JP4964160B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4964160B2
JP4964160B2 JP2008023897A JP2008023897A JP4964160B2 JP 4964160 B2 JP4964160 B2 JP 4964160B2 JP 2008023897 A JP2008023897 A JP 2008023897A JP 2008023897 A JP2008023897 A JP 2008023897A JP 4964160 B2 JP4964160 B2 JP 4964160B2
Authority
JP
Japan
Prior art keywords
compressor
oil
heat exchanger
heat source
source side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008023897A
Other languages
Japanese (ja)
Other versions
JP2009186054A (en
Inventor
多佳志 岡崎
傑 鳩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008023897A priority Critical patent/JP4964160B2/en
Publication of JP2009186054A publication Critical patent/JP2009186054A/en
Application granted granted Critical
Publication of JP4964160B2 publication Critical patent/JP4964160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、膨張機を使用する冷凍サイクル装置に関するものであり、特に膨張機および膨張機の回収動力で駆動する圧縮機へ給油を行う冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus using an expander, and more particularly to a refrigeration cycle apparatus that supplies oil to an expander and a compressor that is driven by recovered power of the expander.

以下、作動流体の膨張エネルギを機械エネルギに変換して利用し、COP向上を図る従来例について説明する。従来例では、作動流体の膨張エネルギを機械エネルギに変換する膨張機とこの膨張機で駆動される副圧縮機を一つの密閉容器に収納する。この容器内に主圧縮機から吐出した冷媒の一部を分岐させて流入させ、密閉容器内を吐出圧力と同一の高圧に保っている。   Hereinafter, a conventional example in which the expansion energy of the working fluid is converted into mechanical energy and used to improve COP will be described. In the conventional example, an expander that converts expansion energy of working fluid into mechanical energy and a sub-compressor driven by the expander are housed in a single sealed container. A part of the refrigerant discharged from the main compressor is branched into the container to flow in, and the inside of the sealed container is kept at the same high pressure as the discharge pressure.

これにより、潤滑油の粘度を低下させるとともに、膨張機及び副圧縮機の摺動部に差圧によって十分な量の潤滑油を供給でき、シール性能も向上できる。さらに、密閉容器は液冷媒を溜めるレシーバタンクとしても兼用されるというものであった(例えば、特許文献1参照)。   Thereby, while reducing the viscosity of lubricating oil, sufficient quantity of lubricating oil can be supplied to the sliding part of an expander and a subcompressor with a differential pressure, and sealing performance can also be improved. Further, the sealed container is also used as a receiver tank for storing liquid refrigerant (for example, see Patent Document 1).

特開2004−325018号公報(請求項2、図1等)JP 2004-325018 A (Claim 2, FIG. 1 and the like)

このような従来の冷凍サイクル装置においては、膨張機と膨張機により駆動される副圧縮機とが主圧縮機の低段側に配置される2段圧縮の回路構成に関するものであるため、副圧縮機が高段側に配置される回路構成における副圧縮機への給油方法については考慮されていなかった。また、2段圧縮回路で中間冷却を行う場合、低段側の圧縮機から吐出された冷凍機油が中間冷却器へ滞留し、中間冷却器の伝熱性能が低下するという問題があった。特に、COでは油循環率に対する伝熱性能の低下が大きく、冷凍サイクルの効率(COP)が大幅に低下するという課題があった。 In such a conventional refrigeration cycle apparatus, since the expander and the sub compressor driven by the expander relate to the circuit configuration of the two-stage compression in which the main compressor is disposed on the lower stage side, The oil supply method to the sub-compressor in the circuit configuration in which the machine is arranged on the high stage side has not been considered. In addition, when intermediate cooling is performed in a two-stage compression circuit, there is a problem that the refrigeration oil discharged from the low-stage compressor stays in the intermediate cooler and the heat transfer performance of the intermediate cooler is reduced. In particular, CO 2 has a problem that the heat transfer performance with respect to the oil circulation rate is greatly reduced, and the efficiency (COP) of the refrigeration cycle is significantly reduced.

また、高段側の圧縮機から吐出される冷凍機油を分離する手段がなく、主放熱器内の油循環率が高くなり、性能が低下するという課題があった。   Further, there is no means for separating the refrigerating machine oil discharged from the high-stage compressor, and there is a problem that the oil circulation rate in the main radiator increases and the performance decreases.

本発明は上記のような従来の冷凍サイクル装置の課題を解決するためになされたもので、膨張機を用いる冷凍サイクル装置において、油分離器および油戻し回路を適正に配置することで冷凍サイクル内の油循環率を低減し、高効率運転を実現することを目的とする。   The present invention was made to solve the problems of the conventional refrigeration cycle apparatus as described above, and in the refrigeration cycle apparatus using an expander, the oil separator and the oil return circuit are appropriately arranged in the refrigeration cycle. The purpose is to reduce the oil circulation rate and realize high-efficiency operation.

この発明に係わる冷凍サイクル装置は、第1圧縮機と、前記第1圧縮機の出口部に設けられる第1油分離器と、膨張機と、前記膨張機の回収動力で駆動される第2圧縮機と、負荷側熱交換器と、第1熱源側熱交換器と、第2熱源側熱交換器とを備えた冷凍サイクル装置において、前記第1圧縮機と前記第2圧縮機とが直列に接続されるとともに、前記第1圧縮機と前記第2圧縮機との間に前記第2熱源側熱交換器が接続され、前記第1油分離器で分離された冷凍機油が前記第2圧縮機へ供給されるようにしたことを特徴とするものである。   The refrigeration cycle apparatus according to the present invention includes a first compressor, a first oil separator provided at an outlet of the first compressor, an expander, and a second compression driven by the recovered power of the expander. In the refrigeration cycle apparatus comprising a compressor, a load side heat exchanger, a first heat source side heat exchanger, and a second heat source side heat exchanger, the first compressor and the second compressor are connected in series. The second heat source side heat exchanger is connected between the first compressor and the second compressor, and the refrigeration oil separated by the first oil separator is connected to the second compressor. It is characterized in that it is supplied to.

また、この発明に係わる冷凍サイクル装置は、第1圧縮機と、前記第1圧縮機の出口部に設けられた第1油分離器と、膨張機と、前記膨張機の回収動力で駆動される第2圧縮機と、前記第2圧縮機の出口部に設けられた第2油分離器と、負荷側熱交換器と、第1熱源側熱交換器と、第2熱源側熱交換器とを備えた冷凍サイクル装置において、前記第1圧縮機と前記第2圧縮機とが直列に接続されるとともに、前記第1圧縮機と前記第2圧縮機との間に前記第2熱源側熱交換器が接続され、前記第1油分離器あるいは前記第2油分離器で分離された冷凍機油が、前記第1圧縮機または前記第2圧縮機の吸入部に供給されることを特徴とするものである。   The refrigeration cycle apparatus according to the present invention is driven by the first compressor, the first oil separator provided at the outlet of the first compressor, the expander, and the recovery power of the expander. A second compressor, a second oil separator provided at an outlet of the second compressor, a load side heat exchanger, a first heat source side heat exchanger, and a second heat source side heat exchanger. In the refrigeration cycle apparatus provided, the first compressor and the second compressor are connected in series, and the second heat source side heat exchanger is interposed between the first compressor and the second compressor. And the refrigeration oil separated by the first oil separator or the second oil separator is supplied to the suction portion of the first compressor or the second compressor. is there.

また、この発明に係わる冷凍サイクル装置は、第1圧縮機と、前記第1圧縮機の出口部に設けられた第1油分離器と、膨張機と、膨張機の回収動力で駆動する第2圧縮機と、蒸発器と、第1放熱器と、第2放熱器とを備えた冷凍サイクル装置において、前記第2圧縮機と前記第1圧縮機とが直列に接続されるとともに、前記第1圧縮機と前記第2圧縮機との間に前記第2放熱器が接続され、前記第1油分離器で分離された冷凍機油が前記第2圧縮機へ供給されるようにしたことを特徴とするものである。   The refrigeration cycle apparatus according to the present invention includes a first compressor, a first oil separator provided at an outlet of the first compressor, an expander, and a second drive driven by recovered power of the expander. In the refrigeration cycle apparatus including a compressor, an evaporator, a first radiator, and a second radiator, the second compressor and the first compressor are connected in series, and the first The second radiator is connected between the compressor and the second compressor, and the refrigeration oil separated by the first oil separator is supplied to the second compressor. To do.

本発明によれば、膨張機および膨張機の回収動力で駆動される第2圧縮機を用いる冷凍サイクル装置において、油分離器を適正配置することで第2圧縮機へ確実に給油し、信頼性の高い冷凍サイクル装置を提供することができる。   According to the present invention, in the refrigeration cycle apparatus using the expander and the second compressor driven by the recovery power of the expander, the oil separator is properly disposed to reliably supply the oil to the second compressor, and the reliability A high refrigeration cycle apparatus can be provided.

実施の形態1.
以下、本発明の実施の形態1による冷凍サイクル装置について説明する。図1は、本発明の実施形態1に係る冷凍サイクル装置を示す模式図である。
Embodiment 1 FIG.
Hereinafter, the refrigeration cycle apparatus according to Embodiment 1 of the present invention will be described. FIG. 1 is a schematic diagram showing a refrigeration cycle apparatus according to Embodiment 1 of the present invention.

図において、本実施の形態に係る冷凍サイクル装置は、第1熱源側熱交換器である第1室外熱交換器3a、第2熱源側熱交換器である第2室外熱交換器3bを内蔵する室外ユニット100、負荷側熱交換器である室内熱交換器9a、9bを内蔵する室内ユニット200a、200b、室外ユニット100と室内ユニット200a、200bとを接続するガス配管51および液配管52により構成されている。この冷媒回路の内部には冷媒として例えば臨界温度(約31℃)以上で超臨界状態となる二酸化炭素が封入されている。   In the figure, the refrigeration cycle apparatus according to the present embodiment incorporates a first outdoor heat exchanger 3a that is a first heat source side heat exchanger and a second outdoor heat exchanger 3b that is a second heat source side heat exchanger. The outdoor unit 100 includes indoor units 200a and 200b that incorporate indoor heat exchangers 9a and 9b that are load-side heat exchangers, and a gas pipe 51 and a liquid pipe 52 that connect the outdoor unit 100 and the indoor units 200a and 200b. ing. For example, carbon dioxide that is in a supercritical state at a critical temperature (about 31 ° C.) or higher is sealed inside the refrigerant circuit.

室外ユニット100内には、冷媒ガスを圧縮するための第1圧縮機1、第1圧縮機1の出口部に設けられた第1油分離器60、室内ユニット200a、200bの運転モードに応じて冷媒が流れる方向を切換える冷媒流路切換え手段である四方弁2および四方弁4、運転モードに応じて放熱器または蒸発器となる第1室外熱交換器3aおよび第2室外熱交換器3b、膨張機5aと第2圧縮機5bが一体に構成された膨張機ユニット5、膨張機ユニット5のシェル側面に設けられた排油口61、排油口61から排出された油を第1圧縮機1の吸入部へ戻す減圧手段である毛細管62、外気を強制的に第1室外熱交換器3a、第2室外熱交換器3bの外表面に送風するための図示しない送風機が収納され、室外に設置される。   In the outdoor unit 100, the first compressor 1 for compressing the refrigerant gas, the first oil separator 60 provided at the outlet of the first compressor 1, and the operation modes of the indoor units 200a and 200b are selected. Four-way valve 2 and four-way valve 4 which are refrigerant flow path switching means for switching the direction of refrigerant flow, first outdoor heat exchanger 3a and second outdoor heat exchanger 3b which serve as a radiator or an evaporator according to the operation mode, expansion The expander unit 5 in which the machine 5a and the second compressor 5b are integrally formed, the oil discharge port 61 provided on the shell side surface of the expander unit 5, and the oil discharged from the oil discharge port 61 is the first compressor 1 Capillary tube 62 that is a decompression means for returning to the suction section, and a blower (not shown) for forcing the outside air to the outer surfaces of the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b are housed and installed outdoors. Is done.

また、第1室外熱交換器3aが四方弁2と四方弁4の間に配置され、第2室外熱交換器3bが冷房運転時の第1圧縮機1と第2圧縮機5bの間に配置されている。膨張機ユニット5の内部には、膨張機5aと第2圧縮機5bが配置され、それらは同軸で連結されており、内部圧力は第2圧縮機5bの吐出圧力とほぼ同じ高圧に保持されている。膨張機ユニット5は、例えば膨張機5aと第2圧縮機5bが両方ともスクロール型の膨張機と圧縮機で構成されており、膨張機と圧縮機のスラスト方向荷重が両面で相殺される構造を有する。第2圧縮機5bにはバイパス流路が設けられ、バイパス流路中に開閉弁である逆止弁53が設けられている。膨張機5aと第2圧縮機5bの冷媒循環流量と動力を一致させるため、膨張機5aの上流部には直列に開閉弁6(以下、予膨張弁6と呼ぶ)、並列に開閉弁7(以下、バイパス弁7と呼ぶ)が設けられている。また、第1室外熱交換器3aと第2室外熱交換器3bの一端は、開閉弁である電磁弁54を介して、他端は開閉弁である電磁弁55を介して接続されている。また、第1圧縮機1出口から第2室外熱交換器3bへ至る配管には開閉弁である電磁弁57が設けられ、第2室外熱交換器3bから第2圧縮機5bへ至る配管には開閉弁である電磁弁58が設けられ、第2室外熱交換器3bのバイパス流路には開閉弁である電磁弁56が設けられている。   The first outdoor heat exchanger 3a is disposed between the four-way valve 2 and the four-way valve 4, and the second outdoor heat exchanger 3b is disposed between the first compressor 1 and the second compressor 5b during the cooling operation. Has been. Inside the expander unit 5, an expander 5a and a second compressor 5b are arranged, which are coaxially connected, and the internal pressure is maintained at approximately the same high pressure as the discharge pressure of the second compressor 5b. Yes. The expander unit 5 has a structure in which, for example, both the expander 5a and the second compressor 5b are constituted by a scroll type expander and a compressor, and the thrust direction load of the expander and the compressor is offset on both sides. Have. The second compressor 5b is provided with a bypass flow path, and a check valve 53 that is an on-off valve is provided in the bypass flow path. To match the refrigerant circulation flow rate and power of the expander 5a and the second compressor 5b, the upstream portion of the expander 5a has an open / close valve 6 (hereinafter referred to as a pre-expansion valve 6) in series and an open / close valve 7 (in parallel). Hereinafter, the bypass valve 7 is provided. Further, one end of the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b is connected via an electromagnetic valve 54 which is an on-off valve, and the other end is connected via an electromagnetic valve 55 which is an on-off valve. In addition, an electromagnetic valve 57 that is an on-off valve is provided in the piping from the outlet of the first compressor 1 to the second outdoor heat exchanger 3b, and the piping from the second outdoor heat exchanger 3b to the second compressor 5b is provided in the piping. An electromagnetic valve 58 that is an on-off valve is provided, and an electromagnetic valve 56 that is an on-off valve is provided in the bypass flow path of the second outdoor heat exchanger 3b.

室内ユニット200a、200bには、負荷側熱交換器である室内熱交換器9a、9b、室内熱交換器9a、9bへの冷媒流量を調節する開度変更可能な電子膨張弁8a、8b、室内空気を強制的に室内熱交換器9a、9bの外表面に送風するための図示しない送風機およびそれらを接続するための配管が内蔵されている。室内熱交換器9a、9bの一端は、ガス配管51に接続され、他端は電子膨張弁8a、8bを介して液配管52に接続されている。なお、本実施の形態では、室内ユニット200a、200bを2台としているが、1台あるいは3台以上としても良いことは言うまでもない。   The indoor units 200a and 200b include indoor heat exchangers 9a and 9b that are load-side heat exchangers, electronic expansion valves 8a and 8b that can change the opening to adjust the refrigerant flow rate to the indoor heat exchangers 9a and 9b, A blower (not shown) for forcing air to the outer surfaces of the indoor heat exchangers 9a and 9b and a pipe for connecting them are incorporated. One end of the indoor heat exchangers 9a and 9b is connected to the gas pipe 51, and the other end is connected to the liquid pipe 52 via the electronic expansion valves 8a and 8b. In this embodiment, two indoor units 200a and 200b are used, but it goes without saying that one or three or more indoor units may be used.

上記のように構成された冷凍サイクル装置について運転動作を説明する。まず、冷房運転を行う場合を図1および図2に基づいて説明する。図2は、図1の冷媒回路中に示した記号A〜Hにおける冷媒状態をP−h線図上に示したものである。冷房運転では、室外ユニット100内部の四方弁2は第1口2aと第2口2bが連通し、第3口2cと第4口2dが連通するように設定され、四方弁4は第1口4aと第4口4dが連通し、第2口4bと第3口4cが連通するように設定される(図1中実線)。また、予膨張弁6は全開、バイパス弁7は全閉され、電子膨張弁8a、8bは全開される。電磁弁56は閉止、電磁弁57、58は開放される。この場合、基本的な減圧機能は膨張機5aで実現し、室内熱交換器9a、9bの出口部に予め設定された適切な過熱度(例えば、5〜10℃)が得られるように、電子膨張弁8a、8bが調節される。   The operation of the refrigeration cycle apparatus configured as described above will be described. First, the case where the cooling operation is performed will be described with reference to FIGS. 1 and 2. FIG. 2 shows the refrigerant state of symbols A to H shown in the refrigerant circuit of FIG. 1 on the Ph diagram. In the cooling operation, the four-way valve 2 in the outdoor unit 100 is set so that the first port 2a and the second port 2b communicate with each other, and the third port 2c and the fourth port 2d communicate with each other. 4a and 4th opening 4d are connected, and 2nd opening 4b and 3rd opening 4c are set so that it may connect (solid line in FIG. 1). The pre-expansion valve 6 is fully opened, the bypass valve 7 is fully closed, and the electronic expansion valves 8a and 8b are fully opened. The solenoid valve 56 is closed and the solenoid valves 57 and 58 are opened. In this case, the basic decompression function is realized by the expander 5a, and an electronic device is obtained so that an appropriate degree of superheat (for example, 5 to 10 ° C.) set in advance at the outlets of the indoor heat exchangers 9a and 9b is obtained. The expansion valves 8a and 8b are adjusted.

このとき、第1圧縮機1から吐出された高温高圧のガス冷媒は、第1油分離器60に流入し、圧縮機からガス冷媒に同伴されて流出した冷凍機油は、第1油分離器60内で分離される。第1油分離器60で分離された油は、第2圧縮機の吸入部に供給され、第2圧縮機へ給油される。第2圧縮機5bへ給油された油は、膨張機ユニット5の側面に設けられた排油口61から第1圧縮機の吸入部に減圧手段である毛細管62を介して返油される。第1油分離器60を通過した冷媒(状態A)は、電磁弁56が閉止されているので、電磁弁57を通過し、第2室外熱交換器3bである程度放熱して冷却され(状態B)、第2圧縮機5bに流入する。このとき、第1室外熱交換器3aと第2室外熱交換器3bの間を接続する電磁弁54、55は閉止される。電磁弁58を通過して膨張機5aで駆動される第2圧縮機5bに流入した冷媒は、膨張機で回収された動力に釣合う分だけ圧縮される。このとき、第2圧縮機5bのバイパス流路に設けられた逆止弁53は、圧力差の生じない起動時には開放状態となるが、膨張機5aが動作して第2圧縮機5bが駆動すると、第2圧縮機の高低圧力差により閉止される。第2圧縮機5bから吐出された冷媒は、四方弁2の第1口2aから第2口2bを通って(状態C)、第1室外熱交換器3aで被加熱媒体である空気に放熱し(状態D)、四方弁4の第2口4bから第3口4cを経て予膨張弁6へ流入する。予膨張弁6で膨張機5aの入口密度を調節された冷媒(状態E)は、膨張機5aで減圧され、四方弁4の第1口4aから第4口4dを通って、液配管52を通過する(状態F)。このとき、膨張機5aのバイパス弁7は、第2圧縮機5bを通過する冷媒流量、回収動力が釣合うように制御される。その後、冷媒は室内ユニット200a、200b内の減圧手段8a、8bで少し減圧され(状態G)、室内熱交換器9a、9bで空調対象空間の熱負荷を処理した後、ガス配管51に流入し、四方弁2の第4口2dから第3口2cを通って、第1圧縮機1に流入する(状態H)。このとき、室内熱交換器9aあるいは室内熱交換器9bのどちらか一方の出口部が設定過熱度(例えば、5〜10℃)とならない場合、減圧手段8a、8bは、室内熱交換器9a、9bの出口過熱度が同一となるように調整される。   At this time, the high-temperature and high-pressure gas refrigerant discharged from the first compressor 1 flows into the first oil separator 60, and the refrigerating machine oil that flows out from the compressor accompanying the gas refrigerant flows into the first oil separator 60. Separated within. The oil separated by the first oil separator 60 is supplied to the suction portion of the second compressor and supplied to the second compressor. The oil supplied to the second compressor 5b is returned to the suction portion of the first compressor from the oil discharge port 61 provided on the side surface of the expander unit 5 through the capillary tube 62 serving as a decompression unit. Since the solenoid valve 56 is closed, the refrigerant that has passed through the first oil separator 60 (state A) passes through the solenoid valve 57 and is radiated to some extent by the second outdoor heat exchanger 3b to be cooled (state B). ) And flows into the second compressor 5b. At this time, the electromagnetic valves 54 and 55 connecting the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b are closed. The refrigerant that has passed through the electromagnetic valve 58 and has flowed into the second compressor 5b driven by the expander 5a is compressed by an amount commensurate with the power recovered by the expander. At this time, the check valve 53 provided in the bypass flow path of the second compressor 5b is in an open state at the time of startup where no pressure difference occurs, but when the expander 5a operates and the second compressor 5b is driven. The second compressor is closed by the high and low pressure difference. The refrigerant discharged from the second compressor 5b passes through the second port 2b from the first port 2a of the four-way valve 2 (state C) and dissipates heat to the air that is the heating medium in the first outdoor heat exchanger 3a. (State D) flows from the second port 4b of the four-way valve 4 to the pre-expansion valve 6 through the third port 4c. The refrigerant (state E) whose inlet density of the expander 5a is adjusted by the pre-expansion valve 6 is depressurized by the expander 5a, passes through the first port 4a to the fourth port 4d of the four-way valve 4 and passes through the liquid pipe 52. Pass (state F). At this time, the bypass valve 7 of the expander 5a is controlled so that the refrigerant flow rate and the recovered power passing through the second compressor 5b are balanced. Thereafter, the refrigerant is slightly depressurized by the decompression means 8a and 8b in the indoor units 200a and 200b (state G). After the heat load in the air-conditioning target space is processed by the indoor heat exchangers 9a and 9b, the refrigerant flows into the gas pipe 51. The four-way valve 2 flows from the fourth port 2d through the third port 2c into the first compressor 1 (state H). At this time, when the outlet portion of either the indoor heat exchanger 9a or the indoor heat exchanger 9b does not reach the set superheat degree (for example, 5 to 10 ° C.), the decompression means 8a and 8b include the indoor heat exchanger 9a, The outlet superheat degree of 9b is adjusted to be the same.

つぎに、暖房運転について図1および図3に基づいて説明する。本実施の形態では、暖房運転時にも膨張機を利用する例を示すが、暖房運転時は膨張機5aの入口部と第2圧縮機5bの入口部の密度比が大きくなるため、冷房運転時と同一の容積比では、冷媒循環流量と回収動力をバランスさせるための動力回収ロスが大きくなる。従って、必要に応じて四方弁4を廃止し、暖房運転時は膨張機ユニット5を利用しない回路構成としても良い。   Next, the heating operation will be described with reference to FIGS. 1 and 3. In the present embodiment, an example in which the expander is used also during the heating operation is shown. However, since the density ratio between the inlet portion of the expander 5a and the inlet portion of the second compressor 5b increases during the heating operation, In the same volume ratio, the power recovery loss for balancing the refrigerant circulation flow rate and the recovered power becomes large. Therefore, it is good also as a circuit structure which abolishes the four-way valve 4 as needed and does not use the expander unit 5 at the time of heating operation.

本実施の形態における暖房運転では、室外ユニット100内部の四方弁2は第1口2aと第4口2dが連通し、第2口2bと第3口2cが連通するように設定され、四方弁4は第1口4aと第2口4bが連通し、第3口4cと第4口4dが連通するように設定される(点線)。また、電磁弁54、55は開放状態、電磁弁57、58は閉止状態となる。この場合、室内ユニット200a、200b内の電子膨張弁8a、8bは全開、基本的な減圧機能は膨張機5aで実現される。減圧量が不足する場合は室内熱交換器9a、9bの両方の出口部に予め設定された適切な過冷却度(例えば、5〜15℃)が得られるように、電子膨張弁8a、8bが調節される。ここで、二酸化炭素の場合の過冷却度とは、仮想飽和温度(例えば、臨界点におけるエンタルピーと動作圧力で定まる温度)と、室内熱交換器9a、9bの出口温度との差を示している。   In the heating operation in the present embodiment, the four-way valve 2 inside the outdoor unit 100 is set so that the first port 2a and the fourth port 2d communicate with each other, and the second port 2b and the third port 2c communicate with each other. 4 is set such that the first port 4a and the second port 4b communicate with each other and the third port 4c and the fourth port 4d communicate with each other (dotted line). Further, the electromagnetic valves 54 and 55 are opened, and the electromagnetic valves 57 and 58 are closed. In this case, the electronic expansion valves 8a and 8b in the indoor units 200a and 200b are fully opened, and the basic pressure reducing function is realized by the expander 5a. When the amount of decompression is insufficient, the electronic expansion valves 8a and 8b are provided so that an appropriate degree of supercooling (for example, 5 to 15 ° C.) set in advance at both outlets of the indoor heat exchangers 9a and 9b can be obtained. Adjusted. Here, the degree of supercooling in the case of carbon dioxide indicates the difference between the virtual saturation temperature (for example, the temperature determined by the enthalpy and operating pressure at the critical point) and the outlet temperature of the indoor heat exchangers 9a and 9b. .

このとき、第1圧縮機1で圧縮され高温高圧の超臨界状態となった冷媒(状態A)は、第1油分離器60に流入し、ガス冷媒に同伴されて流出した冷凍機油は第1油分離器60内で分離される。第1油分離器60で分離された油は、第2圧縮機5bの吸入部に供給され、第2圧縮機5bへの給油が行われる。第2圧縮機へ給油された油は、膨張機ユニット5の側面に設けられた排油口61から第1圧縮機の吸入部に減圧手段である毛細管62を介して返油される。第1油分離器60を通過した冷媒は、電磁弁57、58が閉止しているので、電磁弁56を通過して圧力が僅かに低下し(状態B)、第2圧縮機5bでさらに圧縮された後、四方弁2の第1口2aから第4口2d、ガス配管51を経て室内ユニット200a、200bに流入する。室内ユニット200a、200bに流入した高温高圧の冷媒は、室内熱交換器9a、9bに流入して図示しない室内空気に放熱して室内を暖房すると共に自らは温度が低下する(状態G)。この中温高圧の冷媒は、電子膨張弁8a、8bを通過し(状態F)、液配管52に流入する。液配管52に流入した冷媒は、四方弁4の第4口4d、第3口4cを通過し、予膨張弁6に流入する。予膨張弁6を流出した冷媒(状態E)は、膨張機5aに流入し、四方弁4の第1口4a、第2口4bを通過し(状態D)、電磁弁54、55が開放状態となっているので、第1および第2室外熱交換器3a、3bに流入する。その後、第1および第2室外熱交換器3a、3bで蒸発したガス冷媒(状態C)は、四方弁2の第2口2bから第3口2cを経て第1圧縮機1の吸入部(状態H)へ戻る。   At this time, the refrigerant (state A) compressed in the first compressor 1 and in a high temperature and high pressure supercritical state flows into the first oil separator 60, and the refrigerating machine oil that flows out along with the gas refrigerant is the first. It is separated in the oil separator 60. The oil separated by the first oil separator 60 is supplied to the suction portion of the second compressor 5b, and is supplied to the second compressor 5b. The oil supplied to the second compressor is returned to the suction portion of the first compressor from the oil discharge port 61 provided on the side surface of the expander unit 5 through the capillary tube 62 serving as a decompression unit. Since the solenoid valves 57 and 58 are closed, the refrigerant that has passed through the first oil separator 60 passes through the solenoid valve 56 and the pressure slightly decreases (state B), and is further compressed by the second compressor 5b. Then, the air flows into the indoor units 200a and 200b from the first port 2a of the four-way valve 2 through the fourth port 2d and the gas pipe 51. The high-temperature and high-pressure refrigerant that has flowed into the indoor units 200a and 200b flows into the indoor heat exchangers 9a and 9b, dissipates heat to indoor air (not shown), heats the room, and itself decreases in temperature (state G). This medium-temperature and high-pressure refrigerant passes through the electronic expansion valves 8 a and 8 b (state F) and flows into the liquid pipe 52. The refrigerant that has flowed into the liquid pipe 52 passes through the fourth port 4 d and the third port 4 c of the four-way valve 4 and flows into the pre-expansion valve 6. The refrigerant flowing out of the pre-expansion valve 6 (state E) flows into the expander 5a, passes through the first port 4a and the second port 4b of the four-way valve 4 (state D), and the electromagnetic valves 54 and 55 are open. Therefore, it flows into the first and second outdoor heat exchangers 3a and 3b. Thereafter, the gas refrigerant (state C) evaporated in the first and second outdoor heat exchangers 3a and 3b passes from the second port 2b of the four-way valve 2 to the third port 2c, and the suction portion (state) of the first compressor 1 Return to H).

本実施の形態では、冷媒回路に四方弁2および開閉弁54、55、56、57、58が設けられ、冷房運転時には第1熱源側熱交換器を高圧で、第2熱源側熱交換器を中間圧力で動作させ、暖房運転時には第1熱源側熱交換器および第2熱源側熱交換器ともに低圧として動作させることで、冷房および暖房の両運転で第2熱源側熱交換器を利用することができ、効率の高い冷凍サイクル装置を得ることができる。   In the present embodiment, the four-way valve 2 and the on-off valves 54, 55, 56, 57, 58 are provided in the refrigerant circuit, and the first heat source side heat exchanger is set to a high pressure and the second heat source side heat exchanger is set to a high pressure during cooling operation. Use the second heat source side heat exchanger for both cooling and heating operations by operating at an intermediate pressure and operating both the first heat source side heat exchanger and the second heat source side heat exchanger at low pressure during heating operation. And a highly efficient refrigeration cycle apparatus can be obtained.

ここで、膨張機ユニット5の詳細構造について図4に示す。図4は、膨張機5a、第2圧縮機5bともにスクロール構造を採用した膨張機ユニットであり、膨張機5aは膨張機用固定スクロール351と膨張機用揺動スクロール352とから構成され、第2圧縮機5bは第2圧縮機用固定スクロール361と第2圧縮機用揺動スクロール362から構成されている。これらのスクロールの中心部には軸308が貫通しており、軸308の両端部にはバランスウェイト309a、309bが設けられ、軸308は膨張機用軸受け部351b、第2圧縮機用軸受け部361bで支持されている。また、膨張機5aの揺動スクロール352の背面と第2圧縮機5bの揺動スクロール362の背面とが背面合わせ構造となっている。その他、必要部品であるオルダムリング307、クランク部308bが設けられ、これらは全て密閉容器310内に収納されている。   Here, the detailed structure of the expander unit 5 is shown in FIG. FIG. 4 shows an expander unit that employs a scroll structure for both the expander 5a and the second compressor 5b. The expander 5a is composed of an expander fixed scroll 351 and an expander swinging scroll 352. The compressor 5 b includes a second compressor fixed scroll 361 and a second compressor swing scroll 362. A shaft 308 passes through the center of these scrolls, and balance weights 309a and 309b are provided at both ends of the shaft 308. The shaft 308 includes an expander bearing 351b and a second compressor bearing 361b. It is supported by. Further, the back surface of the swing scroll 352 of the expander 5a and the back surface of the swing scroll 362 of the second compressor 5b have a back-to-back structure. In addition, an Oldham ring 307 and a crank portion 308 b which are necessary parts are provided, and these are all stored in the hermetic container 310.

このような構造を有する膨張機ユニット5において、膨張機と第2圧縮機の容積比(以下、膨圧容積比)を大きく(例えば、2.3以上に)設計すると、同一歯高では第2圧縮機5bからのスラスト荷重に対して膨張機5a側からのスラスト荷重が小さくなり、両面でスラスト荷重を相殺させることができないため、第2圧縮機5bと膨張機5aを一体化した膨張機ユニット5の構成が難しくなる。また、第2圧縮機5b側のスラスト荷重を減らすために第2圧縮機5b側を極端に歯高の高い渦巻とすることもできるが、強度的な問題が発生する。従って、膨張機5a、第2圧縮機5bともにスクロール構造を有する膨張機ユニットでは、膨張圧縮容積比を例えば2.3以下の範囲に設定することで、性能面だけでなく、構造面でも信頼性の高い膨張機ユニットを構成することができる。   In the expander unit 5 having such a structure, if the volume ratio of the expander and the second compressor (hereinafter referred to as the expansion pressure volume ratio) is designed to be large (for example, 2.3 or more), the second tooth is used at the same tooth height. Since the thrust load from the expander 5a side becomes smaller than the thrust load from the compressor 5b and the thrust load cannot be canceled on both sides, the expander unit in which the second compressor 5b and the expander 5a are integrated. The configuration of 5 becomes difficult. Further, in order to reduce the thrust load on the second compressor 5b side, it is possible to make the second compressor 5b side a spiral having an extremely high tooth height, but this causes a problem in strength. Therefore, in the expander unit having the scroll structure for both the expander 5a and the second compressor 5b, by setting the expansion / compression volume ratio in the range of 2.3 or less, for example, not only in terms of performance but also in terms of structure, reliability A high expander unit can be configured.

つぎに、膨張機5aの制御方法について説明する。本実施の形態では、膨張機5aの入口部に膨張機5aと直列に設けた予膨張弁6と、膨張機5aをバイパスするように設けたバイパス弁7を用い、膨張機5aを通過する流量および回収した動力と第2圧縮機5bを通過する流量および動力が一致するように膨張機5aを制御する。また、第2圧縮機をバイパスするバイパス流路を設け、バイパス流路中に開閉弁を設けたので、第2圧縮機が動作しない起動時でも冷媒回路内に確実に冷媒を流すことができる。   Next, a method for controlling the expander 5a will be described. In the present embodiment, the pre-expansion valve 6 provided in series with the expander 5a at the inlet of the expander 5a and the bypass valve 7 provided so as to bypass the expander 5a are used, and the flow rate passing through the expander 5a. And the expander 5a is controlled so that the collect | recovered motive power and the flow volume and motive power which pass the 2nd compressor 5b correspond. In addition, since the bypass flow path for bypassing the second compressor is provided and the on-off valve is provided in the bypass flow path, the refrigerant can surely flow in the refrigerant circuit even at the start-up when the second compressor does not operate.

つぎに、放熱器(ガスクーラー)内の油循環率と熱伝達率の関係について説明する。図5は、油循環率と熱伝達率の関係を示している。横軸の油循環率の単位は重量%である。油循環率が0.3%付近から熱伝達率が急激に低下し、油循環率1%の熱伝達率は、油循環率0.1%のそれに比べ1/2以下となる。従って、放熱器内の油循環率を低減することで熱伝達率は向上し、冷凍サイクルの運転効率を向上させることができる。本実施の形態では、第1圧縮機の出口部に設置された第1油分離器60で第1圧縮機から吐出される油を分離し、第2室外熱交換器3b内の油循環率を低減させることができるため、第2室外熱交換器3bを効率良く使用することができ、効率の高い冷凍サイクル装置を提供することができる。ここで、第1油分離器60の油分離効率は一般に低いものでも90%程度有り、第1圧縮機から吐出される冷媒中の油循環率2%程度を油循環率0.2%程度まで低減することが可能である。   Next, the relationship between the oil circulation rate and the heat transfer rate in the radiator (gas cooler) will be described. FIG. 5 shows the relationship between the oil circulation rate and the heat transfer rate. The unit of the oil circulation rate on the horizontal axis is% by weight. The heat transfer rate suddenly decreases from around 0.3% of the oil circulation rate, and the heat transfer rate of 1% oil circulation rate becomes 1/2 or less than that of 0.1% oil circulation rate. Therefore, by reducing the oil circulation rate in the radiator, the heat transfer rate can be improved and the operation efficiency of the refrigeration cycle can be improved. In the present embodiment, the oil discharged from the first compressor is separated by the first oil separator 60 installed at the outlet of the first compressor, and the oil circulation rate in the second outdoor heat exchanger 3b is set. Since it can reduce, the 2nd outdoor heat exchanger 3b can be used efficiently, and a highly efficient refrigerating-cycle apparatus can be provided. Here, even if the oil separation efficiency of the first oil separator 60 is generally low, it is about 90%, and the oil circulation rate in the refrigerant discharged from the first compressor is about 2% to the oil circulation rate about 0.2%. It is possible to reduce.

また、本実施の形態では、第2圧縮機5bの出口部には第1油分離器60を設けていないが、一般に第2圧縮機5bの昇圧仕事は第1圧縮機1の昇圧仕事に比べて小さく、油吐出量も小さくなる。従って、第2圧縮機5bの出口部に油分離器を設けていない場合でも第1室外熱交換器3aの油循環率を低く抑えることができ、高効率な冷凍サイクル装置を提供することができる。   Moreover, in this Embodiment, although the 1st oil separator 60 is not provided in the exit part of the 2nd compressor 5b, generally the boosting work of the 2nd compressor 5b is compared with the boosting work of the 1st compressor 1. The oil discharge amount is also small. Therefore, even when no oil separator is provided at the outlet of the second compressor 5b, the oil circulation rate of the first outdoor heat exchanger 3a can be kept low, and a highly efficient refrigeration cycle apparatus can be provided. .

また、第1油分離器60で分離された油が第2圧縮機5bの吸入部へ戻り、第2圧縮機5bへ吸い込まれるため、膨張機ユニット5へ確実に給油することができ、信頼性の高い冷凍サイクル装置を提供することができる。また、第2圧縮機5bの胴部に排油口61が設けられ、第2圧縮機5b内の冷凍機油が第1圧縮機1の吸入部へ返油されるようにしたので、第1圧縮機へも確実に返油できる。   Further, since the oil separated by the first oil separator 60 returns to the suction portion of the second compressor 5b and is sucked into the second compressor 5b, the oil can be reliably supplied to the expander unit 5, and reliability is improved. A high refrigeration cycle apparatus can be provided. Further, the oil discharge port 61 is provided in the body portion of the second compressor 5b so that the refrigeration oil in the second compressor 5b is returned to the suction portion of the first compressor 1, so that the first compression Oil can be reliably returned to the machine.

なお、本実施の形態では、四方弁4を用いて冷房運転、暖房運転ともに膨張機を使用する例を示したが、冷房運転時のみ膨張機5aを使用する構成としても良い。その場合、四方弁4の第2口4bと第3口4c、第1口4aと第4口4dがそれぞれ配管で接続されて四方弁4が不要となる。このとき、冷房運転時は膨張機5aを用いて動力回収する冷媒回路を、暖房運転時は膨張機5aのバイパス弁を用いて動力回収しない冷媒回路を構成する。   In the present embodiment, an example in which the expander is used for both the cooling operation and the heating operation using the four-way valve 4 has been shown, but the expander 5a may be used only during the cooling operation. In that case, the second port 4b and the third port 4c, the first port 4a and the fourth port 4d of the four-way valve 4 are respectively connected by piping, and the four-way valve 4 becomes unnecessary. At this time, a refrigerant circuit that recovers power using the expander 5a during the cooling operation is configured, and a refrigerant circuit that does not recover power is configured using the bypass valve of the expander 5a during the heating operation.

また、本実施の形態では、膨張機5aの例として図4に示す構造を示したが、これに限るものではなく、膨張機5a内部の膨張機構出入口部をバイパスする流路中にリリーフ弁を設け、膨張機5a前後の圧力差が所定値以上となる場合にリリーフ弁が開放される構成としても良い。この場合、所定の圧力差以上では、リリーフ弁が開放状態となるため圧力差に応じて膨張機を通過する冷媒循環量が自動的に調整され、膨張機5aの外部に設けた電子膨張弁は不要となる。   Moreover, in this Embodiment, although the structure shown in FIG. 4 was shown as an example of the expander 5a, it is not restricted to this, A relief valve is provided in the flow path which bypasses the expansion mechanism entrance / exit part inside the expander 5a. The relief valve may be opened when the pressure difference between the front and rear of the expander 5a is a predetermined value or more. In this case, when the pressure difference is equal to or larger than the predetermined pressure difference, the relief valve is opened, so that the refrigerant circulation amount passing through the expander is automatically adjusted according to the pressure difference, and the electronic expansion valve provided outside the expander 5a is It becomes unnecessary.

以上より、第1圧縮機1の出口部に設置された第1油分離器60で分離された油が、第2圧縮機5bへ確実に給油されるため、信頼性の高い冷凍サイクル装置を提供することができる。また、第2圧縮機5bの胴部に排油口が設けられ、第2圧縮機5b内の冷凍機油が第1圧縮機1の吸入部へ返油されるようにしたので、第1圧縮機の信頼性を高めることができる。また、第1圧縮機から吐出される冷凍機油が中間冷却器である第2室外熱交換器3bへ流入するのを防止できるので高効率な冷凍サイクル装置を得ることができる。   As described above, since the oil separated by the first oil separator 60 installed at the outlet of the first compressor 1 is reliably supplied to the second compressor 5b, a highly reliable refrigeration cycle apparatus is provided. can do. Further, since the oil discharge port is provided in the body portion of the second compressor 5b, and the refrigeration oil in the second compressor 5b is returned to the suction portion of the first compressor 1, the first compressor Can improve the reliability. Moreover, since it can prevent that the refrigeration oil discharged from a 1st compressor flows in into the 2nd outdoor heat exchanger 3b which is an intercooler, a highly efficient refrigeration cycle apparatus can be obtained.

また、第2圧縮機5bをバイパスするバイパス流路を設け、バイパス流路中に開閉弁である逆止弁53を設けたので、第2圧縮機5bが動作しない起動時でも冷媒流量を確実に流すことができる。また、四方弁および開閉弁54、55、56、57、58が設けられ、冷房運転時には第1熱源側熱交換器を高圧で、第2熱源側熱交換器を中間圧力で動作させ、暖房運転時には第1熱源側熱交換器および第2熱源側熱交換器ともに低圧として動作させることで、冷房および暖房の両運転で第2熱源側熱交換器を利用することができ、効率の高い冷凍サイクル装置を得ることができる。膨張機および第2圧縮機がどちらもスクロール型の背面を合わせた一体型構成であるため、コンパクトな膨張機ユニット5を構成することができる。さらに、冷媒として膨張動力回収効果の大きい二酸化炭素を用いたので、第2室外熱交換器3bに相当する中間冷却器や第1室外熱交換器3aに相当する放熱器での油循環率の低減効果が大きくなる。   In addition, since a bypass flow path that bypasses the second compressor 5b is provided and a check valve 53 that is an on-off valve is provided in the bypass flow path, the refrigerant flow rate can be reliably ensured even when the second compressor 5b does not operate. It can flow. Also, four-way valves and on-off valves 54, 55, 56, 57, and 58 are provided. During the cooling operation, the first heat source side heat exchanger is operated at a high pressure, and the second heat source side heat exchanger is operated at an intermediate pressure to perform a heating operation. Sometimes the first heat source side heat exchanger and the second heat source side heat exchanger are operated at a low pressure, so that the second heat source side heat exchanger can be used for both cooling and heating operations, and a highly efficient refrigeration cycle. A device can be obtained. Since both the expander and the second compressor have an integrated configuration in which the scroll-type rear surfaces are combined, a compact expander unit 5 can be configured. Furthermore, since carbon dioxide having a large expansion power recovery effect is used as the refrigerant, the oil circulation rate is reduced in the intermediate cooler corresponding to the second outdoor heat exchanger 3b and the radiator corresponding to the first outdoor heat exchanger 3a. The effect is increased.

実施の形態2.
以下、本発明の実施の形態2による冷凍サイクル装置について説明する。図6は、本発明の実施形態2に係る冷凍サイクル装置を示す模式図であり、実施の形態1と異なるのは、第2圧縮機5bの出口部にも第2油分離器63を設け、第2油分離器63で分離した油を減圧手段である毛細管64を介して第2圧縮機5bの吸入部に戻した点である。その他の構成は実施の形態1と同様であるため、詳細な説明を省略する。
Embodiment 2. FIG.
Hereinafter, a refrigeration cycle apparatus according to Embodiment 2 of the present invention will be described. FIG. 6 is a schematic diagram showing a refrigeration cycle apparatus according to Embodiment 2 of the present invention. The difference from Embodiment 1 is that a second oil separator 63 is provided at the outlet of the second compressor 5b. The oil separated by the second oil separator 63 is returned to the suction portion of the second compressor 5b through the capillary tube 64 as decompression means. Since other configurations are the same as those of the first embodiment, detailed description thereof is omitted.

つぎに冷房運転時の動作について説明する。第1室外熱交換器3aと第2室外熱交換器3bの間に設置された電磁弁54、55および電磁弁56は閉止され、電磁弁57、58は開放される。このとき、第1圧縮機1から吐出された高温高圧のガス冷媒は、第1油分離器60に流入し、ガス冷媒に同伴されて流出した冷凍機油は第1油分離器60内で分離される。第1油分離器60で分離された油は、第2圧縮機5bの吸入部に供給され、第2圧縮機5bへの給油が行われる。第2圧縮機5bへ給油された油は、膨張機ユニット5の側面に設けられた排油口61から第1圧縮機の吸入部に減圧手段である毛細管62を介して返油される。第1油分離器60を通過した冷媒は、電磁弁56が閉止されているので、電磁弁57を通過し、第2室外熱交換器3bである程度放熱して冷却され、電磁弁58を通過して第2圧縮機5bに流入する。第2圧縮機5bに流入した冷媒は、膨張機5aで回収された動力に釣合う分だけ圧縮される。第2圧縮機5bから吐出された冷媒は、第2油分離器63に流入し、ガス冷媒に同伴されて流出した冷凍機油は第2油分離器63内でさらに分離される。第2油分離器63で分離された油は、減圧手段である毛細管64を介して第2圧縮機5bの吸入部に供給され、第2圧縮機5bへの給油が行われる。第2油分離器63を通過した冷媒は、四方弁2の第1口2aから第2口2bを通って、第1室外熱交換器3aで被加熱媒体である空気に放熱し、四方弁4の第2口4bから第3口4cを経て予膨張弁6へ流入する。予膨張弁6通過後から第1圧縮機1の吸入までの冷媒流れは実施の形態1と同様であるため詳細な説明を省略し、暖房時の運転動作についても同様に説明を省略する。   Next, the operation during the cooling operation will be described. The electromagnetic valves 54 and 55 and the electromagnetic valve 56 installed between the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b are closed, and the electromagnetic valves 57 and 58 are opened. At this time, the high-temperature and high-pressure gas refrigerant discharged from the first compressor 1 flows into the first oil separator 60, and the refrigerating machine oil that flows out along with the gas refrigerant is separated in the first oil separator 60. The The oil separated by the first oil separator 60 is supplied to the suction portion of the second compressor 5b, and is supplied to the second compressor 5b. The oil supplied to the second compressor 5b is returned to the suction portion of the first compressor from the oil discharge port 61 provided on the side surface of the expander unit 5 through the capillary tube 62 serving as a decompression unit. Since the solenoid valve 56 is closed, the refrigerant that has passed through the first oil separator 60 passes through the solenoid valve 57, is cooled by being dissipated to some extent in the second outdoor heat exchanger 3b, and passes through the solenoid valve 58. And flows into the second compressor 5b. The refrigerant that has flowed into the second compressor 5b is compressed by an amount commensurate with the power recovered by the expander 5a. The refrigerant discharged from the second compressor 5 b flows into the second oil separator 63, and the refrigeration oil that has flowed out along with the gas refrigerant is further separated in the second oil separator 63. The oil separated by the second oil separator 63 is supplied to the suction portion of the second compressor 5b via the capillary 64, which is a decompression means, and is supplied to the second compressor 5b. The refrigerant that has passed through the second oil separator 63 passes through the first port 2a of the four-way valve 2 through the second port 2b and radiates heat to the air that is the medium to be heated in the first outdoor heat exchanger 3a. From the second port 4b to the pre-expansion valve 6 through the third port 4c. Since the refrigerant flow from passing through the pre-expansion valve 6 to the suction of the first compressor 1 is the same as that in the first embodiment, detailed description thereof is omitted, and the description of the operation operation during heating is also omitted.

本実施の形態では、実施の形態1の効果に加え、第2圧縮機5bから吐出される冷凍機油を第2油分離器63でさらに分離して第2圧縮機5bへ供給するため、第2圧縮機5bへ確実に給油できる。また、放熱器である第1室外熱交換器3aへ冷凍機油が流入するのを確実に防止でき、高効率な冷凍サイクル装置を得ることができる。本実施の形態では、第2油分離器63からの戻し配管を第1油分離器60の戻し配管と合流させ、第2圧縮機5bの吸入部に接続する構成としたが、第1圧縮機1の吸入部に接続する構成としても良い。   In the present embodiment, in addition to the effects of the first embodiment, the refrigerating machine oil discharged from the second compressor 5b is further separated by the second oil separator 63 and supplied to the second compressor 5b. Oil can be reliably supplied to the compressor 5b. Moreover, it can prevent reliably that refrigeration oil flows in into the 1st outdoor heat exchanger 3a which is a heat radiator, and can obtain a highly efficient refrigerating-cycle apparatus. In the present embodiment, the return pipe from the second oil separator 63 is joined with the return pipe of the first oil separator 60 and connected to the suction portion of the second compressor 5b. It is good also as a structure connected to 1 suction | inhalation part.

以上より、本実施の形態では、実施の形態1の効果に加え、第2圧縮機5bから吐出される冷凍機油を第2油分離器63で分離し、第2圧縮機5bへ確実に戻すとともに、冷凍機油が中間冷却器だけでなく放熱器へ流入するのも防止でき、高効率な冷凍サイクル装置を得ることができる。   As described above, in the present embodiment, in addition to the effects of the first embodiment, the refrigeration oil discharged from the second compressor 5b is separated by the second oil separator 63 and reliably returned to the second compressor 5b. The refrigeration oil can be prevented from flowing not only into the intermediate cooler but also into the radiator, and a highly efficient refrigeration cycle apparatus can be obtained.

実施の形態3.
以下、本発明の実施の形態3による冷凍サイクル装置について説明する。図7は、本発明の実施形態3に係る冷凍サイクル装置を示す模式図であり、実施の形態1および実施の形態2と異なるのは、第1油分離器60および第2油分離器63で分離した冷凍機油を第1圧縮機1および第2圧縮機5bの吸入部にそれぞれ戻すとともに、第1圧縮機1の吸入部へは膨張機ユニット5のシェル側面部に設けた排油口61から冷凍機油を戻す構成とした点である。その他の構成は実施の形態1と同様であるため、詳細な説明を省略する。
Embodiment 3 FIG.
Hereinafter, a refrigeration cycle apparatus according to Embodiment 3 of the present invention will be described. FIG. 7 is a schematic diagram showing a refrigeration cycle apparatus according to Embodiment 3 of the present invention. The difference between Embodiment 1 and Embodiment 2 is the first oil separator 60 and the second oil separator 63. The separated refrigeration oil is returned to the suction portions of the first compressor 1 and the second compressor 5b, respectively, and to the suction portion of the first compressor 1 from an oil discharge port 61 provided on the shell side surface of the expander unit 5. It is the point which made it the structure which returns refrigeration oil. Since other configurations are the same as those of the first embodiment, detailed description thereof is omitted.

つぎに冷房運転時の動作について説明する。第1室外熱交換器3aと第2室外熱交換器3bの間に設置された電磁弁54、55および電磁弁56は閉止され、電磁弁57、58は開放される。このとき、第1圧縮機1から吐出された高温高圧のガス冷媒は、第1油分離器60に流入し、ガス冷媒に同伴されて流出した冷凍機油は第1油分離器60内で分離される。第1油分離器60で分離された油は、減圧手段である毛細管62を介して第1圧縮機1の吸入部に戻り、第1圧縮機へ再給油される。第1油分離器60を通過した冷媒は、電磁弁56が閉止されているので、電磁弁57を通過し、第2室外熱交換器3bである程度放熱して冷却され、電磁弁58を通って第2圧縮機5bに流入する。電磁弁58を通過して膨張機5aで駆動される第2圧縮機5bに流入した冷媒は、膨張機で回収された動力に釣合う分だけ圧縮される。第2圧縮機5bから吐出された冷媒は、第2の油分離器63に流入し、ガス冷媒に同伴されて流出した冷凍機油は第2油分離器63内で分離される。油分離器63で分離された油は、減圧手段である毛細管64を介して第2圧縮機5bの吸入部に戻り、第2圧縮機5bへ再給油される。第2圧縮機5bへ給油された油は、膨張機ユニット5の側面に設けられた排油口61から第1圧縮機5bの吸入部に減圧手段である毛細管65を介して返油される。第2油分離器63を通過した冷媒は、四方弁2の第1口2aから第2口2bを通って、第1室外熱交換器3aで被加熱媒体である空気に放熱し、四方弁4の第2口4bから第3口4cを経て予膨張弁6へ流入する。予膨張弁6通過後から第1圧縮機1の吸入までの冷媒流れは実施の形態1と同様であるため詳細な説明を省略し、暖房時の運転動作についても同様に説明を省略する。   Next, the operation during the cooling operation will be described. The electromagnetic valves 54 and 55 and the electromagnetic valve 56 installed between the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b are closed, and the electromagnetic valves 57 and 58 are opened. At this time, the high-temperature and high-pressure gas refrigerant discharged from the first compressor 1 flows into the first oil separator 60, and the refrigerating machine oil that flows out along with the gas refrigerant is separated in the first oil separator 60. The The oil separated by the first oil separator 60 returns to the suction portion of the first compressor 1 through the capillary tube 62 that is a decompression means, and is refueled to the first compressor. Since the solenoid valve 56 is closed, the refrigerant that has passed through the first oil separator 60 passes through the solenoid valve 57, is cooled by being radiated to some extent by the second outdoor heat exchanger 3b, and passes through the solenoid valve 58. It flows into the second compressor 5b. The refrigerant that has passed through the electromagnetic valve 58 and has flowed into the second compressor 5b driven by the expander 5a is compressed by an amount commensurate with the power recovered by the expander. The refrigerant discharged from the second compressor 5 b flows into the second oil separator 63, and the refrigeration oil that has flowed out along with the gas refrigerant is separated within the second oil separator 63. The oil separated by the oil separator 63 returns to the suction portion of the second compressor 5b through the capillary 64, which is a decompression means, and is refueled to the second compressor 5b. The oil supplied to the second compressor 5b is returned to the suction portion of the first compressor 5b from the oil discharge port 61 provided on the side surface of the expander unit 5 through the capillary 65 serving as a decompression unit. The refrigerant that has passed through the second oil separator 63 passes through the first port 2a of the four-way valve 2 through the second port 2b and radiates heat to the air that is the medium to be heated in the first outdoor heat exchanger 3a. From the second port 4b to the pre-expansion valve 6 through the third port 4c. Since the refrigerant flow from passing through the pre-expansion valve 6 to the suction of the first compressor 1 is the same as that in the first embodiment, detailed description thereof is omitted, and the description of the operation operation during heating is also omitted.

ここで、第1油分離器60と第2油分離器63の油分離効率の関係について述べる。第1油分離器60出口部の油循環率をGro1(%)、第2油分離器63出口部の油循環率をGro2(%)とすると、第2圧縮機5bの油面が低下しない条件は、冷凍機油の流入流量が流出流量よりも大きいことであるから、排油口61から毛細管65を介して返油される流量を0とした場合でも、Gro2≦Gro1が成立する必要がある。例えば、第1圧縮機1出口部の油循環率と第2圧縮機出口部の油循環率が等しい場合、Gro2≦Gro1が成立するためには、第1圧縮機の出口部に設けた第1油分離器60の油分離効率を、第2圧縮機の出口部に設けた第2油分離器63の油分離効率よりも低くする必要がある。第1油分離器60の油分離効率を第2油分離器63の油分離効率よりも高くすると、第2圧縮機5b内の油面が低下し、油枯渇に至る可能性が生じる。本実施の形態では、第1油分離器60の油分離効率よりも第2油分離器63の油分離効率が高くなるように構成しているので、膨張機ユニット5の油面が低下せず、信頼性の高い冷凍サイクル装置を提供することができる。   Here, the relationship between the oil separation efficiency of the first oil separator 60 and the second oil separator 63 will be described. When the oil circulation rate at the outlet portion of the first oil separator 60 is Gro1 (%) and the oil circulation rate at the outlet portion of the second oil separator 63 is Gro2 (%), the oil level of the second compressor 5b does not decrease. Since the inflow flow rate of the refrigerating machine oil is larger than the outflow flow rate, Gro2 ≦ Gro1 needs to be satisfied even when the flow rate of oil returned from the oil discharge port 61 through the capillary 65 is zero. For example, when the oil circulation rate at the outlet portion of the first compressor 1 and the oil circulation rate at the outlet portion of the second compressor are equal, in order to satisfy Gro2 ≦ Gro1, the first provided at the outlet portion of the first compressor It is necessary to make the oil separation efficiency of the oil separator 60 lower than the oil separation efficiency of the second oil separator 63 provided at the outlet of the second compressor. When the oil separation efficiency of the first oil separator 60 is higher than the oil separation efficiency of the second oil separator 63, the oil level in the second compressor 5b is lowered, and there is a possibility that the oil will be exhausted. In the present embodiment, since the oil separation efficiency of the second oil separator 63 is higher than the oil separation efficiency of the first oil separator 60, the oil level of the expander unit 5 does not decrease. A highly reliable refrigeration cycle apparatus can be provided.

以上より、本実施の形態では、実施の形態1の効果に加え、第2油分離器63を設けたので第2圧縮機5bから吐出される冷凍機油が放熱器である第1室外熱交換器3aへ流入するのを防止でき、高効率な冷凍サイクル装置を得ることができる。また、第1油分離器60の油分離効率よりも第2油分離器63の油分離効率が高くなるように第1および第2の油分離器を構成しているので、第2圧縮機5b内の油面が低下せず、信頼性の高い冷凍サイクル装置を提供することができる。   As mentioned above, in this Embodiment, in addition to the effect of Embodiment 1, since the 2nd oil separator 63 was provided, the 1st outdoor heat exchanger whose refrigerating machine oil discharged from the 2nd compressor 5b is a radiator. The flow into 3a can be prevented, and a highly efficient refrigeration cycle apparatus can be obtained. Moreover, since the 1st and 2nd oil separator is comprised so that the oil separation efficiency of the 2nd oil separator 63 may become higher than the oil separation efficiency of the 1st oil separator 60, the 2nd compressor 5b It is possible to provide a highly reliable refrigeration cycle apparatus without lowering the oil level inside.

実施の形態4.
以下、本発明の実施の形態4による冷凍サイクル装置について説明する。図8は、本発明の実施形態4に係る冷凍サイクル装置を示す模式図である。実施の形態1とは異なり、第1および第2室外熱交換器3a、3bが水熱交換器(以下、放熱器と呼ぶ)となり、室内熱交換器9が室外熱交換器(以下、蒸発器と呼ぶ)となる給湯器の例を示している。実施の形態1との具体的な構成の違いは、四方弁2、4が無いこと、第1室外熱交換器3a及び第2室外熱交換器3bが水と冷媒との熱交換器に変更され、放熱器として動作する点、室内熱交換器が室外熱交換器に変更され、蒸発器として動作する点である。また、実施の形態3と同様に、第2油分離器63を設け、第1油分離器60および第2油分離器63で分離した油を第1圧縮機1および第2圧縮機5bの吸入部にそれぞれ戻し、膨張機ユニット5のシェル側面部に設けた排油口61から第1圧縮機1の吸入部へ戻している。その他の構成は実施の形態1と同様であるため、詳細な説明を省略する。
Embodiment 4 FIG.
Hereinafter, a refrigeration cycle apparatus according to Embodiment 4 of the present invention will be described. FIG. 8 is a schematic diagram showing a refrigeration cycle apparatus according to Embodiment 4 of the present invention. Unlike the first embodiment, the first and second outdoor heat exchangers 3a and 3b are water heat exchangers (hereinafter referred to as radiators), and the indoor heat exchanger 9 is an outdoor heat exchanger (hereinafter referred to as an evaporator). This is an example of a water heater. The specific difference from the first embodiment is that the four-way valves 2 and 4 are not provided, and that the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b are changed to water and refrigerant heat exchangers. The point that operates as a radiator, the indoor heat exchanger is changed to an outdoor heat exchanger, and operates as an evaporator. Similarly to the third embodiment, the second oil separator 63 is provided, and the oil separated by the first oil separator 60 and the second oil separator 63 is sucked into the first compressor 1 and the second compressor 5b. It returns to the suction section of the first compressor 1 from the oil drain port 61 provided on the side surface of the shell of the expander unit 5. Since other configurations are the same as those of the first embodiment, detailed description thereof is omitted.

給湯時の運転動作について説明する。予膨張弁6は開放され、バイパス弁7は閉止される。このとき、第1圧縮機1から吐出された高温高圧のガス冷媒は、第1油分離器60に流入し、ガス冷媒に同伴されて流出した冷凍機油は第1油分離器60内で分離される。第1油分離器60で分離された油は、減圧手段である毛細管62を介して第1圧縮機1の吸入部に戻り、第1圧縮機へ再給油される。第1油分離器60を通過した冷媒は、第2放熱器3bである程度放熱して冷却され、第2圧縮機5bに流入する。第2圧縮機5bに流入した冷媒は、膨張機で回収された動力に釣合う分だけ圧縮される。第2圧縮機5bから吐出された冷媒は、第2の油分離器63に流入し、ガス冷媒に同伴されて流出した冷凍機油は第2油分離器63内で分離される。油分離器63で分離された油は、減圧手段である毛細管64を介して第2圧縮機5bの吸入部に戻り、第2圧縮機5bへ再給油が行われる。第2圧縮機5bへ給油された油は、膨張機ユニット5の側面に設けられた排油口61から第1圧縮機5bの吸入部に減圧手段である毛細管65を介して返油される。第2油分離器63を通過した冷媒は、第1放熱器3aで被加熱媒体である水に放熱し、バイパス弁7が閉止されているので、予膨張弁6へ流入する。予膨張弁6で膨張機5aの入口密度を調節された冷媒は、膨張機5aで減圧され、液配管52を通過する。液配管52を通過した冷媒は、蒸発器9で空気から採熱して自らは蒸発し、ガス配管51を通過して第1圧縮機1へ戻る。   The operation during hot water supply will be described. The pre-expansion valve 6 is opened and the bypass valve 7 is closed. At this time, the high-temperature and high-pressure gas refrigerant discharged from the first compressor 1 flows into the first oil separator 60, and the refrigerating machine oil that flows out along with the gas refrigerant is separated in the first oil separator 60. The The oil separated by the first oil separator 60 returns to the suction portion of the first compressor 1 through the capillary tube 62 that is a decompression means, and is refueled to the first compressor. The refrigerant that has passed through the first oil separator 60 is cooled by being radiated to some extent by the second radiator 3b and flows into the second compressor 5b. The refrigerant that has flowed into the second compressor 5b is compressed by an amount commensurate with the power recovered by the expander. The refrigerant discharged from the second compressor 5 b flows into the second oil separator 63, and the refrigeration oil that has flowed out along with the gas refrigerant is separated within the second oil separator 63. The oil separated by the oil separator 63 is returned to the suction portion of the second compressor 5b through the capillary 64, which is a decompression means, and is refueled to the second compressor 5b. The oil supplied to the second compressor 5b is returned to the suction portion of the first compressor 5b from the oil discharge port 61 provided on the side surface of the expander unit 5 through the capillary 65 serving as a decompression unit. The refrigerant that has passed through the second oil separator 63 dissipates heat to the water to be heated by the first radiator 3a, and flows into the pre-expansion valve 6 because the bypass valve 7 is closed. The refrigerant whose inlet density of the expander 5 a is adjusted by the pre-expansion valve 6 is decompressed by the expander 5 a and passes through the liquid pipe 52. The refrigerant that has passed through the liquid pipe 52 collects heat from the air by the evaporator 9, evaporates itself, passes through the gas pipe 51, and returns to the first compressor 1.

このような動作によって、第1放熱器3aおよび第2放熱器3bで水が冷媒からの熱を受けて加熱され、高温水が供給される。このとき、第1放熱器3aおよび第2放熱器3bを流れる水回路(図8には図示せず)は、直列や並列など、どのような構成であっても良く、第1油分離器60および第2油分離器63の油分離効果は、同様に発揮される。   By such an operation, water is heated by receiving heat from the refrigerant in the first radiator 3a and the second radiator 3b, and high-temperature water is supplied. At this time, the water circuit (not shown in FIG. 8) flowing through the first radiator 3a and the second radiator 3b may have any configuration such as series or parallel, and the first oil separator 60 And the oil separation effect of the 2nd oil separator 63 is exhibited similarly.

以上より、本実施の形態では、実施の形態1の効果に加え、第1圧縮機1および第2圧縮機5bから吐出される冷凍機油が第1および第2放熱器へ流入するのを防止でき、高効率な冷凍サイクル装置を得ることができるという効果がある。   As described above, in the present embodiment, in addition to the effects of the first embodiment, the refrigerating machine oil discharged from the first compressor 1 and the second compressor 5b can be prevented from flowing into the first and second radiators. There is an effect that a highly efficient refrigeration cycle apparatus can be obtained.

本発明の実施の形態1に係る冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るP−h線図上での冷房運転の動作を示す図である。It is a figure which shows the operation | movement of the air_conditionaing | cooling operation on the Ph diagram which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るP−h線図上での暖房運転の動作を示す図である。It is a figure which shows the operation | movement of the heating operation on the Ph diagram which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る膨張機の断面を示す図である。It is a figure which shows the cross section of the expander which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る油循環率に対する熱伝達率の関係を示す図である。It is a figure which shows the relationship of the heat transfer rate with respect to the oil circulation rate which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 第1圧縮機、2、4 四方弁、3a、3b 室外熱交換器(放熱器)、5 膨張機ユニット、5a 膨張機、5b 第2圧縮機、6、7、8a、8b 電子膨張弁、9 室内熱交換器(蒸発器)、9a、9b 室内熱交換器、51 ガス配管、52 液配管、53 逆止弁、54、55、56、57、58 電磁弁、61 排油口、60、63 油分離器、62、64、65 毛細管、100 室外ユニット、200a、200b 室内ユニット、307 オルダムリング、308 軸、308b クランク部、309a、309b バランスウェイト、310 密閉容器、312 第2圧縮機吸入管、313 膨張機吸入管、314 第2圧縮機吐出管、315 膨張機吐出管、351 膨張機用固定スクロール、351b 膨張機軸受け部、352 膨張機用揺動スクロール、361 第2圧縮機用固定スクロール、361b 第2圧縮機軸受け部、362 第2圧縮機用揺動スクロール。   1 first compressor, 2, 4 four-way valve, 3a, 3b outdoor heat exchanger (heat radiator), 5 expander unit, 5a expander, 5b second compressor, 6, 7, 8a, 8b electronic expansion valve, 9 indoor heat exchanger (evaporator), 9a, 9b indoor heat exchanger, 51 gas piping, 52 liquid piping, 53 check valve, 54, 55, 56, 57, 58 solenoid valve, 61 oil outlet, 60, 63 Oil separator, 62, 64, 65 Capillary tube, 100 Outdoor unit, 200a, 200b Indoor unit, 307 Oldham ring, 308 shaft, 308b Crank part, 309a, 309b Balance weight, 310 Airtight container, 312 Second compressor suction pipe 313 Expander suction pipe, 314 Second compressor discharge pipe, 315 Expander discharge pipe, 351 Expander fixed scroll, 351b Expander bearing, 352 Expansion YoYurado scroll, 361 second compressor fixed scroll, 361b second compressor bearing portion, 362 a second compressor orbiting scroll.

Claims (9)

第1圧縮機と、前記第1圧縮機の出口部に設けられる第1油分離器と、膨張機と、前記膨張機の回収動力で駆動される第2圧縮機と、負荷側熱交換器と、第1熱源側熱交換器とを備えた冷凍サイクル装置において、
前記第1圧縮機と前記第2圧縮機とが直列に接続されるとともに、前記第1油分離器で分離された冷凍機油が前記第2圧縮機へ供給されるようにし、
前記第1圧縮機と前記第2圧縮機との間に第2熱源側熱交換器が接続されており、
前記第1油分離器は、冷房運転時における前記第1圧縮機の出口側で且つ前記第2熱源側熱交換器の入口側に配置されており、
四方弁が設けられ、冷却運転時には第1熱源側熱交換器を高圧で、第2熱源側熱交換器を中間圧力で動作させ、加熱運転時には第1熱源側熱交換器および第2熱源側熱交換器ともに低圧として動作させ、
前記第2熱源側熱交換器の出入口がそれぞれ2つに分岐され、入口側の一端が第1圧縮機の吐出部へ、入口側の他端が第1熱源側熱交換器の液管側へ、出口側の一端が第2圧縮機の吸入部へ、出口側の他端が第1熱源側熱交換器のガス管側へ、それぞれ接続されるようにしたことを特徴とする冷凍サイクル装置。
A first compressor, a first oil separator provided at an outlet of the first compressor, an expander, a second compressor driven by recovered power of the expander, and a load-side heat exchanger In the refrigeration cycle apparatus including the first heat source side heat exchanger,
The first compressor and the second compressor are connected in series, and the refrigeration oil separated by the first oil separator is supplied to the second compressor,
A second heat source side heat exchanger is connected between the first compressor and the second compressor;
The first oil separator is disposed on the outlet side of the first compressor during cooling operation and on the inlet side of the second heat source side heat exchanger ,
A four-way valve is provided, the first heat source side heat exchanger is operated at a high pressure during the cooling operation, the second heat source side heat exchanger is operated at an intermediate pressure, and the first heat source side heat exchanger and the second heat source side heat are operated during the heating operation. Both exchangers operate as low pressure,
The inlet / outlet of the second heat source side heat exchanger is branched into two, one end on the inlet side to the discharge part of the first compressor, and the other end on the inlet side to the liquid pipe side of the first heat source side heat exchanger The refrigeration cycle apparatus is characterized in that one end on the outlet side is connected to the suction portion of the second compressor, and the other end on the outlet side is connected to the gas pipe side of the first heat source side heat exchanger .
前記第2圧縮機の胴部に排油口が設けられ、前記第2圧縮機内の冷凍機油が前記第1圧縮機または前記第2圧縮機の吸入部へ返油されるようにしたことを特徴とする請求項1に記載の冷凍サイクル装置。   An oil discharge port is provided in a body portion of the second compressor, and refrigerating machine oil in the second compressor is returned to the suction portion of the first compressor or the second compressor. The refrigeration cycle apparatus according to claim 1. 前記第2圧縮機の排油口と前記第1圧縮機または前記第2圧縮機の吸入部との間に減圧手段が設けられていることを特徴とする請求項1又は2に記載の冷凍サイクル装置。   3. The refrigeration cycle according to claim 1, wherein a decompression unit is provided between an oil discharge port of the second compressor and a suction portion of the first compressor or the second compressor. apparatus. 前記第2圧縮機の出口部に第2油分離器が設けられ、前記第2油分離器で分離された油を第1または第2圧縮機の吸入部へ供給することを特徴とする請求項1〜3のいずれか一項に記載の冷凍サイクル装置。   The second oil separator is provided at an outlet portion of the second compressor, and the oil separated by the second oil separator is supplied to the suction portion of the first or second compressor. The refrigeration cycle apparatus according to any one of 1 to 3. 第1圧縮機と、前記第1圧縮機の出口部に設けられた第1油分離器と、膨張機と、前記膨張機の回収動力で駆動される第2圧縮機と、前記第2圧縮機の出口部に設けられた第2油分離器と、負荷側熱交換器と、第1熱源側熱交換器とを備えた冷凍サイクル装置において、
前記第1圧縮機と前記第2圧縮機とは直列に接続されており、
前記第1油分離器で分離された冷凍機油及び前記第2油分離器で分離された冷凍機油のうちの一方の冷凍機油は、前記第1圧縮機及び前記第2圧縮機のうちの一方の吸入部に供給されると共に、他方の冷凍機油は、他方の吸入部に供給され、あるいは、双方の冷凍機油が、該第1圧縮機及び前記第2圧縮機の一方の吸入部に供給され、
前記第1圧縮機と前記第2圧縮機との間に第2熱源側熱交換器が接続されており、
前記第1油分離器は、冷房運転時における前記第1圧縮機の出口側で且つ前記第2熱源側熱交換器の入口側に配置されており、
四方弁が設けられ、冷却運転時には第1熱源側熱交換器を高圧で、第2熱源側熱交換器を中間圧力で動作させ、加熱運転時には第1熱源側熱交換器および第2熱源側熱交換器ともに低圧として動作させ、
前記第2熱源側熱交換器の出入口がそれぞれ2つに分岐され、入口側の一端が第1圧縮機の吐出部へ、入口側の他端が第1熱源側熱交換器の液管側へ、出口側の一端が第2圧縮機の吸入部へ、出口側の他端が第1熱源側熱交換器のガス管側へ、それぞれ接続されるようにしたことを特徴とする冷凍サイクル装置。
A first compressor; a first oil separator provided at an outlet of the first compressor; an expander; a second compressor driven by recovered power of the expander; and the second compressor In the refrigeration cycle apparatus provided with the second oil separator, the load side heat exchanger, and the first heat source side heat exchanger provided at the outlet of
The first compressor and the second compressor are connected in series,
One of the refrigerating machine oil separated by the first oil separator and the refrigerating machine oil separated by the second oil separator is one of the first compressor and the second compressor. While being supplied to the suction unit, the other refrigerating machine oil is supplied to the other suction unit, or both refrigerating machine oils are supplied to one suction unit of the first compressor and the second compressor,
A second heat source side heat exchanger is connected between the first compressor and the second compressor;
The first oil separator is disposed on the outlet side of the first compressor during cooling operation and on the inlet side of the second heat source side heat exchanger ,
A four-way valve is provided, the first heat source side heat exchanger is operated at a high pressure during the cooling operation, the second heat source side heat exchanger is operated at an intermediate pressure, and the first heat source side heat exchanger and the second heat source side heat are operated during the heating operation. Both exchangers operate as low pressure,
The inlet / outlet of the second heat source side heat exchanger is branched into two, one end on the inlet side to the discharge part of the first compressor, and the other end on the inlet side to the liquid pipe side of the first heat source side heat exchanger The refrigeration cycle apparatus is characterized in that one end on the outlet side is connected to the suction portion of the second compressor, and the other end on the outlet side is connected to the gas pipe side of the first heat source side heat exchanger .
前記第1油分離器の油分離効率よりも前記第2油分離器の油分離効率が高くなるように前記第1および第2油分離器が構成されていることを特徴とする請求項5に記載の冷凍サイクル装置。   The first and second oil separators are configured so that the oil separation efficiency of the second oil separator is higher than the oil separation efficiency of the first oil separator. The refrigeration cycle apparatus described. 前記第2圧縮機の胴部に排油口が設けられ、前記第2圧縮機内の冷凍機油が前記第1圧縮機または前記第2圧縮機の吸入部へ給油されるようにしたことを特徴とする請求項5又は6に記載の冷凍サイクル装置。   An oil discharge port is provided in a body portion of the second compressor, and refrigerating machine oil in the second compressor is supplied to the suction portion of the first compressor or the second compressor. The refrigeration cycle apparatus according to claim 5 or 6. 前記第2圧縮機の排油口と前記第1圧縮機または前記第2圧縮機の吸入配管との間に減圧手段が設けられていることを特徴とする請求項5〜7のいずれか一項に記載の冷凍サイクル装置。   8. The pressure reducing means is provided between the oil outlet of the second compressor and the suction pipe of the first compressor or the second compressor. 8. The refrigeration cycle apparatus described in 1. 前記第2熱源側熱交換器の2つに分岐された出口および入口のそれぞれに開閉弁を設けたことを特徴とする請求項1〜8のいずれか一項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 8, wherein an on-off valve is provided at each of an outlet and an inlet branched into two of the second heat source side heat exchanger .
JP2008023897A 2008-02-04 2008-02-04 Refrigeration cycle equipment Active JP4964160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023897A JP4964160B2 (en) 2008-02-04 2008-02-04 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008023897A JP4964160B2 (en) 2008-02-04 2008-02-04 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2009186054A JP2009186054A (en) 2009-08-20
JP4964160B2 true JP4964160B2 (en) 2012-06-27

Family

ID=41069480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023897A Active JP4964160B2 (en) 2008-02-04 2008-02-04 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4964160B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2535667B1 (en) * 2010-02-12 2018-09-26 Mitsubishi Electric Corporation Refrigeration cycle device
JP2015117919A (en) * 2013-12-20 2015-06-25 三菱重工業株式会社 Heat pump system and heat pump type water heater
JP2016031183A (en) * 2014-07-29 2016-03-07 パナソニックIpマネジメント株式会社 Two-stage compression type refrigerating device
CN110926068A (en) * 2019-12-25 2020-03-27 宁波奥克斯电气股份有限公司 Air conditioning system and control method thereof
CN115264979A (en) * 2022-08-02 2022-11-01 百尔制冷(无锡)有限公司 Supercharged carbon dioxide refrigerating system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158465A (en) * 1984-08-30 1986-03-25 Matsushita Electric Ind Co Ltd Protective circuit for gate turn-off thyristor inverter
JP4294351B2 (en) * 2003-03-19 2009-07-08 株式会社前川製作所 CO2 refrigeration cycle
JP2006275495A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Refrigerating device and refrigerator
US8109116B2 (en) * 2005-08-26 2012-02-07 Mitsubishi Electric Corporation Dual compressor air conditioning system with oil level regulation
JP2007115096A (en) * 2005-10-21 2007-05-10 Fuji Electric Retail Systems Co Ltd Cooling device and vending machine
JP4555231B2 (en) * 2006-01-20 2010-09-29 三菱電機株式会社 Scroll expander
JP2007255889A (en) * 2007-05-24 2007-10-04 Mitsubishi Electric Corp Refrigerating air conditioning device

Also Published As

Publication number Publication date
JP2009186054A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP4813599B2 (en) Refrigeration cycle equipment
JP4569708B2 (en) Refrigeration equipment
EP2765369B1 (en) Refrigeration cycle device
EP1813887A1 (en) Air conditioning device
JP5502459B2 (en) Refrigeration equipment
JP2008190377A (en) Multistage compressor
EP2551613B1 (en) Refrigeration cycle apparatus and method for operating same
JP2003279179A (en) Refrigerating air conditioning device
JP5484889B2 (en) Refrigeration equipment
JP5484890B2 (en) Refrigeration equipment
JP4964160B2 (en) Refrigeration cycle equipment
JP4906963B2 (en) Refrigeration cycle equipment
JP5496645B2 (en) Refrigeration equipment
JP5523817B2 (en) Refrigeration equipment
JP5127849B2 (en) Refrigeration cycle equipment
JP2011133206A (en) Refrigerating apparatus
JP5502460B2 (en) Refrigeration equipment
JP3870951B2 (en) Refrigeration cycle apparatus and control method thereof
JP2004251528A (en) Refrigerating air-conditioning device
JP2011133208A (en) Refrigerating apparatus
JP2011137556A (en) Refrigerating apparatus
JP2012107862A (en) Refrigeration cycle device
WO2015104823A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120327

R150 Certificate of patent or registration of utility model

Ref document number: 4964160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250