JP5036593B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP5036593B2
JP5036593B2 JP2008045424A JP2008045424A JP5036593B2 JP 5036593 B2 JP5036593 B2 JP 5036593B2 JP 2008045424 A JP2008045424 A JP 2008045424A JP 2008045424 A JP2008045424 A JP 2008045424A JP 5036593 B2 JP5036593 B2 JP 5036593B2
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
outlet
expander
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008045424A
Other languages
Japanese (ja)
Other versions
JP2009204201A (en
Inventor
文順 咲間
寛 長谷川
賢宣 和田
敦雄 岡市
信吾 大八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008045424A priority Critical patent/JP5036593B2/en
Publication of JP2009204201A publication Critical patent/JP2009204201A/en
Application granted granted Critical
Publication of JP5036593B2 publication Critical patent/JP5036593B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supercharger (AREA)

Description

本発明は、冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus.

冷凍サイクル装置として、主たる圧縮機(主圧縮機)に供給する冷媒を予備的に圧縮する圧縮機(副圧縮機)を備えた構造のものが知られている。一般に、このような冷凍サイクル装置は、冷媒を圧縮する主圧縮機、圧縮された冷媒を冷却する放熱器、冷却された冷媒を膨張させる膨張機、膨張された冷媒を蒸発させる蒸発器、及び蒸発器から流出した冷媒を予備的に圧縮して主圧縮機へ送り出す副圧縮機が順に流路で接続されて成る冷媒回路を備えている。また、このような副圧縮機を備えた冷凍サイクル装置において、膨張機と副圧縮機の駆動軸を一軸に連結して、膨張機で冷媒から回収した動力で副圧縮機を駆動するように構成された動力回収型の冷凍サイクル装置も知られている。特許文献1〜4では、動力回収型の冷凍サイクル装置又は空気調和装置が示されている。   As a refrigeration cycle apparatus, a structure having a compressor (sub-compressor) that preliminarily compresses refrigerant supplied to a main compressor (main compressor) is known. In general, such a refrigeration cycle apparatus includes a main compressor that compresses refrigerant, a radiator that cools the compressed refrigerant, an expander that expands the cooled refrigerant, an evaporator that evaporates the expanded refrigerant, and evaporation A refrigerant circuit is provided in which a sub-compressor that preliminarily compresses the refrigerant flowing out of the vessel and sends it to the main compressor is connected in order through a flow path. Further, in the refrigeration cycle apparatus provided with such a sub-compressor, the expansion shaft and the drive shaft of the sub-compressor are connected to one shaft, and the sub-compressor is driven by the power recovered from the refrigerant by the expander. A power recovery type refrigeration cycle apparatus is also known. Patent Documents 1 to 4 show a power recovery type refrigeration cycle apparatus or an air conditioner.

特許文献1に記載された冷凍サイクル装置は、主圧縮機、放熱器、膨張機、蒸発器、及び副圧縮機が順に流路で接続されて成る冷媒回路を備え、動力軸が一軸に連結された前記膨張機と前記副圧縮機とは潤滑油レシーバ及び液冷媒レシーバを兼ねた一つの密閉容器内に配置されている。   The refrigeration cycle apparatus described in Patent Document 1 includes a refrigerant circuit in which a main compressor, a radiator, an expander, an evaporator, and a sub-compressor are connected in order through a flow path, and a power shaft is coupled to one shaft. The expander and the sub-compressor are disposed in a single sealed container that also serves as a lubricating oil receiver and a liquid refrigerant receiver.

特許文献2に記載された冷凍サイクル装置は、主圧縮機、放熱器、膨張機、蒸発器、副圧縮機、及び冷媒を貯留する機能を有する吸入アキュムレータが順に流路で接続されて成る冷媒回路を備え、動力軸が一軸に連結された前記膨張機と前記副圧縮機とは潤滑油レシーバ及び液冷媒レシーバを兼ねた一つの密閉容器内に配置されている。   A refrigeration cycle apparatus described in Patent Document 2 includes a refrigerant circuit in which a main compressor, a radiator, an expander, an evaporator, a sub-compressor, and a suction accumulator having a function of storing refrigerant are connected in order through a flow path. The expander and the sub-compressor, each having a power shaft connected to a single shaft, are arranged in a single sealed container that also serves as a lubricating oil receiver and a liquid refrigerant receiver.

また、特許文献3の図4に記載された空気調和装置は、暖房運転時において、主圧縮機、室内熱交換器、室内減圧装置、余剰の冷媒を貯えた受液器、膨張機、熱交換器、室外熱交換器、及び副圧縮機が順に流路で接続されて成る冷媒回路を備え、前記膨張機の出口から前記熱交換器の入口までの流路が分岐されて膨張弁及び前記熱交換器を介して前記副圧縮機の出口から前記圧縮機の入口までの流路に接続されている。   Moreover, the air conditioning apparatus described in FIG. 4 of Patent Document 3 includes a main compressor, an indoor heat exchanger, an indoor decompression device, a liquid receiver that stores excess refrigerant, an expander, and heat exchange during heating operation. A refrigerant circuit in which a heat exchanger, an outdoor heat exchanger, and a sub-compressor are sequentially connected by a flow path, and a flow path from the outlet of the expander to the inlet of the heat exchanger is branched to expand the expansion valve and the heat It is connected to the flow path from the outlet of the subcompressor to the inlet of the compressor via an exchanger.

特許文献4の図3に記載された空気調和装置では、暖房運転時において、主圧縮機、室内熱交換器、室内膨張弁、余剰の冷媒を貯えた受液器、熱交換器、室外減圧装置、室外熱交換器、及び副圧縮機が順に流路で接続されて成る冷媒回路を備え、前記受液器の出口から前記熱交換器の入口までの流路が分岐されて膨張機及び前記熱交換器を介して前記副圧縮機の出口から前記圧縮機の入口までの流路に接続されている。
特開2004−325018号公報 特開2004−325019号公報 特開2006−125790号公報 特開2006−125791号公報
In the air conditioner described in FIG. 3 of Patent Document 4, during the heating operation, the main compressor, the indoor heat exchanger, the indoor expansion valve, the liquid receiver storing excess refrigerant, the heat exchanger, and the outdoor pressure reducing device A refrigerant circuit in which an outdoor heat exchanger and a sub-compressor are sequentially connected by a flow path, and the flow path from the outlet of the liquid receiver to the inlet of the heat exchanger is branched to expand the expander and the heat It is connected to the flow path from the outlet of the subcompressor to the inlet of the compressor via an exchanger.
JP 2004-325018 A JP 2004-325019 A JP 2006-125790 A JP 2006-125791 A

上述のような副圧縮機を備えた動力回収型の冷凍サイクル装置の起動時に、主圧縮機は、副圧縮機の出口と主圧縮機の入口とを接続している流路(以下、「吸入側流路」という)の冷媒を吸入して、主圧縮機の出口に接続されている流路(以下、「吐出側流路」という)へ吐出する。起動時に副圧縮機は作動していないので、主圧縮機の吸入側流路内の圧力は膨張機が起動するまで低下していく。起動時に主圧縮機の吸入側流路にある冷媒の量は、高低圧力差により膨張機の入口から出口へ冷媒が流れて膨張機が自立起動する程度に、主圧縮機の吐出側流路内を昇圧するために十分な量でなければならない。この量に満たない場合には、主圧縮機が吸入すべき冷媒が不足して主圧縮機の吐出側流路内の冷媒を十分に昇圧することができず、膨張機が起動しないこととなる。特に、膨張機がロータリ式である場合には、膨張機の動力軸の位相によって起動に必要な回転トルクが変動するため、前記動力軸の回転角によっては、起動時の主圧縮機の吸入側流路に必要とされる冷媒の量が多くなることがある。   When the power recovery type refrigeration cycle apparatus including the sub-compressor as described above is started, the main compressor is connected to a passage (hereinafter referred to as “suction”) connecting the outlet of the sub-compressor and the inlet of the main compressor. (Referred to as “side channel”) and sucked into a channel (hereinafter referred to as “discharge channel”) connected to the outlet of the main compressor. Since the sub-compressor is not operating at the time of starting, the pressure in the suction side flow path of the main compressor decreases until the expander is started. The amount of refrigerant in the suction side flow path of the main compressor at the time of startup is such that the refrigerant flows from the inlet to the outlet of the expander due to the high and low pressure difference and the expander starts up independently. Must be sufficient to boost. When the amount is less than this amount, the refrigerant to be sucked by the main compressor is insufficient, so that the refrigerant in the discharge-side flow path of the main compressor cannot be sufficiently boosted, and the expander does not start. . In particular, when the expander is a rotary type, the rotational torque required for startup varies depending on the phase of the power shaft of the expander. Therefore, depending on the rotation angle of the power shaft, the suction side of the main compressor at the time of startup The amount of refrigerant required for the flow path may increase.

特許文献1に記載の冷凍サイクル装置と比較して、特許文献2に記載の冷凍サイクル装置は、主圧縮機の吸入側流路に冷媒を貯えた吸入アキュムレータが設けられているので、起動時における主圧縮機の吸入冷媒量に余裕を持たせることができる。しかし、冷凍サイクル装置に吸入アキュムレータを備えることにより、装置が大型化したり、冷媒回路内の冷媒の量が過剰となったりするおそれがある。   Compared with the refrigeration cycle apparatus described in Patent Document 1, the refrigeration cycle apparatus described in Patent Document 2 is provided with a suction accumulator that stores refrigerant in the suction-side flow path of the main compressor. A margin can be provided for the amount of refrigerant sucked in the main compressor. However, when the refrigeration cycle apparatus is provided with the suction accumulator, the apparatus may be increased in size or the amount of refrigerant in the refrigerant circuit may be excessive.

また、特許文献1に記載の冷凍サイクル装置と比較して、特許文献3,4に記載の空気調和装置では、起動時の主圧縮機は、主圧縮機の吸入側流路に加え、膨張機の出口から熱交換器を通じて主圧縮機に至る流路にある冷媒を吸入できるため、主圧縮機の吸入冷媒量に余裕を持たせることができる。しかし、主圧縮機の出口と膨張機の入口との間の流路には、室外熱交換器又は室内熱交換器と受液器とが設けられているため圧力損失が発生し、主圧縮機が起動してから膨張機が自立起動するまでに時間がかかることが推測される。   Further, in comparison with the refrigeration cycle apparatus described in Patent Document 1, in the air conditioner described in Patent Documents 3 and 4, the main compressor at the time of start-up is an expander in addition to the suction side flow path of the main compressor. Since the refrigerant in the flow path from the outlet to the main compressor can be sucked through the heat exchanger, the intake refrigerant amount of the main compressor can be given a margin. However, since an outdoor heat exchanger or an indoor heat exchanger and a liquid receiver are provided in the flow path between the outlet of the main compressor and the inlet of the expander, pressure loss occurs, and the main compressor It is estimated that it takes time until the expander starts autonomously after starting.

本発明は上記のような課題を解決するためになされたものであって、主圧縮機と、主圧縮機に供給する冷媒を予備的に昇圧する過給機(又は副圧縮機)と、過給機と動力軸が連結された膨張機とを備えた冷凍サイクル装置において、冷凍サイクル装置の起動時に主圧縮機への冷媒供給不足を解消するとともに、膨張機の迅速な起動を促して、装置の確実で安定した起動を実現するものを提供することを目的とする。   The present invention has been made to solve the above-described problems, and includes a main compressor, a supercharger (or sub-compressor) that preliminarily boosts a refrigerant supplied to the main compressor, In a refrigeration cycle apparatus having a feeder and an expander having a power shaft connected thereto, the shortage of refrigerant supply to the main compressor is solved at the start of the refrigeration cycle apparatus, and the expansion machine is promptly started, An object of the present invention is to provide a device that realizes reliable and stable start-up.

本発明の冷凍サイクル装置は、冷媒を圧縮する圧縮機、前記圧縮機で圧縮された冷媒を放熱させる放熱器、前記放熱器で放熱した冷媒を膨張させて冷媒から動力を回収する膨張機、前記膨張機で膨張した冷媒を蒸発させる蒸発器、及び前記蒸発器で蒸発した冷媒を昇圧して前記圧縮機へ送る過給機を接続流路で順次接続して成る第一冷媒回路と、前記膨張機、前記過給機、および前記膨張機で回収された動力によって前記過給機が駆動されるように前記膨張機と前記過給機とを連結する動力回収軸を有する動力回収機構と、前記過給機を通らずに前記蒸発器の出口から前記圧縮機の入口へ冷媒が流れるように前記第一冷媒回路に接続された第一バイパス路と、前記放熱器及び前記蒸発器の何れも通らずに前記圧縮機の出口から前記動力回収機構の入口へ冷媒が流れるように前記第一冷媒回路に接続された第二バイパス路と、前記第一冷媒回路を冷媒が循環する状態と、前記第一バイパス路及び前記第二バイパス路を含む第二冷媒回路を冷媒が循環する状態とに、冷媒の流れを切り替える流路切替機構とを、備えているものである。   The refrigeration cycle apparatus of the present invention includes a compressor that compresses refrigerant, a radiator that dissipates heat from the refrigerant compressed by the compressor, an expander that expands the refrigerant dissipated by the radiator and recovers power from the refrigerant, A first refrigerant circuit comprising: an evaporator for evaporating the refrigerant expanded by the expander; and a first refrigerant circuit in which a supercharger that boosts the refrigerant evaporated by the evaporator and sends the refrigerant to the compressor is sequentially connected through a connection flow path; A power recovery mechanism having a power recovery shaft for connecting the expander and the supercharger so that the supercharger is driven by the power recovered by the expander, the supercharger, and the expander; The first bypass path connected to the first refrigerant circuit so that the refrigerant flows from the outlet of the evaporator to the inlet of the compressor without passing through the supercharger, and both the radiator and the evaporator pass. Without the power recovery machine from the outlet of the compressor A second bypass path connected to the first refrigerant circuit so that the refrigerant flows to the inlet of the first refrigerant circuit, a state in which the refrigerant circulates through the first refrigerant circuit, a first bypass path and a second bypass path including the second bypass path A flow path switching mechanism that switches the flow of the refrigerant to a state in which the refrigerant circulates through the two refrigerant circuits is provided.

ここにおいて、前記第二バイパス路の上流端は前記圧縮機の出口と前記放熱器の入口との接続流路に接続され、前記第二バイパス路の下流端は前記蒸発器の出口と前記過給機の入口との接続流路に接続されていることがよい。或いは、前記第二バイパス路の上流端は前記圧縮機の出口と前記放熱器の入口との接続流路に接続され、同じく下流端は前記放熱器の出口と前記膨張機の入口との接続流路に接続されていてもよい。   Here, the upstream end of the second bypass path is connected to a connecting flow path between the outlet of the compressor and the inlet of the radiator, and the downstream end of the second bypass path is connected to the outlet of the evaporator and the supercharger. It is good to be connected to the connection flow path with the machine inlet. Alternatively, the upstream end of the second bypass passage is connected to a connection flow path between the outlet of the compressor and the inlet of the radiator, and the downstream end is connected to the outlet of the radiator and the inlet of the expander. It may be connected to the road.

上記構成によれば、起動時の主圧縮機は、第一バイパス路を通じて膨張機の出口から蒸発器の出口までの流路にある冷媒を吸入することができるので、起動時の主圧縮機への冷媒の供給不足を防止することができる。さらに、前記第二バイパス路を通じて、主圧縮機が吐出した高温高圧の冷媒が熱交換器である放熱器又は蒸発器を介さずに動力回収機構に直に流れるので、動力回収機構(膨張機又は過給機)の迅速な起動を促すことができる。   According to the above configuration, the main compressor at the time of starting can suck the refrigerant in the flow path from the outlet of the expander to the outlet of the evaporator through the first bypass passage. Insufficient supply of the refrigerant can be prevented. Furthermore, since the high-temperature and high-pressure refrigerant discharged from the main compressor flows directly to the power recovery mechanism through the second bypass passage without going through the heat radiator or evaporator, the power recovery mechanism (expander or It is possible to prompt quick start-up of the (supercharger).

さらに、前記冷凍サイクル装置において、前記圧縮機を通らずに前記過給機の出口から、前記第一冷媒回路の前記圧縮機の出口から前記蒸発器の入口までの部分へ冷媒が流れるように前記第一冷媒回路に接続され、前記第二冷媒回路に含まれる第三バイパス路を、さらに備えてもよい。   Further, in the refrigeration cycle apparatus, the refrigerant flows from the outlet of the supercharger without passing through the compressor to the portion from the outlet of the compressor to the inlet of the evaporator of the first refrigerant circuit. A third bypass path connected to the first refrigerant circuit and included in the second refrigerant circuit may be further provided.

本発明によれば、冷凍サイクル装置の起動時に第二冷媒回路に冷媒を循環させることにより最初に起動される主圧縮機への冷媒供給不足が解消され、さらに、動力回収機構の迅速な起動が促されて、装置の確実で安定した起動を実現できる。   According to the present invention, when the refrigerant is circulated through the second refrigerant circuit when the refrigeration cycle apparatus is activated, the shortage of refrigerant supply to the main compressor that is activated first is resolved, and the power recovery mechanism can be activated quickly. Inspired, a reliable and stable start-up of the device can be realized.

以下、本発明の好ましい実施の形態を図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout the drawings, and redundant description thereof is omitted.

<実施の形態1>
本発明の実施の形態1について、図1、図3及び図4を用いて説明する。図1は実施の形態1に係る冷凍サイクル装置の回路図、図3は実施の形態1に係る冷凍サイクル装置の定常運転時の回路図、図4は実施の形態1に係る冷凍サイクル装置の起動時の回路図である。なお、図1において定常運転時の冷媒の流れを鎖線矢印で示し、起動時の冷媒の流れを実線矢印で示している。また、図3及び図4において、冷媒が循環する流路を実線で示し、冷媒が循環しない流路は鎖線で示している。
<Embodiment 1>
Embodiment 1 of the present invention will be described with reference to FIG. 1, FIG. 3, and FIG. 1 is a circuit diagram of a refrigeration cycle apparatus according to Embodiment 1, FIG. 3 is a circuit diagram during steady operation of the refrigeration cycle apparatus according to Embodiment 1, and FIG. 4 is a start-up of the refrigeration cycle apparatus according to Embodiment 1. It is a circuit diagram at the time. In FIG. 1, the refrigerant flow during steady operation is indicated by a chain line arrow, and the refrigerant flow at startup is indicated by a solid line arrow. 3 and 4, the flow path through which the refrigerant circulates is indicated by a solid line, and the flow path through which the refrigerant does not circulate is indicated by a chain line.

[冷凍サイクル装置の構成]
まず、冷凍サイクル装置10の構成について説明する。図1に示すように、冷凍サイクル装置10は、作動流体である冷媒が循環する冷媒回路16を備えている。冷媒回路16は、冷媒を圧縮する主圧縮機11と、主圧縮機11で昇圧されて高温・高圧となった冷媒を放熱させる放熱器12と、放熱器12で放熱された冷媒を膨張させる膨張機13と、膨張機13で膨張した冷媒を蒸発させる蒸発器14と、蒸発器14で蒸発した冷媒を予備的に圧縮して主圧縮機11に供給する過給機15と、これらを順次接続する接続流路とで構成されている。この冷媒回路16を流れる冷媒は二酸化炭素冷媒であるが、冷媒は二酸化炭素冷媒に限定されず、一般に冷凍サイクルに利用されている冷媒を用いることができる。
[Configuration of refrigeration cycle equipment]
First, the configuration of the refrigeration cycle apparatus 10 will be described. As shown in FIG. 1, the refrigeration cycle apparatus 10 includes a refrigerant circuit 16 in which a refrigerant that is a working fluid circulates. The refrigerant circuit 16 includes a main compressor 11 that compresses the refrigerant, a radiator 12 that dissipates the refrigerant that has been boosted by the main compressor 11 to a high temperature and a high pressure, and an expansion that expands the refrigerant radiated by the radiator 12. An evaporator 14 for evaporating the refrigerant expanded in the expander 13, a supercharger 15 for preliminarily compressing the refrigerant evaporated in the evaporator 14 and supplying it to the main compressor 11, and these are sequentially connected And a connecting flow path. The refrigerant flowing through the refrigerant circuit 16 is a carbon dioxide refrigerant. However, the refrigerant is not limited to the carbon dioxide refrigerant, and a refrigerant generally used for a refrigeration cycle can be used.

冷凍サイクル装置10は動力回収型であり、膨張機13の動力軸と過給機15の動力軸とが一軸に連結された動力回収軸17が設けられている。この膨張機13と動力回収軸17と過給機15とで動力回収機構18が構成されている。動力回収機構18では、膨張機13で膨張する冷媒の膨張エネルギーが回収されて、動力回収軸17を回転させる機械エネルギー(回転エネルギー)へと変換され、動力回収軸17が回転することにより過給機15が駆動される。   The refrigeration cycle apparatus 10 is a power recovery type, and is provided with a power recovery shaft 17 in which the power shaft of the expander 13 and the power shaft of the supercharger 15 are connected to one shaft. The expander 13, the power recovery shaft 17 and the supercharger 15 constitute a power recovery mechanism 18. In the power recovery mechanism 18, the expansion energy of the refrigerant expanding in the expander 13 is recovered and converted into mechanical energy (rotational energy) for rotating the power recovery shaft 17, and supercharging is performed by rotating the power recovery shaft 17. The machine 15 is driven.

本実施の形態において、主圧縮機11、放熱器12、膨張機13、蒸発器14、及び過給機15を順次接続する接続流路は配管で形成されている。これらの接続流路には、主圧縮機11の出口と放熱器12の入口とを接続する吐出側流路61と、放熱器12の出口と膨張機13の入口とを接続する接続流路62と、膨張機13の出口と蒸発器14の入口とを接続する接続流路63と、蒸発器14の出口と過給機15の入口とを接続する接続流路64と、過給機15の出口と主圧縮機11の入口とを接続する吸入側流路65とが、含まれている。   In this Embodiment, the connection flow path which connects the main compressor 11, the heat radiator 12, the expander 13, the evaporator 14, and the supercharger 15 in order is formed with piping. These connection channels include a discharge-side channel 61 that connects the outlet of the main compressor 11 and the inlet of the radiator 12, and a connection channel 62 that connects the outlet of the radiator 12 and the inlet of the expander 13. A connection channel 63 that connects the outlet of the expander 13 and the inlet of the evaporator 14, a connection channel 64 that connects the outlet of the evaporator 14 and the inlet of the supercharger 15, A suction-side flow path 65 that connects the outlet and the inlet of the main compressor 11 is included.

主圧縮機11は、冷媒回路16を流れる冷媒を高温高圧に圧縮して送り出す流体機械である。圧縮機11として、例えば、スクロール式圧縮機や、ロータリ式圧縮機を用いることができる。本実施の形態において圧縮機11は、圧縮機構部11aと、この圧縮機構部11aを駆動する駆動部11bとで構成されている。圧縮機構部11aと駆動部11bとは、潤滑油を貯溜した一つの密閉容器11c内に配置されている。   The main compressor 11 is a fluid machine that compresses and sends the refrigerant flowing through the refrigerant circuit 16 to a high temperature and high pressure. As the compressor 11, for example, a scroll compressor or a rotary compressor can be used. In the present embodiment, the compressor 11 includes a compression mechanism unit 11a and a drive unit 11b that drives the compression mechanism unit 11a. The compression mechanism portion 11a and the drive portion 11b are disposed in one sealed container 11c that stores lubricating oil.

放熱器12は、冷媒回路16において主圧縮機11の下流に設けられ、主圧縮機11により圧縮された冷媒を放熱させる熱交換器である。放熱器12は、冷凍サイクル装置10において周囲媒体を加熱する役割を担っている。   The radiator 12 is a heat exchanger that is provided downstream of the main compressor 11 in the refrigerant circuit 16 and radiates the refrigerant compressed by the main compressor 11. The radiator 12 plays a role of heating the surrounding medium in the refrigeration cycle apparatus 10.

膨張機13は、冷媒回路16において放熱器12の下流に設けられ、放熱器12の出口から流出した低温高圧の冷媒を膨張させる流体機械である。膨張機13として、例えば、スクロール式膨張機、ロータリ式膨張機、流体圧モータを用いることができる。なお、前記流体圧モータは、膨張工程を含まずに、放熱器12からの冷媒を吸入する工程と、吸入した冷媒を吐出する工程とを実質的に連続して行う流体機械である。   The expander 13 is a fluid machine that is provided downstream of the radiator 12 in the refrigerant circuit 16 and expands the low-temperature and high-pressure refrigerant that has flowed out from the outlet of the radiator 12. As the expander 13, for example, a scroll expander, a rotary expander, or a fluid pressure motor can be used. The fluid pressure motor is a fluid machine that does not include an expansion step, and that substantially continuously performs a step of sucking the refrigerant from the radiator 12 and a step of discharging the sucked refrigerant.

蒸発器14は、冷媒回路16において膨張機13の下流に設けられ、膨張機13から流出した冷媒を加熱して蒸発させる熱交換器である。蒸発器14は、冷凍サイクル装置10において周囲媒体を冷却する役割を担っている。   The evaporator 14 is a heat exchanger that is provided downstream of the expander 13 in the refrigerant circuit 16 and heats and evaporates the refrigerant flowing out of the expander 13. The evaporator 14 plays a role of cooling the surrounding medium in the refrigeration cycle apparatus 10.

過給機15は、蒸発器14と主圧縮機11との間に配置されて、蒸発器14から冷媒を吸入して予備的に昇圧し、主圧縮機11の吸入側流路65へ吐出する流体機械である。過給機15として、スクロール式圧縮機、ロータリ式圧縮機、または流体圧モータ式圧縮機を用いることができる。なお、流体圧モータ式圧縮機とは、蒸発器14から冷媒を吸入する工程と、吸入した冷媒を主圧縮機11側へ吐出する工程とを実質的に連続して行う圧縮機である。   The supercharger 15 is disposed between the evaporator 14 and the main compressor 11, sucks the refrigerant from the evaporator 14, preliminarily increases the pressure, and discharges it to the suction-side flow path 65 of the main compressor 11. It is a fluid machine. As the supercharger 15, a scroll compressor, a rotary compressor, or a fluid pressure motor compressor can be used. The fluid pressure motor type compressor is a compressor that substantially continuously performs the step of sucking the refrigerant from the evaporator 14 and the step of discharging the sucked refrigerant to the main compressor 11 side.

前述の通り、膨張機13と過給機15とこれらの動力軸を連結した動力回収軸17とで動力回収機構18が構成されている。膨張機13は、冷媒の膨張エネルギーを回収して機械エネルギーへと変換し、動力回収軸17は回収された機械エネルギーを過給機15へと伝達し、過給機15は伝達された機械エネルギーを用いて冷媒を圧縮する。膨張機13、過給機15、及び動力回収軸17は、潤滑油を貯留した密閉容器19内に配置されている。なお、本実施の形態において、動力回収機構18及び主圧縮機11はそれぞれ独立した密閉容器に収容されているが、設置スペースの低減を図って、これらを併せて1つの密閉容器に収容したものを用いることもできる。   As described above, the power recovery mechanism 18 is configured by the expander 13, the supercharger 15, and the power recovery shaft 17 connecting these power shafts. The expander 13 recovers the expansion energy of the refrigerant and converts it into mechanical energy, the power recovery shaft 17 transmits the recovered mechanical energy to the supercharger 15, and the supercharger 15 transmits the transmitted mechanical energy. To compress the refrigerant. The expander 13, the supercharger 15, and the power recovery shaft 17 are disposed in a sealed container 19 in which lubricating oil is stored. In the present embodiment, the power recovery mechanism 18 and the main compressor 11 are housed in independent sealed containers. However, in order to reduce the installation space, these are housed together in one sealed container. Can also be used.

動力回収機構18には、動力回収機構18が起動したことを検出するための起動検出手段33が設けられている。動力回収機構18が起動すると、膨張機13の入口と出口との冷媒の温度及び圧力に差が生じ、また、動力回収軸17が回転し始める。そこで、起動検出手段33として、膨張機13の入口と出口との冷媒の温度差を検出する温度計測手段を設けることができる。また、前記温度計測手段に代えて、膨張機13の入口と出口との冷媒の圧力差を検出する圧力検出手段、或いは、動力回収軸17の回転数を検出する軸回転数検出手段を備えることもできる。さらに、動力回収機構18は主圧縮機11が起動してから略一定の時間で起動することから、起動検出手段33として、主圧縮機11を起動してからの時間を計測するタイマーを備えることもできる。   The power recovery mechanism 18 is provided with activation detection means 33 for detecting that the power recovery mechanism 18 is activated. When the power recovery mechanism 18 is activated, a difference occurs in the refrigerant temperature and pressure between the inlet and the outlet of the expander 13, and the power recovery shaft 17 starts to rotate. Therefore, as the activation detection means 33, a temperature measurement means for detecting the temperature difference of the refrigerant between the inlet and the outlet of the expander 13 can be provided. Further, instead of the temperature measuring means, a pressure detecting means for detecting the pressure difference of the refrigerant between the inlet and the outlet of the expander 13 or a shaft rotational speed detecting means for detecting the rotational speed of the power recovery shaft 17 is provided. You can also. Further, since the power recovery mechanism 18 is started at a substantially constant time after the main compressor 11 is started, the power recovery mechanism 18 is provided with a timer for measuring the time since the main compressor 11 is started as the start detection means 33. You can also.

上記構成の冷凍サイクル装置10において、運転待機時と定常運転時には、冷媒回路16を冷媒が循環する(図3)。そして、冷凍サイクル装置10の起動時には、定常運転時の冷媒回路16を利用するが冷媒回路16とは異なる第二の冷媒回路(以下、「起動用冷媒回路16A」という)を冷媒が循環する(図4)。起動用冷媒回路16Aは、冷媒回路16とこの冷媒回路16に接続された3つのバイパス路81,82A,83Aとで形成されている。そして、冷媒回路16を冷媒が循環する状態と、バイパス路81,82A,83Aを含む起動用冷媒回路16Aを冷媒が循環する状態とに、冷媒の流れを切り替えるための流路切替機構が冷凍サイクル装置10に備えられている。   In the refrigeration cycle apparatus 10 having the above-described configuration, the refrigerant circulates through the refrigerant circuit 16 during standby and steady operation (FIG. 3). When the refrigeration cycle apparatus 10 is activated, the refrigerant circulates through a second refrigerant circuit (hereinafter referred to as “activation refrigerant circuit 16A”) that uses the refrigerant circuit 16 during steady operation but is different from the refrigerant circuit 16 (hereinafter referred to as “activation refrigerant circuit 16A”). FIG. 4). The starting refrigerant circuit 16 </ b> A is formed by the refrigerant circuit 16 and three bypass paths 81, 82 </ b> A, 83 </ b> A connected to the refrigerant circuit 16. A flow path switching mechanism for switching the flow of the refrigerant into a state where the refrigerant circulates through the refrigerant circuit 16 and a state where the refrigerant circulates through the activation refrigerant circuit 16A including the bypass passages 81, 82A, 83A is a refrigeration cycle. The device 10 is provided.

第一バイパス路81は、過給機15を通らずに蒸発器14の出口から主圧縮機11の入口へ直に冷媒が流れるように、冷媒回路16に接続された流路である。具体的には、第一バイパス路81の上流端は蒸発器14と過給機15との接続流路64に接続され、同じく下流端は主圧縮機11の吸入側流路65に接続されている。ここで「直に」とは、流体機械や熱交換器を間に介さないことをいい、接続流路並びにバイパス路は介在してもよい。   The first bypass path 81 is a flow path connected to the refrigerant circuit 16 so that the refrigerant flows directly from the outlet of the evaporator 14 to the inlet of the main compressor 11 without passing through the supercharger 15. Specifically, the upstream end of the first bypass passage 81 is connected to the connection flow path 64 between the evaporator 14 and the supercharger 15, and the downstream end is connected to the suction side flow path 65 of the main compressor 11. Yes. Here, “directly” means that a fluid machine or a heat exchanger is not interposed therebetween, and a connection channel and a bypass channel may be interposed.

また、第二バイパス路82Aは、熱交換器である放熱器12及び膨張機13の何れも通らずに主圧縮機11の出口から動力回収機構18の入口へ直に冷媒が流れるように冷媒回路16に接続された流路である。動力回収機構18の入口は、膨張機13の入口と過給機15の入口とがあり、本実施の形態に係る第二バイパス路82Aは、過給機15の入口へ冷媒を送る流路である。具体的には、第二バイパス路82Aの上流端は主圧縮機11の吐出側流路61に接続され、同じく下流端は蒸発器14と過給機15との接続流路64に接続されている。   Also, the second bypass path 82A is a refrigerant circuit so that the refrigerant flows directly from the outlet of the main compressor 11 to the inlet of the power recovery mechanism 18 without passing through either the radiator 12 or the expander 13 that is a heat exchanger. 16 is a flow path connected to 16. The inlet of the power recovery mechanism 18 includes an inlet of the expander 13 and an inlet of the supercharger 15, and the second bypass 82 </ b> A according to the present embodiment is a flow path that sends the refrigerant to the inlet of the supercharger 15. is there. Specifically, the upstream end of the second bypass passage 82A is connected to the discharge side flow passage 61 of the main compressor 11, and the downstream end is connected to the connection flow passage 64 between the evaporator 14 and the supercharger 15. Yes.

さらに、第三バイパス路83Aは、過給機15の出口から主圧縮機11を通らずに冷媒回路16の主圧縮機11の出口から蒸発器14の入口までの部分へ冷媒が流れるように冷媒回路16に接続された流路である。本実施の形態に係る第三バイパス路83Aは、その上流端は主圧縮機11の吸入側流路65に接続され、同じく下流端は放熱器12と膨張機13との接続流路62に接続されている。   Further, the third bypass passage 83 </ b> A allows the refrigerant to flow from the outlet of the supercharger 15 to the portion from the outlet of the main compressor 11 of the refrigerant circuit 16 to the inlet of the evaporator 14 without passing through the main compressor 11. A flow path connected to the circuit 16. The third bypass passage 83A according to the present embodiment has an upstream end connected to the suction-side flow path 65 of the main compressor 11 and a downstream end connected to the connection flow path 62 between the radiator 12 and the expander 13. Has been.

蒸発器14の出口と過給機15の入口との接続流路64には、流路切替器としての四方弁21が接続流路64を上流側と下流側とに分断するように設けられている。この四方弁21には、第一バイパス路81の上流端と第二バイパス路82Aの下流端とが接続されている。そして、四方弁21は制御装置31から制御信号を受けて、接続流路64の上流側と下流側とが連通された状態(運転待機時及び定常運転時)と、接続流路64の上流側と第一バイパス路81の上流端(起動時)とが連通され且つ接続流路64の下流側と第二バイパス路82Aの下流端とが連通された状態とを切り替えるように構成されている。かかる構成により、運転待機時及び定常運転時には、蒸発器14から過給機15へ冷媒が流れ、起動時には、蒸発器14から主圧縮機11へ直に冷媒が流れることとなる。なお、四方弁21は、例えば、流体の流れを切り替えるスライダをシリンダに内装して成る弁本体と、スライダをシリンダ内で移動させるための流体圧を発生させるパイロットバルブと、パイロットバルブ駆動用ソレノイドとで構成されたものを用いることができる。   In the connection flow path 64 between the outlet of the evaporator 14 and the inlet of the supercharger 15, a four-way valve 21 as a flow path switch is provided so as to divide the connection flow path 64 into an upstream side and a downstream side. Yes. The four-way valve 21 is connected to the upstream end of the first bypass passage 81 and the downstream end of the second bypass passage 82A. The four-way valve 21 receives a control signal from the control device 31, and the upstream side and the downstream side of the connection channel 64 communicate with each other (during operation standby and steady operation), and the upstream side of the connection channel 64. And the upstream end (at the time of activation) of the first bypass path 81 and the downstream side of the connection flow path 64 and the downstream end of the second bypass path 82A are switched to each other. With this configuration, the refrigerant flows from the evaporator 14 to the supercharger 15 during operation standby and steady operation, and the refrigerant flows directly from the evaporator 14 to the main compressor 11 during startup. The four-way valve 21 includes, for example, a valve body in which a slider for switching a fluid flow is built in a cylinder, a pilot valve that generates fluid pressure for moving the slider in the cylinder, a pilot valve driving solenoid, What was comprised by this can be used.

また、過給機15の出口と主圧縮機11の入口とを結ぶ吸入側流路65には、流路切替器としての四方弁23が、吸入側流路65を上流側と下流側とに分断するように設けられている。この四方弁23には、第一バイパス路81の下流端と第三バイパス路83Aの上流端とが接続されている。そして、四方弁23は制御装置31からの制御信号を受けて、吸入側流路65の上流側と下流側とが連通された状態(運転待機時及び定常運転時)と、吸入側流路65の上流側と第三バイパス路83Aの上流端とが連通され且つ吸入側流路65の下流側と第一バイパス路81の下流端とが連通された状態(起動時)とを切り替えるように構成されている。かかる構成により、運転待機時及び定常運転時は、過給機15から主圧縮機11へ冷媒が流れ、起動時には、過給機15から膨張機13へ直に冷媒が流れることとなる。   Further, a four-way valve 23 as a flow path switch is provided in the suction side flow path 65 that connects the outlet of the supercharger 15 and the inlet of the main compressor 11, and the suction side flow path 65 is arranged upstream and downstream. It is provided to divide. The four-way valve 23 is connected to the downstream end of the first bypass passage 81 and the upstream end of the third bypass passage 83A. Then, the four-way valve 23 receives a control signal from the control device 31, the state where the upstream side and the downstream side of the suction side flow path 65 are communicated (during operation standby and during steady operation), and the suction side flow path 65. And the upstream end of the third bypass passage 83A are in communication with each other and the downstream side of the suction-side passage 65 and the downstream end of the first bypass passage 81 are in communication with each other (when activated). Has been. With this configuration, the refrigerant flows from the supercharger 15 to the main compressor 11 during operation standby and steady operation, and the refrigerant flows directly from the supercharger 15 to the expander 13 at startup.

さらに、第二バイパス路82Aの上流端と主圧縮機11の吐出側流路61との接続部には、切替弁22が設けられている。この切替弁22は、例えば、三方弁である。切替弁22は、制御装置31から制御信号を受けて、冷媒が冷媒回路16側を流れる状態(運転待機時及び定常運転時)と、冷媒が第二バイパス路82Aを流れる状態(起動時)とに、冷媒の流れを切り替えるように構成されている。かかる構成により、運転待機時及び定常運転時には、主圧縮機11から放熱器12へ直に冷媒が流れ、起動時には、主圧縮機11から第二バイパス路82Aへ冷媒が流れることとなる。   Further, a switching valve 22 is provided at a connection portion between the upstream end of the second bypass passage 82 </ b> A and the discharge side passage 61 of the main compressor 11. This switching valve 22 is, for example, a three-way valve. The switching valve 22 receives a control signal from the control device 31, and a state in which the refrigerant flows through the refrigerant circuit 16 side (during operation standby and normal operation) and a state in which the refrigerant flows through the second bypass passage 82A (at the time of activation). In addition, the refrigerant flow is switched. With this configuration, the refrigerant flows directly from the main compressor 11 to the radiator 12 during operation standby and steady operation, and at the start-up, the refrigerant flows from the main compressor 11 to the second bypass path 82A.

このように、冷媒回路16と各バイパス路81,82A,83Aとの接続部に設けられた四方弁21,23及び切替弁22により流路切替機構が形成されており、これらの弁を切り替えることにより、冷凍サイクル装置10の運転待機時及び定常運転時に冷媒回路16を成立させ、冷凍サイクル装置10の起動時に起動用冷媒回路16Aを成立させることができる。   As described above, the flow path switching mechanism is formed by the four-way valves 21 and 23 and the switching valve 22 provided at the connection portion between the refrigerant circuit 16 and the bypass paths 81, 82A, and 83A, and these valves are switched. As a result, the refrigerant circuit 16 can be established during standby and steady operation of the refrigeration cycle apparatus 10, and the activation refrigerant circuit 16A can be established when the refrigeration cycle apparatus 10 is activated.

図3に示すように、冷媒回路16では、主圧縮機11→放熱器12→膨張機13→蒸発器14→過給機15→主圧縮機11の順に冷媒が循環する。冷媒回路16を冷媒が循環可能であるときには、第一バイパス路81、第二バイパス路82A、及び第三バイパス路83Aには冷媒が流れない。   As shown in FIG. 3, in the refrigerant circuit 16, the refrigerant circulates in the order of the main compressor 11 → the radiator 12 → the expander 13 → the evaporator 14 → the supercharger 15 → the main compressor 11. When the refrigerant can circulate through the refrigerant circuit 16, no refrigerant flows through the first bypass path 81, the second bypass path 82A, and the third bypass path 83A.

また、図4に示すように、起動用冷媒回路16Aでは、主圧縮機11→過給機15→膨張機13→蒸発器14→主圧縮機11の順に冷媒が循環する。起動用冷媒回路16Aに冷媒が循環可能であるときには、放熱器12には冷媒が流れない。   Further, as shown in FIG. 4, in the starting refrigerant circuit 16 </ b> A, the refrigerant circulates in the order of the main compressor 11 → the supercharger 15 → the expander 13 → the evaporator 14 → the main compressor 11. When the refrigerant can be circulated through the startup refrigerant circuit 16A, the refrigerant does not flow through the radiator 12.

上記構成の冷凍サイクル装置10の動作は制御装置31により制御されている。制御装置31は、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に処理プログラムを記憶するROMと、データを一時的に記憶するRAMと、入出力ポートおよび通信ポートとを備えている。   The operation of the refrigeration cycle apparatus 10 having the above configuration is controlled by the control device 31. The control device 31 is configured as a microprocessor centered on a CPU, and includes a ROM that stores a processing program, a RAM that temporarily stores data, an input / output port, and a communication port in addition to the CPU. Yes.

制御装置31には、動力回収機構18が起動したことを検出するための起動検出手段33からの起動検出信号、切替弁22に備えられた状態検出手段(図示略)からの切替弁22の状態信号、四方弁21,23に備えられた状態検出手段(図示略)からの四方弁21,23の状態信号、及び起動ボタンや操作ボタン等を備えた操作具32からの操作信号などが入出力ポートを介して入力される。そして、制御装置31は、CPUでROMに格納された所定のプログラムを実行するとともに、これらの入力信号を受けて、主圧縮機11の駆動部11bへの駆動信号、切替弁22への制御信号、四方弁21,23への制御信号、操作具32への表示信号などを入出力ポートを介して出力する。   The control device 31 includes a start detection signal from the start detection unit 33 for detecting that the power recovery mechanism 18 has started, and a state of the switching valve 22 from a state detection unit (not shown) provided in the switching valve 22. Signals, state signals of the four-way valves 21 and 23 from the state detection means (not shown) provided in the four-way valves 21 and 23, and operation signals from the operation tool 32 including a start button, an operation button, etc. Input through port. The control device 31 executes a predetermined program stored in the ROM by the CPU, receives these input signals, and receives a drive signal to the drive unit 11b of the main compressor 11 and a control signal to the switching valve 22. The control signal to the four-way valves 21 and 23, the display signal to the operation tool 32, and the like are output via the input / output port.

[冷凍サイクル装置の動作]
次に、冷凍サイクル装置10の動作について、図2〜図4を用いて説明する。図2は実施の形態1に係る冷凍サイクル装置の起動の流れ図である。
[Operation of refrigeration cycle equipment]
Next, operation | movement of the refrigerating-cycle apparatus 10 is demonstrated using FIGS. FIG. 2 is a flowchart of start-up of the refrigeration cycle apparatus according to the first embodiment.

運転待機時の冷凍サイクル装置10では、主圧縮機11が停止しており、冷媒回路16を冷媒が循環可能であるが冷媒は流動していない(図3)。ここで、図2に示すように、操作具32から起動指令が制御装置31に入力されると(ステップS41)、制御装置31は、バイパス路81,82A,83Aに冷媒が流れる起動用冷媒回路16Aを形成すべく弁を切り替えるように、四方弁21,23及び切替弁22に制御信号を出力する(ステップS42)。これにより、起動用冷媒回路16Aを冷媒が循環可能となる(図4)。   In the refrigeration cycle apparatus 10 during operation standby, the main compressor 11 is stopped and the refrigerant can circulate through the refrigerant circuit 16, but the refrigerant does not flow (FIG. 3). Here, as shown in FIG. 2, when a start command is input from the operating tool 32 to the control device 31 (step S41), the control device 31 causes the start-up refrigerant circuit to flow the refrigerant through the bypass passages 81, 82A, 83A. A control signal is output to the four-way valves 21 and 23 and the switching valve 22 so as to switch the valves to form 16A (step S42). Thereby, the refrigerant can circulate through the startup refrigerant circuit 16A (FIG. 4).

続いて、制御装置31は、主圧縮機11に起動信号を出力する(ステップS43)。起動した主圧縮機11は、起動用冷媒回路16Aにおいて膨張機13の出口から主圧縮機11の入口にある冷媒を吸入し、高温高圧に圧縮して吐出する。つまり、起動時の主圧縮機11は、膨張機13と蒸発器14との接続流路63、蒸発器14の内部、蒸発器14と過給機15との接続流路64のうち四方弁21から上流部分、第一バイパス路81、及び主圧縮機11の吐出側流路61の四方弁23から下流部分にある冷媒を吸入することができる。よって、主圧縮機11の吐出側流路61と比較して、より大きな容積にある冷媒を吸入可能であるので、起動時の主圧縮機11への冷媒供給不足を防止して、確実で安定した起動を実現することができる。   Subsequently, the control device 31 outputs an activation signal to the main compressor 11 (step S43). The started main compressor 11 sucks the refrigerant at the inlet of the main compressor 11 from the outlet of the expander 13 in the starting refrigerant circuit 16A, compresses it to high temperature and high pressure, and discharges it. That is, the main compressor 11 at the time of start-up includes the four-way valve 21 among the connection flow path 63 between the expander 13 and the evaporator 14, the inside of the evaporator 14, and the connection flow path 64 between the evaporator 14 and the supercharger 15. From the four-way valve 23 of the upstream portion, the first bypass passage 81, and the discharge side flow passage 61 of the main compressor 11, the refrigerant in the downstream portion can be sucked. Therefore, since the refrigerant having a larger volume can be sucked compared to the discharge-side flow path 61 of the main compressor 11, a shortage of refrigerant supply to the main compressor 11 at the time of start-up can be prevented, and reliable and stable. Can be realized.

起動用冷媒回路16Aでは、第二バイパス路82Aにより主圧縮機11の出口と過給機15の入口とが連通しているので、主圧縮機11から高温高圧の冷媒が吐出されることによって、過給機15の入口にある冷媒の圧力と温度がともに上昇していく。従って、過給機15の入口側の冷媒は、出口側の冷媒と比較して高圧となり、過給機15の入口側と出口側とで冷媒に差圧が生じる。ここで、過給機15は流体圧モータとなって過給機15を流れる冷媒の流動エネルギーを吸収して、或いは、過給機15は膨張機となって過給機15を流れる冷媒の膨張エネルギーを吸収して、動力回収軸17を回転させるための機械エネルギーに変換する。つまり、起動時の過給機15は動力回収機構18の動力回収部として機能している。   In the starting refrigerant circuit 16A, the outlet of the main compressor 11 and the inlet of the supercharger 15 are communicated with each other by the second bypass passage 82A. Therefore, when the high-temperature and high-pressure refrigerant is discharged from the main compressor 11, Both the pressure and temperature of the refrigerant at the inlet of the supercharger 15 rise. Therefore, the refrigerant on the inlet side of the supercharger 15 has a higher pressure than the refrigerant on the outlet side, and a differential pressure is generated in the refrigerant between the inlet side and the outlet side of the supercharger 15. Here, the supercharger 15 serves as a fluid pressure motor to absorb the flow energy of the refrigerant flowing through the supercharger 15, or the supercharger 15 serves as an expander to expand the refrigerant flowing through the supercharger 15. The energy is absorbed and converted into mechanical energy for rotating the power recovery shaft 17. That is, the supercharger 15 at the time of activation functions as a power recovery unit of the power recovery mechanism 18.

このとき過給機15は起動していないので過給機15を通じる冷媒はやや減圧されて、高温中圧となって過給機15から流出する。起動用冷媒回路16Aでは、第三バイパス路83Aにより過給機15の出口と膨張機13の入口とが連通しているので、過給機15から高温中圧の冷媒が流出することによって、膨張機13の入口にある冷媒の圧力と温度がともに上昇していく。一方、主圧縮機11は、膨張機13の出口側に連通している接続流路63内の冷媒を吸入するので、膨張機13の出口側の冷媒の圧力は低減していく。このようにして、膨張機13の入口側と出口側との冷媒の差圧が増大していく。   At this time, since the supercharger 15 has not been activated, the refrigerant passing through the supercharger 15 is slightly decompressed and flows out of the supercharger 15 at a high temperature and intermediate pressure. In the starting refrigerant circuit 16A, the outlet of the supercharger 15 and the inlet of the expander 13 communicate with each other by the third bypass passage 83A. Both the pressure and temperature of the refrigerant at the inlet of the machine 13 rise. On the other hand, since the main compressor 11 sucks the refrigerant in the connection flow path 63 communicating with the outlet side of the expander 13, the pressure of the refrigerant on the outlet side of the expander 13 decreases. In this way, the refrigerant pressure difference between the inlet side and the outlet side of the expander 13 increases.

やがて、膨張機13の入口側と出口側との冷媒の差圧により、膨張機13の入口から出口への冷媒の流れが生じると、膨張機13が起動する。起動した膨張機13は、動力回収機構18の動力回収部として機能し、膨張機13を流れる冷媒の膨張エネルギーを吸収して動力回収軸17を回転させるための機械エネルギーに変換する。このエネルギーにより動力回収軸17が回転して、動力回収機構18が自立起動する。このとき、上述の通り過給機15においても動力回収軸17にエネルギーが与えられているので、動力回収機構18はより迅速に起動することができる。   Eventually, when the refrigerant flow from the inlet to the outlet of the expander 13 is caused by the refrigerant pressure difference between the inlet and outlet of the expander 13, the expander 13 is activated. The activated expander 13 functions as a power recovery unit of the power recovery mechanism 18, absorbs the expansion energy of the refrigerant flowing through the expander 13, and converts it into mechanical energy for rotating the power recovery shaft 17. With this energy, the power recovery shaft 17 rotates and the power recovery mechanism 18 starts up independently. At this time, since the energy is applied to the power recovery shaft 17 in the supercharger 15 as described above, the power recovery mechanism 18 can be started more quickly.

膨張機13を通じるうちに膨張して高温低圧となった冷媒は、蒸発器14を流れたのち、再び主圧縮機11に吸入される。起動用冷媒回路16Aを循環する冷媒は放熱器12を通じないので、定常運転時と比較して蒸発器14を流れる冷媒は高温である。このように起動時に高温の冷媒が蒸発器14を流れることによって、蒸発器14の除霜が行われる。   The refrigerant that has expanded through the expander 13 and has become high temperature and low pressure flows through the evaporator 14 and then is sucked into the main compressor 11 again. Since the refrigerant circulating through the startup refrigerant circuit 16A does not pass through the radiator 12, the refrigerant flowing through the evaporator 14 is at a higher temperature than during steady operation. Thus, defrosting of the evaporator 14 is performed by the high-temperature refrigerant flowing through the evaporator 14 at the time of startup.

制御装置31は、起動検出手段33を通じて動力回収機構18が自立起動したことを検出すると(ステップS44でYES)、冷媒回路16を形成すべく弁を切り替えるように、四方弁21,23及び切替弁22に制御信号を出力する(ステップS45)。これにより、冷媒回路16に冷媒が循環可能となって冷媒回路16を冷媒が循環し始めて定常運転に移行する。   When the control device 31 detects that the power recovery mechanism 18 has started autonomously through the activation detection means 33 (YES in step S44), the four-way valves 21 and 23 and the switching valve are switched so as to switch the valves to form the refrigerant circuit 16. A control signal is output to 22 (step S45). As a result, the refrigerant can be circulated in the refrigerant circuit 16, and the refrigerant begins to circulate through the refrigerant circuit 16, and the operation is shifted to the steady operation.

なお、起動検出手段33の種類によって、動力回収機構18が自立起動したことを検出する手法は異なる。具体的には、以下の(1)〜(4)に示す通りである。
(1)起動検出手段33が膨張機13の入口と出口との冷媒の温度差を検出する温度計測手段の場合、実験的に求められた膨張機13が自立起動するときの膨張機13の入口と出口との冷媒の温度差ΔTが制御装置31に設定される。制御装置31は、温度計測手段によって計測された温度差がΔTとなったときに、動力回収機構18が自立起動したと判断する。
(2)起動検出手段33が膨張機13の入口と出口との冷媒の圧力差を検出する圧力検出手段の場合、実験的に求められた膨張機13が自立起動するときの膨張機13の入口と出口との冷媒の圧力差ΔPが制御装置31に設定される。制御装置31は、圧力検出手段にて検出された圧力差がΔPとなったときに、動力回収機構18が自立起動したと判断する。
(3)起動検出手段33がタイマーの場合、実験的に求められた主圧縮機11の起動開始から動力回収機構18が起動するまでの時間tが制御装置31に設定される。制御装置31は、主圧縮機11の駆動部11bに制御信号を送信するとともに時間計測を開始し、時間計測開始後tが経過したときに、動力回収機構18が自立起動したと判断する。
(4)起動検出手段33が動力回収軸17の回転数検出手段の場合、実験的に求められた膨張機13が安定して動作するときの動力回収軸17の回転数Nが制御装置31に設定される。制御装置31は、回転数検出手段にて検出された回転数がNとなったときに、動力回収機構18が自立起動したと判断する。
Note that the method for detecting that the power recovery mechanism 18 has started independently varies depending on the type of the activation detection means 33. Specifically, it is as shown in the following (1) to (4).
(1) In the case where the activation detection unit 33 is a temperature measurement unit that detects the refrigerant temperature difference between the inlet and the outlet of the expander 13, the inlet of the expander 13 when the experimentally obtained expander 13 starts autonomously The temperature difference ΔT between the refrigerant and the outlet is set in the control device 31. The control device 31 determines that the power recovery mechanism 18 has started autonomously when the temperature difference measured by the temperature measurement means becomes ΔT.
(2) When the activation detection means 33 is a pressure detection means for detecting the refrigerant pressure difference between the inlet and the outlet of the expander 13, the inlet of the expander 13 when the experimentally obtained expander 13 starts autonomously The pressure difference ΔP between the refrigerant and the outlet is set in the control device 31. The control device 31 determines that the power recovery mechanism 18 has started autonomously when the pressure difference detected by the pressure detection means becomes ΔP.
(3) When the activation detection means 33 is a timer, a time t from the start of activation of the main compressor 11 to the activation of the power recovery mechanism 18 determined experimentally is set in the control device 31. The control device 31 transmits a control signal to the drive unit 11b of the main compressor 11 and starts time measurement, and determines that the power recovery mechanism 18 has started autonomously when t has elapsed after the start of time measurement.
(4) When the activation detection means 33 is the rotation speed detection means of the power recovery shaft 17, the rotation speed N of the power recovery shaft 17 when the expander 13 obtained by experiment is stably operated is given to the control device 31. Is set. The control device 31 determines that the power recovery mechanism 18 has started autonomously when the rotational speed detected by the rotational speed detection means becomes N.

定常運転時の冷凍サイクル装置10では冷媒回路16を冷媒が流れる。ここで主圧縮機11から吐出された高温高圧の冷媒は、放熱器12を流れるうちに放熱して低温高圧となり、次いで、膨張機13を流れて膨張して低温低圧となり、さらに、蒸発器14を流れるうちに蒸発して低圧飽和蒸気となる。このように蒸発器14で蒸発した冷媒は、過給機15に吸入されて予備的に圧縮されたうえで吐出され、主圧縮機11に吸入される。   In the refrigeration cycle apparatus 10 during steady operation, the refrigerant flows through the refrigerant circuit 16. Here, the high-temperature and high-pressure refrigerant discharged from the main compressor 11 dissipates heat while flowing through the radiator 12, becomes low-temperature and high-pressure, then flows through the expander 13 and expands into low-temperature and low-pressure, and further the evaporator 14 Evaporates to flow into low-pressure saturated steam. Thus, the refrigerant evaporated in the evaporator 14 is sucked into the supercharger 15 and preliminarily compressed, then discharged, and sucked into the main compressor 11.

上述の通り、本実施の形態に係る冷凍サイクル装置10は、第一バイパス路81を備えているので、起動時の主圧縮機11は、膨張機13の出口から蒸発器14の出口までの流路にある冷媒を吸入することができる。膨張機13の出口から蒸発器14の出口までの流路の容積は、蒸発器14内の流路が含まれているので、定常運転時の主圧縮機11の吸入側流路65よりも遙かに大きな容積である。よって、起動時の主圧縮機11への冷媒供給不足を解消して、確実で安定した起動を実現することができる。   As described above, since the refrigeration cycle apparatus 10 according to the present embodiment includes the first bypass passage 81, the main compressor 11 at the time of startup is a flow from the outlet of the expander 13 to the outlet of the evaporator 14. The refrigerant in the passage can be sucked. Since the volume of the flow path from the outlet of the expander 13 to the outlet of the evaporator 14 includes the flow path in the evaporator 14, it is much smaller than the suction side flow path 65 of the main compressor 11 during steady operation. It is a big volume. Therefore, it is possible to solve the shortage of refrigerant supply to the main compressor 11 at the time of starting, and to realize a reliable and stable starting.

また、本実施の形態に係る冷凍サイクル装置10は、第二バイパス路82Aを備えているので、起動時に主圧縮機11から吐出された冷媒により過給機15の入口の冷媒の圧力が上昇して、過給機15の入口と出口との冷媒に差圧が生じる。この結果、過給機15は動力回収機構18の動力回収部として機能し、動力回収機構18の自立起動が促進される。   Further, since the refrigeration cycle apparatus 10 according to the present embodiment includes the second bypass passage 82A, the refrigerant pressure at the inlet of the supercharger 15 is increased by the refrigerant discharged from the main compressor 11 at the time of startup. Thus, a differential pressure is generated in the refrigerant between the inlet and the outlet of the supercharger 15. As a result, the supercharger 15 functions as a power recovery unit of the power recovery mechanism 18 and the self-sustained activation of the power recovery mechanism 18 is promoted.

なお、一般的な容積型流体機械では膨張工程側よりも圧縮行程側の方が冷媒の密度が小さいことから、膨張機13と比較して過給機15の方がより大きな冷媒の容積を有する。このため、静止している動力回収機構18に流体エネルギーを与えて自立起動させるためには、動力回収軸17を介して回転モーメントを相手に伝達することを含めて考慮すれば、容積の小さい膨張機13よりも容積の大きい過給機15に流体エネルギーを与える方が効率がよい。   Note that in a general positive displacement fluid machine, the density of the refrigerant is smaller on the compression stroke side than on the expansion process side, so that the supercharger 15 has a larger refrigerant volume than the expander 13. . For this reason, in order to give fluid energy to the stationary power recovery mechanism 18 so as to self-activate it, if the rotational moment is transmitted to the other party via the power recovery shaft 17, an expansion with a small volume is taken into consideration. It is more efficient to give fluid energy to the supercharger 15 having a larger volume than the machine 13.

さらに、本実施の形態に係る冷凍サイクル装置10は、第三バイパス路83Aを備えているので、起動時に過給機15から吐出された冷媒により膨張機13の入口の冷媒の圧力が上昇して、膨張機13の入口と出口との冷媒に差圧が生じる。この結果、前述の過給機15に加え膨張機13も動力回収機構18の動力回収部として機能し、過給機15と膨張機13との双方を用いて流体エネルギーを回収できるので、より迅速に動力回収機構18を自立起動させることができる。   Further, since the refrigeration cycle apparatus 10 according to the present embodiment includes the third bypass passage 83A, the refrigerant pressure at the inlet of the expander 13 is increased by the refrigerant discharged from the supercharger 15 at the time of startup. A differential pressure is generated in the refrigerant between the inlet and the outlet of the expander 13. As a result, in addition to the above-described supercharger 15, the expander 13 also functions as a power recovery unit of the power recovery mechanism 18, and fluid energy can be recovered using both the supercharger 15 and the expander 13. The power recovery mechanism 18 can be activated independently.

そのうえ、本実施の形態に係る冷凍サイクル装置10において、起動用冷媒回路16Aには放熱器12が含まれないので、起動時に蒸発器14を流れる冷媒は定常運転時よりも高温である。このため、冷凍サイクル装置10の起動とともに蒸発器14の除霜を行うことができる。但し、起動時に限定されず、起動用冷媒回路16Aに冷媒を循環させることによって、蒸発器14の除霜を行うことができる。   In addition, in the refrigeration cycle apparatus 10 according to the present embodiment, the startup refrigerant circuit 16A does not include the radiator 12, so the refrigerant flowing through the evaporator 14 at the time of startup is hotter than during steady operation. For this reason, defrosting of the evaporator 14 can be performed with the start-up of the refrigeration cycle apparatus 10. However, it is not limited to the time of starting, and the evaporator 14 can be defrosted by circulating the refrigerant in the starting refrigerant circuit 16A.

<実施の形態2>
本発明の実施の形態2について、図5及び図6を用いて説明する。図5は実施の形態2に係る冷凍サイクル装置の回路図、図6は実施の形態2に係る冷凍サイクル装置の起動時の回路図である。図5において、定常運転時の冷媒の流れを鎖線矢印で示し起動時の冷媒の流れを実線矢印で示している。また、図6では起動用冷媒回路を実線で示している。
<Embodiment 2>
A second embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a circuit diagram of the refrigeration cycle apparatus according to the second embodiment, and FIG. 6 is a circuit diagram when the refrigeration cycle apparatus according to the second embodiment is started. In FIG. 5, the refrigerant flow during steady operation is indicated by a chain line arrow, and the refrigerant flow at startup is indicated by a solid line arrow. In FIG. 6, the starting refrigerant circuit is shown by a solid line.

図5に示すように、実施の形態2に係る冷凍サイクル装置10は、実施の形態1に係る冷凍サイクル装置10とは第三バイパス路83Aに代えて第三バイパス路83Bが設けられている点を除いて同一構成であるので、以下では第三バイパス路83Bについて詳細に説明し、他の部分についての説明は省略する。   As shown in FIG. 5, the refrigeration cycle apparatus 10 according to the second embodiment is provided with a third bypass path 83B instead of the third bypass path 83A, unlike the refrigeration cycle apparatus 10 according to the first embodiment. Therefore, the third bypass path 83B will be described in detail below, and description of other parts will be omitted.

第三バイパス路83Bは、主圧縮機11を通らずに過給機15の出口から放熱器12の入口へ直に冷媒が流れるように冷媒回路16に接続された流路である。具体的には、第三バイパス路83Bの上流端は主圧縮機11の吸入側流路65に接続され、同じく下流端は主圧縮機11の吐出側流路61に接続されている。   The third bypass passage 83 </ b> B is a passage connected to the refrigerant circuit 16 so that the refrigerant flows directly from the outlet of the supercharger 15 to the inlet of the radiator 12 without passing through the main compressor 11. Specifically, the upstream end of the third bypass passage 83 </ b> B is connected to the suction side flow path 65 of the main compressor 11, and the downstream end is connected to the discharge side flow path 61 of the main compressor 11.

第一バイパス路81の下流端と、第三バイパス路83Bの上流端とは、1つの四方弁23に接続されている。この四方弁23は、主圧縮機11の吸入側流路65を上流側と下流側とに分断するように設けられている。この四方弁23により、吸入側流路65の上流側と下流側とが連通された状態(運転待機時及び定常運転時)と、吸入側流路65の上流側と第三バイパス路83Bとが連通され且つ吸入側流路65の下流側と第一バイパス路81とが連通された状態(起動時)とに、冷媒の流れを切り替えることができる。従って、運転待機時及び定常運転時は、過給機15から主圧縮機11へ冷媒が流れ、起動時には、過給機15から放熱器12へ直に冷媒が流れるとともに蒸発器14から主圧縮機11へ直に冷媒が流れることとなる。   The downstream end of the first bypass path 81 and the upstream end of the third bypass path 83B are connected to one four-way valve 23. The four-way valve 23 is provided so as to divide the suction side flow path 65 of the main compressor 11 into an upstream side and a downstream side. With this four-way valve 23, the upstream side and downstream side of the suction side flow path 65 communicate with each other (during operation standby and steady operation), and the upstream side of the suction side flow path 65 and the third bypass path 83B. The flow of the refrigerant can be switched to a state (at the time of activation) where the first bypass passage 81 and the downstream side of the suction side passage 65 are communicated with each other. Accordingly, during standby and steady operation, the refrigerant flows from the supercharger 15 to the main compressor 11, and at startup, the refrigerant flows directly from the supercharger 15 to the radiator 12, and from the evaporator 14 to the main compressor. The refrigerant will flow directly to 11.

冷凍サイクル装置10では、冷媒回路16と各バイパス路81,82A,83Bとの接続部に設けられた四方弁21,23及び切替弁22を切り替えることにより、冷凍サイクル装置10の運転待機時及び定常運転時に冷媒回路16を成立させ、冷凍サイクル装置10の起動時に起動用冷媒回路16Aを成立させることができる。   In the refrigeration cycle apparatus 10, the four-way valves 21, 23 and the switching valve 22 provided at the connection portion between the refrigerant circuit 16 and each bypass path 81, 82 </ b> A, 83 </ b> B are switched, so The refrigerant circuit 16 can be established during operation, and the activation refrigerant circuit 16A can be established when the refrigeration cycle apparatus 10 is activated.

図5に示すように、冷媒回路16では、主圧縮機11→放熱器12→膨張機13→蒸発器14→過給機15→主圧縮機11の順に冷媒が循環する。冷媒回路16を冷媒が循環可能であるときは、第一バイパス路81、第二バイパス路82A、及び第三バイパス路83Bには冷媒が流れない。   As shown in FIG. 5, in the refrigerant circuit 16, the refrigerant circulates in the order of the main compressor 11 → the radiator 12 → the expander 13 → the evaporator 14 → the supercharger 15 → the main compressor 11. When the refrigerant can circulate through the refrigerant circuit 16, no refrigerant flows through the first bypass path 81, the second bypass path 82A, and the third bypass path 83B.

また、図6に示すように、起動用冷媒回路16Aでは、主圧縮機11→過給機15→放熱器12→膨張機13→蒸発器14→主圧縮機11の順に冷媒が循環する。   As shown in FIG. 6, in the starting refrigerant circuit 16 </ b> A, the refrigerant circulates in the order of the main compressor 11 → the supercharger 15 → the radiator 12 → the expander 13 → the evaporator 14 → the main compressor 11.

[冷凍サイクル装置の動作]
次に、上記構成の冷凍サイクル装置10の動作について説明する。なお、実施の形態2に係る冷凍サイクル装置10の運転待機時及び定常運転時の動作は、実施の形態1に係る冷凍サイクル装置と同一であるので、ここでは、起動時の動作についてのみ説明する。
[Operation of refrigeration cycle equipment]
Next, the operation of the refrigeration cycle apparatus 10 having the above configuration will be described. Note that the operation during standby and steady operation of the refrigeration cycle apparatus 10 according to the second embodiment is the same as that during the refrigeration cycle apparatus according to the first embodiment, and therefore only the operation during startup will be described here. .

起動時の冷凍サイクル装置10では、バイパス路81,82A,83Bを冷媒が流れるように四方弁21,23及び切替弁22が切り替えられて、起動用冷媒回路16Aが成立している。そして、主圧縮機11が起動すると、主圧縮機11は、起動用冷媒回路16Aにおいて膨張機13の出口から主圧縮機11の入口にある冷媒を吸入し、高温高圧に圧縮して吐出する。つまり、起動時の主圧縮機11は、膨張機13と蒸発器14との接続流路63、蒸発器14の内部、蒸発器14と過給機15との接続流路64のうち四方弁21から上流部分、第一バイパス路81、及び主圧縮機11の吐出側流路61の四方弁23から下流部分にある冷媒を吸入することができる。よって、主圧縮機11の吐出側流路61と比較して、より大きな容積にある冷媒を吸入可能であるので、起動時の主圧縮機11への冷媒供給不足を防止して、確実で安定した起動を実現することができる。   In the refrigeration cycle apparatus 10 at the time of activation, the four-way valves 21 and 23 and the switching valve 22 are switched so that the refrigerant flows through the bypass passages 81, 82A, and 83B, and the activation refrigerant circuit 16A is established. When the main compressor 11 is started, the main compressor 11 sucks the refrigerant at the inlet of the main compressor 11 from the outlet of the expander 13 in the starting refrigerant circuit 16A, compresses it to high temperature and high pressure, and discharges it. That is, the main compressor 11 at the time of start-up includes the four-way valve 21 among the connection flow path 63 between the expander 13 and the evaporator 14, the inside of the evaporator 14, and the connection flow path 64 between the evaporator 14 and the supercharger 15. From the four-way valve 23 of the upstream portion, the first bypass passage 81, and the discharge side flow passage 61 of the main compressor 11, the refrigerant in the downstream portion can be sucked. Therefore, since the refrigerant having a larger volume can be sucked compared to the discharge-side flow path 61 of the main compressor 11, a shortage of refrigerant supply to the main compressor 11 at the time of start-up can be prevented, and reliable and stable. Can be realized.

起動用冷媒回路16Aでは、第二バイパス路82Aにより主圧縮機11の出口と過給機15の入口とが連通しているので、主圧縮機11から高温高圧の冷媒が吐出されることによって、過給機15の入口にある冷媒の圧力と温度がともに上昇していく。従って、過給機15の入口側の冷媒は、出口側の冷媒と比較して高圧となり、過給機15の入口側と出口側とで冷媒に差圧が生じる。ここで、過給機15は冷媒の流動エネルギー或いは冷媒の膨張エネルギーを吸収して、動力回収軸17を回転させるための機械エネルギーに変換する。つまり、起動時の過給機15は動力回収機構18の動力回収部として機能している。   In the starting refrigerant circuit 16A, the outlet of the main compressor 11 and the inlet of the supercharger 15 are communicated with each other by the second bypass passage 82A. Therefore, when the high-temperature and high-pressure refrigerant is discharged from the main compressor 11, Both the pressure and temperature of the refrigerant at the inlet of the supercharger 15 rise. Therefore, the refrigerant on the inlet side of the supercharger 15 has a higher pressure than the refrigerant on the outlet side, and a differential pressure is generated in the refrigerant between the inlet side and the outlet side of the supercharger 15. Here, the supercharger 15 absorbs the flow energy of the refrigerant or the expansion energy of the refrigerant and converts it into mechanical energy for rotating the power recovery shaft 17. That is, the supercharger 15 at the time of activation functions as a power recovery unit of the power recovery mechanism 18.

過給機15を通じるうちに冷媒はやや減圧されて、中温中圧となる。起動用冷媒回路16Aでは、第三バイパス路83Bにより過給機15の出口と放熱器12の入口とが連通しているので、過給機15から流出した中温中圧の冷媒によって、膨張機13の入口にある冷媒の圧力が上昇していく。一方、主圧縮機11は、膨張機13の出口側に連通している接続流路63内の冷媒を吸入するので、膨張機13の出口側の冷媒の圧力は低減していく。このようにして、膨張機13の入口側と出口側との冷媒の差圧が増大していく。   While passing through the supercharger 15, the refrigerant is slightly depressurized to an intermediate temperature and intermediate pressure. In the start-up refrigerant circuit 16A, the outlet of the supercharger 15 and the inlet of the radiator 12 are communicated with each other by the third bypass passage 83B. The pressure of the refrigerant at the inlet increases. On the other hand, since the main compressor 11 sucks the refrigerant in the connection flow path 63 communicating with the outlet side of the expander 13, the pressure of the refrigerant on the outlet side of the expander 13 decreases. In this way, the refrigerant pressure difference between the inlet side and the outlet side of the expander 13 increases.

やがて、膨張機13の入口側と出口側との冷媒の差圧により、膨張機13の入口から出口への冷媒の流れが生じると、膨張機13が起動する。起動した膨張機13は、動力回収機構18の動力回収部として機能し、膨張機13を流れる冷媒の膨張エネルギーを吸収して動力回収軸17を回転させるための機械エネルギーに変換する。このエネルギーにより動力回収軸17が回転して、動力回収機構18が自立起動する。このとき、上述の通り過給機15においても動力回収軸17にエネルギーが与えられているので、動力回収機構18はより迅速に起動することができる。   Eventually, when the refrigerant flow from the inlet to the outlet of the expander 13 is caused by the refrigerant pressure difference between the inlet and outlet of the expander 13, the expander 13 is activated. The activated expander 13 functions as a power recovery unit of the power recovery mechanism 18, absorbs the expansion energy of the refrigerant flowing through the expander 13, and converts it into mechanical energy for rotating the power recovery shaft 17. With this energy, the power recovery shaft 17 rotates and the power recovery mechanism 18 starts up independently. At this time, since the energy is applied to the power recovery shaft 17 in the supercharger 15 as described above, the power recovery mechanism 18 can be started more quickly.

このように動力回収機構18が自立起動すると、バイパス路81,82A,83Bに冷媒が流れないように四方弁21,23及び切替弁22が切り替えられて、冷媒が冷媒回路16を循環し始めて定常運転に移行する。   Thus, when the power recovery mechanism 18 starts up autonomously, the four-way valves 21, 23 and the switching valve 22 are switched so that the refrigerant does not flow into the bypass passages 81, 82A, 83B, and the refrigerant begins to circulate through the refrigerant circuit 16 and becomes steady. Transition to driving.

上述の通り、本実施の形態に係る冷凍サイクル装置10は、第一バイパス路81を備えているので、起動時の主圧縮機11は、膨張機13の出口から蒸発器14の出口までの流路にある冷媒を吸入することができる。よって、起動時の主圧縮機11への冷媒供給不足を解消して、確実で安定した起動を実現することができる。   As described above, since the refrigeration cycle apparatus 10 according to the present embodiment includes the first bypass passage 81, the main compressor 11 at the time of startup is a flow from the outlet of the expander 13 to the outlet of the evaporator 14. The refrigerant in the passage can be sucked. Therefore, it is possible to solve the shortage of refrigerant supply to the main compressor 11 at the time of starting, and to realize a reliable and stable starting.

さらに、本実施の形態に係る冷凍サイクル装置10は、第二バイパス路82Aを備えているので、起動時に過給機15と膨張機13との双方で動力回収が行われて、より迅速に動力回収機構18の自立起動させることができる。   Furthermore, since the refrigeration cycle apparatus 10 according to the present embodiment includes the second bypass passage 82A, power recovery is performed by both the supercharger 15 and the expander 13 at the time of start-up, so that power can be supplied more quickly. The collection mechanism 18 can be activated independently.

また、本実施の形態に係る冷凍サイクル装置10は、第三バイパス路83Bを備えているので、冷凍サイクル装置10の起動直後から放熱器12を使用することができ、暖房運転を迅速に立ち上げたい場合に有効である。   Moreover, since the refrigeration cycle apparatus 10 according to the present embodiment includes the third bypass passage 83B, the radiator 12 can be used immediately after the start of the refrigeration cycle apparatus 10, and the heating operation is quickly started. It is effective when you want.

<実施の形態3>
本発明の実施の形態3について、図7及び図8を用いて説明する。図7は実施の形態3に係る冷凍サイクル装置の回路図、図8は実施の形態3に係る冷凍サイクル装置の起動時の回路図である。図7において、定常運転時の冷媒の流れを鎖線矢印で示し起動時の冷媒の流れを実線矢印で示している。また、図8では起動用冷媒回路を実線で示している。
<Embodiment 3>
A third embodiment of the present invention will be described with reference to FIGS. FIG. 7 is a circuit diagram of the refrigeration cycle apparatus according to Embodiment 3, and FIG. 8 is a circuit diagram at the time of activation of the refrigeration cycle apparatus according to Embodiment 3. In FIG. 7, the refrigerant flow during steady operation is indicated by a chain line arrow, and the refrigerant flow at startup is indicated by a solid line arrow. In FIG. 8, the starting refrigerant circuit is shown by a solid line.

図7に示すように、実施の形態3に係る冷凍サイクル装置10は、実施の形態1に係る冷凍サイクル装置10とは第三バイパス路83Aに代えて第三バイパス路83Cを設けている点を除いて同一構成であるので、以下では第三バイパス路83Cについて詳細に説明し、他の部分についての説明は省略する。   As shown in FIG. 7, the refrigeration cycle apparatus 10 according to the third embodiment is different from the refrigeration cycle apparatus 10 according to the first embodiment in that a third bypass path 83C is provided instead of the third bypass path 83A. Since the configuration is the same except for the above, the third bypass passage 83C will be described in detail below, and the description of the other portions will be omitted.

第三バイパス路83Cは、主圧縮機11、放熱器12、及び膨張機13を通らずに過給機15の出口から蒸発器14の入口へ直に冷媒が流れるように冷媒回路16に接続された流路である。具体的には、第三バイパス路83Cの上流端は主圧縮機11の吸入側流路65に接続され、同じく下流端は膨張機13の出口と蒸発器14の入口を繋ぐ接続流路63に接続されている。   The third bypass 83C is connected to the refrigerant circuit 16 so that the refrigerant flows directly from the outlet of the supercharger 15 to the inlet of the evaporator 14 without passing through the main compressor 11, the radiator 12, and the expander 13. The flow path. Specifically, the upstream end of the third bypass passage 83C is connected to the suction-side flow path 65 of the main compressor 11, and the downstream end is also connected to the connection flow path 63 that connects the outlet of the expander 13 and the inlet of the evaporator 14. It is connected.

第一バイパス路81の下流端と、第三バイパス路83Cの上流端とは、1つの四方弁23に接続されている。この四方弁23は、主圧縮機11の吸入側流路65を上流側と下流側とに分断するように設けられている。この四方弁23により、吸入側流路65の上流側と下流側とが連通された状態(運転待機時及び定常運転時)と、吸入側流路65の上流側と第三バイパス路83Cとが連通され且つ吸入側流路65の下流側と第一バイパス路81とが連通された状態(起動時)とに、冷媒の流れを切り替えることができる。従って、運転待機時及び定常運転時は、過給機15から主圧縮機11へ冷媒が流れ、起動時には、過給機15から蒸発器14へ直に冷媒が流れるとともに蒸発器14から主圧縮機11へ直に冷媒が流れることとなる。   The downstream end of the first bypass passage 81 and the upstream end of the third bypass passage 83C are connected to one four-way valve 23. The four-way valve 23 is provided so as to divide the suction side flow path 65 of the main compressor 11 into an upstream side and a downstream side. By this four-way valve 23, a state in which the upstream side and the downstream side of the suction side flow path 65 are communicated (at the time of operation standby and during steady operation), and the upstream side of the suction side flow path 65 and the third bypass path 83C are connected. The flow of the refrigerant can be switched to a state (at the time of activation) where the first bypass passage 81 and the downstream side of the suction side passage 65 are communicated with each other. Therefore, during standby and steady operation, the refrigerant flows from the supercharger 15 to the main compressor 11, and at the time of start-up, the refrigerant flows directly from the supercharger 15 to the evaporator 14, and from the evaporator 14 to the main compressor. The refrigerant will flow directly to 11.

また、接続流路63には、膨張機13の出口と、第三バイパス路83Cの下流端の接続部との間に逆止弁26が設けられている。この逆止弁26により、第三バイパス路83Cの接続部から膨張機13の出口への冷媒の流れが生じない。   The connection flow path 63 is provided with a check valve 26 between the outlet of the expander 13 and the connection portion at the downstream end of the third bypass path 83C. The check valve 26 prevents the refrigerant from flowing from the connection portion of the third bypass passage 83C to the outlet of the expander 13.

冷凍サイクル装置10では、冷媒回路16と各バイパス路81,82A,83Cとの接続部に設けられた四方弁21,23及び切替弁22を切り替えることにより、冷凍サイクル装置10の運転待機時及び定常運転時に冷媒回路16を成立させ、冷凍サイクル装置10の起動時に起動用冷媒回路16Aを成立させることができる。   In the refrigeration cycle apparatus 10, the four-way valves 21, 23 and the switching valve 22 provided at the connection portion between the refrigerant circuit 16 and the bypass paths 81, 82 </ b> A, 83 </ b> C are switched, so The refrigerant circuit 16 can be established during operation, and the activation refrigerant circuit 16A can be established when the refrigeration cycle apparatus 10 is activated.

図7に示すように、冷媒回路16では、主圧縮機11→放熱器12→膨張機13→蒸発器14→過給機15→主圧縮機11の順に冷媒が循環する。冷媒回路16が有効であるときは、第一バイパス路81、第二バイパス路82A、及び第三バイパス路83Cには冷媒が流れない。   As shown in FIG. 7, in the refrigerant circuit 16, the refrigerant circulates in the order of the main compressor 11 → the radiator 12 → the expander 13 → the evaporator 14 → the supercharger 15 → the main compressor 11. When the refrigerant circuit 16 is effective, no refrigerant flows through the first bypass path 81, the second bypass path 82A, and the third bypass path 83C.

また、図8に示すように、起動用冷媒回路16Aでは、主圧縮機11→過給機15→蒸発器14→主圧縮機11の順に冷媒が循環する。この起動用冷媒回路16Aでは、放熱器12及び膨張機13には冷媒が流れない。   As shown in FIG. 8, in the starting refrigerant circuit 16 </ b> A, the refrigerant circulates in the order of the main compressor 11 → the supercharger 15 → the evaporator 14 → the main compressor 11. In the startup refrigerant circuit 16A, no refrigerant flows through the radiator 12 and the expander 13.

[冷凍サイクル装置の動作]
次に、上記構成の冷凍サイクル装置10の動作について説明する。なお、実施の形態2に係る冷凍サイクル装置10の運転待機時及び定常運転時の動作は、実施の形態1に係る冷凍サイクル装置と同一であるので、ここでは、起動時の動作についてのみ説明する。
[Operation of refrigeration cycle equipment]
Next, the operation of the refrigeration cycle apparatus 10 having the above configuration will be described. Note that the operation during standby and steady operation of the refrigeration cycle apparatus 10 according to the second embodiment is the same as that during the refrigeration cycle apparatus according to the first embodiment, and therefore only the operation during startup will be described here. .

起動時の冷凍サイクル装置10では、バイパス路81,82A,83Cに冷媒が流れるように四方弁21,23及び切替弁22が切り替えられて、起動用冷媒回路16Aが成立している。そして、主圧縮機11が起動すると、主圧縮機11は、起動用冷媒回路16Aにおいて過給機15の出口から主圧縮機11の入口にある冷媒を吸入し、高温高圧に圧縮して吐出する。つまり、起動時の主圧縮機11は、吸入側流路65、第三バイパス路83C、膨張機13と蒸発器14との接続流路63、蒸発器14の内部、蒸発器14と過給機15との接続流路64のうち四方弁21から上流部分、及び第一バイパス路81にある冷媒を吸入することができる。よって、主圧縮機11の吐出側流路61と比較して、より大きな容積にある冷媒を吸入可能であるので、起動時の主圧縮機11への冷媒供給不足を防止して、確実で安定した起動を実現することができる。   In the refrigeration cycle apparatus 10 at the time of activation, the four-way valves 21 and 23 and the switching valve 22 are switched so that the refrigerant flows through the bypass passages 81, 82A, and 83C, and the activation refrigerant circuit 16A is established. When the main compressor 11 is started, the main compressor 11 sucks the refrigerant at the inlet of the main compressor 11 from the outlet of the supercharger 15 in the starting refrigerant circuit 16A, compresses it to high temperature and high pressure, and discharges it. . That is, the main compressor 11 at the time of startup includes the suction side flow path 65, the third bypass path 83C, the connection flow path 63 between the expander 13 and the evaporator 14, the inside of the evaporator 14, the evaporator 14 and the supercharger. 15, the refrigerant in the upstream portion and the first bypass passage 81 can be sucked from the four-way valve 21. Therefore, since the refrigerant having a larger volume can be sucked compared to the discharge-side flow path 61 of the main compressor 11, a shortage of refrigerant supply to the main compressor 11 at the time of start-up can be prevented, and reliable and stable. Can be realized.

起動用冷媒回路16Aでは、第二バイパス路82Aにより主圧縮機11の出口と過給機15の入口とが連通しているので、主圧縮機11から高温高圧の冷媒が吐出されることによって、過給機15の入口にある冷媒の圧力と温度がともに上昇していく。従って、過給機15の入口側の冷媒は、出口側の冷媒と比較して高圧となり、過給機15の入口側と出口側とで冷媒に差圧が生じる。ここで、過給機15は冷媒の流動エネルギー或いは冷媒の膨張エネルギーを吸収して、動力回収軸17を回転させるための機械エネルギーに変換する。つまり、起動時の過給機15は動力回収機構18の動力回収部として機能している。   In the starting refrigerant circuit 16A, the outlet of the main compressor 11 and the inlet of the supercharger 15 are communicated with each other by the second bypass passage 82A. Therefore, when the high-temperature and high-pressure refrigerant is discharged from the main compressor 11, Both the pressure and temperature of the refrigerant at the inlet of the supercharger 15 rise. Therefore, the refrigerant on the inlet side of the supercharger 15 has a higher pressure than the refrigerant on the outlet side, and a differential pressure is generated in the refrigerant between the inlet side and the outlet side of the supercharger 15. Here, the supercharger 15 absorbs the flow energy of the refrigerant or the expansion energy of the refrigerant and converts it into mechanical energy for rotating the power recovery shaft 17. That is, the supercharger 15 at the time of activation functions as a power recovery unit of the power recovery mechanism 18.

やがて、過給機15で回収されたエネルギーにより動力回収軸17が回転して、動力回収機構18が自立起動する。ここで、起動した膨張機13は、膨張機13の入口側の冷媒を出口側へ送り出す圧縮機として機能する。従って、動力回収機構18の自立起動は、膨張機13の入口と出口の冷媒の圧力差又は温度差、主圧縮機11が起動してからの時間、或いは動力回収軸17の回転数を検出することにより知ることができるが、膨張機13の入口側が低温側且つ低圧側となり且つ自立に近づくに連れて圧力差又は温度差が小さくなることに留意する必要がある。   Eventually, the power recovery shaft 17 is rotated by the energy recovered by the supercharger 15, and the power recovery mechanism 18 starts up independently. Here, the activated expander 13 functions as a compressor that sends the refrigerant on the inlet side of the expander 13 to the outlet side. Therefore, the self-sustained activation of the power recovery mechanism 18 detects the pressure difference or temperature difference between the refrigerant at the inlet and outlet of the expander 13, the time after the main compressor 11 is activated, or the rotational speed of the power recovery shaft 17. However, it should be noted that the pressure difference or the temperature difference becomes smaller as the inlet side of the expander 13 becomes a low temperature side and a low pressure side and approaches self-supporting.

過給機15を出た中圧中温の冷媒は、第三バイパス路83C及び接続流路63を通じて蒸発器14へ流れる。ここで膨張機13の出口側の接続流路63は入口側の接続流路62よりも高圧となるが、逆止弁26により冷媒は膨張機13を出口側から入口側へ流れることはない。そして、蒸発器14を流れた冷媒は中圧低温となって、再び主圧縮機11に吸入される。   The medium-pressure medium-temperature refrigerant exiting the supercharger 15 flows to the evaporator 14 through the third bypass passage 83C and the connection passage 63. Here, the connection flow path 63 on the outlet side of the expander 13 has a higher pressure than the connection flow path 62 on the inlet side, but the check valve 26 prevents the refrigerant from flowing from the outlet side to the inlet side. Then, the refrigerant that has flowed through the evaporator 14 has a medium pressure and low temperature, and is sucked into the main compressor 11 again.

このようにして動力回収機構18が自立起動すると、バイパス路81,82A,83Cに冷媒が流れないように四方弁21,23及び切替弁22が切り替えられて、冷媒が冷媒回路16を循環し始めて定常運転に移行する。   When the power recovery mechanism 18 starts up in this manner, the four-way valves 21 and 23 and the switching valve 22 are switched so that the refrigerant does not flow into the bypass passages 81, 82A, and 83C, and the refrigerant starts to circulate through the refrigerant circuit 16. Transition to steady operation.

上述の通り、本実施の形態に係る冷凍サイクル装置10は、第一バイパス路81及び第三バイパス路83Cを備えているので、起動時の主圧縮機11は、吸入側流路65に加え、過給機15の膨張機13の出口から蒸発器14の出口までの流路にある冷媒を吸入することができる。よって、起動時の主圧縮機11への冷媒供給不足を解消して、確実で安定した起動を実現することができる。   As described above, since the refrigeration cycle apparatus 10 according to the present embodiment includes the first bypass path 81 and the third bypass path 83C, the main compressor 11 at the time of activation is added to the suction side flow path 65, The refrigerant in the flow path from the outlet of the expander 13 to the outlet of the evaporator 14 of the supercharger 15 can be sucked. Therefore, it is possible to solve the shortage of refrigerant supply to the main compressor 11 at the time of starting, and to realize a reliable and stable starting.

更に、起動用冷媒回路16Aに放熱器12が含まれないので、起動時に蒸発器14を流れる冷媒は、中温中圧である。よって、冷凍サイクル装置10を起動することにより、同時に蒸発器14の除霜を行うことができる。但し、起動時に限定されず、起動用冷媒回路16Aに冷媒を循環させることにより蒸発器14の除霜を行うことができる。   Furthermore, since the radiator circuit 12A for start-up does not include the radiator 12, the refrigerant that flows through the evaporator 14 at the time of start-up has an intermediate temperature and medium pressure. Therefore, the evaporator 14 can be defrosted simultaneously by starting the refrigeration cycle apparatus 10. However, the evaporator 14 is not limited to the start-up, and the evaporator 14 can be defrosted by circulating the refrigerant through the start-up refrigerant circuit 16A.

<実施の形態4>
本発明の実施の形態4について、図9及び図10を用いて説明する。図9は実施の形態4に係る冷凍サイクル装置の回路図、図10は実施の形態4に係る冷凍サイクル装置の起動時の回路図である。図9において、定常運転時の冷媒の流れを鎖線矢印で示し起動時の冷媒の流れを実線矢印で示している。また、図10では起動用冷媒回路を実線で示している。
<Embodiment 4>
A fourth embodiment of the present invention will be described with reference to FIGS. FIG. 9 is a circuit diagram of the refrigeration cycle apparatus according to Embodiment 4, and FIG. 10 is a circuit diagram at the time of startup of the refrigeration cycle apparatus according to Embodiment 4. In FIG. 9, the flow of the refrigerant during steady operation is indicated by a chain line arrow, and the flow of the refrigerant at startup is indicated by a solid line arrow. In FIG. 10, the starting refrigerant circuit is shown by a solid line.

図9に示すように、実施の形態4に係る冷凍サイクル装置10は、実施の形態1に係る冷凍サイクル装置10とは起動用冷媒回路16A及びこれを形成するバイパス路を除いて同一の構成である。そこで、起動用冷媒回路16A及びこれを形成するバイパス路について詳細に説明し、他の部分についての説明は省略する。   As shown in FIG. 9, the refrigeration cycle apparatus 10 according to the fourth embodiment has the same configuration as the refrigeration cycle apparatus 10 according to the first embodiment except for the startup refrigerant circuit 16 </ b> A and a bypass path forming the same. is there. Therefore, the activation refrigerant circuit 16A and the bypass path forming the activation refrigerant circuit 16A will be described in detail, and descriptions of other parts will be omitted.

冷凍サイクル装置10の起動用冷媒回路16Aは、冷媒回路16と二つのバイパス路81,82Bにより形成されている。   The starting refrigerant circuit 16A of the refrigeration cycle apparatus 10 is formed by the refrigerant circuit 16 and the two bypass paths 81 and 82B.

第一バイパス路81は、過給機15を通らずに蒸発器14から主圧縮機11へ冷媒が流れるように冷媒回路16に接続された流路である。第一バイパス路81の上流端は蒸発器14と過給機15との接続流路64に接続され、同じく下流端は主圧縮機11の吸入側流路65に接続されている。   The first bypass path 81 is a flow path connected to the refrigerant circuit 16 so that the refrigerant flows from the evaporator 14 to the main compressor 11 without passing through the supercharger 15. The upstream end of the first bypass path 81 is connected to the connection flow path 64 between the evaporator 14 and the supercharger 15, and the downstream end is also connected to the suction side flow path 65 of the main compressor 11.

第二バイパス路82Bは、放熱器12を通らずに主圧縮機11から膨張機13へ冷媒が流れるように冷媒回路16に接続された流路である。第二バイパス路82Bの上流端は主圧縮機11の吐出側流路61に接続され、同じく下流端は放熱器12の出口と膨張機13の入口との接続流路62に接続されている。   The second bypass path 82 </ b> B is a flow path connected to the refrigerant circuit 16 so that the refrigerant flows from the main compressor 11 to the expander 13 without passing through the radiator 12. The upstream end of the second bypass path 82B is connected to the discharge side flow path 61 of the main compressor 11, and the downstream end is connected to the connection flow path 62 between the outlet of the radiator 12 and the inlet of the expander 13.

主圧縮機11の吐出側流路61と第二バイパス路82Bの上流端との接続部には、切替弁28が設けられている。この切替弁28により、冷媒回路16側に冷媒が流れる状態(運転待機時及び定常運転時)と、第二バイパス路82B側に冷媒が流れる状態(起動時)とに、冷媒の流れを切り替えることができる。従って、運転待機時及び定常運転時には主圧縮機11から放熱器12へ冷媒が流れ、起動時には主圧縮機11から膨張機13へ直に冷媒が流れることとなる。   A switching valve 28 is provided at a connection portion between the discharge side flow path 61 of the main compressor 11 and the upstream end of the second bypass path 82B. The switching valve 28 switches the refrigerant flow between a state in which the refrigerant flows to the refrigerant circuit 16 side (during operation standby and steady operation) and a state in which the refrigerant flows to the second bypass path 82B side (at the time of startup). Can do. Accordingly, the refrigerant flows from the main compressor 11 to the radiator 12 during operation standby and steady operation, and the refrigerant flows directly from the main compressor 11 to the expander 13 during startup.

また、蒸発器14と過給機15との接続流路64と第一バイパス路81の上流端との接続部には、切替弁27が設けられている。この切替弁27により、冷媒回路16側に冷媒が流れる状態(運転待機時及び定常運転時)と、第一バイパス路81側に冷媒が流れる状態(起動時)とに、冷媒の流れを切り替えることができる。従って、運転待機時及び定常運転時には蒸発器14から過給機15へ冷媒が流れ、起動時には蒸発器14から主圧縮機11へ直に冷媒が流れることとなる。   Further, a switching valve 27 is provided at a connection portion between the connection flow path 64 between the evaporator 14 and the supercharger 15 and the upstream end of the first bypass path 81. With this switching valve 27, the flow of the refrigerant is switched between a state in which the refrigerant flows to the refrigerant circuit 16 side (during operation standby and steady operation) and a state in which the refrigerant flows to the first bypass path 81 side (at the time of startup). Can do. Accordingly, the refrigerant flows from the evaporator 14 to the supercharger 15 during operation standby and steady operation, and the refrigerant flows directly from the evaporator 14 to the main compressor 11 during startup.

冷凍サイクル装置10では、冷媒回路16と各バイパス路81,82Bとの接続部に設けられた切替弁27,28を切り替えることにより、冷凍サイクル装置10の運転待機時及び定常運転時に冷媒回路16を成立させ、冷凍サイクル装置10の起動時に起動用冷媒回路16Aを成立させることができる。   In the refrigeration cycle apparatus 10, by switching the switching valves 27 and 28 provided at the connection portion between the refrigerant circuit 16 and the bypass paths 81 and 82 </ b> B, the refrigerant circuit 16 is switched between the standby state and the steady operation of the refrigeration cycle apparatus 10. The activation refrigerant circuit 16A can be established when the refrigeration cycle apparatus 10 is activated.

図9に示すように、冷媒回路16では、主圧縮機11→放熱器12→膨張機13→蒸発器14→過給機15→主圧縮機11の順に冷媒が循環する。冷媒回路16を冷媒が循環可能であるときには、第一バイパス路81及び第二バイパス路82Bには冷媒が流れない。   As shown in FIG. 9, in the refrigerant circuit 16, the refrigerant circulates in the order of the main compressor 11 → the radiator 12 → the expander 13 → the evaporator 14 → the supercharger 15 → the main compressor 11. When the refrigerant can circulate through the refrigerant circuit 16, no refrigerant flows through the first bypass path 81 and the second bypass path 82B.

また、図10に示すように、起動用冷媒回路16Aでは、主圧縮機11→膨張機13→蒸発器14→主圧縮機11の順に冷媒が循環する。この起動用冷媒回路16Aでは、放熱器12及び過給機15には冷媒が流れない。   As shown in FIG. 10, in the starting refrigerant circuit 16 </ b> A, the refrigerant circulates in the order of the main compressor 11 → the expander 13 → the evaporator 14 → the main compressor 11. In the startup refrigerant circuit 16A, no refrigerant flows through the radiator 12 and the supercharger 15.

[冷凍サイクル装置の動作]
次に、上記構成の冷凍サイクル装置10の動作について説明する。なお、実施の形態4に係る冷凍サイクル装置10の運転待機時及び定常運転時の動作は、実施の形態1に係る冷凍サイクル装置と同一であるので、ここでは、起動時の動作についてのみ説明する。
[Operation of refrigeration cycle equipment]
Next, the operation of the refrigeration cycle apparatus 10 having the above configuration will be described. Note that the operation during standby and steady operation of the refrigeration cycle apparatus 10 according to Embodiment 4 is the same as that of the refrigeration cycle apparatus according to Embodiment 1, and therefore only the operation during startup will be described here. .

起動時の冷凍サイクル装置10では、バイパス路81,82Bに冷媒が流れるように切替弁27,28が切り替えられ、起動用冷媒回路16Aが成立している。そして、主圧縮機11が起動すると、主圧縮機11は、起動用冷媒回路16Aにおいて膨張機13の出口から主圧縮機11の入口にある冷媒を吸入し、高温高圧に圧縮して吐出する。つまり、起動時の主圧縮機11は、吸入側流路65、膨張機13と蒸発器14との接続流路63、蒸発器14の内部、蒸発器14と過給機15との接続流路64のうち切替弁27から上流部分、及び第一バイパス路81にある冷媒を吸入することができる。よって、主圧縮機11の吐出側流路61と比較して、より大きな容積にある冷媒を吸入可能であるので、起動時の主圧縮機11への冷媒供給不足を防止して、確実で安定した起動を実現することができる。   In the refrigeration cycle apparatus 10 at the time of activation, the switching valves 27 and 28 are switched so that the refrigerant flows through the bypass passages 81 and 82B, and the activation refrigerant circuit 16A is established. When the main compressor 11 is started, the main compressor 11 sucks the refrigerant at the inlet of the main compressor 11 from the outlet of the expander 13 in the starting refrigerant circuit 16A, compresses it to high temperature and high pressure, and discharges it. That is, the main compressor 11 at the time of start-up includes the suction-side flow path 65, the connection flow path 63 between the expander 13 and the evaporator 14, the inside of the evaporator 14, and the connection flow path between the evaporator 14 and the supercharger 15. 64, the refrigerant in the upstream portion and the first bypass passage 81 from the switching valve 27 can be sucked. Therefore, since the refrigerant having a larger volume can be sucked compared to the discharge-side flow path 61 of the main compressor 11, a shortage of refrigerant supply to the main compressor 11 at the time of start-up can be prevented, and reliable and stable. Can be realized.

起動用冷媒回路16Aでは、第二バイパス路82Bにより主圧縮機11の出口と膨張機13の入口とが連通しているので、主圧縮機11から高温高圧の冷媒が吐出されることによって、膨張機13の入口にある冷媒の圧力と温度がともに上昇していく。一方、主圧縮機11は、膨張機13の出口側に連通している接続流路63内の冷媒を吸入するので、膨張機13の出口側の冷媒の圧力は低減していく。このようにして、膨張機13の入口側と出口側との冷媒の差圧が増大していく。やがて、膨張機13の入口側と出口側との冷媒の差圧により、膨張機13の入口から出口への冷媒の流れが生じると、膨張機13が起動する。起動した膨張機13は、動力回収機構18の動力回収部として機能し、膨張機13を流れる冷媒の膨張エネルギーを吸収して動力回収軸17を回転させるための機械エネルギーに変換する。このエネルギーにより動力回収軸17が回転して、動力回収機構18が自立起動する。   In the starting refrigerant circuit 16A, since the outlet of the main compressor 11 and the inlet of the expander 13 are communicated with each other by the second bypass path 82B, the high-temperature and high-pressure refrigerant is discharged from the main compressor 11 to expand the refrigerant circuit 16A. Both the pressure and temperature of the refrigerant at the inlet of the machine 13 rise. On the other hand, since the main compressor 11 sucks the refrigerant in the connection flow path 63 communicating with the outlet side of the expander 13, the pressure of the refrigerant on the outlet side of the expander 13 decreases. In this way, the refrigerant pressure difference between the inlet side and the outlet side of the expander 13 increases. Eventually, when the refrigerant flow from the inlet to the outlet of the expander 13 is caused by the refrigerant pressure difference between the inlet and outlet of the expander 13, the expander 13 is activated. The activated expander 13 functions as a power recovery unit of the power recovery mechanism 18, absorbs the expansion energy of the refrigerant flowing through the expander 13, and converts it into mechanical energy for rotating the power recovery shaft 17. With this energy, the power recovery shaft 17 rotates and the power recovery mechanism 18 starts up independently.

このように動力回収機構18が自立起動すると、バイパス路81,82Bに冷媒が流れないように切替弁27,28が切り替えられて、冷媒が冷媒回路16を循環し始めて定常運転に移行する。   When the power recovery mechanism 18 starts up in this manner, the switching valves 27 and 28 are switched so that the refrigerant does not flow into the bypass passages 81 and 82B, and the refrigerant starts to circulate through the refrigerant circuit 16 and shifts to a steady operation.

上述の通り、本実施の形態に係る冷凍サイクル装置10は、第一バイパス路81を備えているので、起動時の主圧縮機11は、主圧縮機11の吸入側流路65に加え、膨張機13の出口から蒸発器14の出口までの流路にある冷媒を吸入することができる。よって、起動時の主圧縮機11への冷媒供給不足を解消して、確実で安定した起動を実現することができる。   As described above, since the refrigeration cycle apparatus 10 according to the present embodiment includes the first bypass path 81, the main compressor 11 at the time of startup is expanded in addition to the suction-side flow path 65 of the main compressor 11. The refrigerant in the flow path from the outlet of the machine 13 to the outlet of the evaporator 14 can be sucked. Therefore, it is possible to solve the shortage of refrigerant supply to the main compressor 11 at the time of starting, and to realize a reliable and stable starting.

さらに、本実施の形態に係る冷凍サイクル装置10は、第二バイパス路82Bを備えているので、起動時に主圧縮機11から吐出された冷媒が直に膨張機13の入口へ送られて、動力回収機構18の自立起動の迅速化を図ることができる。ここで、放熱器12を介さずに主圧縮機11から膨張機13へ直に冷媒が送られることから、膨張機13から流出する冷媒は定常運転時よりも高温である。この高温の冷媒が蒸発器14を流れることで、起動時に蒸発器14の除霜を行うことができる。但し、起動時に限定されず、起動用冷媒回路16Aに冷媒を循環させて蒸発器14の除霜を行うことができる。   Furthermore, since the refrigeration cycle apparatus 10 according to the present embodiment includes the second bypass passage 82B, the refrigerant discharged from the main compressor 11 at the time of start-up is directly sent to the inlet of the expander 13, and the power The recovery mechanism 18 can be started quickly. Here, since the refrigerant is sent directly from the main compressor 11 to the expander 13 without passing through the radiator 12, the refrigerant flowing out of the expander 13 is at a higher temperature than during steady operation. This high-temperature refrigerant flows through the evaporator 14, so that the evaporator 14 can be defrosted at the time of startup. However, the evaporator 14 is not limited to the start-up, and the evaporator 14 can be defrosted by circulating the refrigerant in the start-up refrigerant circuit 16A.

本発明の冷凍サイクル装置は、主圧縮機と、主圧縮機に供給する冷媒を予備的に昇圧する過給機(又は副圧縮機)と、過給機と動力軸が連結された膨張機とを備えた冷凍サイクル装置において、起動時に主圧縮機への冷媒供給不足を解消し、システムの確実且つ迅速な自立起動を実現するために有用である。   The refrigeration cycle apparatus of the present invention includes a main compressor, a supercharger (or sub-compressor) that preliminarily boosts the refrigerant supplied to the main compressor, an expander in which the supercharger and a power shaft are connected, In the refrigeration cycle apparatus having the above, it is useful for solving the shortage of refrigerant supply to the main compressor at the time of start-up and realizing the reliable and rapid self-starting of the system.

実施の形態1に係る冷凍サイクル装置の回路図。1 is a circuit diagram of a refrigeration cycle apparatus according to Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の起動の流れ図。FIG. 3 is a flowchart for starting up the refrigeration cycle apparatus according to Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の定常運転時の回路図。FIG. 3 is a circuit diagram during steady operation of the refrigeration cycle apparatus according to Embodiment 1. 実施の形態1に係る冷凍サイクル装置の起動時の回路図。FIG. 3 is a circuit diagram when the refrigeration cycle apparatus according to Embodiment 1 is started. 実施の形態2に係る冷凍サイクル装置の回路図。FIG. 5 is a circuit diagram of a refrigeration cycle apparatus according to Embodiment 2. 実施の形態2に係る冷凍サイクル装置の起動時の回路図。The circuit diagram at the time of starting of the refrigerating cycle device concerning Embodiment 2. FIG. 実施の形態3に係る冷凍サイクル装置の回路図。FIG. 6 is a circuit diagram of a refrigeration cycle apparatus according to Embodiment 3. 実施の形態3に係る冷凍サイクル装置の起動時の回路図。FIG. 6 is a circuit diagram at the time of starting the refrigeration cycle apparatus according to Embodiment 3. 実施の形態4に係る冷凍サイクル装置の回路図。FIG. 6 is a circuit diagram of a refrigeration cycle apparatus according to Embodiment 4. 実施の形態4に係る冷凍サイクル装置の起動時の回路図。FIG. 6 is a circuit diagram at the time of starting the refrigeration cycle apparatus according to Embodiment 4.

符号の説明Explanation of symbols

10 冷凍サイクル装置
11 主圧縮機
12 放熱器
13 膨張機
14 蒸発器
15 過給機
16 冷媒回路
16A 起動用冷媒回路
17 動力回収軸
18 動力回収ユニット
19 密閉容器
21,23 四方弁
22,27,28 切替弁
31 制御装置
32 操作具
33 起動検出手段
61 吐出側流路
65 吸入側流路
81 第一バイパス路
82A,82B 第二バイパス路
83A,83B,83C 第三バイパス路
DESCRIPTION OF SYMBOLS 10 Refrigeration cycle apparatus 11 Main compressor 12 Radiator 13 Expander 14 Evaporator 15 Supercharger 16 Refrigerant circuit 16A Start-up refrigerant circuit 17 Power recovery shaft 18 Power recovery unit 19 Sealed container 21, 23 Four-way valve 22, 27, 28 Switching valve 31 Control device 32 Operating tool 33 Start detection means 61 Discharge side flow path 65 Suction side flow path 81 First bypass path 82A, 82B Second bypass path 83A, 83B, 83C Third bypass path

Claims (13)

冷媒を圧縮する圧縮機、前記圧縮機で圧縮された冷媒を放熱させる放熱器、前記放熱器で放熱した冷媒を膨張させて冷媒から動力を回収する膨張機、前記膨張機で膨張した冷媒を蒸発させる蒸発器、及び前記蒸発器で蒸発した冷媒を昇圧して前記圧縮機へ送る過給機を接続流路で順次接続して成る第一冷媒回路と、
前記膨張機、前記過給機、および前記膨張機で回収された動力によって前記過給機が駆動されるように前記膨張機と前記過給機とを連結する動力回収軸を有する動力回収機構と、
前記過給機を通らずに前記蒸発器の出口から前記圧縮機の入口へ冷媒が流れるように前記第一冷媒回路に接続された第一バイパス路と、
前記放熱器及び前記蒸発器の何れも通らずに前記圧縮機の出口から前記動力回収機構の入口へ冷媒が流れるように前記第一冷媒回路に接続された第二バイパス路と、
前記第一冷媒回路を冷媒が循環する状態と、前記第一バイパス路及び前記第二バイパス路を含む第二冷媒回路を冷媒が循環する状態とに、冷媒の流れを切り替える流路切替機構とを、備えている、
冷凍サイクル装置。
A compressor that compresses the refrigerant; a radiator that dissipates the refrigerant compressed by the compressor; an expander that recovers power from the refrigerant by expanding the refrigerant dissipated by the radiator; and evaporates the refrigerant expanded by the expander A first refrigerant circuit comprising: an evaporator to be connected; and a supercharger that pressurizes the refrigerant evaporated by the evaporator and sends the refrigerant to the compressor in order through a connection flow path;
A power recovery mechanism having a power recovery shaft for connecting the expander and the supercharger so that the supercharger is driven by the power recovered by the expander, the supercharger, and the expander; ,
A first bypass path connected to the first refrigerant circuit so that the refrigerant flows from the outlet of the evaporator to the inlet of the compressor without passing through the supercharger;
A second bypass path connected to the first refrigerant circuit so that the refrigerant flows from the outlet of the compressor to the inlet of the power recovery mechanism without passing through either the radiator or the evaporator;
A flow path switching mechanism for switching a refrigerant flow between a state in which the refrigerant circulates in the first refrigerant circuit and a state in which the refrigerant circulates in a second refrigerant circuit including the first bypass path and the second bypass path. Have
Refrigeration cycle equipment.
前記第二バイパス路の上流端は前記圧縮機の出口と前記放熱器の入口との接続流路に接続され、前記第二バイパス路の下流端は前記蒸発器の出口と前記過給機の入口との接続流路に接続されている、
請求項1に記載の冷凍サイクル装置。
The upstream end of the second bypass path is connected to a connection flow path between the outlet of the compressor and the inlet of the radiator, and the downstream end of the second bypass path is an outlet of the evaporator and an inlet of the supercharger Connected to the connection flow path,
The refrigeration cycle apparatus according to claim 1.
前記圧縮機を通らずに前記過給機の出口から、前記第一冷媒回路の前記圧縮機の出口から前記蒸発器の入口までの部分へ冷媒が流れるように前記第一冷媒回路に接続され、前記第二冷媒回路に含まれる第三バイパス路を、さらに備えている、
請求項2に記載の冷凍サイクル装置。
Connected to the first refrigerant circuit so that the refrigerant flows from the outlet of the supercharger without passing through the compressor to a portion from the outlet of the compressor of the first refrigerant circuit to the inlet of the evaporator, A third bypass path included in the second refrigerant circuit,
The refrigeration cycle apparatus according to claim 2.
前記第三バイパス路の上流端は前記過給機の出口と前記圧縮機の入口との接続流路に接続され、前記第三バイパス路の下流端は前記放熱器の出口と前記膨張機の入口との接続流路に接続されている、
請求項3に記載の冷凍サイクル装置。
The upstream end of the third bypass path is connected to a connection flow path between the outlet of the supercharger and the inlet of the compressor, and the downstream end of the third bypass path is an outlet of the radiator and the inlet of the expander Connected to the connection flow path,
The refrigeration cycle apparatus according to claim 3.
前記第三バイパス路の上流端は前記過給機の出口と前記圧縮機の入口との接続流路に接続され、前記第三バイパス路の下流端は前記圧縮機の出口と前記放熱器の入口との接続流路に接続されている、
請求項3に記載の冷凍サイクル装置。
The upstream end of the third bypass path is connected to a connection flow path between the outlet of the supercharger and the inlet of the compressor, and the downstream end of the third bypass path is an outlet of the compressor and an inlet of the radiator. Connected to the connection flow path,
The refrigeration cycle apparatus according to claim 3.
前記第三バイパス路の上流端は前記過給機の出口と前記圧縮機の入口との接続流路に接続され、前記第三バイパス路の下流端は前記膨張機の出口と前記蒸発器の入口との接続流路に接続されており、
前記第一冷媒回路の前記膨張機の出口と前記第三バイパス路の下流端との間に前記流路切替機構としての逆止弁を備えている、
請求項3に記載の冷凍サイクル装置。
The upstream end of the third bypass passage is connected to a connection flow path between the outlet of the supercharger and the inlet of the compressor, and the downstream end of the third bypass passage is an outlet of the expander and an inlet of the evaporator Connected to the connection flow path,
A check valve as the flow path switching mechanism is provided between the outlet of the expander of the first refrigerant circuit and the downstream end of the third bypass path.
The refrigeration cycle apparatus according to claim 3.
前記蒸発器の出口と前記過給機の入口との接続流路に、前記流路切替機構として前記接続流路を上流側と下流側とに分断する第一流路切替器を備え、
前記第一流路切替器は、前記第一バイパス路の上流端と前記第二バイパス路の下流端とが連通し且つ前記接続流路の上流側と下流側とが連通した状態と、前記接続流路の上流側と前記第一バイパス路の上流端とが連通し且つ前記接続流路の下流側と前記第二バイパス路の下流端とが連通した状態とを切り替えるように構成されている、
請求項2〜請求項6のいずれか一項に記載の冷凍サイクル装置。
In the connection flow path between the outlet of the evaporator and the inlet of the supercharger, a first flow path switching device that divides the connection flow path into an upstream side and a downstream side as the flow path switching mechanism,
The first flow path switch has a state in which the upstream end of the first bypass path and the downstream end of the second bypass path communicate with each other, and the upstream side and the downstream side of the connection flow path communicate with each other. The upstream side of the path and the upstream end of the first bypass path are in communication with each other, and the downstream side of the connection flow path and the downstream end of the second bypass path are in communication with each other.
The refrigeration cycle apparatus according to any one of claims 2 to 6.
前記第一流路切替器は、四方弁である、
請求項7に記載の冷凍サイクル装置。
The first flow path switch is a four-way valve,
The refrigeration cycle apparatus according to claim 7.
前記過給機の出口と前記圧縮機の入口の接続流路に、前記流路切替機構として前記接続流路を上流側と下流側とに分断する第二流路切替器を備え、
前記第二流路切替器は、前記第一バイパス路の下流端と前記第三バイパス路の上流端とが連通し且つ前記接続流路の上流側と下流側とが連通した状態と、前記接続流路の上流側と前記第三バイパス路の上流端とが連通し且つ前記接続流路の下流側と前記第一バイパス路の下流端とが連通した状態とを切り替えるように構成されている、
請求項3〜請求項8のいずれか一項に記載の冷凍サイクル装置。
A connection flow path between the outlet of the supercharger and the inlet of the compressor includes a second flow path switching unit that divides the connection flow path into an upstream side and a downstream side as the flow path switching mechanism,
The second flow path switch is in a state where the downstream end of the first bypass path and the upstream end of the third bypass path communicate with each other and the upstream side and the downstream side of the connection flow path communicate with each other. The upstream side of the flow path and the upstream end of the third bypass path communicate with each other, and the downstream side of the connection flow path and the downstream end of the first bypass path are configured to be switched.
The refrigeration cycle apparatus according to any one of claims 3 to 8.
前記第二流路切替器は、四方弁である、
請求項9に記載の冷凍サイクル装置。
The second flow path switch is a four-way valve,
The refrigeration cycle apparatus according to claim 9.
前記第二バイパス路の上流端は前記圧縮機の出口と前記放熱器の入口との接続流路に接続され、同じく下流端は前記放熱器の出口と前記膨張機の入口との接続流路に接続されている、
請求項1に記載の冷凍サイクル装置。
The upstream end of the second bypass passage is connected to a connecting flow path between the outlet of the compressor and the inlet of the radiator, and the downstream end is connected to a connecting flow path between the outlet of the radiator and the inlet of the expander. It is connected,
The refrigeration cycle apparatus according to claim 1.
前記第一バイパス路の上流端と前記第一冷媒回路の接続部に、前記流路切替機構として前記第一冷媒回路側と前記第一バイパス路側とに冷媒の流れを切り替える切替弁を備えている、
請求項11に記載の冷凍サイクル装置。
A switching valve for switching a refrigerant flow between the first refrigerant circuit side and the first bypass path side is provided as a flow path switching mechanism at a connection portion between the upstream end of the first bypass path and the first refrigerant circuit. ,
The refrigeration cycle apparatus according to claim 11.
前記第二バイパス路の上流端と前記第一冷媒回路の接続部に、前記流路切替機構として前記第一冷媒回路側と前記第二バイパス路側とに冷媒の流れを切り替える切替弁を備えている、
請求項1〜請求項12のいずれか一項に記載の冷凍サイクル装置。
A switching valve for switching a refrigerant flow between the first refrigerant circuit side and the second bypass path side is provided as a flow path switching mechanism at a connection portion between the upstream end of the second bypass path and the first refrigerant circuit. ,
The refrigeration cycle apparatus according to any one of claims 1 to 12.
JP2008045424A 2008-02-27 2008-02-27 Refrigeration cycle equipment Expired - Fee Related JP5036593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045424A JP5036593B2 (en) 2008-02-27 2008-02-27 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045424A JP5036593B2 (en) 2008-02-27 2008-02-27 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2009204201A JP2009204201A (en) 2009-09-10
JP5036593B2 true JP5036593B2 (en) 2012-09-26

Family

ID=41146669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045424A Expired - Fee Related JP5036593B2 (en) 2008-02-27 2008-02-27 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP5036593B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102575885B (en) * 2009-10-07 2014-09-10 三菱电机株式会社 Refrigeration cycle device
EP2565556A1 (en) * 2010-04-28 2013-03-06 Panasonic Corporation Refrigeration cycle device
CN102395759A (en) * 2010-04-30 2012-03-28 松下电器产业株式会社 Fluid machine and refrigeration cycle apparatus
JPWO2012042698A1 (en) * 2010-09-29 2014-02-03 三菱電機株式会社 Refrigeration air conditioner
EP3104101A4 (en) * 2014-01-09 2017-10-25 Mitsubishi Electric Corporation Refrigeration cycle device
WO2015104823A1 (en) * 2014-01-09 2015-07-16 三菱電機株式会社 Refrigeration cycle device
CN104315750B (en) * 2014-10-27 2016-07-27 势加透博(北京)科技有限公司 The system and method for cooling gas compressor inlet gas
WO2021024443A1 (en) * 2019-08-07 2021-02-11 三菱電機株式会社 Refrigeration cycle device
CN115264979B (en) * 2022-08-02 2024-07-26 百尔制冷(无锡)有限公司 Pressurized carbon dioxide refrigerating system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4242131B2 (en) * 2002-10-18 2009-03-18 パナソニック株式会社 Refrigeration cycle equipment
JP3998249B2 (en) * 2003-04-28 2007-10-24 株式会社日立製作所 Refrigeration cycle
JP4552721B2 (en) * 2005-03-25 2010-09-29 ダイキン工業株式会社 Refrigeration equipment

Also Published As

Publication number Publication date
JP2009204201A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP5036593B2 (en) Refrigeration cycle equipment
EP2765369B1 (en) Refrigeration cycle device
EP2565555B1 (en) Refrigeration cycle apparatus
US7886550B2 (en) Refrigerating machine
US7730729B2 (en) Refrigerating machine
WO2011161952A1 (en) Refrigeration cycle apparatus
EP2551613B1 (en) Refrigeration cycle apparatus and method for operating same
JP2006017108A (en) Heat cycle device
WO2009098899A1 (en) Refrigeration system
JP2004137979A (en) Expansion machine
JP4976970B2 (en) Refrigeration cycle equipment
JP4078994B2 (en) Fluid machinery and waste heat recovery system
JP4622193B2 (en) Refrigeration equipment
JP5414811B2 (en) Positive displacement expander and refrigeration cycle apparatus using the positive displacement expander
JP2012093017A (en) Refrigerating cycle device
JP2012063111A (en) Refrigerating cycle device
JP4463660B2 (en) Refrigeration equipment
JP2011237086A (en) Refrigerating air conditioner
WO2011161953A1 (en) Refrigeration cycle apparatus
JP5484604B2 (en) Refrigeration air conditioner
JP2012098000A (en) Refrigeration cycle apparatus
JP2012102968A (en) Refrigerating cycle device
WO2011099057A1 (en) Refrigerating and air-conditioning device
JP2006097969A (en) Engine-driven refrigerating cycle device and heat pump type air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees