JP2004251528A - Refrigerating air-conditioning device - Google Patents

Refrigerating air-conditioning device Download PDF

Info

Publication number
JP2004251528A
JP2004251528A JP2003042153A JP2003042153A JP2004251528A JP 2004251528 A JP2004251528 A JP 2004251528A JP 2003042153 A JP2003042153 A JP 2003042153A JP 2003042153 A JP2003042153 A JP 2003042153A JP 2004251528 A JP2004251528 A JP 2004251528A
Authority
JP
Japan
Prior art keywords
compressor
expansion
compression
pressure
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003042153A
Other languages
Japanese (ja)
Inventor
Masayuki Tsunoda
昌之 角田
Fumitake Unezaki
史武 畝崎
Makoto Saito
信 齊藤
So Nomoto
宗 野本
Shinichi Wakamoto
慎一 若本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003042153A priority Critical patent/JP2004251528A/en
Publication of JP2004251528A publication Critical patent/JP2004251528A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems of a refrigerating air-conditioning device of a supercritical cycle as in the past that flow rate matching between a compressor side and an expansion machine side is difficult since the compressor and the expansion machine are directly connected, that sliding loss increases since the pressures of a compression mechanism section and an expansion mechanism section are those of a combination of high pressure and low pressure and the pressure difference for sealing is large and that a pressure difference cannot be used for adjusting the oil reserving quantity because of being isobar. <P>SOLUTION: This refrigerating air conditioning device is composed to store the compression mechanism section being connected in series with a first compressor and constructing two-step compression and the expansion mechanism for power recovery in the same sealed container, to transfer oil by the pressure difference while restraining a loss due to sealing between the expansion mechanism section and the compression mechanism section by making the compression mechanism section a middle pressure atmosphere and to permit balance of the oil reserving quantity by an oil return pipe from a high-stage side compressor to the intake side of a low-stage side compressor. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、二酸化炭素など超臨界となる冷媒を用いた冷凍サイクルによる冷凍空調装置に関するものである。
【0002】
【従来の技術】
従来の密閉形膨張機内蔵圧縮機では、密閉容器7に一本の駆動軸8により互いに動力伝達を受ける膨張機構部9と圧縮機構部10を収納し、この圧縮機構部10はモータ11によって駆動され、圧縮吸入管18から吸入した冷媒ガスを圧縮し、吐出ポート19より密閉容器7内に吐出する。そして、密閉容器の上部に設けた圧縮吐出管20から流出して冷媒回路の凝縮器を経た冷媒は膨張吸入管16から吸入され、膨張機用シリンダ12内で減圧・膨張して膨張吐出管17から吐出し、冷媒回路の蒸発器を経て圧縮吸入管18に戻る。冷媒が膨張機構部9を通過するときの膨張過程で発生した動力は駆動軸8を介して圧縮機構部10側の圧縮動力の一部として回収され、モータ11の出力が軽減されるものがある(例えば、特許文献1参照)。
【0003】
また、第2の従来の膨張機内蔵圧縮機では、密閉容器7の下部に圧縮機構部10、上部には膨張機構部9を配設し、これらの間の中央部にモータ11が配置され、モータの駆動軸8の下端部が圧縮機構部10に連結され、上端部が膨張機構部9に連結されている。密閉容器の上部に設けた膨張吸入管16から冷媒が吸入され、スクロール式の膨張機構部9内で膨張し、膨張吐出管17から吐出される冷媒の膨張過程からの回収動力は、駆動軸8を介してモータ11による圧縮機構部10の駆動動力の一部として用いられるものがある(例えば、特許文献2参照)。
【0004】
また、第3の従来例として、ランキンサイクル駆動空調システム用膨張機内蔵圧縮機において、密閉容器7内の右側に膨張機構部9が、左側に圧縮機構部10がそれぞれ配置され、冷凍サイクルを構成する圧縮機構部10の吐出ガスとランキンサイクルを構成する膨張機構部9の吐出ガスが密閉容器ケース7に吐出される一流体方式となっている。膨張吸入管16から吸入されたランキンサイクル側の高圧冷媒ガスは、膨張機構部9で減圧された後、密閉容器7内に吐出される。減圧の過程で回収された膨張動力が駆動軸8及び継手65、圧縮機構部の駆動軸63を介して圧縮機構部10を駆動し、圧縮吸入管18から吸入された冷凍サイクル側の低圧冷媒ガスを圧縮する。そして、圧縮された冷媒ガスは密閉容器7内で膨張機構部9で膨張後の冷媒ガスと合流し、吐出管17からランキンサイクル側と冷凍サイクル側それぞれの回路へ分岐されるようになっている(例えば、特許文献3参照)。
【0005】
【特許文献1】
特開昭59−25097号公報(第2頁、第7図)
【特許文献2】
特開2001−107881号公報(第3−4頁、第1図)
【特許文献3】
特開平9−250474号公報(第2−3頁、第1図)
【0006】
【発明が解決しようとする課題】
上述第3の従来例は、膨張機構部9が図6に示すランキンサイクルの膨張過程、圧縮機構部10が図6に示す冷凍サイクルの圧縮過程に用いられ、膨張後と圧縮後の冷媒ガスの状態量が同じとなる所謂一流体方式に対応しているので、密閉容器7内を一つの空間として用いることが可能である。なお、図6は縦軸に圧力、横軸にエンタルピとしたモリエル線図に、圧縮、凝縮、膨張、蒸発の各過程を示すものである。
【0007】
これに対して、ランキンサイクルではなく冷凍サイクルにおける膨張過程で回収した動力を圧縮過程の圧縮動力の一部として利用する場合、圧縮後と膨張前が共に高圧、或いは膨張後と圧縮前が共に低圧、であっても状態量は異なるのでこれを一流体として密閉容器内で合流させて用いることはできない。
【0008】
また、上述第2の従来例では、密閉容器の内部は膨張機構部側空間が膨張機の吐出すなはち低圧雰囲気で、モータ及び圧縮機構部のある側が圧縮機の吐出すなはち高圧雰囲気となっている。 このため膨張機構部を保持するフレームを貫通する駆動軸には、差圧による軸方向の力が作用するとともに、軸受の微小なすきまを介して高低圧をシールすることになる。
【0009】
また、上述第1の従来例では、密閉容器内は圧縮機構部の吐出圧雰囲気となっており、駆動軸に軸方向力が作用することはないが、可動部品である駆動軸及びローリングピストンの微小すきまで高低圧をシールする必要がある。
【0010】
さらに、密閉容器内が高圧で圧縮機構部の可動部品の微小すきまで高低圧をシールしなければならないという状況は、通常のローリングピストン式の冷媒圧縮機でも同様であるが、二酸化炭素など超臨界となる作動冷媒の場合は差圧が大きくなるため、圧縮機であれば二段圧縮で密閉容器内を中間圧雰囲気にするなど、差圧を小さく抑える工夫をすることが必要である。
【0011】
以上のように、冷凍サイクルの膨張過程から動力を回収し圧縮過程の動力の一部として利用するような膨張機においては、膨張機構部と圧縮機構部の間で駆動軸などによる動力の伝達を行ないながら、作動冷媒の圧力または状態量の異なる空間を隔離しなければならない。
【0012】
本発明は、かかる課題を解消するためになされたもので、膨張機構部と圧縮機構部を一つの密閉容器に収めた膨張機において、膨張側と圧縮側との差圧をシールすることによる摺動等の損失を低く抑えながら、膨張機構部と圧縮機構部を確実に分離する膨張機内蔵圧縮機を用いた冷凍空調装置を得ることを目的とする。
【0013】
【課題を解決するための手段】
この発明に係わる冷凍空調装置は、電動機によって駆動される第1圧縮機と、第1圧縮機で圧縮された高圧の冷媒ガスを冷却するガスクーラと、ガスクーラによって冷却された冷媒ガスを減圧することにより動力を回収する膨張機構部と、膨張機構部により減圧された冷媒を加熱する蒸発器と、膨張機構部と同一の密閉容器に内設され膨張機構部の回収動力により駆動される第2圧縮機とを備え、第1圧縮機と第2圧縮機は冷媒配管により直列に接続されるとともに、密閉容器内の第2圧縮機が内設された空間は二段圧縮の中間圧力で満たされるように構成したものである。
【0014】
また、第2圧縮機は第1圧縮機による圧縮後の冷媒を圧縮し、密閉容器内の膨張機構部が内設された空間は高圧雰囲気となるように構成したものである。
【0015】
また、第1圧縮機は第2圧縮機による圧縮後の冷媒を圧縮し、密閉容器内の膨張機機構部が内設された空間は低圧雰囲気となるように構成したものである。
【0016】
また、冷媒として二酸化炭素を用いたものである。
【0017】
【発明の実施の形態】
実施の形態1.
以下この発明の実施の形態1について説明する。 図1は本発明に係る冷凍空調装置に用いる動力回収ができる膨張機の断面図で、この膨張機により回収する動力で駆動する圧縮機構部を二段圧縮の高段側となる第2圧縮機として用いるものである。 図1の膨張機1は、密閉容器7内部の左側に膨張機構部9、もう一方の右側に第2圧縮機となる圧縮機構部10を内設し、それぞれを駆動軸63で連結して回転動力を伝達する構成となっている。図において、密閉容器7内で膨張側フレーム33に固定された膨張機構部9側の密閉容器7内空間に膨張吸入管16より吸入された高圧の冷媒ガスは、固定スクロール12、揺動スクロール15よりなる膨張機構部9で減圧され、膨張後の冷媒は膨張吐出管17から直接蒸発器へ排出される。
【0018】
冷媒の膨張過程において回収された動力は、膨張機構部9側の揺動スクロール15に固定した膨張側駆動軸8と、この膨張側駆動軸8の回転を圧縮側駆動軸63に伝達する継手65から圧縮側駆動軸63を介して圧縮側フレーム24に固定された圧縮機構部10側の揺動スクロール23に伝えられる。冷媒配管で接続された後述する第1圧縮機99で圧縮された後、密閉容器7の圧縮機構側に設けられた圧縮吸入管18から密閉容器内部に流入した高圧凝縮と低圧蒸発の間にある中間圧の冷媒ガスは、上記膨張機構部9における膨張過程による回収動力により、圧縮側の揺動スクロール23と固定スクロール12との相互動作による高段の圧縮行程が行われ、圧縮機構部10から密閉容器7内に流出することなく直接圧縮吐出管20から直接ガスクーラへ排出される構成である。
【0019】
上記のように構成された膨張機では一つの密閉容器7内の空間が、膨張側フレーム33を有した膨張機構部9側は高圧冷媒の状態、一方、継手65および圧縮側駆動軸63から圧縮機構部10側は中間圧冷媒の状態となり、膨張側フレーム33にある膨張側駆動軸8の軸受け保持部に設けたシール部材64が高圧/中間圧間の差圧をシールする。 膨張過程における回収動力は作動冷媒のガスクーラと蒸発器間における高低圧間の全圧縮動力に対する割合としては大きくない(1/3以下)ので、この二段圧縮における中間圧は高圧に近い中間圧となり、密閉容器7内の膨張機構部側と圧縮機構部側との間をシールしなければならない差圧は小さくなる。しかし、前述のように圧縮吐出管20から吐出後、ガスクーラを通過して膨張吸入管16に流入する過程のなかで、冷媒はこのガスクーラ前後で過熱ガスから過冷却域の液または超臨界状態へと状態量が異なっているので確実に冷媒を分離しなければならない。
【0020】
膨張機構部9側の容器内空間と圧縮機構部10側の容器内空間の隔離に関しては、前述の第2の従来例のように駆動軸/フレーム間のすべり軸受すきまによりシールするという方法も考えられるが、非接触シールの場合はある程度の漏れを許容しなければならない。 これに対して図1に示す形態では、膨張側フレーム33と膨張側駆動軸8間の接触式のシール部材64により確実にシールすることが可能であるが摺動ロスが生じるので、これが過大とならないようにシールする差圧をできるだけ小さくすことが必要であり、本発明の動力回収できる膨張機ではシール前後を高圧と中間圧になるようにしているので、圧縮機構部側と膨張機構部側とを確実にシールしながら、このシールに伴う摺動損失を少なくすることができ、動力回収効率の良い高性能のCO2冷媒を用いた超臨界サイクルによる冷凍空調装置を得ることができる。
【0021】
このような構成の膨張機を用いた冷凍空調装置の冷媒回路を図2に示す。図2(a)は冷房運転を示し、超臨界となる二酸化炭素の冷媒を用い、低圧(Pl)の冷媒はモータにより駆動される低段側の第1圧縮機99で圧縮されて中間圧(Ph−ΔP)となり、その後、第1圧縮機99に直列に配管接続された膨張機1内設の高段側となる圧縮機構部10に吸入・圧縮され、高圧(Ph)のガス状態で四方弁92を経て凝縮行程を行ないガスクーラとなる室外機熱交換器98に至る。このガスクーラで冷却された冷媒は、膨張機1の膨張機構部9で減圧する過程で動力回収され、圧縮機構部10におけるガス圧縮動力を供給する。この膨張機構部9で減圧されて低圧(Pl)となった冷媒は、蒸発器となる室内機熱交換器97で加熱され、その後、四方弁92、アキュムレータ93を経て再び低段側の第1圧縮機99に戻り、冷凍サイクルを形成する。
【0022】
このとき、第1圧縮機99の形式(スクロール圧縮、ロータリー圧縮等)及び密閉容器内が吸入圧であるか吐出圧であるかは問わないが、この実施の形態では高段側の第2圧縮機となる膨張機1内設の圧縮機構部10での密閉容器7内空間は、第1圧縮機99吐出側の中間圧雰囲気(Ph−Δ)としている。 潤滑が必要な第1圧縮機99と膨張機1に内設の圧縮機構部10および膨張機構部9の3ヶ所に潤滑油を保持し、図1に示す膨張側フレーム33に設けられ密閉容器7内の膨張側空間と圧縮側空間を繋ぐ微小孔70と油戻し毛細管71により密閉容器7内に貯留される潤滑油量をバランスさせる。第1圧縮機99と膨張機1に内設した圧縮機構部10に関しては必要レベルの油持出しを許容し、膨張機構部9入口の空間部分で油循環率極小化を図ることができる。膨張機構部9側から微小孔70を介して圧縮機構部10側へ、圧縮機構部10側からアキュムレータ93と第1圧縮機99間の冷媒配管へ油戻し毛細管71を用いて、それぞれ潤滑油(冷凍機油)を戻すことにより、上流の貯留部の冷凍機油が下流の貯留部へ移動してしまうのを避けることができる。
【0023】
この形態の膨張機は膨張機構部が一つの1WAY(一方向)の構成なので、図2(b)に示す暖房運転時は膨張機1による動力回収を行なわない。図2(b)において、膨張機1の圧縮機構部10側の容器から四方弁92へ接続するシェル吐出管20に設けたバイパス弁94を開いて、第1圧縮機99から膨張機1に吸入された冷媒ガスが圧縮機構部10で圧縮されずに素通りしてシェル吐出管20から四方弁92を介してガスクーラとなる室内機熱交換器97を経て、室内機熱交換器97と室外機熱交換器98とを接続して膨張機1をバイパスする配管に設けた膨張弁96で減圧されるように構成されている。膨張弁96にて減圧された後の冷媒は蒸発器である室外機熱交換器98で加熱後、四方弁92,アキュムレータ93を経て第1圧縮機99へ戻る。
【0024】
上述の暖房運転では膨張機1に内設の圧縮機構部10では圧縮を行なわないので、第1圧縮機99にて低圧(Pl)から高圧(Ph)までの圧縮を行ない、圧縮機構部10側の密閉容器7内空間の圧力はPhとなる。そして、室外機熱交換器98と膨張機1に内設の膨張機構部9側を接続する配管に膨張機1から室外機熱交換器98への流れを止める逆止弁95があるため、膨張機1の膨張機構部9側の密閉容器7内空間も高圧(Ph)状態となり、膨張機1内では差圧シールおよび油戻し共に機能せずその必要もなくなる。 膨張機1は圧縮機構部10側の空間が油分離器として機能し、アキュムレータ93と第1圧縮機99を接続する配管へ毛細管71で油戻しを行なうのは冷房運転時と同様である。
【0025】
実施の形態2.
次にこの発明の実施の形態2について、図3、図4により説明する。図3は本発明に係る冷凍空調装置用の別の膨張機の断面図で、膨張機1に内設した圧縮機構部10を低段側の第二圧縮機として用いることを想定している。 図において、密閉容器7の左側に膨張機構部9側、もう一方の右側に圧縮機構部10側を配設し、それぞれを駆動軸63で連結して回転動力を伝達する構成であり、図1と同一また相当部分は同一符号を付けている。膨張機1の密閉容器7の膨張機構部9側に貫通した吸入管16により膨張機構部9に直接吸入された高圧の冷媒ガスは、固定スクロール12と揺動スクロール15よりなる膨張機構9で減圧され、膨張後の冷媒は密閉容器7内に固定された膨張側フレーム33の膨張機構側の空間から吐出管17により蒸発器へ排出される。
【0026】
冷媒の膨張過程において回収された動力は駆動軸8、継手65,駆動軸63を介してロータリー圧縮方式の圧縮機構部10側のローリングピストン26に伝えられる。一方、吸入管18から圧縮機構部10に直接に流入した低圧の冷媒ガスは、圧縮機構部10が回収動力で駆動されることにより、低段の圧縮を行なわれ密閉容器7内の圧縮機構部10側の空間に吐出され、密閉容器7に貫通接続したシェル吐出管20により第1圧縮機99へ排出されるように構成されている。
【0027】
上記のように構成された膨張機では密閉容器7内の空間が、膨張側フレーム33の膨張機構部9側は低圧、圧縮機構部10側は中間圧となり、シール部材64が中間圧と低圧との間の差圧をシールすることになる。前述の如く膨張過程の回収動力は高低圧間の全圧縮動力に対して1/3以下なので、中間圧は低圧に近い中間圧となり、シールしなければならない差圧は小さくなるが、ガスクーラをはさんで状態量が異なっているので確実に分離しなければならないことも同様である。
【0028】
この膨張機1における膨張機構部9側の空間と圧縮機構部10側の空間の隔離に関しては、接触式のシール部材64により確実にシールし、摺動ロスが過大とならないようにシール前後を中間圧と低圧として差圧を小さく抑えている。
【0029】
このような構成の膨張機1を用いた冷凍空調装置の冷媒回路を図4に示す。図4(a)に示す冷房運転時では、低圧(Pl)の冷媒ガスは膨張機1の回収動力によって駆動される圧縮機構部10で圧縮されて中間圧(Pl+ΔP)まで昇圧された後、モータにより駆動される高圧シェルタイプの第1圧縮機99に中間圧(Pl+ΔP)で吸入してさらに圧縮昇圧後、高圧(Ph)状態で吐出され四方弁92を経てガスクーラとなる室外機熱交換器98に流入する。 ガスクーラで冷却された冷媒は、膨張機1の膨張機構部9で減圧する過程で動力回収され、圧縮機構部10における圧縮動力を供給する。 膨張機構部9にて低圧(Pl)となった冷媒は蒸発器である室内機熱交換器97で加熱蒸発され、四方弁92からアキュムレータ93を経て低段側である膨張機1の圧縮機構部10に戻り、冷凍サイクルを形成する。
【0030】
このとき、潤滑が必要な第1圧縮機99と膨張機1の圧縮機構部10および膨張機構部9の3ヶ所に潤滑油(冷凍機油)を保持するため、膨張側フレーム33に設けられて密閉容器7内の膨張側空間と圧縮側空間を繋ぐ微小孔70と第1圧縮機99からの油戻し毛細管72で貯留される潤滑油量をバランスさせる。膨張機1の圧縮機構部10に関しては必要レベルの油持出しを許容し、吐出圧雰囲気の第1圧縮機99で圧縮後のシェル内空間において冷媒から冷凍機油を分離することにより油循環率極小化を図ることができる。第1圧縮機99のシェル内空間からアキュムレータ93と膨張機1に内設された圧縮機構部10を接続する配管へ毛細管72を設けて冷凍機油を戻すことにより、上記圧縮機構部10から第1圧縮機99への冷凍機油の移動に対してバランスさせる。また、膨張機1に内設された膨張機構部9に必要な潤滑油は、微小孔70により圧縮機構部側から約ΔPの差圧により供給される。
【0031】
この形態では、膨張機構部が一つの1WAY膨張機の構成なので、図4(b)に示す暖房運転時は膨張機1による動力回収を行なわない。アキュムレータ93から第1圧縮機99の吸入側へ導き膨張機1をバイパスする配管に設けたバイパス弁94を開いて、アキュムレータ93からの低圧冷媒は膨張機1に内設された圧縮機構部10を経由せずに第1圧縮機99に吸入して圧縮される。そして、圧縮後吐出された高圧の冷媒は、四方弁92から室内機熱交換器97のガスクーラを経て、室内機熱交換器97と室外機熱交換器98とを接続して膨張機1をバイパスする配管に設けた膨張弁96にて減圧される。減圧後の冷媒は室外機熱交換器98の蒸発器で加熱後、四方弁92からアキュムレータ93を経て第1圧縮機99へ戻り、冷凍サイクルを形成する。
【0032】
この暖房運転時においては、膨張機1の圧縮機構部10では圧縮を行なわないので、密閉容器7内の圧縮機構部側の空間は圧力が低圧(Pl)のままで第1圧縮機99にて低圧(Pl)から高圧(Ph)まで昇圧する圧縮を行なう。室内機熱交換器97と膨張機1の膨張機構部9側を接続する配管に設けられ、室内機熱交換器97から膨張機1への冷媒流れを阻止する逆止弁95のため、密閉容器7内の膨張機構部9側の空間も低圧(Pl)状態となり、膨張機1内での差圧シールおよび油戻し共に必要がなくなる。冷房運転時と同様、第1圧縮機99からの油戻し毛細管72により、アキュムレータ93と第1圧縮機99吸入側間の配管へ油戻しを行なう。
【0033】
以上の説明は、何れも冷房運転時用の膨張機1に内設した膨張機構9と流量マッチング用の膨張弁96を備え、暖房運転時は逆止弁により膨張機1を経由せずに膨張弁96にて減圧・膨張させるような形態に関するものであるが、それとは逆に暖房運転時のみ膨張動力回収を行ない、冷房運転時に膨張機をバイパスするような形態も同様に構成できる。
【0034】
実施の形態3.
次に、本発明の実施の形態3について、図5を用いて説明する。
ここでは、図3と同様に構成することが可能な第2圧縮機部分の両側に冷房用および暖房用それぞれの膨張機構部を備えた、所謂2WAY膨張機について説明する。この場合、膨張機に内設した圧縮機構部とその両側に配置した膨張機構部の駆動軸間の継手を一方向にのみ回転伝達可能なローラクラッチとし、片方の膨張機構部により圧縮機構部が駆動される時には、他方の膨張機構部に回転が伝達されないようにする。
【0035】
図5は、2WAY膨張機を用いた冷凍空調装置の冷媒回路図である。図5(a)に示す冷房運転時には、膨張機1に内設した第2圧縮機である圧縮機構部10は冷房用膨張機構部9aの回収動力によって駆動され、低圧(Pl)の冷媒ガスが圧縮昇圧されて中間圧(Pl+ΔP)となってから、モータにより駆動される高圧シェルタイプの第1圧縮機99に吸入される。この第1圧縮機99にて高圧(Ph)まで圧縮された後、第1圧縮機から吐出した冷媒ガスは、四方弁92を経てガスクーラとなる室外機熱交換器98で冷却され、膨張機1の冷房用膨張機構部9aで減圧そして動力回収され、冷房用膨張機構部9aと駆動軸により連結された圧縮機構部10における圧縮動力を供給する。冷房用膨張機構部9aにて低圧(Pl)まで減圧された冷媒は、室内機熱交換器97へ流入しそこで加熱され、四方弁92からアキュムレータ93を経て低段側に相当する2WAYタイプの膨張機1に内設された圧縮機構部10に戻り、冷凍サイクルを形成する。
【0036】
このとき、潤滑が必要な第1圧縮機99と膨張機1に潤滑油(冷凍機油)を貯留し、膨張機1内の圧縮機構部10と膨張機構部9a間に設けた微小孔(図示せず)と第1圧縮機99からアキュムレータ93と膨張機1の圧縮機構部10入口側との接続配管に接続した油戻し毛細管72で冷凍サイクル内に分布する潤滑油量をバランスさせる。膨張機1に内設された圧縮機構部10について最小限の油持出しを許容し、吐出圧雰囲気の第1圧縮機99内部で冷凍機油を含む冷媒から油分離するのは実施の形態2で述べた1WAYタイプの膨張機1での形態と同じである。第1圧縮機99からアキュムレータ93と圧縮機構部10間の接続配管への毛細管72での返油や、微小孔70aによる圧縮機構部10側から膨張機構部9a側への差圧ΔPによる給油についても同様である。
【0037】
また、図5(b)に示す暖房運転時は、四方弁92及び冷房用膨張機構部9a出口側と室内機熱交換器97の間に設けられ室内機熱交換器72から冷房用膨張機構部9aへの流れを閉塞する逆止弁95a,暖房用膨張機構部9b出口側と室外機熱交換器98の間に設けられ室外機熱交換器98から暖房用膨張機構部9bへの流れを閉塞する逆止弁95bにより、室内機熱交換器97のガスクーラで冷却された高圧(Ph)の冷媒は膨張機1の暖房用膨張機構部9bに流入し、動力回収しながら減圧された後、室外機熱交換器98,四方弁92,アキュムレータ93を経て圧縮機構部10で低段側圧縮、そして連続して第1圧縮機99で高段側圧縮の二段圧縮される。このとき、膨張機1内部の圧縮機構部10と膨張機構部9b間の隔離部に設けた微小孔70bにより膨張機構部9b側へ差圧給油すると共に、第1圧縮機99からの油戻し毛細管72でアキュムレータ93と圧縮機構部10間への返油を行なう。
【0038】
また、本発明の実施の形態1〜3に係るいずれの冷凍空調装置も、使用する冷媒として超臨界となる二酸化炭素を用いているので、オゾン層破壊や地球温暖化など地球環境への悪影響が小さい冷凍空調装置を得ることができる。
【0039】
【発明の効果】
以上のように、この発明の冷凍空調装置によれば、電動機によって駆動される第1圧縮機と、第1圧縮機で圧縮された高圧の冷媒ガスを冷却するガスクーラと、ガスクーラによって冷却された冷媒ガスを減圧することにより動力を回収する膨張機構部と、膨張機構部により減圧された冷媒を加熱する蒸発器と、膨張機構部と同一の密閉容器に内設され膨張機構部の回収動力により駆動される第2圧縮機とを備え、第1圧縮機と第2圧縮機は冷媒配管により直列に接続されるとともに、密閉容器内の第2圧縮機が内設された空間は二段圧縮の中間圧力で満たされるように構成したので、圧縮機構部側と膨張機構部側を確実にシールしながら、シールに伴なう摺動損失を少なくすることができ、回収効率の良い高性能の超臨界サイクルによる冷凍空調装置を得ることができる。
【0040】
また、第2圧縮機は第1圧縮機による圧縮後の冷媒を圧縮し、密閉容器内の膨張機構部が内設された空間は高圧雰囲気となるように構成したので、動力回収運転時のガスクーラ以外の熱交換器での油循環率が低い高効率の冷凍空調装置を得ることができる。
【0041】
また、第1圧縮機は第2圧縮機による圧縮後の冷媒を圧縮し、密閉容器内の膨張機機構部が内設された空間は低圧雰囲気となるように構成したので、動力回収運転時の蒸発器以外の熱交換器での油循環率が低い高効率の冷凍空調装置を得ることができる。
【0042】
また、冷媒として二酸化炭素を用いたので、地球環境への悪影響の小さい冷凍空調装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る膨張機を示す断面図である。
【図2】本発明の実施の形態1に係り図1の膨張機を用いた冷媒回路図である。
【図3】本発明の実施の形態2に係る膨張機を示す断面図である。
【図4】本発明の実施の形態2に係り図3の膨張機を用いた冷媒回路図である。
【図5】本発明の実施の形態3に係る冷媒回路図である。
【図6】従来の更に別の膨張機が用いられるサイクルの運転状態を示す説明図である。
【符号の説明】
1 膨張機、 7 密閉容器、 8 駆動軸、 9,9a,9b 膨張機構部、 10 圧縮機構部、 11 モータ、 12 (膨張)シリンダ/固定スクロール、 15 (膨張)ローリングピストン/揺動スクロール、 16 (膨張)吸入管、 17 (膨張)吐出管、 18 (圧縮)吸入管、 19 (圧縮)吐出管、 20 (シェル)吐出管、 21 (圧縮)固定スクロール、 23 (圧縮)揺動スクロール、 24 (圧縮)フレーム、 25 (圧縮)シリンダヘッド、 26 ローリングピストン、 33 (膨張)フレーム、 63 (圧縮)駆動軸、64 シール部材、 65 継手、 70,70a,70b 微小孔、 71油戻し管、 72 油戻し管、 92 四方弁、 93 アキュムレータ、 94 バイパス弁、 95,95a,95b 逆止弁、 96 膨張弁、 97
室内機、 98 室外機、99 第1圧縮機。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigeration air conditioner using a refrigeration cycle using a supercritical refrigerant such as carbon dioxide.
[0002]
[Prior art]
In a conventional compressor with a built-in hermetic expander, an expansion mechanism 9 and a compression mechanism 10 that receive power transmission from each other by a single drive shaft 8 are housed in a hermetic container 7, and the compression mechanism 10 is driven by a motor 11. Then, the refrigerant gas sucked from the compression suction pipe 18 is compressed and discharged from the discharge port 19 into the closed container 7. Then, the refrigerant flowing out of the compression discharge pipe 20 provided at the upper part of the closed container and passing through the condenser of the refrigerant circuit is sucked from the expansion suction pipe 16, and decompressed and expanded in the expander cylinder 12 to expand and discharge the expansion discharge pipe 17. And returns to the compression suction pipe 18 through the evaporator of the refrigerant circuit. The power generated in the expansion process when the refrigerant passes through the expansion mechanism 9 is recovered as a part of the compression power on the compression mechanism 10 side via the drive shaft 8, and the output of the motor 11 is reduced. (For example, see Patent Document 1).
[0003]
In the second conventional compressor with a built-in expander, a compression mechanism 10 is provided at a lower portion of the closed casing 7 and an expansion mechanism 9 is provided at an upper portion, and a motor 11 is provided at a central portion therebetween. The lower end of the drive shaft 8 of the motor is connected to the compression mechanism 10, and the upper end is connected to the expansion mechanism 9. Refrigerant is sucked from an expansion suction pipe 16 provided in the upper portion of the closed container, expanded in the scroll-type expansion mechanism 9, and recovered from the expansion process of the refrigerant discharged from the expansion discharge pipe 17 by the drive shaft 8. (See, for example, Patent Document 2).
[0004]
Further, as a third conventional example, in a compressor with a built-in expander for a Rankine cycle drive air conditioning system, an expansion mechanism 9 is arranged on the right side in a closed container 7 and a compression mechanism 10 is arranged on the left side in a closed vessel 7 to constitute a refrigeration cycle. This is a one-fluid system in which the discharge gas from the compression mechanism 10 and the discharge gas from the expansion mechanism 9 constituting the Rankine cycle are discharged to the closed container case 7. The high-pressure refrigerant gas on the Rankine cycle side sucked from the expansion suction pipe 16 is decompressed by the expansion mechanism 9 and then discharged into the closed container 7. The expansion power recovered in the process of decompression drives the compression mechanism 10 via the drive shaft 8, the joint 65, and the drive shaft 63 of the compression mechanism, and the low-pressure refrigerant gas on the refrigeration cycle side sucked from the compression suction pipe 18. Compress. Then, the compressed refrigerant gas merges with the refrigerant gas expanded in the expansion mechanism section 9 in the closed vessel 7, and is branched from the discharge pipe 17 to the circuits on the Rankine cycle side and the refrigeration cycle side. (For example, see Patent Document 3).
[0005]
[Patent Document 1]
JP-A-59-25097 (page 2, FIG. 7)
[Patent Document 2]
JP 2001-107881A (Page 3-4, FIG. 1)
[Patent Document 3]
JP-A-9-250474 (page 2-3, FIG. 1)
[0006]
[Problems to be solved by the invention]
In the third conventional example, the expansion mechanism 9 is used in the expansion process of the Rankine cycle shown in FIG. 6, and the compression mechanism 10 is used in the compression process of the refrigeration cycle shown in FIG. Since it corresponds to a so-called one-fluid system in which the state quantities are the same, the inside of the sealed container 7 can be used as one space. FIG. 6 is a Mollier diagram with pressure on the vertical axis and enthalpy on the horizontal axis, showing each process of compression, condensation, expansion and evaporation.
[0007]
On the other hand, when the power recovered in the expansion process in the refrigeration cycle instead of the Rankine cycle is used as part of the compression power in the compression process, both high pressure is used after compression and before expansion, or low pressure is used both after expansion and before compression. However, since they have different state quantities, they cannot be used as a single fluid in a closed container.
[0008]
Further, in the above-mentioned second conventional example, the inside of the sealed container is in a low-pressure atmosphere where the expansion mechanism side space discharges the expander, and the high pressure atmosphere is where the side where the motor and the compression mechanism section discharge the compressor is high. Has become. For this reason, an axial force due to the differential pressure acts on the drive shaft that penetrates the frame holding the expansion mechanism, and seals high and low pressures through minute clearances in the bearing.
[0009]
Further, in the first conventional example described above, the inside of the closed container is in the discharge pressure atmosphere of the compression mechanism portion, and no axial force acts on the drive shaft. It is necessary to seal high and low pressure even to a small gap.
[0010]
Furthermore, the situation in which the inside of a closed vessel must be sealed at high and low pressures up to the minute clearance of the moving parts of the compression mechanism section is the same as in a normal rolling piston type refrigerant compressor, but it is similar to a supercritical fluid such as carbon dioxide. In the case of a working refrigerant, the differential pressure increases, so that in the case of a compressor, it is necessary to take measures to reduce the differential pressure, for example, to make the inside of the closed vessel an intermediate pressure atmosphere by two-stage compression.
[0011]
As described above, in an expander that recovers power from the expansion process of the refrigeration cycle and uses it as part of the power in the compression process, transmission of power by a drive shaft or the like between the expansion mechanism and the compression mechanism is performed. In doing so, spaces having different working refrigerant pressures or state quantities must be isolated.
[0012]
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and in an expander in which an expansion mechanism section and a compression mechanism section are housed in a single hermetic container, sliding by sealing a differential pressure between the expansion side and the compression side. An object of the present invention is to provide a refrigeration / air-conditioning apparatus using a compressor with a built-in expander that reliably separates an expansion mechanism and a compression mechanism while suppressing loss such as movement.
[0013]
[Means for Solving the Problems]
A refrigeration / air-conditioning apparatus according to the present invention is configured such that a first compressor driven by an electric motor, a gas cooler for cooling high-pressure refrigerant gas compressed by the first compressor, and a refrigerant gas cooled by the gas cooler are depressurized. An expansion mechanism for recovering power, an evaporator for heating the refrigerant decompressed by the expansion mechanism, and a second compressor provided in the same closed container as the expansion mechanism and driven by the recovery power of the expansion mechanism The first compressor and the second compressor are connected in series by a refrigerant pipe, and the space in which the second compressor is provided in the closed vessel is filled with the intermediate pressure of the two-stage compression. It is composed.
[0014]
The second compressor compresses the refrigerant after compression by the first compressor, and the space in which the expansion mechanism in the closed container is provided has a high-pressure atmosphere.
[0015]
The first compressor compresses the refrigerant compressed by the second compressor, and the space in which the expander mechanism is provided in the closed vessel has a low-pressure atmosphere.
[0016]
Further, carbon dioxide is used as a refrigerant.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, Embodiment 1 of the present invention will be described. FIG. 1 is a cross-sectional view of an expander capable of recovering power used in a refrigeration / air-conditioning apparatus according to the present invention. Is used. The expander 1 shown in FIG. 1 has an expansion mechanism 9 on the left side inside a sealed container 7 and a compression mechanism 10 serving as a second compressor on the other right side, which are connected by a drive shaft 63 and rotated. It is configured to transmit power. In the drawing, the high-pressure refrigerant gas sucked from the expansion suction pipe 16 into the space inside the closed casing 7 on the side of the expansion mechanism 9 fixed to the expansion frame 33 in the closed casing 7 is supplied to the fixed scroll 12 and the oscillating scroll 15. The refrigerant after being decompressed and expanded by the expansion mechanism 9 is directly discharged from the expansion discharge pipe 17 to the evaporator.
[0018]
The power recovered in the expansion process of the refrigerant is supplied to the expansion-side drive shaft 8 fixed to the orbiting scroll 15 on the expansion mechanism 9 side, and a joint 65 for transmitting the rotation of the expansion-side drive shaft 8 to the compression-side drive shaft 63. Is transmitted to the orbiting scroll 23 on the compression mechanism 10 side fixed to the compression side frame 24 via the compression side drive shaft 63. After being compressed by a first compressor 99, which will be described later, connected by a refrigerant pipe, it is between a high-pressure condensation and a low-pressure evaporation flowing into a closed container from a compression suction pipe 18 provided on a compression mechanism side of the closed container 7. The intermediate-pressure refrigerant gas is subjected to a high-stage compression stroke by the reciprocal operation of the orbiting scroll 23 and the fixed scroll 12 on the compression side by the recovered power in the expansion process of the expansion mechanism 9. The gas is directly discharged from the compression discharge pipe 20 to the gas cooler without flowing out into the closed container 7.
[0019]
In the expander configured as described above, the space in one closed container 7 is in a state of high-pressure refrigerant on the side of the expansion mechanism 9 having the expansion-side frame 33, while the space is compressed from the joint 65 and the compression-side drive shaft 63. The mechanism section 10 is in the state of intermediate-pressure refrigerant, and the seal member 64 provided on the bearing holding section of the expansion-side drive shaft 8 in the expansion-side frame 33 seals the differential pressure between high pressure and intermediate pressure. Since the recovered power in the expansion process is not large (1/3 or less) as a percentage of the total compression power between the high and low pressures of the working refrigerant between the gas cooler and the evaporator, the intermediate pressure in this two-stage compression is an intermediate pressure close to the high pressure. The differential pressure required to seal between the expansion mechanism side and the compression mechanism side in the sealed container 7 is reduced. However, during the process of passing through the gas cooler and flowing into the expansion suction pipe 16 after discharging from the compression discharge pipe 20 as described above, the refrigerant changes from the superheated gas to a liquid in the supercooled region or a supercritical state before and after this gas cooler. And the state quantity is different, so that the refrigerant must be surely separated.
[0020]
Concerning the separation of the space inside the container on the side of the expansion mechanism 9 and the space inside the container on the side of the compression mechanism 10, as in the second conventional example described above, a method of sealing with a slide bearing clearance between the drive shaft and the frame may be considered. However, in the case of non-contact seals, some leakage must be allowed. On the other hand, in the embodiment shown in FIG. 1, it is possible to reliably seal with the contact-type sealing member 64 between the expansion-side frame 33 and the expansion-side drive shaft 8, but a sliding loss occurs. It is necessary to reduce the differential pressure for sealing as much as possible, and in the expander capable of recovering power according to the present invention, the high pressure and the intermediate pressure are set before and after the seal, so that the compression mechanism side and the expansion mechanism side And the sliding loss associated with this seal can be reduced, and a refrigeration / air-conditioning apparatus using a supercritical cycle using a high-performance CO2 refrigerant with high power recovery efficiency can be obtained.
[0021]
FIG. 2 shows a refrigerant circuit of a refrigeration / air-conditioning apparatus using an expander having such a configuration. FIG. 2A shows a cooling operation in which a refrigerant of supercritical carbon dioxide is used, and a low-pressure (P1) refrigerant is compressed by a first compressor 99 on a low-stage side driven by a motor to have an intermediate pressure (P1). (Ph−ΔP), and then sucked and compressed by the compression mechanism 10 on the higher stage inside the expander 1 that is connected in series with the first compressor 99 by piping. Through the valve 92, the heat reaches an outdoor unit heat exchanger 98 serving as a gas cooler which performs a condensation process. The refrigerant cooled by the gas cooler is recovered in the process of reducing pressure in the expansion mechanism 9 of the expander 1, and supplies gas compression power in the compression mechanism 10. The refrigerant that has been reduced in pressure by the expansion mechanism 9 to a low pressure (Pl) is heated in the indoor unit heat exchanger 97 serving as an evaporator, and then passes through the four-way valve 92 and the accumulator 93 again to the low-stage first. Returning to the compressor 99, a refrigeration cycle is formed.
[0022]
At this time, it does not matter whether the type of the first compressor 99 (scroll compression, rotary compression, or the like) and the pressure inside the sealed container is the suction pressure or the discharge pressure. The space inside the sealed container 7 in the compression mechanism unit 10 inside the expander 1 serving as a compressor is an intermediate pressure atmosphere (Ph-Δ) on the discharge side of the first compressor 99. The lubricating oil is held at three places of the first compressor 99 and the expander 1 which require lubrication, ie, the compression mechanism 10 and the expansion mechanism 9 provided in the expander 1, and is provided on the expansion-side frame 33 shown in FIG. The amount of the lubricating oil stored in the closed container 7 is balanced by the minute holes 70 connecting the expansion side space and the compression side space inside and the oil return capillary tube 71. The first compressor 99 and the compression mechanism 10 provided in the expander 1 allow a required level of oil take-out, and the oil circulation rate can be minimized in the space at the entrance of the expansion mechanism 9. Using an oil return capillary 71 from the expansion mechanism 9 to the compression mechanism 10 via the micro holes 70 and from the compression mechanism 10 to the refrigerant pipe between the accumulator 93 and the first compressor 99, lubricating oil ( By returning the refrigerating machine oil), the refrigerating machine oil in the upstream storage unit can be prevented from moving to the downstream storage unit.
[0023]
Since the expander of this embodiment has a one-way (one-way) expansion mechanism, the power recovery by the expander 1 is not performed during the heating operation shown in FIG. In FIG. 2B, the bypass valve 94 provided in the shell discharge pipe 20 connected to the four-way valve 92 from the container on the compression mechanism 10 side of the expander 1 is opened, and the first compressor 99 sucks into the expander 1. The refrigerant gas passed through without being compressed by the compression mechanism section 10 passes through the indoor unit heat exchanger 97 serving as a gas cooler from the shell discharge pipe 20 via the four-way valve 92, and the indoor unit heat exchanger 97 and the outdoor unit heat The pressure is reduced by an expansion valve 96 provided in a pipe connecting the exchanger 98 and bypassing the expander 1. The refrigerant after being decompressed by the expansion valve 96 is heated by the outdoor unit heat exchanger 98 as an evaporator, and then returns to the first compressor 99 via the four-way valve 92 and the accumulator 93.
[0024]
In the above-mentioned heating operation, since the compression mechanism 10 provided inside the expander 1 does not perform compression, the first compressor 99 performs compression from low pressure (Pl) to high pressure (Ph), and the compression mechanism 10 side. The pressure in the space inside the closed container 7 becomes Ph. Since there is a check valve 95 for stopping the flow from the expander 1 to the outdoor unit heat exchanger 98 in a pipe connecting the outdoor unit heat exchanger 98 and the expansion mechanism 9 provided inside the expander 1, the expansion is performed. The space inside the sealed container 7 on the side of the expansion mechanism 9 of the machine 1 is also in a high-pressure (Ph) state, and the differential pressure seal and the oil return do not function nor need in the expander 1. In the expander 1, the space on the side of the compression mechanism 10 functions as an oil separator, and the oil is returned to the pipe connecting the accumulator 93 and the first compressor 99 by the capillary 71 in the same manner as in the cooling operation.
[0025]
Embodiment 2 FIG.
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a cross-sectional view of another expander for a refrigeration / air-conditioning apparatus according to the present invention. It is assumed that the compression mechanism 10 provided inside the expander 1 is used as a second compressor on the lower stage. In the figure, the expansion mechanism 9 side is provided on the left side of the sealed container 7 and the compression mechanism section 10 side is provided on the other right side, and each is connected by a drive shaft 63 to transmit rotational power. The same or corresponding parts are denoted by the same reference numerals. The high-pressure refrigerant gas directly sucked into the expansion mechanism 9 by the suction pipe 16 penetrating the expansion mechanism 9 of the closed casing 7 of the expander 1 is decompressed by the expansion mechanism 9 including the fixed scroll 12 and the orbiting scroll 15. The expanded refrigerant is discharged from the space on the expansion mechanism side of the expansion-side frame 33 fixed in the closed container 7 to the evaporator by the discharge pipe 17.
[0026]
The power recovered in the expansion process of the refrigerant is transmitted to the rolling piston 26 on the side of the rotary compression type compression mechanism 10 via the drive shaft 8, the joint 65, and the drive shaft 63. On the other hand, the low-pressure refrigerant gas that has flowed directly from the suction pipe 18 into the compression mechanism 10 is compressed at a low stage by the compression mechanism 10 being driven by the recovery power, so that the compression mechanism in the closed container 7 is compressed. It is configured to be discharged to the space on the side of the 10 and discharged to the first compressor 99 by a shell discharge pipe 20 penetratingly connected to the closed container 7.
[0027]
In the expander configured as described above, the space in the sealed container 7 is such that the expansion mechanism section 9 side of the expansion side frame 33 has a low pressure, the compression mechanism section 10 has an intermediate pressure, and the seal member 64 has an intermediate pressure and a low pressure. To seal the pressure difference between the two. As described above, the recovery power in the expansion process is 1/3 or less of the total compression power between high and low pressures. Therefore, the intermediate pressure becomes an intermediate pressure close to low pressure, and the differential pressure that must be sealed becomes small. The same is true of the fact that the state quantities are different and must be reliably separated.
[0028]
Regarding the separation of the space on the side of the expansion mechanism 9 and the space on the side of the compression mechanism 10 in the expander 1, the contact-type seal member 64 is used to reliably seal the space between the seals before and after the seal so that the sliding loss is not excessive. The differential pressure is kept small as pressure and low pressure.
[0029]
FIG. 4 shows a refrigerant circuit of a refrigeration air conditioner using the expander 1 having such a configuration. In the cooling operation shown in FIG. 4A, the low-pressure (Pl) refrigerant gas is compressed by the compression mechanism 10 driven by the recovery power of the expander 1, and after being boosted to the intermediate pressure (Pl + ΔP), An outdoor unit heat exchanger 98 which is sucked at an intermediate pressure (Pl + ΔP) into a first compressor 99 of a high-pressure shell driven by a compressor, further compressed and pressurized, discharged in a high-pressure (Ph) state, passes through a four-way valve 92 and becomes a gas cooler 98. Flows into. The refrigerant cooled by the gas cooler is recovered in the process of being decompressed by the expansion mechanism 9 of the expander 1, and supplies compression power in the compression mechanism 10. The refrigerant which has become low pressure (Pl) in the expansion mechanism 9 is heated and evaporated in the indoor unit heat exchanger 97 as an evaporator, passes through the four-way valve 92 via the accumulator 93, and the compression mechanism of the expander 1 on the lower stage. Returning to 10, a refrigeration cycle is formed.
[0030]
At this time, in order to hold lubricating oil (refrigerating machine oil) in three places of the first compressor 99 and the compression mechanism section 10 and the expansion mechanism section 9 of the expander 1 which require lubrication, the lubricating oil is provided on the expansion side frame 33 and hermetically sealed. The amount of lubricating oil stored in the micro holes 70 connecting the expansion side space and the compression side space in the container 7 and the oil return capillary tube 72 from the first compressor 99 is balanced. With respect to the compression mechanism section 10 of the expander 1, the required level of oil can be taken out, and the refrigerating machine oil is minimized by separating the refrigerating machine oil from the refrigerant in the space in the shell after compression by the first compressor 99 in the discharge pressure atmosphere. Can be achieved. By providing a capillary tube 72 from the inner space of the shell of the first compressor 99 to the pipe connecting the accumulator 93 and the compression mechanism unit 10 provided in the expander 1, and returning the refrigerating machine oil, the first compression mechanism unit 10 The movement of the refrigerating machine oil to the compressor 99 is balanced. Further, the lubricating oil required for the expansion mechanism section 9 provided inside the expander 1 is supplied from the compression mechanism section side by a small pressure difference pressure of about ΔP.
[0031]
In this embodiment, since the expansion mechanism is configured as one 1-way expander, power recovery by the expander 1 is not performed during the heating operation shown in FIG. By opening the bypass valve 94 provided in the pipe that leads from the accumulator 93 to the suction side of the first compressor 99 and bypasses the expander 1, the low-pressure refrigerant from the accumulator 93 passes through the compression mechanism 10 provided in the expander 1. It is sucked into the first compressor 99 and compressed without passing through. The high-pressure refrigerant discharged after compression passes through the gas cooler of the indoor unit heat exchanger 97 from the four-way valve 92, connects the indoor unit heat exchanger 97 and the outdoor unit heat exchanger 98, and bypasses the expander 1. The pressure is reduced by an expansion valve 96 provided in the piping. After the depressurized refrigerant is heated by the evaporator of the outdoor unit heat exchanger 98, the refrigerant returns from the four-way valve 92 to the first compressor 99 via the accumulator 93 to form a refrigeration cycle.
[0032]
During the heating operation, since the compression mechanism 10 of the expander 1 does not perform compression, the space on the compression mechanism side in the sealed container 7 remains at a low pressure (Pl) by the first compressor 99. Compression is performed to increase the pressure from low pressure (Pl) to high pressure (Ph). A sealed container for a check valve 95 provided on a pipe connecting the indoor unit heat exchanger 97 and the expansion mechanism 9 side of the expander 1 to prevent a refrigerant flow from the indoor unit heat exchanger 97 to the expander 1 The space on the side of the expansion mechanism 9 inside the expansion unit 7 is also in a low pressure (Pl) state, and there is no need for both the differential pressure seal and the oil return in the expansion machine 1. As in the cooling operation, the oil is returned to the pipe between the accumulator 93 and the suction side of the first compressor 99 by the oil return capillary tube 72 from the first compressor 99.
[0033]
Each of the above descriptions includes the expansion mechanism 9 provided inside the expansion unit 1 for the cooling operation and the expansion valve 96 for the flow rate matching. In the heating operation, the expansion valve 9 is expanded without passing through the expansion unit 1 by the check valve. Although this embodiment relates to a mode in which the pressure is reduced and expanded by the valve 96, a mode in which the expansion power is recovered only during the heating operation and the expander is bypassed during the cooling operation can be similarly configured.
[0034]
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described with reference to FIG.
Here, a so-called 2WAY expander will be described in which expansion mechanisms for cooling and heating are provided on both sides of a second compressor portion that can be configured in the same manner as in FIG. In this case, the joint between the compression mechanism provided inside the expander and the drive shafts of the expansion mechanisms disposed on both sides thereof is a roller clutch capable of transmitting rotation in only one direction, and the compression mechanism is controlled by one of the expansion mechanisms. When driven, rotation is prevented from being transmitted to the other expansion mechanism.
[0035]
FIG. 5 is a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus using a 2-way expander. During the cooling operation shown in FIG. 5A, the compression mechanism unit 10 as the second compressor provided in the expander 1 is driven by the recovery power of the cooling expansion mechanism unit 9a, and the low-pressure (Pl) refrigerant gas is discharged. After being compressed and raised to an intermediate pressure (Pl + ΔP), it is sucked into a high-pressure shell-type first compressor 99 driven by a motor. After being compressed to a high pressure (Ph) by the first compressor 99, the refrigerant gas discharged from the first compressor is cooled by an outdoor unit heat exchanger 98 serving as a gas cooler via a four-way valve 92, and The pressure is reduced and the power is recovered by the cooling expansion mechanism 9a, and the compression power is supplied to the compression mechanism 10 connected to the cooling expansion mechanism 9a by a drive shaft. The refrigerant decompressed to a low pressure (Pl) by the cooling expansion mechanism 9a flows into the indoor unit heat exchanger 97, is heated there, passes through the four-way valve 92, passes through the accumulator 93, and is a 2-way type expansion corresponding to the lower stage. Returning to the compression mechanism section 10 provided inside the machine 1, a refrigeration cycle is formed.
[0036]
At this time, lubricating oil (refrigerating machine oil) is stored in the first compressor 99 and the expander 1 that require lubrication, and micro holes (not shown) provided in the expander 1 between the compression mechanism 10 and the expansion mechanism 9a. And the oil return capillary 72 connected to the connection pipe from the first compressor 99 to the accumulator 93 and the inlet of the compression mechanism 10 of the expander 1 to balance the amount of lubricating oil distributed in the refrigeration cycle. As described in the second embodiment, the compression mechanism unit 10 provided inside the expander 1 allows a minimum amount of oil to be taken out, and oil is separated from the refrigerant including the refrigerating machine oil inside the first compressor 99 in the discharge pressure atmosphere. The configuration is the same as that of the 1-way type expander 1 described above. Oil return from the first compressor 99 to the connection pipe between the accumulator 93 and the compression mechanism unit 10 by the capillary tube 72 and oil supply by the differential pressure ΔP from the compression mechanism unit 10 side to the expansion mechanism unit 9a side by the micro holes 70a. The same is true for
[0037]
In the heating operation shown in FIG. 5B, the cooling mechanism is provided between the four-way valve 92 and the outlet side of the cooling expansion mechanism 9 a and the indoor unit heat exchanger 97. A check valve 95a for blocking the flow to 9a, and provided between the outlet side of the heating expansion mechanism 9b and the outdoor unit heat exchanger 98 to block the flow from the outdoor unit heat exchanger 98 to the heating expansion mechanism 9b. The high-pressure (Ph) refrigerant cooled by the gas cooler of the indoor unit heat exchanger 97 flows into the heating expansion mechanism 9b of the expander 1 by the check valve 95b, and is decompressed while recovering power. Through the heat exchanger 98, the four-way valve 92, and the accumulator 93, the compression mechanism section 10 performs low-stage compression, and successively performs first-compressor two-stage compression using the first compressor 99. At this time, the differential pressure oil supply to the expansion mechanism 9b side is performed by the minute holes 70b provided in the separation portion between the compression mechanism 10 and the expansion mechanism 9b inside the expander 1, and the oil return capillary from the first compressor 99 is supplied. At 72, oil return between the accumulator 93 and the compression mechanism 10 is performed.
[0038]
In addition, any of the refrigerating and air-conditioning apparatuses according to Embodiments 1 to 3 of the present invention uses supercritical carbon dioxide as a refrigerant to be used, so that adverse effects on the global environment such as ozone depletion and global warming are reduced. A small refrigeration air conditioner can be obtained.
[0039]
【The invention's effect】
As described above, according to the refrigeration / air-conditioning apparatus of the present invention, the first compressor driven by the electric motor, the gas cooler for cooling the high-pressure refrigerant gas compressed by the first compressor, and the refrigerant cooled by the gas cooler An expansion mechanism that recovers power by reducing the pressure of the gas, an evaporator that heats the refrigerant decompressed by the expansion mechanism, and an expansion mechanism that is installed in the same closed container as the expansion mechanism and is driven by the recovery power of the expansion mechanism The first compressor and the second compressor are connected in series by a refrigerant pipe, and the space in the closed vessel where the second compressor is provided is an intermediate space between the two-stage compression. The structure is designed to be filled with pressure, so that the compression mechanism and expansion mechanism can be reliably sealed, and sliding loss associated with the seal can be reduced. Refrigeration by cycle It is possible to obtain a control apparatus.
[0040]
Further, the second compressor compresses the refrigerant after compression by the first compressor, and the space in which the expansion mechanism in the closed vessel is provided has a high-pressure atmosphere. A high-efficiency refrigeration and air-conditioning system having a low oil circulation rate in other heat exchangers can be obtained.
[0041]
In addition, the first compressor compresses the refrigerant after compression by the second compressor, and the space in which the expander mechanism in the closed vessel is provided has a low-pressure atmosphere. A high-efficiency refrigeration / air-conditioning device having a low oil circulation rate in a heat exchanger other than the evaporator can be obtained.
[0042]
Further, since carbon dioxide is used as the refrigerant, a refrigeration / air-conditioning apparatus having a small adverse effect on the global environment can be obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an expander according to Embodiment 1 of the present invention.
FIG. 2 is a refrigerant circuit diagram using the expander of FIG. 1 according to the first embodiment of the present invention.
FIG. 3 is a sectional view showing an expander according to Embodiment 2 of the present invention.
FIG. 4 is a refrigerant circuit diagram using the expander of FIG. 3 according to the second embodiment of the present invention.
FIG. 5 is a refrigerant circuit diagram according to Embodiment 3 of the present invention.
FIG. 6 is an explanatory diagram showing an operating state of a cycle in which another conventional expander is used.
[Explanation of symbols]
Reference Signs List 1 expander, 7 sealed container, 8 drive shaft, 9, 9a, 9b expansion mechanism, 10 compression mechanism, 11 motor, 12 (expansion) cylinder / fixed scroll, 15 (expansion) rolling piston / oscillating scroll, 16 (Expansion) suction pipe, 17 (expansion) discharge pipe, 18 (compression) suction pipe, 19 (compression) discharge pipe, 20 (shell) discharge pipe, 21 (compression) fixed scroll, 23 (compression) oscillating scroll, 24 (Compression) frame, 25 (compression) cylinder head, 26 rolling piston, 33 (expansion) frame, 63 (compression) drive shaft, 64 seal member, 65 joint, 70, 70a, 70b micro hole, 71 oil return pipe, 72 Oil return pipe, 92 four-way valve, 93 accumulator, 94 bypass valve, 95, 95a, 95b check valve, 96 expansion valve, 97
Indoor unit, 98 outdoor unit, 99 first compressor.

Claims (4)

電動機によって駆動される第1圧縮機と、前記第1圧縮機で圧縮された高圧の冷媒ガスを冷却するガスクーラと、前記ガスクーラによって冷却された冷媒ガスを減圧することにより動力を回収する膨張機構部と、前記膨張機構部により減圧された冷媒を加熱する蒸発器と、前記膨張機構部と同一の密閉容器に内設され前記膨張機構部の回収動力により駆動される第2圧縮機とを備え、前記第1圧縮機と第2圧縮機は冷媒配管により直列に接続されるとともに、前記密閉容器内の第2圧縮機が内設された空間は二段圧縮の中間圧力で満たされるようにしたことを特徴とする冷凍空調装置。A first compressor driven by an electric motor, a gas cooler for cooling high-pressure refrigerant gas compressed by the first compressor, and an expansion mechanism for recovering power by reducing the pressure of the refrigerant gas cooled by the gas cooler And an evaporator that heats the refrigerant decompressed by the expansion mechanism, and a second compressor that is provided in the same closed container as the expansion mechanism and is driven by the recovery power of the expansion mechanism. The first compressor and the second compressor are connected in series by a refrigerant pipe, and a space in which the second compressor is provided in the closed container is filled with an intermediate pressure of two-stage compression. A refrigeration air conditioner characterized by the above-mentioned. 前記第2圧縮機は前記第1圧縮機による圧縮後の冷媒を圧縮し、前記密閉容器内の膨張機構部が内設された空間は高圧雰囲気となるように構成したことを特徴とする請求項1記載の冷凍空調装置。The said 2nd compressor compresses the refrigerant | coolant after the compression by the said 1st compressor, The space where the expansion mechanism part in the said sealed container was provided was comprised so that it might become high pressure atmosphere. 2. The refrigeration and air-conditioning apparatus according to 1. 前記第1圧縮機は前記第2圧縮機による圧縮後の冷媒を圧縮し、前記密閉容器内の膨張機機構部が内設された空間は低圧雰囲気となるように構成したことを特徴とする請求項1記載の冷凍空調装置。The said 1st compressor compresses the refrigerant | coolant after the compression by the said 2nd compressor, The space in which the expander mechanism part was installed in the said sealed container was comprised so that it might be set to low pressure atmosphere. Item 7. A refrigeration and air-conditioning apparatus according to Item 1. 冷媒として二酸化炭素を用いたことを特徴とする請求項1乃至請求項3のいずれかに記載の冷凍空調装置。The refrigeration / air-conditioning apparatus according to any one of claims 1 to 3, wherein carbon dioxide is used as the refrigerant.
JP2003042153A 2003-02-20 2003-02-20 Refrigerating air-conditioning device Withdrawn JP2004251528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003042153A JP2004251528A (en) 2003-02-20 2003-02-20 Refrigerating air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003042153A JP2004251528A (en) 2003-02-20 2003-02-20 Refrigerating air-conditioning device

Publications (1)

Publication Number Publication Date
JP2004251528A true JP2004251528A (en) 2004-09-09

Family

ID=33025508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042153A Withdrawn JP2004251528A (en) 2003-02-20 2003-02-20 Refrigerating air-conditioning device

Country Status (1)

Country Link
JP (1) JP2004251528A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113447A (en) * 2005-10-19 2007-05-10 Matsushita Electric Ind Co Ltd Expander integrated compressor and refrigeration cycle device
WO2008038366A1 (en) * 2006-09-28 2008-04-03 Mitsubishi Electric Corporation Scroll expander
EP1939547A1 (en) * 2005-08-26 2008-07-02 Mitsubishi Electric Corporation Refrigerating air conditioner
JP2010043556A (en) * 2008-08-08 2010-02-25 Mitsubishi Electric Corp Expander unit and refrigeration cycle device including the same
KR101176452B1 (en) 2005-09-27 2012-08-30 삼성전자주식회사 Refrigerating cycle
CN103062948A (en) * 2012-12-29 2013-04-24 宁波奥克斯电气有限公司 Dual parallel compressor screw water chilling unit
CN103423909A (en) * 2013-09-12 2013-12-04 张周卫 Spiral compression-expansion refrigerator
CN103512278A (en) * 2012-06-27 2014-01-15 广东美芝制冷设备有限公司 Refrigerating plant
JP2014145556A (en) * 2013-01-30 2014-08-14 Mitsubishi Heavy Ind Ltd Two-stage compression device and refrigeration/air-conditioning apparatus employing the same
WO2016201623A1 (en) * 2015-06-16 2016-12-22 广东美芝制冷设备有限公司 Refrigeration cycle device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1939547A1 (en) * 2005-08-26 2008-07-02 Mitsubishi Electric Corporation Refrigerating air conditioner
EP1939547A4 (en) * 2005-08-26 2012-07-04 Mitsubishi Electric Corp Refrigerating air conditioner
KR101176452B1 (en) 2005-09-27 2012-08-30 삼성전자주식회사 Refrigerating cycle
JP2007113447A (en) * 2005-10-19 2007-05-10 Matsushita Electric Ind Co Ltd Expander integrated compressor and refrigeration cycle device
JP4682795B2 (en) * 2005-10-19 2011-05-11 パナソニック株式会社 Expander-integrated compressor and refrigeration cycle apparatus
WO2008038366A1 (en) * 2006-09-28 2008-04-03 Mitsubishi Electric Corporation Scroll expander
JPWO2008038366A1 (en) * 2006-09-28 2010-01-28 三菱電機株式会社 Scroll expander
JP4607221B2 (en) * 2006-09-28 2011-01-05 三菱電機株式会社 Scroll expander
US8128388B2 (en) 2006-09-28 2012-03-06 Mitsubishi Electric Corporation Scroll-type expansion machine
JP2010043556A (en) * 2008-08-08 2010-02-25 Mitsubishi Electric Corp Expander unit and refrigeration cycle device including the same
CN103512278A (en) * 2012-06-27 2014-01-15 广东美芝制冷设备有限公司 Refrigerating plant
CN103512278B (en) * 2012-06-27 2015-11-18 广东美芝制冷设备有限公司 A kind of refrigerating plant
CN103062948A (en) * 2012-12-29 2013-04-24 宁波奥克斯电气有限公司 Dual parallel compressor screw water chilling unit
CN103062948B (en) * 2012-12-29 2015-04-08 宁波奥克斯电气有限公司 Dual parallel compressor screw water chilling unit
JP2014145556A (en) * 2013-01-30 2014-08-14 Mitsubishi Heavy Ind Ltd Two-stage compression device and refrigeration/air-conditioning apparatus employing the same
CN103423909A (en) * 2013-09-12 2013-12-04 张周卫 Spiral compression-expansion refrigerator
WO2016201623A1 (en) * 2015-06-16 2016-12-22 广东美芝制冷设备有限公司 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP4875484B2 (en) Multistage compressor
JP5178560B2 (en) Refrigeration cycle equipment
JP4075429B2 (en) Refrigeration air conditioner
AU2007241898B2 (en) Refrigeration system
EP1215449A1 (en) Multi-stage compression refrigerating device
JP4013981B2 (en) Refrigeration air conditioner
EP2551613B1 (en) Refrigeration cycle apparatus and method for operating same
EP1564507A2 (en) Refrigerant cycle apparatus
CN102510985A (en) Refrigeration cycle device
JP2007255889A (en) Refrigerating air conditioning device
JP5036593B2 (en) Refrigeration cycle equipment
JP4607221B2 (en) Scroll expander
JP2004251528A (en) Refrigerating air-conditioning device
EP1509733B1 (en) Expander driven motor for auxiliary machinery
JPH02230995A (en) Compressor for heat pump and operating method thereof
JP4964160B2 (en) Refrigeration cycle equipment
JP5414811B2 (en) Positive displacement expander and refrigeration cycle apparatus using the positive displacement expander
JP3870951B2 (en) Refrigeration cycle apparatus and control method thereof
JP2009063247A (en) Refrigeration cycle device, and fluid machine using it
JP4273898B2 (en) Refrigeration air conditioner
JP2009162438A (en) Air conditioner and its operating method
JP4682795B2 (en) Expander-integrated compressor and refrigeration cycle apparatus
JP2012042110A (en) Refrigerating cycle device
JP2000088373A (en) Compressive refrigerating machine
WO2012104934A1 (en) Scroll expander, and refrigeration cycle with the scroll expander

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080312