール361と共に第2圧縮機3bを構成している。その他、必要部品であるオルダムリング307、クランク部308bが設けられ、これらは全て密閉容器310内に収納されている。   The second compressor fixed scroll 361 also has a configuration in which spiral teeth 361a are erected downward from the end plate. The second compressor orbiting scroll 362 is provided with a second compressor side spiral tooth 362 a that is engaged with the spiral teeth 361 a of the second compressor fixed scroll 361 on the upper surface facing the second compressor fixed scroll 361. The second compressor 3b is configured together with the second compressor fixed scroll 361. In addition, an Oldham ring 307 and a crank portion 308 b which are necessary parts are provided, and these are all stored in the hermetic container 310.

このような構造を有するサブ圧縮機一体型膨張機3において、容積比(圧縮機内容積/膨張機内容積)を大きく(例えば、2以上に)設計すると、同一歯高では第2圧縮機3bからのスラスト荷重に対して膨張機3a側からのスラスト荷重が小さくなり、揺動スクロール352,362の両面でスラスト荷重を相殺させることができない。このため、第2圧縮機3bと膨張機3aを一体化したサブ圧縮機一体型膨張機3の構成が難しくなる。また、第2圧縮機3b側のスラスト荷重を減らすために第2圧縮機3b側を極端に歯高の高い渦巻とすることもできるが、強度的な問題が発生する。従って、膨張機3a、第2圧縮機3bともにスクロール構造を有するサブ圧縮機一体型では、膨張圧縮容積比を2以下の範囲に設定することで、性能面だけでなく、構造面でも信頼性の高い膨張機ユニットを構成できる。   In the sub-compressor-integrated expander 3 having such a structure, if the volume ratio (compressor internal volume / expander internal volume) is designed to be large (for example, 2 or more), at the same tooth height, from the second compressor 3b. The thrust load from the expander 3a side is reduced with respect to the thrust load, and the thrust load cannot be offset on both sides of the orbiting scrolls 352 and 362. For this reason, the configuration of the sub compressor-integrated expander 3 in which the second compressor 3b and the expander 3a are integrated becomes difficult. Further, in order to reduce the thrust load on the second compressor 3b side, it is possible to make the second compressor 3b side a spiral having an extremely high tooth height, but this causes a problem in strength. Therefore, in the sub-compressor integrated type in which both the expander 3a and the second compressor 3b have a scroll structure, by setting the expansion / compression volume ratio in the range of 2 or less, not only in terms of performance but also in terms of structure, reliability is achieved. A high expander unit can be constructed.

上記のように構成された冷凍サイクル装置の運転動作を説明する。ここでは、放熱器2が利用側熱交換器として動作するものとして説明する。
通常の暖房運転では、主冷媒回路6のみを用いて動力回収を行う運転となる。すなわち、バイパス流量0%の運転であり、開閉弁11が開放され、開閉弁10は閉じられる。
第1圧縮機1から吐出された高圧のガス冷媒は放熱器2に送られる。放熱器2に送られた高圧のガス冷媒は室内空気と熱交換を行って放熱して高圧の中温冷媒となった後、膨張機3aに流入する。膨張機3aに流入した冷媒は、動力回収されながら低圧低温の気液二相冷媒に減圧され、蒸発器4で蒸発し、内部熱交換器5の低圧側に流入する。開閉弁10は閉じられているため、バイパス回路7には冷媒が通過しない。よって、内部熱交換器5では熱交換は行われず、蒸発器4から流出した冷媒は、そのまま内部熱交換器5を通過して第1圧縮機1および第2圧縮機3bの吸入側へ戻る。
The operation of the refrigeration cycle apparatus configured as described above will be described. Here, it demonstrates as the thing which the heat radiator 2 operate | moves as a utilization side heat exchanger.
In normal heating operation, power recovery is performed using only the main refrigerant circuit 6. That is, the bypass flow rate is 0%, the on-off valve 11 is opened, and the on-off valve 10 is closed.
The high-pressure gas refrigerant discharged from the first compressor 1 is sent to the radiator 2. The high-pressure gas refrigerant sent to the radiator 2 exchanges heat with room air to dissipate heat to become a high-pressure medium-temperature refrigerant, and then flows into the expander 3a. The refrigerant flowing into the expander 3a is decompressed to a low-pressure and low-temperature gas-liquid two-phase refrigerant while recovering power, evaporates in the evaporator 4, and flows into the low-pressure side of the internal heat exchanger 5. Since the on-off valve 10 is closed, the refrigerant does not pass through the bypass circuit 7. Therefore, heat exchange is not performed in the internal heat exchanger 5, and the refrigerant flowing out of the evaporator 4 passes through the internal heat exchanger 5 as it is and returns to the suction side of the first compressor 1 and the second compressor 3b.

第2圧縮機3bの回転数は、膨張機3aと同一であり、膨張機3aの回収動力と第2圧縮機3bの消費電力が一致するように、第2圧縮機3bの吐出圧力(インジェクション圧力)が定められる。第1圧縮機1のインジェクションポート位置は、第2圧縮機3bの吐出圧力よりも第1圧縮機1のインジェクションポート圧力が低くなるように設計されているか、あるいは第2圧縮機3bの吐出圧力が第1圧縮機1のインジェクションポート圧力よりも低い場合は、動力回収を行わないように設計されている。   The rotation speed of the second compressor 3b is the same as that of the expander 3a, and the discharge pressure (injection pressure) of the second compressor 3b is set so that the recovered power of the expander 3a matches the power consumption of the second compressor 3b. ) Is determined. The injection port position of the first compressor 1 is designed such that the injection port pressure of the first compressor 1 is lower than the discharge pressure of the second compressor 3b, or the discharge pressure of the second compressor 3b is When the pressure is lower than the injection port pressure of the first compressor 1, it is designed not to recover power.

ここで、低外気条件での暖房運転のように、放熱器2の出口温度が比較的低く、動力回収による性能向上効果が小さいが、一方で大きな暖房能力が要求される場合について説明する。この場合、主冷媒回路6とバイパス回路7の両方に冷媒を流し、膨張機3aによる動力回収と内部熱交換器5による熱交換との両方を行う運転を行う。   Here, a case where the outlet temperature of the radiator 2 is relatively low and the performance improvement effect by power recovery is small, as in the heating operation under the low outside air condition, on the other hand, a large heating capacity is required will be described. In this case, the refrigerant is supplied to both the main refrigerant circuit 6 and the bypass circuit 7, and an operation is performed in which both power recovery by the expander 3a and heat exchange by the internal heat exchanger 5 are performed.

次に、動力回収と内部熱交換器5による熱交換との両方を行う運転について説明する。この運転の場合、膨張機3aとバイパス回路7の両方に冷媒を流すため、開閉弁11と開閉弁10はそれぞれ適度な開度に設定されている。
この場合、第1圧縮機1から吐出された高温高圧のガス冷媒は放熱器2に送られる。放熱器2に送られた高圧のガス冷媒は室内空気と熱交換を行って凝縮し、高圧の液冷媒となった後、開閉弁11で流量制御されて膨張機3aに流入する。膨張機3aに流入した冷媒は、動力回収されながら低圧低温の気液二相冷媒に減圧され、蒸発器4で蒸発し、内部熱交換器5の低圧側に流入する。
Next, an operation for performing both power recovery and heat exchange by the internal heat exchanger 5 will be described. In this operation, since the refrigerant flows through both the expander 3a and the bypass circuit 7, the opening / closing valve 11 and the opening / closing valve 10 are set to appropriate opening degrees.
In this case, the high-temperature and high-pressure gas refrigerant discharged from the first compressor 1 is sent to the radiator 2. The high-pressure gas refrigerant sent to the radiator 2 is condensed by exchanging heat with room air and becomes high-pressure liquid refrigerant, and then the flow rate is controlled by the on-off valve 11 and flows into the expander 3a. The refrigerant flowing into the expander 3a is decompressed to a low-pressure and low-temperature gas-liquid two-phase refrigerant while recovering power, evaporates in the evaporator 4, and flows into the low-pressure side of the internal heat exchanger 5.

一方、放熱器2から流出してバイパス回路7側に流入した冷媒は、内部熱交換器5の高圧側に流入し、内部熱交換器5の低圧側の冷媒と熱交換して冷却されて、乾き度が低下する。そして、内部熱交換器5の高圧側を流出した冷媒は、開閉弁10で減圧された後、主冷媒回路6からの冷媒と合流して蒸発器4に流入する。蒸発器4で蒸発した冷媒は内部熱交換器5の低圧側に流入し、内部熱交換器5の高圧側の冷媒と熱交換して蒸発し、第1圧縮機1および第2圧縮機3bに吸入される。第2圧縮機3bに吸入された冷媒は、第2圧縮機3bで圧縮された後、第1圧縮機1に吸入される。   On the other hand, the refrigerant flowing out of the radiator 2 and flowing into the bypass circuit 7 flows into the high-pressure side of the internal heat exchanger 5 and is cooled by exchanging heat with the low-pressure side refrigerant of the internal heat exchanger 5. The dryness decreases. Then, the refrigerant that has flowed out of the high pressure side of the internal heat exchanger 5 is decompressed by the on-off valve 10, and then merges with the refrigerant from the main refrigerant circuit 6 and flows into the evaporator 4. The refrigerant evaporated in the evaporator 4 flows into the low-pressure side of the internal heat exchanger 5, exchanges heat with the high-pressure side refrigerant of the internal heat exchanger 5, and evaporates to the first compressor 1 and the second compressor 3 b. Inhaled. The refrigerant sucked into the second compressor 3b is compressed by the second compressor 3b and then sucked into the first compressor 1.

一方、高外気条件での冷房運転のように、放熱器2の出口温度が比較的高く、膨張動力が大きくなって性能向上効果が大きい条件では開閉弁10を閉止し(バイパス回路7を閉止し)、膨張機3aを用いた動力回収運転を実施する。   On the other hand, the on-off valve 10 is closed (the bypass circuit 7 is closed) under conditions where the outlet temperature of the radiator 2 is relatively high, the expansion power is large, and the performance improvement effect is large, as in the cooling operation under high outside air conditions. ), Power recovery operation using the expander 3a is performed.

このように、本実施の形態1の冷凍サイクル装置では、放熱器2と膨張機3aとの間から分岐して膨張機3aの出口に接続するバイパス回路7に内部熱交換器5を設け、放熱器2から流出した冷媒を分岐して直接膨張機3aに流入する構成とした。したがって、特許文献1のように放熱器と膨張機との間に内部熱交換器を設けた構成と比較して、膨張機3aの入口温度を上昇させることができ、膨張機3aの単体効率を向上することが可能である。   As described above, in the refrigeration cycle apparatus of the first embodiment, the internal heat exchanger 5 is provided in the bypass circuit 7 that branches from between the radiator 2 and the expander 3a and is connected to the outlet of the expander 3a. The refrigerant that has flowed out of the vessel 2 is branched and directly flows into the expander 3a. Therefore, compared with the structure which provided the internal heat exchanger between the heat radiator and the expander like patent document 1, the inlet temperature of the expander 3a can be raised, and the single unit efficiency of the expander 3a can be increased. It is possible to improve.

また、低外気条件での暖房運転では、放熱器2から流出した高圧冷媒の一部をバイパス回路7に通過させ、内部熱交換器5にて低圧側を通過する冷媒により冷却し、開閉弁10で減圧した後、蒸発器4に流入させるようにした。これにより、蒸発器入口の温度を下げることができ、蒸発器4の入口と出口(なお、蒸発器出口温度は固定とする)のエンタルピ差を拡大することができる。このようにエンタルピ差を拡大した分、暖房能力を向上することができ、ひいては省エネとなる冷凍サイクル装置を得ることができる。   In the heating operation under the low outside air condition, a part of the high-pressure refrigerant flowing out from the radiator 2 is passed through the bypass circuit 7 and cooled by the refrigerant passing through the low-pressure side in the internal heat exchanger 5. Then, the pressure was reduced and the gas was allowed to flow into the evaporator 4. As a result, the temperature at the evaporator inlet can be lowered, and the enthalpy difference between the inlet and outlet of the evaporator 4 (note that the evaporator outlet temperature is fixed) can be increased. Thus, the enthalpy difference can be increased, so that the heating capacity can be improved, and as a result, an energy-saving refrigeration cycle apparatus can be obtained.

また、内部熱交換器5において低圧側を通過する冷媒は、高圧側を通過する冷媒により加熱された後、第1圧縮機1に吸入されるため、第1圧縮機1の吸入温度を上昇させることができる。したがって、この点からも暖房能力を向上することができる。   Further, since the refrigerant passing through the low pressure side in the internal heat exchanger 5 is heated by the refrigerant passing through the high pressure side and then sucked into the first compressor 1, the intake temperature of the first compressor 1 is increased. be able to. Therefore, the heating capacity can be improved also from this point.

ところで、バイパス流量を多くすると膨張機3aにおける動力回収効率は低下し、その分、冷凍サイクル装置の運転効率は低下する。しかし、その一方で、暖房運転において蒸発器入口の温度を下げることができるため、エンタルピ差を拡大することができ、暖房能力を向上できる。したがって、サイクル効率が最大となるように膨張機通過流量とバイパス通過流量の比を決定すれば良い。この流量比に応じて、開閉弁11の開度が決定されることになる。   By the way, if the bypass flow rate is increased, the power recovery efficiency in the expander 3a is lowered, and the operation efficiency of the refrigeration cycle apparatus is lowered accordingly. However, on the other hand, since the temperature at the evaporator inlet can be lowered in the heating operation, the enthalpy difference can be increased and the heating capacity can be improved. Therefore, the ratio between the expander passage flow rate and the bypass passage flow rate may be determined so that the cycle efficiency is maximized. The opening degree of the on-off valve 11 is determined according to this flow rate ratio.

また、バイパス回路7中に内部熱交換器5を設けたため、膨張機3aおよび膨張機3aに同軸接続される第2圧縮機3bでの密度比や流量比に無関係にバイパス流量(つまり、バイパス回路7を通過させる流量)を決めることができる。よって、暖房能力を優先してバイパス流量を多くすることが可能である。   Further, since the internal heat exchanger 5 is provided in the bypass circuit 7, the bypass flow rate (that is, the bypass circuit) is independent of the density ratio and the flow rate ratio in the expander 3a and the second compressor 3b coaxially connected to the expander 3a. 7) can be determined. Therefore, it is possible to increase the bypass flow rate by giving priority to the heating capacity.

また、膨張機3aの入口温度は、内部熱交換器5の熱交換量の影響を受けないため、密度比(膨張機3a入口密度/第2圧縮機3b入口密度)が小さくなり、揺動スクロール352,362の渦巻き歯高の差を小さくできる。このため、構造面でも膨張機3aの単体効率が向上する。   Further, since the inlet temperature of the expander 3a is not affected by the heat exchange amount of the internal heat exchanger 5, the density ratio (expander 3a inlet density / second compressor 3b inlet density) becomes small, and the orbiting scroll. The difference between the spiral tooth heights of 352 and 362 can be reduced. For this reason, the single unit efficiency of the expander 3a also improves in terms of structure.

また、冷媒を二酸化炭素としており、天然に存在する物質を冷媒として用いるため、冷凍サイクル装置から不測に漏れた場合も、オゾン層を破壊することなく、地球環境にやさしい安全性に優れた冷凍サイクル装置とすることができる。   In addition, since the refrigerant is carbon dioxide and a naturally occurring substance is used as the refrigerant, even if it leaks unexpectedly from the refrigeration cycle device, the ozone layer is not destroyed and the refrigeration cycle is excellent in safety and is friendly to the global environment. It can be a device.

実施の形態2.
図3は、本発明の実施の形態2における冷凍サイクル装置の構成を示す図である。図3において、図1と同一部分には同一符号を付す。実施の形態2において、基本的な構成は実施の形態1と同様であるため、以下では、異なる点を中心に説明する。
本実施の形態2では、実施の形態1のように、放熱器出口部の冷媒と蒸発器出口部の冷媒とが熱交換する内部熱交換器5の代わりに、放熱器出口部の冷媒と放熱器出口部の冷媒の一部を減圧した冷媒とを熱交換させる内部熱交換器5aを用いる例を示す。具体的な回路構成としては、実施の形態1と同様の主冷媒回路6と、主冷媒回路6の放熱器2と膨張機3aとの間から分岐して内部熱交換器5aおよび開閉弁10を介して膨張機3aの出口側に接続するバイパス回路7と、バイパス回路7の内部熱交換器5aと開閉弁10との間から分岐して開閉弁12および内部熱交換器5aの低圧側を介して第2圧縮機3bの吐出側で合流接続するインジェクション回路7aとを備えた構成である。
Embodiment 2. FIG.
FIG. 3 is a diagram showing a configuration of the refrigeration cycle apparatus according to Embodiment 2 of the present invention. In FIG. 3, the same parts as those in FIG. Since the basic configuration of the second embodiment is the same as that of the first embodiment, the following description will focus on different points.
In the second embodiment, as in the first embodiment, instead of the internal heat exchanger 5 in which the refrigerant at the radiator outlet and the refrigerant at the evaporator outlet exchange heat, the refrigerant at the radiator outlet and the heat radiation The example using the internal heat exchanger 5a which heat-exchanges with the refrigerant | coolant which pressure-reduced some refrigerant | coolants of the container exit part is shown. As a specific circuit configuration, the main refrigerant circuit 6 similar to that of the first embodiment, the radiator 2 of the main refrigerant circuit 6 and the expander 3a are branched, and the internal heat exchanger 5a and the on-off valve 10 are provided. Via the bypass circuit 7 connected to the outlet side of the expander 3a, and between the internal heat exchanger 5a of the bypass circuit 7 and the on-off valve 10 and branching between the on-off valve 12 and the low-pressure side of the internal heat exchanger 5a And an injection circuit 7a joined and connected on the discharge side of the second compressor 3b.

運転切換えの方法や、主冷媒回路6のみを用いた膨張機3aによる動力回収運転については実施の形態1と同様である。よって、以下では、低外気条件での暖房運転で行われる、動力回収と内部熱交換器5aによる熱交換との両方を行う運転について説明する。この場合、開閉弁10〜12の何れも適切な開度に設定する。
第1圧縮機1から吐出された高温高圧のガス冷媒は放熱器2に送られる。放熱器2に送られた高圧のガス冷媒は室内空気と熱交換を行って凝縮して高圧の液冷媒となった後、開閉弁11で流量制御されて膨張機3aに流入する。膨張機3aに流入した冷媒は、動力回収されながら低圧低温の気液二相冷媒に減圧されて蒸発器4に流入する。
The operation switching method and the power recovery operation by the expander 3a using only the main refrigerant circuit 6 are the same as those in the first embodiment. Therefore, below, the operation | movement which performs both power collection | recovery and the heat exchange by the internal heat exchanger 5a performed by the heating operation by low external air conditions is demonstrated. In this case, all the on-off valves 10 to 12 are set to an appropriate opening degree.
The high-temperature and high-pressure gas refrigerant discharged from the first compressor 1 is sent to the radiator 2. The high-pressure gas refrigerant sent to the radiator 2 performs heat exchange with room air to condense into a high-pressure liquid refrigerant, and then the flow rate is controlled by the on-off valve 11 and flows into the expander 3a. The refrigerant that has flowed into the expander 3a is reduced in pressure to a low-pressure and low-temperature gas-liquid two-phase refrigerant while being recovered in power, and flows into the evaporator 4.

一方、放熱器2から流出して膨張機3aに向かう冷媒の一部はバイパス回路7に流入する。バイパス回路7に流入した冷媒は、内部熱交換器5aの高圧側に流入し、内部熱交換器5aの低圧側の低圧二相冷媒と熱交換して冷却され、乾き度が低下する。そして、内部熱交換器5aの高圧側を流出した冷媒は、開閉弁10で減圧され、主冷媒回路6からの冷媒と合流して蒸発器4に流入する。   On the other hand, a part of the refrigerant that flows out of the radiator 2 and goes to the expander 3 a flows into the bypass circuit 7. The refrigerant that has flowed into the bypass circuit 7 flows into the high-pressure side of the internal heat exchanger 5a, is cooled by exchanging heat with the low-pressure two-phase refrigerant on the low-pressure side of the internal heat exchanger 5a, and the dryness is lowered. The refrigerant that has flowed out of the high-pressure side of the internal heat exchanger 5 a is decompressed by the on-off valve 10, merges with the refrigerant from the main refrigerant circuit 6, and flows into the evaporator 4.

蒸発器4で蒸発した冷媒は、第1圧縮機1および第2圧縮機3bに吸入される。第2圧縮機3bに吸入された冷媒は、第2圧縮機3bで圧縮された後、第1圧縮機1に吸入される。   The refrigerant evaporated in the evaporator 4 is sucked into the first compressor 1 and the second compressor 3b. The refrigerant sucked into the second compressor 3b is compressed by the second compressor 3b and then sucked into the first compressor 1.

また、内部熱交換器5aの高圧側を通過した冷媒の一部は、インジェクション回路7aに流入し、開閉弁12により低圧低温の二相冷媒に減圧された後、内部熱交換器5aの低圧側に流入する。内部熱交換器5aの低圧側に流入した低圧二相冷媒は、高圧側を通過する冷媒と熱交換して蒸発した後、第1圧縮機1の圧縮室に連通するインジェクションポートから圧縮過程の圧縮室内にインジェクションガスとして注入される。なお、図3の構成では、膨張機3aからの冷媒に合流して第1圧縮機1の圧縮室にインジェクションされる。   A part of the refrigerant that has passed through the high-pressure side of the internal heat exchanger 5a flows into the injection circuit 7a and is reduced to a low-pressure low-temperature two-phase refrigerant by the on-off valve 12, and then the low-pressure side of the internal heat exchanger 5a. Flow into. The low-pressure two-phase refrigerant flowing into the low-pressure side of the internal heat exchanger 5a evaporates by exchanging heat with the refrigerant passing through the high-pressure side, and then compressed in the compression process from the injection port communicating with the compression chamber of the first compressor 1 It is injected into the room as injection gas. In the configuration of FIG. 3, the refrigerant merges with the refrigerant from the expander 3 a and is injected into the compression chamber of the first compressor 1.

ここで、開閉弁12は内部の開度(流動抵抗)が可変の減圧弁であり、その開度は、内部熱交換器5aの低圧側出口の冷媒状態が所定の過熱度となるように制御される。内部熱交換器5aの低圧側出口の過熱度は、過熱状態の低圧側出口冷媒温度と、開閉弁12出口の二相冷媒温度との温度差で定義される。   Here, the on-off valve 12 is a pressure reducing valve whose internal opening degree (flow resistance) is variable, and the opening degree is controlled so that the refrigerant state at the low-pressure side outlet of the internal heat exchanger 5a has a predetermined superheat degree. Is done. The degree of superheat at the low-pressure side outlet of the internal heat exchanger 5a is defined by the temperature difference between the low-pressure side outlet refrigerant temperature in an overheated state and the two-phase refrigerant temperature at the outlet of the on-off valve 12.

本実施の形態2によれば、実施の形態1と同様の効果が得られると共に、内部熱交換器5aから蒸発器4に向かう液冷媒の一部を分岐して内部熱交換器5aの低圧側に流入させるようにしたので、以下の効果が得られる。すなわち、蒸発器4を通過する二相冷媒の流量が低下するとともに、実施の形態1のように第1圧縮機1および第2圧縮機3bの吸入冷媒が内部熱交換器5aの低圧側を通過しないので、吸入部での圧力損失を小さくでき、サイクル性能が向上するという効果がある。なお、本実施の形態2では、内部熱交換器5aの出口部で分岐した冷媒を内部熱交換器5aの低圧側に流入させる例を示したが、内部熱交換器5aの入口側(放熱器2の出口側)で分岐した冷媒を内部熱交換器5aの低圧側に流入させる構成としても良く、この場合も同様の効果を発揮する。   According to the second embodiment, the same effect as in the first embodiment can be obtained, and a part of the liquid refrigerant from the internal heat exchanger 5a toward the evaporator 4 is branched to reduce the low pressure side of the internal heat exchanger 5a. The following effects can be obtained. That is, the flow rate of the two-phase refrigerant passing through the evaporator 4 is reduced, and the suction refrigerant of the first compressor 1 and the second compressor 3b passes through the low pressure side of the internal heat exchanger 5a as in the first embodiment. Therefore, the pressure loss at the suction portion can be reduced, and the cycle performance is improved. In the second embodiment, the example in which the refrigerant branched at the outlet of the internal heat exchanger 5a is caused to flow into the low pressure side of the internal heat exchanger 5a is shown. However, the inlet side (heat radiator) of the internal heat exchanger 5a is shown. The refrigerant branched off at the (2 outlet side) may be allowed to flow into the low pressure side of the internal heat exchanger 5a. In this case, the same effect is exhibited.

また、本実施の形態2では、放熱器2から流出して膨張機3aに導入される高圧の冷媒の一部を、膨張機3aをバイパスしてバイパス回路7およびインジェクション回路7aを介して第1圧縮機1内の圧縮室内にインジェクションするようにした。これにより、圧縮機吸入圧力から圧縮途中の圧力(中間圧力)までのバイパス流量分の圧縮動力を低減できる効果(インジェクション効果)がある。   In the second embodiment, a part of the high-pressure refrigerant that flows out of the radiator 2 and is introduced into the expander 3a is first bypassed through the bypass circuit 7 and the injection circuit 7a, bypassing the expander 3a. Injection was made into the compression chamber in the compressor 1. Thereby, there exists an effect (injection effect) which can reduce the compression power for the bypass flow volume from a compressor suction pressure to the pressure in the middle of compression (intermediate pressure).

また、インジェクション流量は開閉弁12によって制御されるが、開閉弁12はバイパス回路7から分岐して第1圧縮機1内の圧縮室に接続されるインジェクション回路7aに設けられている。このため、開閉弁12の開度、すなわちインジェクション流量は膨張機3aの入口温度に影響を与えない。膨張機3aの入口温度は、膨張機3aの流入冷媒密度に影響することから、膨張機3aおよび膨張機3aに同軸接続される第2圧縮機3bでの密度比や流量比の制限を受ける。このため、インジェクション流量が膨張機3aの入口温度に影響を与える構成であると、インジェクション流量も前記密度比や流量比の制限を受けることになり、自由に変更することはできない。例えば、特許文献1の構成では、膨張弁の入口側に内部熱交換器を設けた構成であるため、内部熱交換器の熱交換量によって膨張弁の入口温度が変わる。このため、膨張弁の入口温度に応じて内部熱交換器を通過させるバイパス流量(インジェクション流量)を決定する必要がある。しかし、本実施の形態2では、インジェクション流量が膨張機3aの入口温度に影響を与えない構成としたため、密度比や流量比に無関係にインジェクション流量を決めることができる。よって、暖房能力を優先してインジェクション流量を増やすことが可能である。   The injection flow rate is controlled by the on-off valve 12, and the on-off valve 12 is provided in an injection circuit 7 a branched from the bypass circuit 7 and connected to the compression chamber in the first compressor 1. For this reason, the opening degree of the on-off valve 12, that is, the injection flow rate does not affect the inlet temperature of the expander 3a. Since the inlet temperature of the expander 3a affects the inflow refrigerant density of the expander 3a, the expander 3a and the second compressor 3b coaxially connected to the expander 3a are restricted by the density ratio and the flow rate ratio. For this reason, if the injection flow rate is configured to affect the inlet temperature of the expander 3a, the injection flow rate is also restricted by the density ratio and flow rate ratio, and cannot be freely changed. For example, in the configuration of Patent Document 1, since an internal heat exchanger is provided on the inlet side of the expansion valve, the inlet temperature of the expansion valve varies depending on the heat exchange amount of the internal heat exchanger. For this reason, it is necessary to determine the bypass flow rate (injection flow rate) for passing the internal heat exchanger according to the inlet temperature of the expansion valve. However, in the second embodiment, since the injection flow rate does not affect the inlet temperature of the expander 3a, the injection flow rate can be determined regardless of the density ratio or the flow rate ratio. Therefore, it is possible to increase the injection flow rate by giving priority to the heating capacity.

実施の形態3.
図4は、本発明の実施の形態3における冷凍サイクル装置の構成を示す図である。図4において、図3に示した実施の形態2と同一部分には同一符号を付す。実施の形態3の冷凍サイクル装置は、図3に示した実施の形態2の冷凍サイクル装置を基本として備え、更に、冷房運転、暖房運転ともに膨張機3aを利用できる構成としたものである。すなわち、第1圧縮機1の吐出側に冷媒の流れ方向を切り換える四方弁20を設け、また、膨張機3aの周囲に4つの逆止弁で構成されるブリッジ回路(逆止弁16a、16b、16c、16dの組合せで形成される整流回路)を設けたものである。なお、ここでは図3に示した実施の形態2の冷凍サイクル装置を基本として備えた構成を示しているが、図1に示した実施の形態1の冷凍サイクル装置を備えた構成としてもよい。
Embodiment 3 FIG.
FIG. 4 is a diagram showing a configuration of the refrigeration cycle apparatus according to Embodiment 3 of the present invention. In FIG. 4, the same parts as those in the second embodiment shown in FIG. The refrigeration cycle apparatus of the third embodiment is basically provided with the refrigeration cycle apparatus of the second embodiment shown in FIG. 3, and further has a configuration in which the expander 3a can be used for both the cooling operation and the heating operation. That is, a four-way valve 20 for switching the flow direction of the refrigerant is provided on the discharge side of the first compressor 1, and a bridge circuit including four check valves around the expander 3a (check valves 16a, 16b, A rectifier circuit formed by a combination of 16c and 16d). In addition, although the structure provided fundamentally with the refrigerating-cycle apparatus of Embodiment 2 shown in FIG. 3 here is shown, it is good also as a structure provided with the refrigerating-cycle apparatus of Embodiment 1 shown in FIG.

図4に示すように、本実施の形態3に係る冷凍サイクル装置は、室外ユニット100、室内ユニット200a、200b、それらを接続する配管である液管50およびガス管51を備えており、1台の室外ユニット100に複数台の室内機が接続されるマルチタイプの空調機である。   As shown in FIG. 4, the refrigeration cycle apparatus according to Embodiment 3 includes an outdoor unit 100, indoor units 200a and 200b, and a liquid pipe 50 and a gas pipe 51 that connect the pipes. This is a multi-type air conditioner in which a plurality of indoor units are connected to the outdoor unit 100.

室外ユニット100内には、冷媒ガスを圧縮するための第1圧縮機1、室外熱交換器4、冷媒を減圧して二相状態の湿り蒸気とする膨張機3aが設けられており、これらが順次配管で接続されて主冷媒回路6の一部を構成している。また、主冷媒回路6は、膨張機3aと同軸に接続され、膨張機3aで回収した動力により駆動される第2圧縮機3bを備えている。なお、図4において後述のバイパス回路7とインジェクション回路7aを除いた部分を、主冷媒回路6とする。   In the outdoor unit 100, there are provided a first compressor 1 for compressing the refrigerant gas, an outdoor heat exchanger 4, and an expander 3 a that decompresses the refrigerant into a two-phase wet steam, A part of the main refrigerant circuit 6 is configured by being sequentially connected by piping. The main refrigerant circuit 6 includes a second compressor 3b that is coaxially connected to the expander 3a and is driven by power collected by the expander 3a. In FIG. 4, a portion excluding a later-described bypass circuit 7 and injection circuit 7 a is referred to as a main refrigerant circuit 6.

また、室外ユニット100内には、膨張機3aをバイパスするバイパス回路7が設けられている。バイパス回路7は、内部熱交換器5aと開閉弁10とを有しており、室外熱交換器4から流出した冷媒を内部熱交換器5aの高圧側および開閉弁10を介して膨張機3aの出口部に合流させる。また、バイパス回路7において内部熱交換器5aと開閉弁10との間から分岐して開閉弁12および内部熱交換器5aの低圧側を介し、第2圧縮機3bの吐出側に合流接続するインジェクション回路7aを備えている。膨張機3aの出口部には気液分離器8が設置され、気液分離器8により分離されたガス冷媒は第1圧縮機1の吸入部へ吸入される。また、気液分離器8で分離された液冷媒は、冷房の場合、室内熱交換器2a、2bへ、暖房の場合、室外熱交換器4へと流れる。   In the outdoor unit 100, a bypass circuit 7 that bypasses the expander 3a is provided. The bypass circuit 7 has an internal heat exchanger 5 a and an on-off valve 10, and the refrigerant flowing out of the outdoor heat exchanger 4 is supplied to the expander 3 a through the high-pressure side of the internal heat exchanger 5 a and the on-off valve 10. Join the exit. Further, an injection branched from the internal heat exchanger 5a and the on-off valve 10 in the bypass circuit 7 and joined to the discharge side of the second compressor 3b via the on-off valve 12 and the low-pressure side of the internal heat exchanger 5a. A circuit 7a is provided. A gas-liquid separator 8 is installed at the outlet of the expander 3a, and the gas refrigerant separated by the gas-liquid separator 8 is sucked into the suction portion of the first compressor 1. Further, the liquid refrigerant separated by the gas-liquid separator 8 flows to the indoor heat exchangers 2a and 2b in the case of cooling, and to the outdoor heat exchanger 4 in the case of heating.

膨張機3aと第2圧縮機3bは上述したように同軸に接続され、実施の形態1と同様にサブ圧縮機一体型膨張機3として一体構造を形成している。また、主冷媒回路6において第2圧縮機3bの吸入側が第1圧縮機1の吸入側と並列になるように設置されており、第2圧縮機3bの吐出側が第1圧縮機1の圧縮室に連通して設けたインジェクションポートに接続されている。内部には冷媒として例えば臨界温度(約31℃)以上で超臨界状態となる二酸化炭素が封入されている。   The expander 3a and the second compressor 3b are coaxially connected as described above, and form an integral structure as the sub-compressor-integrated expander 3 as in the first embodiment. In the main refrigerant circuit 6, the suction side of the second compressor 3 b is installed in parallel with the suction side of the first compressor 1, and the discharge side of the second compressor 3 b is the compression chamber of the first compressor 1. It is connected to an injection port provided in communication. For example, carbon dioxide that is in a supercritical state at a critical temperature (about 31 ° C.) or higher is sealed as a refrigerant.

また、室内ユニット200a、200bは、主冷媒回路6の一部を構成する室内熱交換器2a、2bと、室内膨張弁9a、9bとを備えている。   The indoor units 200a and 200b include indoor heat exchangers 2a and 2b that constitute a part of the main refrigerant circuit 6, and indoor expansion valves 9a and 9b.

上記のように構成された冷凍サイクル装置の運転動作を説明する。
通常の暖房運転では、主冷媒回路6のみを用いて動力回収を行う運転となる。すなわち、バイパス流量0%の運転であり、開閉弁11が開放され、開閉弁10および開閉弁12は閉じられる。
第1圧縮機1から吐出された高圧のガス冷媒は、四方弁20およびガス管51を介して室内ユニット200a、200bに送られる。室内ユニット200a、200bに送られた高圧のガス冷媒は、室内ユニット200a、200bの室内熱交換器2a、2bにおいて、室内空気と熱交換を行って放熱し、高圧の中温冷媒となる。そして、高圧の中温冷媒は、室内膨張弁9a、9bを通過して減圧された後、液管50を介して室外ユニット100に流入する。
The operation of the refrigeration cycle apparatus configured as described above will be described.
In normal heating operation, power recovery is performed using only the main refrigerant circuit 6. In other words, the bypass flow rate is 0%, the on-off valve 11 is opened, and the on-off valve 10 and the on-off valve 12 are closed.
The high-pressure gas refrigerant discharged from the first compressor 1 is sent to the indoor units 200a and 200b via the four-way valve 20 and the gas pipe 51. The high-pressure gas refrigerant sent to the indoor units 200a, 200b exchanges heat with the indoor air in the indoor heat exchangers 2a, 2b of the indoor units 200a, 200b to dissipate heat and become high-pressure medium-temperature refrigerant. The high-pressure medium temperature refrigerant passes through the indoor expansion valves 9 a and 9 b and is decompressed, and then flows into the outdoor unit 100 through the liquid pipe 50.

室外ユニット100に流入した冷媒は、逆止弁16cを通過した後、第2膨張機3aに流入し、ここで更に減圧された後、気液分離器8に流入する。気液分離器8で分離された液冷媒は、逆止弁16bを介して室外熱交換器4に流入する。そして、室外熱交換器4に流入した低圧の冷媒は、室外空気と熱交換を行って蒸発し、低圧のガス冷媒となり、四方弁20を通過した後、第1圧縮機1の吸入部へ戻る。また、気液分離器8で分離されたガス冷媒は2つに分岐され、一方は、第2圧縮機3bで圧縮された後、第1圧縮機1の圧縮室に吸入され、他方は、四方弁20を介して戻ってくる冷媒と合流して第1圧縮機1の吸入部に吸入される。   The refrigerant flowing into the outdoor unit 100 passes through the check valve 16c, then flows into the second expander 3a, where it is further decompressed, and then flows into the gas-liquid separator 8. The liquid refrigerant separated by the gas-liquid separator 8 flows into the outdoor heat exchanger 4 through the check valve 16b. Then, the low-pressure refrigerant flowing into the outdoor heat exchanger 4 evaporates by exchanging heat with the outdoor air, becomes a low-pressure gas refrigerant, passes through the four-way valve 20, and returns to the suction portion of the first compressor 1. . Further, the gas refrigerant separated by the gas-liquid separator 8 is branched into two, one is compressed by the second compressor 3b and then sucked into the compression chamber of the first compressor 1, and the other is The refrigerant that has returned through the valve 20 joins and is sucked into the suction portion of the first compressor 1.

ここで、低外気条件での暖房運転のように、放熱器2の出口温度が比較的低く、動力回収による性能向上効果が小さいが、大きな暖房能力が要求される場合について説明する。この場合、主冷媒回路6とバイパス回路7の両方に冷媒を流し、膨張機3aによる動力回収と内部熱交換器5aによる熱交換との両方を行う運転を行う。この運転における冷媒の流れは、基本的には実施の形態2と同様である。   Here, as in the heating operation under the low outside air condition, the case where the outlet temperature of the radiator 2 is relatively low and the performance improvement effect by power recovery is small, but a large heating capacity is required will be described. In this case, the refrigerant is supplied to both the main refrigerant circuit 6 and the bypass circuit 7, and an operation for performing both power recovery by the expander 3a and heat exchange by the internal heat exchanger 5a is performed. The refrigerant flow in this operation is basically the same as in the second embodiment.

以下、動力回収と内部熱交換器5aによる熱交換との両方を行う運転について説明する。この運転の場合、膨張機3aとバイパス回路7の両方に冷媒を流すため、開閉弁10〜12の何れも適度な開度に設定されている。
第1圧縮機1から吐出された高温高圧のガス冷媒は、ガス管51を通過して室内ユニット200a、200bの放熱器としての室内熱交換器2a、2bに送られる。室内熱交換器2a、2bに送られた高圧のガス冷媒は室内空気と熱交換を行って放熱して高圧の中温冷媒となった後、開閉弁11で流量制御されて膨張機3aに流入する。膨張機3aに流入した冷媒は、動力回収されながら低圧低温の気液二相冷媒に減圧され、気液分離器8に流入する。気液分離器8に流入した気液二相冷媒は、気液分離器8でガス冷媒と液冷媒に分離され、液冷媒は逆止弁16bを介して室外熱交換器4に流入する。そして、室外熱交換器4に流入した低圧二相冷媒は室外空気と熱交換を行って蒸発し、低圧のガス冷媒となり、四方弁20を通過した後、第1圧縮機1の吸入部へ戻る。また、気液分離器8で分離されたガス冷媒は2つに分岐され、一方は、第2圧縮機3bで圧縮された後、第1圧縮機1の圧縮室に吸入され、他方は、四方弁20を介して戻ってくる冷媒と合流して第1圧縮機1の吸入部に吸入される。
Hereinafter, an operation for performing both power recovery and heat exchange by the internal heat exchanger 5a will be described. In this operation, since the refrigerant flows through both the expander 3a and the bypass circuit 7, all of the on-off valves 10 to 12 are set to an appropriate opening degree.
The high-temperature and high-pressure gas refrigerant discharged from the first compressor 1 passes through the gas pipe 51 and is sent to the indoor heat exchangers 2a and 2b as the radiators of the indoor units 200a and 200b. The high-pressure gas refrigerant sent to the indoor heat exchangers 2a and 2b exchanges heat with the indoor air to dissipate heat and become high-pressure medium-temperature refrigerant, and then the flow rate is controlled by the on-off valve 11 and flows into the expander 3a. . The refrigerant that has flowed into the expander 3 a is decompressed to a low-pressure and low-temperature gas-liquid two-phase refrigerant while recovering power, and flows into the gas-liquid separator 8. The gas-liquid two-phase refrigerant that has flowed into the gas-liquid separator 8 is separated into a gas refrigerant and a liquid refrigerant by the gas-liquid separator 8, and the liquid refrigerant flows into the outdoor heat exchanger 4 through the check valve 16b. Then, the low-pressure two-phase refrigerant flowing into the outdoor heat exchanger 4 evaporates by exchanging heat with the outdoor air, becomes low-pressure gas refrigerant, passes through the four-way valve 20, and returns to the suction portion of the first compressor 1. . Further, the gas refrigerant separated by the gas-liquid separator 8 is branched into two, one is compressed by the second compressor 3b and then sucked into the compression chamber of the first compressor 1, and the other is The refrigerant that has returned through the valve 20 joins and is sucked into the suction portion of the first compressor 1.

一方、室内熱交換器2a、2bから流出して膨張機3aに向かう冷媒の一部は、バイパス回路7に流入する。バイパス回路7に流入した冷媒は、内部熱交換器5aの高圧側に流入し、内部熱交換器5aの低圧側の低圧二相冷媒と熱交換して冷却されて、乾き度が低下する。そして、内部熱交換器5aの高圧側を流出した冷媒は、開閉弁10で減圧された後、主冷媒回路6の膨張機3aから流出した冷媒と合流して気液分離器8に流入する。気液分離器8に流入後の冷媒の流れは、上記と同様である。   On the other hand, a part of the refrigerant flowing out of the indoor heat exchangers 2a and 2b and going to the expander 3a flows into the bypass circuit 7. The refrigerant that has flowed into the bypass circuit 7 flows into the high-pressure side of the internal heat exchanger 5a, is cooled by exchanging heat with the low-pressure two-phase refrigerant on the low-pressure side of the internal heat exchanger 5a, and the dryness decreases. The refrigerant that has flowed out of the high pressure side of the internal heat exchanger 5a is decompressed by the on-off valve 10, and then merges with the refrigerant that has flowed out of the expander 3a of the main refrigerant circuit 6 and flows into the gas-liquid separator 8. The flow of the refrigerant after flowing into the gas-liquid separator 8 is the same as described above.

また、内部熱交換器5aの高圧側を通過した冷媒の一部は、インジェクション回路7aに流入し、開閉弁12により低圧低温の二相冷媒に減圧された後、内部熱交換器5aの低圧側に流入する。内部熱交換器5aの低圧側に流入した低圧二相冷媒は、高圧側を通過する冷媒と熱交換して蒸発した後、第1圧縮機1の圧縮室に連通するインジェクションポートから圧縮過程の圧縮室内にインジェクションガスとして注入される。なお、図4の構成では、膨張機3aからの冷媒に合流して第1圧縮機1の圧縮室にインジェクションされる。   A part of the refrigerant that has passed through the high-pressure side of the internal heat exchanger 5a flows into the injection circuit 7a and is reduced to a low-pressure low-temperature two-phase refrigerant by the on-off valve 12, and then the low-pressure side of the internal heat exchanger 5a. Flow into. The low-pressure two-phase refrigerant flowing into the low-pressure side of the internal heat exchanger 5a evaporates by exchanging heat with the refrigerant passing through the high-pressure side, and then compressed in the compression process from the injection port communicating with the compression chamber of the first compressor 1 It is injected into the room as injection gas. In the configuration of FIG. 4, the refrigerant merges with the refrigerant from the expander 3 a and is injected into the compression chamber of the first compressor 1.

ここで、開閉弁12は内部の開度(流動抵抗)が可変の減圧弁であり、その開度は、内部熱交換器5aの低圧側出口の冷媒状態が所定の過熱度となるように制御される。内部熱交換器5aの低圧側出口の過熱度は、過熱状態の低圧側出口冷媒温度と、開閉弁12出口の二相冷媒温度との温度差で定義される。   Here, the on-off valve 12 is a pressure reducing valve whose internal opening degree (flow resistance) is variable, and the opening degree is controlled so that the refrigerant state at the low-pressure side outlet of the internal heat exchanger 5a has a predetermined superheat degree. Is done. The degree of superheat at the low-pressure side outlet of the internal heat exchanger 5a is defined by the temperature difference between the low-pressure side outlet refrigerant temperature in an overheated state and the two-phase refrigerant temperature at the outlet of the on-off valve 12.

次に、冷房運転で膨張機3aによる動力回収を行う場合を説明する。第1圧縮機1から吐出された高温高圧のガス冷媒は、室外熱交換器4で放熱し、膨張機3aに流入する。膨張機3aに流入した冷媒は、膨張時に動力回収されながら低圧低温の気液二相冷媒に減圧され、室内熱交換器2a、2bで蒸発し、第1圧縮機1および第2圧縮機3bの吸入側へ戻る。第2圧縮機3bの回転数は膨張機3aと同一であり、膨張機3aの回収動力と第2圧縮機3bの消費電力が一致するように、第2圧縮機3bの高圧(インジェクション圧力)が定まる。   Next, a case where power recovery by the expander 3a is performed in the cooling operation will be described. The high-temperature and high-pressure gas refrigerant discharged from the first compressor 1 dissipates heat in the outdoor heat exchanger 4 and flows into the expander 3a. The refrigerant that has flowed into the expander 3a is decompressed to a low-pressure and low-temperature gas-liquid two-phase refrigerant while recovering power during expansion, evaporates in the indoor heat exchangers 2a and 2b, and flows into the first compressor 1 and the second compressor 3b. Return to suction side. The rotation speed of the second compressor 3b is the same as that of the expander 3a, and the high pressure (injection pressure) of the second compressor 3b is set so that the recovered power of the expander 3a matches the power consumption of the second compressor 3b. Determined.

本実施の形態3によれば、四方弁20の切り替えにより暖房・冷房運転を実施する空調機においても、上記実施の形態1及び実施の形態2と同様の効果を得ることができる。   According to the third embodiment, even in an air conditioner that performs heating / cooling operation by switching the four-way valve 20, the same effects as those of the first and second embodiments can be obtained.

また、上記実施の形態1〜3では、第2圧縮機3bの吸入側が第1圧縮機1の吸入側と並列に設置され、第2圧縮機3bの吐出側が第1圧縮機1の圧縮途中の圧縮室に接続される構成を示したが、これに限るものではなく、第1圧縮機1と第2圧縮機3bが完全に並列配置され、第2圧縮機3bの吐出側が第1圧縮機1の吐出側と合流する構成としても良い。この場合、第2圧縮機3bの排除容積は、第1圧縮機1の排除容積に比べ、十分小さく設計される。   In the first to third embodiments, the suction side of the second compressor 3b is installed in parallel with the suction side of the first compressor 1, and the discharge side of the second compressor 3b is in the middle of compression of the first compressor 1. Although the structure connected to the compression chamber is shown, the present invention is not limited to this, and the first compressor 1 and the second compressor 3b are arranged completely in parallel, and the discharge side of the second compressor 3b is the first compressor 1. It is good also as a structure which merges with the discharge side. In this case, the excluded volume of the second compressor 3 b is designed to be sufficiently smaller than the excluded volume of the first compressor 1.

1 第1圧縮機、2 放熱器、2a,2b 室内熱交換器、3 サブ圧縮機一体型膨張機、3a 膨張機、3b 第2圧縮機、4 蒸発器(室外熱交換器)、5 内部熱交換器、5a 内部熱交換器、6 主冷媒回路、7 バイパス回路、7a インジェクション回路、8 気液分離器、9a,9b 室内膨張弁、10 開閉弁、11 開閉弁、12 開閉弁、16a〜16d 逆止弁、20 四方弁、50 液管、51 ガス管、100 室外ユニット、200a,200b 室内ユニット、307 オルダムリング、308 軸、308b クランク部、309a,309b バランスウェイト、310 密閉容器、351 膨張機用固定スクロール、351a 渦巻歯、351b 膨張機用軸受け部、352 膨張機用揺動スクロール、352a 膨張機側渦巻歯、361 第2圧縮機用固定スクロール、361a 渦巻歯、361b 第2圧縮機用軸受け部、362 第2圧縮機用揺動スクロール、362a 圧縮機側渦巻歯。   DESCRIPTION OF SYMBOLS 1 1st compressor, 2 radiator, 2a, 2b indoor heat exchanger, 3 subcompressor integrated expander, 3a expander, 3b 2nd compressor, 4 evaporator (outdoor heat exchanger), 5 internal heat Exchanger, 5a Internal heat exchanger, 6 Main refrigerant circuit, 7 Bypass circuit, 7a Injection circuit, 8 Gas-liquid separator, 9a, 9b Indoor expansion valve, 10 Open / close valve, 11 Open / close valve, 12 Open / close valve, 16a-16d Check valve, 20 four-way valve, 50 liquid pipe, 51 gas pipe, 100 outdoor unit, 200a, 200b indoor unit, 307 Oldham ring, 308 shaft, 308b crank part, 309a, 309b balance weight, 310 airtight container, 351 expander Fixed scroll, 351a spiral teeth, 351b expander bearing, 352 expander swing scroll, 352a expander side vortex Teeth, 361 second compressor fixed scroll, 361a spiral tooth, 361b bearing portion for the second compressor, 362 second compressor orbiting scroll, 362a compressor side spiral tooth.

Claims (5)

第1圧縮機、放熱器、膨張機および蒸発器が順次配管で接続されると共に、前記膨張機で回収した動力により駆動され、前記蒸発器から前記第1圧縮機に向かう冷媒の一部を受け入れて圧縮する第2圧縮機を備えた主冷媒回路と、
前記膨張機をバイパスし内部熱交換器および流量制御弁を備えたバイパス回路とを備え、
前記内部熱交換器は、前記放熱器から流出して前記バイパス回路に流れ込んだ高圧冷媒と、前記放熱器出口または前記内部熱交換器出口から流出した冷媒の一部を前記流量制御弁にて減圧した後の低圧二相冷媒とを熱交換することを特徴とする冷凍サイクル装置。
A first compressor, a radiator, an expander, and an evaporator are sequentially connected by piping, and are driven by the power recovered by the expander, and receive a part of the refrigerant from the evaporator toward the first compressor. A main refrigerant circuit comprising a second compressor for compressing
A bypass circuit that bypasses the expander and includes an internal heat exchanger and a flow control valve;
The internal heat exchanger depressurizes the high-pressure refrigerant flowing out of the radiator and flowing into the bypass circuit, and a part of the refrigerant flowing out of the radiator outlet or the internal heat exchanger outlet with the flow control valve. A refrigeration cycle apparatus characterized by exchanging heat with the low-pressure two-phase refrigerant after being heated.
前記内部熱交換器において熱交換後の低圧側の冷媒を、前記第1圧縮機の圧縮途中の圧縮室にインジェクションするインジェクション回路を備えたことを特徴とする請求項1記載の冷凍サイクル装置。   2. The refrigeration cycle apparatus according to claim 1, further comprising an injection circuit that injects a low-pressure side refrigerant after heat exchange in the internal heat exchanger into a compression chamber in the middle of compression of the first compressor. 低外気温での暖房運転時には、前記主冷媒回路と前記バイパス回路の両方に冷媒を流すことを特徴とする請求項1又は請求項2に記載の冷凍サイクル装置。   3. The refrigeration cycle apparatus according to claim 1, wherein the refrigerant flows through both the main refrigerant circuit and the bypass circuit during heating operation at a low outside air temperature. 4. 前記膨張機および前記第2圧縮機がいずれもスクロール型の構造であることを特徴とする請求項1乃至請求項3の何れか一項に記載の冷凍サイクル装置。   4. The refrigeration cycle apparatus according to claim 1, wherein each of the expander and the second compressor has a scroll type structure. 5. 冷媒が二酸化炭素であることを特徴とする請求項1乃至請求項4の何れか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein the refrigerant is carbon dioxide.
JP2012045328A 2012-03-01 2012-03-01 Refrigeration cycle device Pending JP2012107862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012045328A JP2012107862A (en) 2012-03-01 2012-03-01 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012045328A JP2012107862A (en) 2012-03-01 2012-03-01 Refrigeration cycle device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010014455A Division JP5127849B2 (en) 2010-01-26 2010-01-26 Refrigeration cycle equipment

Publications (1)

Publication Number Publication Date
JP2012107862A true JP2012107862A (en) 2012-06-07

Family

ID=46493666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012045328A Pending JP2012107862A (en) 2012-03-01 2012-03-01 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2012107862A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115420039A (en) * 2022-09-29 2022-12-02 江苏亚拓新能源科技有限公司 Extremely cold cascade type heat pump control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217163A (en) * 1982-06-10 1983-12-17 株式会社前川製作所 Device for increasing refrigeration capability of compression type refrigeration cycle
JP2004150750A (en) * 2002-10-31 2004-05-27 Matsushita Electric Ind Co Ltd Method for determining high-pressure refrigerant pressure in refrigeration cycle device
WO2006103821A1 (en) * 2005-03-29 2006-10-05 Mitsubishi Denki Kabushiki Kaisha Scroll expander
JP2008014602A (en) * 2006-07-10 2008-01-24 Matsushita Electric Ind Co Ltd Refrigeration cycle equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217163A (en) * 1982-06-10 1983-12-17 株式会社前川製作所 Device for increasing refrigeration capability of compression type refrigeration cycle
JP2004150750A (en) * 2002-10-31 2004-05-27 Matsushita Electric Ind Co Ltd Method for determining high-pressure refrigerant pressure in refrigeration cycle device
WO2006103821A1 (en) * 2005-03-29 2006-10-05 Mitsubishi Denki Kabushiki Kaisha Scroll expander
JP2008014602A (en) * 2006-07-10 2008-01-24 Matsushita Electric Ind Co Ltd Refrigeration cycle equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115420039A (en) * 2022-09-29 2022-12-02 江苏亚拓新能源科技有限公司 Extremely cold cascade type heat pump control method
CN115420039B (en) * 2022-09-29 2024-02-13 江苏亚拓新能源科技有限公司 An extremely cold cascade heat pump control method

Similar Documents

Publication Publication Date Title
CN101410677B (en) freezer
CN103328909B (en) Air-conditioning device
JP4069733B2 (en) Air conditioner
JP5178892B2 (en) Refrigeration cycle equipment
US9103571B2 (en) Refrigeration apparatus
JP5698160B2 (en) Air conditioner
JP4013981B2 (en) Refrigeration air conditioner
JP4375171B2 (en) Refrigeration equipment
JP5596745B2 (en) Air conditioner
JP5478715B2 (en) Refrigeration cycle apparatus and operation method thereof
CN103836847B (en) Refrigerating circulatory device and the hot water generating device for possessing the refrigerating circulatory device
JP2007255889A (en) Refrigerating air conditioning device
JP5127849B2 (en) Refrigeration cycle equipment
JP4442237B2 (en) Air conditioner
JP2011214753A (en) Refrigerating device
WO2007148727A1 (en) Refrigeration device
JPWO2009147882A1 (en) Refrigeration cycle equipment
KR101303483B1 (en) Air conditioner
JP4964160B2 (en) Refrigeration cycle equipment
JP4827859B2 (en) Air conditioner and operation method thereof
JP4887929B2 (en) Refrigeration equipment
JP2003065615A (en) refrigerator
JP5895662B2 (en) Refrigeration equipment
JP2006145144A (en) Refrigeration cycle equipment
JP2012207844A (en) Heat pump apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910