JP4682795B2 - Expander-integrated compressor and refrigeration cycle apparatus - Google Patents

Expander-integrated compressor and refrigeration cycle apparatus Download PDF

Info

Publication number
JP4682795B2
JP4682795B2 JP2005304167A JP2005304167A JP4682795B2 JP 4682795 B2 JP4682795 B2 JP 4682795B2 JP 2005304167 A JP2005304167 A JP 2005304167A JP 2005304167 A JP2005304167 A JP 2005304167A JP 4682795 B2 JP4682795 B2 JP 4682795B2
Authority
JP
Japan
Prior art keywords
expander
compressor
refrigeration cycle
suction
communication path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005304167A
Other languages
Japanese (ja)
Other versions
JP2007113447A5 (en
JP2007113447A (en
Inventor
哲也 松山
敬三 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005304167A priority Critical patent/JP4682795B2/en
Publication of JP2007113447A publication Critical patent/JP2007113447A/en
Publication of JP2007113447A5 publication Critical patent/JP2007113447A5/ja
Application granted granted Critical
Publication of JP4682795B2 publication Critical patent/JP4682795B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

本発明は、流体を膨張させる膨張機と流体を圧縮する圧縮機を備えた膨張機一体型圧縮機及び冷凍サイクル装置に関するものである。   The present invention relates to an expander-integrated compressor and an refrigeration cycle apparatus including an expander that expands fluid and a compressor that compresses fluid.

冷媒の膨張エネルギーを膨張機で回収し、圧縮機で冷媒を圧縮する仕事の一部として利用する動力回収式の冷凍サイクルとして、膨張機一体型圧縮機を用いたものが知られている。(例えば、特許文献1、2を参照)。   2. Description of the Related Art As a power recovery type refrigeration cycle that recovers expansion energy of a refrigerant with an expander and uses it as part of work for compressing the refrigerant with a compressor, one using an expander-integrated compressor is known. (For example, see Patent Documents 1 and 2).

従来の膨張機一体型圧縮機を用いた冷凍サイクルについて説明する。図10に従来特許文献1と同じ構成の膨張機一体型圧縮機を用いた冷凍サイクルを示す。この冷凍サイクルは圧縮機1、ガスクーラ2、膨張機3、蒸発器4、電動モータ5、および、圧縮機1と膨張機3と電動モータ5を直結するシャフト6と、膨張機吸入菅11と膨張機吐出管12との間をバイパスするバイパス回路31とその流量を調節する膨張弁30から構成されている。冷媒は、圧縮機1において常温低圧から高温高圧へと圧縮された後、ガスクーラ2において常温高圧へと冷却される。そして、膨張機3および膨張弁30において低温低圧へと膨張した後、蒸発器4で常温まで加熱される。図11に特許文献2と同じ構成の膨張機一体型圧縮機を用いた冷凍サイクルを示す。特許文献2は特許文献1のバイパス回路31と膨張弁30がない構成となっている。   A refrigeration cycle using a conventional expander-integrated compressor will be described. FIG. 10 shows a refrigeration cycle using an expander-integrated compressor having the same configuration as that of Patent Document 1. This refrigeration cycle includes a compressor 1, a gas cooler 2, an expander 3, an evaporator 4, an electric motor 5, a shaft 6 directly connecting the compressor 1, the expander 3, and the electric motor 5, an expander suction rod 11, and an expansion. It comprises a bypass circuit 31 that bypasses the discharge pipe 12 and an expansion valve 30 that adjusts the flow rate. The refrigerant is compressed from room temperature low pressure to high temperature high pressure in the compressor 1 and then cooled to room temperature high pressure in the gas cooler 2. And after expanding to low temperature and low pressure in the expander 3 and the expansion valve 30, it is heated by the evaporator 4 to normal temperature. FIG. 11 shows a refrigeration cycle using an expander-integrated compressor having the same configuration as that of Patent Document 2. Patent Document 2 is configured without the bypass circuit 31 and the expansion valve 30 of Patent Document 1.

このような冷凍サイクルシステムにおいて、膨張機3では、冷媒の膨張エネルギーを回収してシャフト6の回転エネルギーに変換し、圧縮機1を駆動する仕事の一部をとして利用することで、電動モータ5の動力を低減し、サイクルの高効率運転を実現していた。   In such a refrigeration cycle system, the expander 3 recovers the expansion energy of the refrigerant, converts it into rotational energy of the shaft 6, and uses part of the work for driving the compressor 1 as an electric motor 5. The power of the engine was reduced and high-efficiency operation of the cycle was realized.

図12には、このような冷凍サイクル装置の作動の一例として、高圧冷媒である二酸化炭素を冷媒として用いたモリエル線図を示しているが、このサイクルでは、圧縮機出口(点D)からガスクーラ2によって冷却された冷媒(点A)が膨張機3に流入し、これを前記膨張機3において等エントロピー膨張によって膨張させる。この場合、蒸発器入口「点B」と、従来のように膨張弁によって「点A」から等エンタルピー膨張させた場合における蒸発器入口「点E」との間のエンタルピー量「ha」だけ、冷凍システム側に回収される。その結果、圧縮機には、その必要入力「hb」から前記回収動力「ha」を差し引いた値「hb-ha」だけを実際に入力すればよく、圧縮機入力の低減分だけ冷凍サイクルの高効率運転が実現されるものである。   FIG. 12 shows a Mollier diagram using carbon dioxide, which is a high-pressure refrigerant, as an example of the operation of such a refrigeration cycle apparatus. In this cycle, a gas cooler is connected from the compressor outlet (point D). The refrigerant (point A) cooled by 2 flows into the expander 3 and is expanded by isentropic expansion in the expander 3. In this case, only the enthalpy amount “ha” between the evaporator inlet “point B” and the evaporator inlet “point E” in the case where the expansion valve is isoenthalpy-expanded from “point A” by an expansion valve as in the prior art, Collected on the system side. As a result, only the value “hb-ha” obtained by subtracting the recovered power “ha” from the necessary input “hb” needs to be actually input to the compressor. Efficient operation is achieved.

しかし、特許文献1によれば、図10に示すように、膨張機の吸入管11と吐出管12との間にバイパス回路31を設置した冷凍サイクルにおいて、起動時では、膨張機3における動力回収効果よりも、機械的損失のほうが大きくなるため、膨張弁30を全開にして差圧を解消していた。
特開2001−116371号公報 特開2000−249411号公報
However, according to Patent Document 1, as shown in FIG. 10, in a refrigeration cycle in which a bypass circuit 31 is installed between the suction pipe 11 and the discharge pipe 12 of the expander, power recovery in the expander 3 is started at the time of startup. Since the mechanical loss is larger than the effect, the expansion valve 30 is fully opened to eliminate the differential pressure.
JP 2001-116371 A JP 2000-249411 A

しかしながら、図11に示すようなバイパス回路のない動力回収式の冷凍サイクル装置では、膨張エネルギーの一部を膨張機で回収できるため高効率であり、バイパス回路と膨張弁がないため、省スペースで構成できるという長所があったが、膨張弁がないため、起動時では、膨張機における動力回収効果よりも、機械的損失のほうが大きくなり、効率の高い運転ができなかった。また、冷凍サイクル装置を運転後に停止すると、圧縮機吐出部から膨張機吸入部までを構成する高圧部と、膨張機吐出部から圧縮機吸入部までを構成する低圧部では差圧が残る。差圧が存在すると、電動モータにかかる負荷トルクが大きくなり圧縮機を起動することができない、低圧側に存在する液冷媒が外気温度の上昇などにより膨張し、蒸発器に非常に高い圧力がかかり熱交換器を破壊するという恐れがあった。つまり、差圧が存在すると、起動時では、機械的損失により運転効率が低下する、圧縮機が起動できないという効率と制御性の課題と、停止時では、熱交換器を破壊するという安全性の課題を有していた。   However, the power recovery type refrigeration cycle apparatus without a bypass circuit as shown in FIG. 11 is highly efficient because a part of the expansion energy can be recovered by the expander, and since there is no bypass circuit and an expansion valve, space is saved. Although there was an advantage that it could be configured, since there was no expansion valve, at the time of startup, the mechanical loss was larger than the power recovery effect in the expander, and high-efficiency operation was not possible. Further, when the refrigeration cycle apparatus is stopped after operation, a differential pressure remains in the high-pressure part that constitutes the compressor discharge part to the expander suction part and the low-pressure part that constitutes the expander discharge part to the compressor suction part. If there is a differential pressure, the load torque applied to the electric motor increases and the compressor cannot be started. The liquid refrigerant present on the low-pressure side expands due to an increase in the outside air temperature, and a very high pressure is applied to the evaporator. There was a risk of destroying the heat exchanger. In other words, if there is a differential pressure, the operating efficiency is reduced due to mechanical loss at startup, the problem of efficiency and controllability that the compressor cannot be started, and the safety of destroying the heat exchanger when stopped Had problems.

この差圧の問題を解決するには、図10に示すバイパス回路とバイパス回路上に膨張弁を設けた構成とすれば、膨張弁を開にすることで差圧を解消することが可能である。しかし、図10の構成では、システムの構成が大きくなるという課題を有していた。   In order to solve the problem of the differential pressure, if the expansion valve is provided on the bypass circuit and the bypass circuit shown in FIG. 10, it is possible to eliminate the differential pressure by opening the expansion valve. . However, the configuration of FIG. 10 has a problem that the configuration of the system becomes large.

本発明は、前記従来の課題を解決するもので、膨張機一体型圧縮機を用いた動力回収式の冷凍サイクルにおいて、高圧部と低圧部を膨張機一体型圧縮機の密閉容器内部で均圧することにより、起動時では、機械的損失の低減による効率の向上と電動モータの起動トルク低減による起動特性を向上し、停止時では、低圧冷媒の膨張によって、高圧力が熱交換器にかかるために発生する熱交換器の破壊から守り、また、膨張機一体型圧縮機内部に連通路と開閉手段を設けることによってバイパス回路や弁などをとり回す必要がなくなるため、効率と制御性の向上、安全性の向上、省スペース性を実現した膨張機一体型圧縮機とそれを用いた冷凍サイクル装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and in a power recovery type refrigeration cycle using an expander-integrated compressor, the high-pressure part and the low-pressure part are pressure-equalized inside the sealed container of the expander-integrated compressor. As a result, at startup, the efficiency is improved by reducing mechanical loss and the startup characteristics are reduced by reducing the startup torque of the electric motor.At the time of shutdown, high pressure is applied to the heat exchanger due to expansion of the low-pressure refrigerant. Protects against heat exchanger breakage, and eliminates the need for bypass circuits and valves by providing a communication path and opening / closing means inside the expander-integrated compressor, improving efficiency and controllability and safety It is an object of the present invention to provide an expander-integrated compressor that realizes improved performance and space saving, and a refrigeration cycle apparatus using the same.

本発明に係る膨張機一体型圧縮機は、容積式の膨張機と、容積式の圧縮機と、前記膨張機と前記圧縮機とを一軸で連結した電動モータを密閉容器内に収納し、
前記密閉容器において、前記圧縮機吐出部である高圧部と、前記膨張機吐出部または前記圧縮機吸入部である低圧部とを連通するための、前記膨張機内に設けられた連通路を有し、
前記連通路には開閉可能な手段を設けたものである。
The expander-integrated compressor according to the present invention stores a positive displacement expander, a positive displacement compressor, and an electric motor in which the expander and the compressor are connected in a single shaft in a sealed container,
The closed container has a communication path provided in the expander for communicating the high pressure portion that is the compressor discharge portion and the low pressure portion that is the expander discharge portion or the compressor suction portion. ,
The communication path is provided with means that can be opened and closed.

上記膨張機一体型圧縮機では、前記高圧部と前記低圧部を連通させないときには、高圧部と低圧部の圧力差は維持するが、連通させることにより、高圧部から低圧部へと冷媒が流入し、前記膨張機内において前記高圧部と前記低圧部を均圧することが可能となる。 In the expander-integrated compressor, when the high pressure portion and the low pressure portion are not communicated with each other, the pressure difference between the high pressure portion and the low pressure portion is maintained, but by allowing the communication, the refrigerant flows from the high pressure portion to the low pressure portion. In the expander, the high pressure part and the low pressure part can be equalized.

前記膨張機は、膨張室へ流入する流体の容積を変更可能な手段を設ける。   The expander is provided with means capable of changing the volume of fluid flowing into the expansion chamber.

このことにより、冷媒の体積流量を可変にできるバイパス回路を用いずに冷凍サイクルを循環する体積流量を変化させることができ、高効率で、省スペースな膨張機一体型圧縮機を実現できる。   As a result, the volume flow rate circulating in the refrigeration cycle can be changed without using a bypass circuit that can change the volume flow rate of the refrigerant, and a highly efficient and space-saving expander-integrated compressor can be realized.

前記膨張機は、円筒形のシリンダと、偏心軸を有するシャフトと、前記偏心軸に嵌合し、前記シリンダの内側で偏心回転するピストンと、前記シリンダと前記ピストンの間の空間を、吸入側空間と吐出側空間に仕切る仕切り部材で構成されたロータリ式の流体機構をn個(nは2以上の整数)備えたロータリ式膨張機で、前記ロータリ式膨張機のシリンダの端面を閉塞する端板の少なくとも一部が回転可能な可動部とし、前記可動部には前記シリンダへの吸入口と前記連通路を設けてもよい。   The expander includes a cylindrical cylinder, a shaft having an eccentric shaft, a piston that is fitted to the eccentric shaft and rotates eccentrically inside the cylinder, and a space between the cylinder and the piston is provided on the suction side. A rotary expander provided with n rotary type fluid mechanisms (n is an integer of 2 or more) composed of partition members for partitioning a space and a discharge side space, and closing an end face of a cylinder of the rotary type expander At least a part of the plate may be a rotatable movable part, and the movable part may be provided with a suction port to the cylinder and the communication path.

このことにより、前記第2の吸入孔により前記膨張機の吸入容積を可変にし、バイパス回路を用いずに冷凍サイクルを循環する冷媒の質量流量を変化させることができ、高効率化を実現できる。また、前記可動部と、固定部で前記開閉手段を構成し、前記可動部に設けた連通路を連通することができ、装置の簡略化を実現できる。   As a result, the suction volume of the expander can be made variable by the second suction hole, and the mass flow rate of the refrigerant circulating in the refrigeration cycle can be changed without using a bypass circuit, thereby realizing high efficiency. In addition, the opening and closing means can be configured by the movable part and the fixed part, and the communication path provided in the movable part can be communicated, thereby simplifying the apparatus.

前記圧縮機は、圧縮室へ流入する流体の吸入容積を変更可能な手段を設けていてもよい。   The compressor may be provided with means capable of changing the suction volume of the fluid flowing into the compression chamber.

このことにより、バイパス回路を用いずに冷凍サイクルを循環する冷媒の体積流量を変化させることができ、バイパス用の配管が不要となり、省スペースな膨張機一体型圧縮機を実現できる。   This makes it possible to change the volume flow rate of the refrigerant circulating in the refrigeration cycle without using a bypass circuit, eliminating the need for bypass piping, and realizing a space-saving expander-integrated compressor.

前記冷凍サイクル装置は、前記膨張機一体型圧縮機と、ガスクーラと、蒸発器と、
を有し、前記圧縮機からの吐出冷媒が、前記ガスクーラ、前記膨張機、前記蒸発器の順に循環する。
The refrigeration cycle apparatus includes the expander-integrated compressor, a gas cooler, an evaporator,
The refrigerant discharged from the compressor circulates in the order of the gas cooler, the expander, and the evaporator.

このことにより、省スペースで高効率な冷凍サイクル装置が実現できる。   As a result, a space-saving and highly efficient refrigeration cycle apparatus can be realized.

前記電動モータの停止時には、前記開閉手段により前記連通路を連通するように設定する。   When the electric motor is stopped, the opening / closing means is set to communicate with the communication path.

このことにより、停止時において高圧部と低圧部を均圧し、熱交換器の保護と、起動特性の向上を実現できる。   As a result, it is possible to equalize the high-pressure part and the low-pressure part at the time of stoppage, and to protect the heat exchanger and improve the start-up characteristics.

本発明の膨張機一体型圧縮機によれば、膨張機を用いた動力回収式の冷凍サイクルにおいて、膨張機一体型圧縮機の密閉容器の内部に設けられた連通路を連通することによって高圧部と低圧部を均圧することができ、停止時には、低圧冷媒の膨張によって、高圧力が熱交換器にかかるために発生する熱交換器の破壊から守り、また、起動時には、電動モータの起動トルクを小さくすることで、起動特性を向上することができる。さらに、連通路と開閉手段を膨張機一体型圧縮機の密閉容器の内部に設けることにより、省スペース性を実現できる。   According to the expander-integrated compressor of the present invention, in the power recovery type refrigeration cycle using the expander, the high-pressure unit is formed by communicating the communication path provided in the sealed container of the expander-integrated compressor. When stopping, the low-pressure refrigerant expands to protect against damage to the heat exchanger caused by high pressure on the heat exchanger. By making it smaller, the starting characteristics can be improved. Further, space saving can be realized by providing the communication path and the opening / closing means inside the hermetic container of the expander-integrated compressor.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1の実施形態)
図1に、本実施形態における冷凍サイクル装置の冷媒回路図を示す。冷凍サイクル装置は、圧縮機1とガスクーラ2と膨張機3と蒸発器4とが順に接続されてなる冷媒回路10を備え、圧縮機1と膨張機3とを電動モータ5に対して一軸に連結し、矢印は冷媒の流れる方向を表している。また、圧縮機1の吐出部と膨張機3の吐出部を連通する連通路8と、その連通路8を開閉する開閉手段9を備えている。本実施形態では、このような開閉手段に、ボールバルブを使用している。ただし、開閉手段9は特に限定されるものではなく、差圧の調節できる膨張弁であっても、開閉のみの電磁弁でもよい。この冷媒回路10には、高圧部分(圧縮機1からガスクーラ2を経て膨張機3に至る部分)において超臨界状態となる冷媒が充填されている。本実施形態では、そのような冷媒として二酸化炭素(CO)が充填されている。ただし、冷媒の種類は特に限定されるものではない。前記冷媒回路10の冷媒は、運転時に超臨界状態とならない冷媒であってもよい。
(First embodiment)
In FIG. 1, the refrigerant circuit figure of the refrigerating-cycle apparatus in this embodiment is shown. The refrigeration cycle apparatus includes a refrigerant circuit 10 in which a compressor 1, a gas cooler 2, an expander 3, and an evaporator 4 are connected in order, and the compressor 1 and the expander 3 are connected to the electric motor 5 in a single axis. The arrows indicate the direction in which the refrigerant flows. Further, a communication passage 8 that communicates the discharge portion of the compressor 1 and the discharge portion of the expander 3 and an opening / closing means 9 that opens and closes the communication passage 8 are provided. In this embodiment, a ball valve is used as such an opening / closing means. However, the opening / closing means 9 is not particularly limited, and may be an expansion valve capable of adjusting a differential pressure or an electromagnetic valve only for opening / closing. The refrigerant circuit 10 is filled with a refrigerant that becomes a supercritical state in a high-pressure portion (portion from the compressor 1 through the gas cooler 2 to the expander 3). In the present embodiment, carbon dioxide (CO 2 ) is filled as such a refrigerant. However, the type of refrigerant is not particularly limited. The refrigerant in the refrigerant circuit 10 may be a refrigerant that does not enter a supercritical state during operation.

次に、本実施形態における冷凍サイクルに用いる膨張機一体型圧縮機について説明する。図2に膨張機一体型圧縮機の縦断面図を示す。密閉容器41の内部の上側にはスクロール式の圧縮機1、下側には2段ロータリ式の膨張機3、その間には、回転子21と固定子22から成る電動モータ5が配置されており、これらはシャフト結合部32により連結されている。   Next, the expander-integrated compressor used in the refrigeration cycle in the present embodiment will be described. FIG. 2 shows a longitudinal sectional view of the expander-integrated compressor. A scroll compressor 1 is disposed on the upper side of the inside of the sealed container 41, a two-stage rotary expander 3 is disposed on the lower side, and an electric motor 5 including a rotor 21 and a stator 22 is disposed therebetween. These are connected by a shaft coupling portion 32.

ただし、圧縮機1及び膨張機3の形式は他の回転式圧縮機であってもよい。例えば、ロータリ式、スクロール式、マルチベーン式を好適に用いることができる。さらに、圧縮機1、膨張機3、電動モータ5の配置関係は何ら限定されない。   However, the types of the compressor 1 and the expander 3 may be other rotary compressors. For example, a rotary type, a scroll type, and a multi-vane type can be suitably used. Furthermore, the arrangement relationship of the compressor 1, the expander 3, and the electric motor 5 is not limited at all.

図2に示すように、スクロール式の圧縮機1は、固定スクロール74と、旋回スクロール73と、オルダムリング75と、軸受部材77と、マフラー79と、吸入管71と、吐出管72とから構成されている。旋回スクロール73は、圧縮機シャフト76の偏心軸に嵌合され、かつ、オルダムリング75により自転運動を拘束されている。また、旋回スクロール73は、渦巻き形状のラップ73aを有し、固定スクロール74はラップ74aを有しており、ラップ73aとラップ74aは互いに噛み合っている。旋回スクロール73は、シャフト76の回転に伴い旋回運動を行い、ラップ73a、74aの間に形成される三日月形状の作動室80が外側から内側に移動しながら容積を縮小することで、吸入管71から吸入された作動流体を圧縮し、固定スクロール74の中央部に設けた吐出孔72aと固定スクロール74および軸受部材77に設けた流路72bから、マフラー79の内側空間79aを経由して密閉容器41の内部空間41aへと吐出する。作動流体は、内部空間41aに滞留する間に、混入した潤滑用のオイルを重力や遠心力などにより分離された後、吐出管72から冷凍サイクルへと吐出される。   As shown in FIG. 2, the scroll compressor 1 includes a fixed scroll 74, an orbiting scroll 73, an Oldham ring 75, a bearing member 77, a muffler 79, a suction pipe 71, and a discharge pipe 72. Has been. The orbiting scroll 73 is fitted to the eccentric shaft of the compressor shaft 76 and is restrained from rotating by the Oldham ring 75. The orbiting scroll 73 has a spiral wrap 73a, the fixed scroll 74 has a wrap 74a, and the wrap 73a and the wrap 74a mesh with each other. The orbiting scroll 73 performs a orbiting motion as the shaft 76 rotates, and the volume of the orbiting scroll 71 is reduced while the crescent-shaped working chamber 80 formed between the wraps 73a and 74a moves from the outside to the inside. The working fluid sucked from the air is compressed, and the sealed container is discharged from the discharge hole 72a provided at the center of the fixed scroll 74 and the flow path 72b provided in the fixed scroll 74 and the bearing member 77 via the inner space 79a of the muffler 79. 41 is discharged into the internal space 41a. While the working fluid stays in the internal space 41a, the mixed lubricating oil is separated by gravity, centrifugal force, or the like, and then discharged from the discharge pipe 72 to the refrigeration cycle.

図2において、2段ロータリ式の膨張機3は、第1のシリンダ42、第1のシリンダ42よりも厚みのある第2のシリンダ43、および、これらを仕切る中板57を有し、膨張機シャフト44の偏心部44aと嵌合している第1のピストン45は、第1のシリンダ42の中で偏心回転運動し、シャフト44の偏心部44aと嵌合している第2のピストン46は、第2のシリンダ43の中で偏心回転運動する。第1のベーン47(図9に記載)は、第1のシリンダ42のベーン溝42a(図9に記載)に往復動自在に保持され、先端が第1のピストン45に接し、第2のベーン(図示せず)は第2のシリンダ43のベーン溝43a(図示せず)に往復動自在に保持され、先端が第2のピストン46に接する。第1のベーン47を押す第1のばね49(図9にまた記載)はベーン溝42aに、第2のベーン48を押す第2のばね(図示せず)はベーン溝43aに格納され、吸入管53と、吐出管54とから構成された上側端板51とマフラー58と接する下側端板52は、シャフト44を支える軸受を備えている。第1のシリンダ42の吐出側と、第2のシリンダ43の吸入側は、中板57に設けた連通孔57aにより連通しており、一つの作動室として機能する。高圧の作動流体は吸入管53から上側端板51に設けた吸入孔51aから第1のシリンダ42の作動室に流入した後、第2のシリンダ43の作動室とから形成される作動室にて膨張してシャフト44を回転させて低圧になった後、下側端板52を経てマフラー58の内部空間52cに一旦吐出され、吐出流路52bを経て吐出管54から冷凍サイクルへと吐出される。ここで、下側端板52の吐出孔52aには、吐出弁59を設けている。吐出弁59は金属の薄板であり、吐出孔52aをマフラー58の内部空間52c側から塞ぐように設置されており、吐出弁59の上流側の圧力が下流側の圧力より高くなると開く差圧弁となっている。   In FIG. 2, the two-stage rotary expander 3 includes a first cylinder 42, a second cylinder 43 that is thicker than the first cylinder 42, and an intermediate plate 57 that partitions them. The first piston 45 fitted to the eccentric portion 44a of the shaft 44 rotates eccentrically in the first cylinder 42, and the second piston 46 fitted to the eccentric portion 44a of the shaft 44 is In the second cylinder 43, an eccentric rotational movement is performed. The first vane 47 (shown in FIG. 9) is reciprocally held in the vane groove 42a (shown in FIG. 9) of the first cylinder 42, the tip is in contact with the first piston 45, and the second vane (Not shown) is reciprocally held in a vane groove 43 a (not shown) of the second cylinder 43, and the tip contacts the second piston 46. A first spring 49 (also shown in FIG. 9) that pushes the first vane 47 is housed in the vane groove 42a and a second spring (not shown) that pushes the second vane 48 is housed in the vane groove 43a. An upper end plate 51 constituted by a pipe 53 and a discharge pipe 54 and a lower end plate 52 in contact with the muffler 58 are provided with bearings that support the shaft 44. The discharge side of the first cylinder 42 and the suction side of the second cylinder 43 communicate with each other through a communication hole 57a provided in the intermediate plate 57, and function as one working chamber. After the high-pressure working fluid flows from the suction pipe 53 into the working chamber of the first cylinder 42 through the suction hole 51 a provided in the upper end plate 51, the working fluid is formed in the working chamber formed from the working chamber of the second cylinder 43. After expanding and rotating the shaft 44 to become a low pressure, it is once discharged into the inner space 52c of the muffler 58 through the lower end plate 52, and discharged from the discharge pipe 54 to the refrigeration cycle through the discharge flow path 52b. . Here, a discharge valve 59 is provided in the discharge hole 52 a of the lower end plate 52. The discharge valve 59 is a thin metal plate, is installed so as to close the discharge hole 52a from the inner space 52c side of the muffler 58, and is a differential pressure valve that opens when the pressure on the upstream side of the discharge valve 59 becomes higher than the pressure on the downstream side. It has become.

図2において、2段ロータリ膨張機3の上側端板51の内部に、膨張後の低圧冷媒が吐出管54へと導かれる吐出流路51bと、前記吐出流路51bと分岐して膨張部外部の圧縮後の高圧冷媒が存在する密閉容器41の内部空間41aへと導かれる連通路8を備えている。また、連通路8の出口である上側端板51の内部空間41a側には、連通路8を開閉するような開閉手段9を備えている。この開閉手段9を閉じたときは、冷媒は吐出流路51bを経て吐出管54から冷凍サイクルへと吐出され、連通路8には流れないが、開閉手段9が開いているときは、吐出流路51bと密閉容器の内部空間41aが連通する。このような構成により、膨張後の低圧部と圧縮直後の高圧部が連通することができる。   In FIG. 2, inside the upper end plate 51 of the two-stage rotary expander 3, a discharge flow path 51b through which the low-pressure refrigerant after expansion is led to the discharge pipe 54 and the discharge flow path 51b branch off. The communication path 8 led to the internal space 41a of the sealed container 41 in which the high-pressure refrigerant after compression is present. In addition, on the side of the inner space 41 a of the upper end plate 51 that is the outlet of the communication path 8, an opening / closing means 9 that opens and closes the communication path 8 is provided. When the opening / closing means 9 is closed, the refrigerant is discharged from the discharge pipe 54 to the refrigeration cycle via the discharge flow path 51b and does not flow into the communication path 8, but when the opening / closing means 9 is open, The path 51b communicates with the internal space 41a of the sealed container. With such a configuration, the low pressure portion after expansion and the high pressure portion immediately after compression can communicate with each other.

以上のように、本実施形態によれば、膨張機3の上側端板51に設けた連通路8と、開閉手段9により、高低圧を均圧することが可能となる。   As described above, according to the present embodiment, it is possible to equalize high and low pressures by the communication passage 8 provided in the upper end plate 51 of the expander 3 and the opening / closing means 9.

なお、本実施の形態において、連通路8と開閉手段9を膨張機3の上側端板51に設けた。しかし、膨張機3は圧縮機吐出後の高圧冷媒が存在する密閉容器41の内部空間41aに存在するため、連通路8は、膨張後の低圧冷媒と密閉容器内部空間41aに存在する高圧冷媒とを連通するように形成できれば、連通路8と開閉手段9は密閉容器41の内部のどこに設置してもよい。つまり、連通路8は上側端板51の吐出流路51bから分岐するのではなく、第1のシリンダ42の吐出流露42b、中板57の吐出流路57b、第2のシリンダ43の吐出流路43bのいずれから分岐してもよく、また、下側端板52、マフラー58についてはどこに設けてもよい。また、開閉手段9は上側端板の内部空間41a側に設けるのではなく、第1のシリンダ42、中板57、第2のシリンダ43、下側端板52、マフラー58のどこに設けてもよい。   In the present embodiment, the communication path 8 and the opening / closing means 9 are provided on the upper end plate 51 of the expander 3. However, since the expander 3 exists in the internal space 41a of the closed container 41 where the high-pressure refrigerant after discharge from the compressor exists, the communication path 8 includes the low-pressure refrigerant after expansion and the high-pressure refrigerant existing in the closed container internal space 41a. As long as it can be formed so as to communicate with each other, the communication path 8 and the opening / closing means 9 may be installed anywhere inside the sealed container 41. That is, the communication path 8 is not branched from the discharge flow path 51 b of the upper end plate 51, but the discharge flow dew 42 b of the first cylinder 42, the discharge flow path 57 b of the intermediate plate 57, and the discharge flow path of the second cylinder 43. 43b may be branched, and the lower end plate 52 and the muffler 58 may be provided anywhere. The opening / closing means 9 is not provided on the inner space 41a side of the upper end plate, but may be provided anywhere on the first cylinder 42, the middle plate 57, the second cylinder 43, the lower end plate 52, and the muffler 58. .

また、本実施の形態において、前記連通路8によって膨張機吐出部の低圧部と、圧縮機吐出後の高圧部とを連通させるのは、電動モータ5の停止時である。図3に電動モータ5の速度と開閉手段9の開閉タイミングを示す。電動モータ5が定速状態から減速し、停止した状態になると開閉手段9を‘開’とし、連通路8を連通させる。また、加速時には連通路8を‘閉’とし、連通させない。しかし、定速状態から停止状態への遷移時(減速時)、停止状態から定速状態への遷移時(加速時)において連通路8を連通させてもよいし、停止時に連通路8を常時連通させなくてもよい。   In the present embodiment, the low-pressure part of the expander discharge part and the high-pressure part after discharge of the compressor are communicated by the communication passage 8 when the electric motor 5 is stopped. FIG. 3 shows the speed of the electric motor 5 and the opening / closing timing of the opening / closing means 9. When the electric motor 5 decelerates from the constant speed state and stops, the opening / closing means 9 is opened and the communication path 8 is communicated. Further, during acceleration, the communication path 8 is “closed” and is not communicated. However, the communication path 8 may be communicated at the time of transition from the constant speed state to the stop state (deceleration), at the time of transition from the stop state to the constant speed state (acceleration), or the communication path 8 may always be connected at the time of stop. It is not necessary to communicate.

また、図1に示した冷媒回路10は、冷媒を一方向のみに流通させる冷媒回路10に限られない。膨張機一体型圧縮機は、冷媒の流通方向の変更が可能な冷媒回路に設けられていてもよい。例えば、図4に示すように、四方弁等を有することによって暖房運転及び冷房運転の可能な冷媒回路に膨張機一体型圧縮機を設けることも可能である。
(第2の実施形態)
第1の実施形態にかかる連通路8と開閉手段9は、膨張機3に設置するものであった。しかし、本発明にかかる連通路8と開閉手段9は、圧縮機1に設置してもよい。以下図面に基づいて詳細に説明する。
Moreover, the refrigerant circuit 10 shown in FIG. 1 is not restricted to the refrigerant circuit 10 which distribute | circulates a refrigerant | coolant only to one direction. The expander-integrated compressor may be provided in a refrigerant circuit capable of changing the refrigerant flow direction. For example, as shown in FIG. 4, it is possible to provide an expander-integrated compressor in a refrigerant circuit capable of heating operation and cooling operation by having a four-way valve or the like.
(Second Embodiment)
The communication path 8 and the opening / closing means 9 according to the first embodiment are installed in the expander 3. However, the communication path 8 and the opening / closing means 9 according to the present invention may be installed in the compressor 1. Hereinafter, it will be described in detail with reference to the drawings.

図5に本実施形態における冷凍サイクル装置の冷媒回路図を示す。冷凍サイクル装置は、圧縮機1とガスクーラ2と膨張機3と蒸発器4とが順に接続されてなる冷媒回路10を備え、圧縮機1と膨張機3とを電動モータ5に対して一軸に連結している。また、圧縮機1の吸入部と圧縮機1の吐出部を連通する連通路8と、その連通路8を開閉する開閉手段9を備えている。図2において図1と同じ構成要素については同じ符号を用い、説明を省略する。   FIG. 5 shows a refrigerant circuit diagram of the refrigeration cycle apparatus in the present embodiment. The refrigeration cycle apparatus includes a refrigerant circuit 10 in which a compressor 1, a gas cooler 2, an expander 3, and an evaporator 4 are connected in order, and the compressor 1 and the expander 3 are connected to the electric motor 5 in a single axis. is doing. Further, a communication passage 8 that communicates the suction portion of the compressor 1 and the discharge portion of the compressor 1 and an opening / closing means 9 that opens and closes the communication passage 8 are provided. In FIG. 2, the same components as those in FIG.

図6に本実施の形態の膨張機一体型圧縮機断面を示す。図6に示すように、電動モータ5、スクロール式の圧縮機1、および、2段ロータリ式の膨張機3は、図2を用いて説明した第一の実施の形態とほぼ同様の構成である。同一部品については同一番号を使用し、第1の実施の形態と同一の構成及び作用の説明を省略する。   FIG. 6 shows a cross section of the expander-integrated compressor according to the present embodiment. As shown in FIG. 6, the electric motor 5, the scroll compressor 1, and the two-stage rotary expander 3 have substantially the same configuration as that of the first embodiment described with reference to FIG. . The same numbers are used for the same parts, and the description of the same configuration and operation as in the first embodiment is omitted.

図6において、スクロール式の圧縮機1の固定スクロール74に、圧縮前の低圧流体が作動室へと導かれる吸入流路71bと、前記吸入流路71bと分岐して圧縮部外部の高圧流体が存在する密閉容器41の内部空間41aへと導かれる連通路8を備えている。また、連通路8の出口である固定スクロール74には、連通路8を開閉するような開閉手段9を備えている。この開閉手段9が閉じているときは、吸入流路71bを経て吸入孔71aから作動室80へ流入し、開いているときは、吸入流路71bと密閉容器の内部空間41aが連通する。このような構成により、圧縮前の低圧部と圧縮直後の高圧部が連通することになる。   In FIG. 6, the suction scroll 71b through which the low-pressure fluid before compression is guided to the working chamber is branched to the fixed scroll 74 of the scroll compressor 1, and the high-pressure fluid outside the compression section branches off from the suction passage 71b. The communication path 8 led to the internal space 41a of the existing sealed container 41 is provided. The fixed scroll 74 that is the outlet of the communication path 8 is provided with an opening / closing means 9 that opens and closes the communication path 8. When the opening / closing means 9 is closed, it flows into the working chamber 80 from the suction hole 71a through the suction passage 71b. When the opening / closing means 9 is open, the suction passage 71b and the internal space 41a of the sealed container communicate with each other. With such a configuration, the low pressure portion before compression and the high pressure portion immediately after compression are communicated.

以上のように、本実施形態によれば、圧縮機の固定スクロール74に設けた連通路8と、開閉手段9により、高低圧を均圧することができる。   As described above, according to the present embodiment, the high and low pressures can be equalized by the communication passage 8 provided in the fixed scroll 74 of the compressor and the opening / closing means 9.

なお、本実施の形態において、連通路8と開閉手段9として圧縮機の固定スクロール74に設けたが、圧縮機1において圧縮前の低圧流体が作動室80へと導かれる流路と、分岐して圧縮部外部の圧縮直後の高圧流体が存在する膨張機一体型圧縮機の密閉容器41の内部空間41aとの間に連通路8と開閉手段9が形成されれば、密閉容器41の内部のどこに設置してもよい。つまり、連通路8は固定スクロール74から分岐するのではなく、軸受部材77から分岐してもよい。また、開閉手段9も同様に軸受部材77に設けてもよい。
(第3の実施形態)
第1の実施形態にかかる連通路8と開閉手段9は、膨張機3に設置するものであった。しかし、本発明にかかる連通路8と開閉手段9は、容積可変機構を持つ膨張機3に設けてもよい。
In this embodiment, the communication path 8 and the opening / closing means 9 are provided in the fixed scroll 74 of the compressor. However, the compressor 1 branches off from the flow path through which the low-pressure fluid before compression is guided to the working chamber 80. If the communication path 8 and the opening / closing means 9 are formed between the internal space 41a of the hermetic container 41 of the expander-integrated compressor in which the high-pressure fluid immediately after compression exists outside the compression unit, the inside of the hermetic container 41 It can be installed anywhere. That is, the communication path 8 may branch from the bearing member 77 instead of branching from the fixed scroll 74. Similarly, the opening / closing means 9 may be provided on the bearing member 77.
(Third embodiment)
The communication path 8 and the opening / closing means 9 according to the first embodiment are installed in the expander 3. However, the communication path 8 and the opening / closing means 9 according to the present invention may be provided in the expander 3 having a variable volume mechanism.

冷凍サイクル装置については、図1と同様の構成となるため説明は省略する。   The refrigeration cycle apparatus has the same configuration as that shown in FIG.

次に、冷凍サイクルに用いる膨張機一体型圧縮機について説明する。図7に、本実施形態における膨張機一体型圧縮機の縦断面図を示す。本実施の形態では、2段ロータリ式の膨張機3には上側端板固定部61と上側端板可動部62を備えている。また、電動モータ5、スクロール式の圧縮機1、および、2段ロータリ式の膨張機3は、図2を用いて説明した第一の実施の形態と同様の構成である。同一部品については同一番号を使用し、第1の実施の形態と同一の構成及び作用の説明を省略する。   Next, the expander-integrated compressor used in the refrigeration cycle will be described. In FIG. 7, the longitudinal cross-sectional view of the expander integrated compressor in this embodiment is shown. In the present embodiment, the two-stage rotary expander 3 includes an upper end plate fixing portion 61 and an upper end plate movable portion 62. The electric motor 5, the scroll compressor 1, and the two-stage rotary expander 3 have the same configuration as that of the first embodiment described with reference to FIG. The same numbers are used for the same parts, and the description of the same configuration and operation as in the first embodiment is omitted.

図8(a)は、図7の膨張機一体型圧縮機における膨張機3の上側端板固定部61の斜視図、図8(b)は、図7の膨張機一体型圧縮機における膨張機3の上側端板可動部62の斜視図、図8(c)は図7の膨張機一体型圧縮機における膨張機3の上側端板固定部61と可動部62を組んだ状態の斜視図である。   8A is a perspective view of the upper end plate fixing portion 61 of the expander 3 in the expander-integrated compressor of FIG. 7, and FIG. 8B is an expander in the expander-integrated compressor of FIG. FIG. 8C is a perspective view of the expander-integrated compressor of FIG. 7 in which the upper end plate fixing portion 61 and the movable portion 62 of the expander 3 are assembled. is there.

図8(a)に示すように、固定部61は、内側にシャフト44と同じ中心軸の円筒面61a、および、円筒面61aよりも小さな内径の円筒面61bと、その間の段差部61cを有する。また、吸入管53からの作動流体が導かれる流入路61dと、そこから縦方向に分岐した流入路61eと、円筒面61aと吐出流路61gを固定部61の内部で連通する連通路61fを備える。また、流入経路61eと連通する流路として、図9に示すように、第1のシリンダ42には、流入経路42c、および、流入経路42cと連通した第1吸入孔42dを設けている。また、円筒面には膨張機の吐出流体が流れる吐出流路42bを有する。   As shown in FIG. 8A, the fixed portion 61 has a cylindrical surface 61a having the same central axis as the shaft 44, a cylindrical surface 61b having an inner diameter smaller than the cylindrical surface 61a, and a stepped portion 61c therebetween. . In addition, an inflow path 61d through which the working fluid from the suction pipe 53 is guided, an inflow path 61e branched in the vertical direction therefrom, and a communication path 61f that connects the cylindrical surface 61a and the discharge flow path 61g inside the fixed portion 61 are provided. Prepare. Further, as shown in FIG. 9, the first cylinder 42 is provided with an inflow path 42c and a first suction hole 42d in communication with the inflow path 42c as a flow path communicating with the inflow path 61e. Further, the cylindrical surface has a discharge passage 42b through which the discharge fluid of the expander flows.

図8(b)に示すように、可動部62は、内側にシャフト44が嵌合するシャフト孔62aを有し、外側には、固定部61の円筒面61aに嵌合する円柱面62b、および、固定部61の円筒面61bに嵌合する円柱面62cを有し、円柱面62bには円周方向の流路溝62dをシャフト44の回転方向に180度備えている。また、可動部62の上面には上面流入孔62eを設け、連通路62fと連通し、円柱面62cには円周方向に歯車62aを備え、流路溝62dから下側方向へ向けて第2吸入孔62gを有する。   As shown in FIG. 8 (b), the movable portion 62 has a shaft hole 62a into which the shaft 44 is fitted on the inner side, and on the outer side, a cylindrical surface 62b to be fitted into the cylindrical surface 61a of the fixed portion 61, and The cylindrical surface 62c is fitted to the cylindrical surface 61b of the fixed portion 61, and a circumferential channel groove 62d is provided 180 degrees in the rotational direction of the shaft 44 on the cylindrical surface 62b. Further, an upper surface inflow hole 62e is provided on the upper surface of the movable portion 62, communicates with the communication passage 62f, the cylindrical surface 62c is provided with a gear 62a in the circumferential direction, and second from the flow channel groove 62d to the lower side. It has a suction hole 62g.

図8(c)に示すように、固定部61と可動部62は嵌合し、固定部61の内側で可動部62は回転可能に支持されている。そして、可動部62を回転させることにより、シャフト44を中心に第2吸入孔62gと連通路62fを回転させることができる。このとき、固定部61の段差61cと可動部62の円筒部62b、62cの間の段差(図示せず)が接触することにより、可動部62が固定部61から上側に抜け出るのを防止している。また、固定部61の下端面と可動部62の下端面は、同一平面を構成している。また、上側端板固定部61には、可動部62に設けられた歯車62aと噛み合う歯車65(図7に示す)と、それを駆動する回転電動機63(図7に示す)を備えており、回転電動機63により上側端板可動部62をシャフト44の軸まわりに回転させることができる。   As shown in FIG. 8C, the fixed portion 61 and the movable portion 62 are fitted, and the movable portion 62 is rotatably supported inside the fixed portion 61. Then, by rotating the movable portion 62, the second suction hole 62g and the communication passage 62f can be rotated around the shaft 44. At this time, the step (not shown) between the step 61c of the fixed portion 61 and the cylindrical portions 62b and 62c of the movable portion 62 comes into contact with each other, thereby preventing the movable portion 62 from coming out of the fixed portion 61 upward. Yes. The lower end surface of the fixed portion 61 and the lower end surface of the movable portion 62 constitute the same plane. The upper end plate fixing portion 61 includes a gear 65 (shown in FIG. 7) that meshes with a gear 62a provided on the movable portion 62, and a rotary electric motor 63 (shown in FIG. 7) that drives the gear 65a. The upper end plate movable portion 62 can be rotated around the axis of the shaft 44 by the rotary electric motor 63.

本実施形態における上側端板可動部61と固定部62は以下に示すように2つの機能を備える。1つ目の機能は、吸入管53から2段ロータリ膨張機3に流入した作動流体を、上側端板固定部61の流入経路61dから2つの経路に分けて上作動室55に流入させる吸入容積可変機構である。第1の経路は、流入経路61dから流入経路61e、第1のシリンダ42の流入経路42c、第1吸入孔42dを経る経路であり、第2の経路は、流入経路61dから可動部62の流路溝62d、第2吸入孔62gを経る経路である。つまり、この第2吸入孔の位置を制御し変化させることで、上作動室55へ流入する作動流体の吸入容積を変化させることができる。2つ目の機能は、連通路62fの位置を上側端板固定部61の吐出流路61gの位置と一致させると、連通路62fと吐出流路61gが連通し、一致させないと連通しないという開閉手段である。これらの2つの機能は、可動部62の回転位置によって使い分けることができる。本実施形態においては、前記2つの機能は同時に利用することができないが、同時に利用できるような構成でもよい。例えば、第2吸入孔62gと連通路62fの配置を変えることにより対応することができる。以下に可動部62の位置とその機能ついて説明する。   The upper end plate movable portion 61 and the fixed portion 62 in the present embodiment have two functions as shown below. The first function is that the working fluid that has flowed into the two-stage rotary expander 3 from the suction pipe 53 is divided into two paths from the inflow path 61d of the upper end plate fixing portion 61 and flows into the upper working chamber 55. It is a variable mechanism. The first path is a path that passes from the inflow path 61d to the inflow path 61e, the inflow path 42c of the first cylinder 42, and the first suction hole 42d, and the second path is a flow of the movable part 62 from the inflow path 61d. This is a route through the passage groove 62d and the second suction hole 62g. That is, the suction volume of the working fluid flowing into the upper working chamber 55 can be changed by controlling and changing the position of the second suction hole. The second function is that when the position of the communication path 62f is matched with the position of the discharge flow path 61g of the upper end plate fixing portion 61, the communication path 62f and the discharge flow path 61g communicate with each other. Means. These two functions can be used properly depending on the rotational position of the movable portion 62. In the present embodiment, the two functions cannot be used at the same time, but may be configured so that they can be used at the same time. For example, this can be dealt with by changing the arrangement of the second suction hole 62g and the communication passage 62f. Hereinafter, the position and function of the movable portion 62 will be described.

図9(a1)、(b1)、(c1)は図7の膨張機一体型圧縮機の膨張機のD1−D1における断面図、図9(a2)、(b2)、(c2)は図7の膨張機一体型圧縮機の膨張機のD2−D2における断面図を示す。ここでは、第1吸入孔42dと第2吸入孔62g、また、上端板上面吸入孔62eと連通路62fの位置と機能の関係を示す。   9 (a1), (b1), and (c1) are cross-sectional views of the expander D1-D1 of the expander-integrated compressor of FIG. 7, and FIGS. 9 (a2), (b2), and (c2) are FIG. Sectional drawing in D2-D2 of the expander of the expander integrated compressor of this is shown. Here, the relationship between the positions and functions of the first suction hole 42d and the second suction hole 62g, and the upper end plate upper surface suction hole 62e and the communication passage 62f is shown.

本実施形態において、図9(a2)、(b2)、(c2)に示すように、第2吸入孔62gと連通路62fはシャフトを中心として180°の位置に配置する。第1吸入孔42dの位置は、シャフト44を中心にベーン47の位置を基準として20degに固定されているのに対し、第2吸入孔62gの位置は外部から変化させることが可能である。図9(a1)、(a2)は、シャフト44を中心にベーン47の位置を基準とした第2吸入孔62gの回転角φが20degの場合、(b1)、(b2)は90degの場合、(c1)、(c2)は180degの場合を示している。なお、第2吸入孔62gの回転角φは0degから360degまで自在に変えることができることは言うまでも無い。   In the present embodiment, as shown in FIGS. 9 (a2), (b2), and (c2), the second suction hole 62g and the communication path 62f are disposed at a position of 180 ° with the shaft as the center. The position of the first suction hole 42d is fixed to 20 deg with respect to the position of the vane 47 around the shaft 44, whereas the position of the second suction hole 62g can be changed from the outside. FIGS. 9A1 and 9A2 illustrate the case where the rotation angle φ of the second suction hole 62g with respect to the position of the vane 47 around the shaft 44 is 20 deg., And (b1) and (b2) are 90 deg. (C1) and (c2) show the case of 180 deg. Needless to say, the rotation angle φ of the second suction hole 62g can be freely changed from 0 deg to 360 deg.

次に、上側端板可動部62の位置を制御することによって、容積可変機構とする場合と、差圧を解消するための均圧装置とする場合について、第2吸入孔62gと連通路62fの位置の関係を詳細に説明する。   Next, by controlling the position of the upper end plate movable portion 62, the second suction hole 62g and the communication passage 62f are used for the variable volume mechanism and the pressure equalizing device for eliminating the differential pressure. The positional relationship will be described in detail.

まず、1つめの機能である容積可変機構について説明する。上側端板可動部62の位置を制御して、第2吸入孔62gの位置φを20degにすると図9(a1)、(a2)となる。第2吸入孔62gは第1吸入孔42dと同じ位置にあるため、吸入容積は第1吸入孔42dのみの時と同じになる。このとき、上端板上面吸入孔62eと連通路62fは連通していない。また、第2吸入孔62gの位置φを90degとすると図9(b1)、(b2)となる。第2吸入孔62gの位置φは第1吸入孔42dよりも角度が大きいため、吸入時間が長くなり、吸入容積は図9(a1)、(a2)のときよりも大きくなる。このとき、上端板上面吸入孔62eと連通路62fは先ほどと同様に連通していない。   First, the volume variable mechanism that is the first function will be described. When the position of the upper end plate movable portion 62 is controlled and the position φ of the second suction hole 62g is set to 20 deg, FIGS. 9A1 and 9A2 are obtained. Since the second suction hole 62g is at the same position as the first suction hole 42d, the suction volume is the same as when only the first suction hole 42d is provided. At this time, the upper end plate upper surface suction hole 62e and the communication passage 62f are not in communication. Further, when the position φ of the second suction hole 62g is 90 deg, FIGS. 9B1 and 9B2 are obtained. Since the position φ of the second suction hole 62g has a larger angle than the first suction hole 42d, the suction time becomes longer, and the suction volume becomes larger than those in FIGS. 9 (a1) and (a2). At this time, the upper end plate upper surface suction hole 62e and the communication path 62f are not in communication with each other as before.

次に、2つめの機能である容積可変機構について説明する。第2吸入孔62gの位置φを180degとすると図9(c1)、(c2)となる。このとき連通路62fと固定部61の吐出流路61gは連通し、高低圧の差圧を解消することができる。つまり、可動部62と固定部61の位置を制御することにより開閉手段9を実現することができる。   Next, the volume variable mechanism which is the second function will be described. When the position φ of the second suction hole 62g is 180 deg, FIGS. 9C1 and 9C2 are obtained. At this time, the communication passage 62f and the discharge passage 61g of the fixed portion 61 communicate with each other, so that the high / low pressure difference can be eliminated. That is, the opening / closing means 9 can be realized by controlling the positions of the movable portion 62 and the fixed portion 61.

以上のように、本実施形態によれば、膨張機の上側端板可動部62に連通路8と開閉手段9を備え、前記可動部62の位置を制御することにより、吸入容積を可変にすることができる容積可変機構と、高圧部と低圧部の差圧を解消する均圧機能を一つの機構で実現することができる。これにより、新たな装置を必要とせず、従来の膨張機一体型圧縮機を用いた冷凍サイクルでは不可能であった均圧が可能となる。   As described above, according to the present embodiment, the upper end plate movable portion 62 of the expander is provided with the communication path 8 and the opening / closing means 9, and the suction volume is made variable by controlling the position of the movable portion 62. Thus, the variable volume mechanism that can perform this function and the pressure equalizing function that eliminates the differential pressure between the high pressure portion and the low pressure portion can be realized by a single mechanism. This makes it possible to equalize pressure, which is not possible with a refrigeration cycle using a conventional expander-integrated compressor, without requiring a new device.

なお、本実施の形態において、連通路8と開閉手段9として膨張機の上側端板固定部61と可動部62を利用したが、容積可変を実現するための可動部と固定部で開閉手段9を構成すれば、上側端板に限定せずに膨張機のどこに連通路8と開閉手段9を設置してもよい。さらに、容積可変機構を有する圧縮機の可動部と固定部で開閉手段9と連通路8を構成すれば、膨張機に限定せずに圧縮機に設置してもよい。   In the present embodiment, the upper end plate fixing portion 61 and the movable portion 62 of the expander are used as the communication path 8 and the opening / closing means 9, but the opening / closing means 9 is composed of the movable portion and the fixed portion for realizing variable volume. The communication path 8 and the opening / closing means 9 may be installed anywhere in the expander without being limited to the upper end plate. Furthermore, if the opening / closing means 9 and the communication path 8 are configured by the movable portion and the fixed portion of the compressor having a variable volume mechanism, the compressor may be installed in the compressor without being limited to the expander.

以上で説明したように、本発明は、膨張機一体型圧縮機を有する動力回収型冷凍サイクル装置として、例えば、エアコン、給湯器において有用である。   As described above, the present invention is useful as, for example, an air conditioner and a water heater as a power recovery refrigeration cycle apparatus having an expander-integrated compressor.

本発明の第1の実施の形態における冷凍サイクル装置の冷媒回路図Refrigerant circuit diagram of the refrigeration cycle apparatus in the first embodiment of the present invention 本発明の第1の実施の形態における膨張機一体型圧縮機の縦断面図The longitudinal cross-sectional view of the expander integrated compressor in the 1st Embodiment of this invention 第1の実施の形態において、電動モータ5の速度と開閉手段9の開閉タイミングを示す図The figure which shows the speed of the electric motor 5, and the opening-and-closing timing of the opening-and-closing means 9 in 1st Embodiment. 四方弁を用いた本発明第1の実施の形態における冷凍サイクル装置の冷媒回路図Refrigerant circuit diagram of the refrigeration cycle apparatus in the first embodiment of the present invention using a four-way valve 本発明第2の実施の形態における冷凍サイクル装置の冷媒回路図Refrigerant circuit diagram of refrigeration cycle apparatus in second embodiment of the present invention 本発明第2の実施の形態における膨張機一体型圧縮機の縦断面図The longitudinal cross-sectional view of the expander integrated compressor in the 2nd Embodiment of this invention 本発明第3の実施の形態における膨張機一体型圧縮機の縦断面図Vertical section of an expander-integrated compressor according to the third embodiment of the present invention (a)図7における膨張機の上側端板固定部の斜視図 (b)図7における膨張機の上側端板可動部の斜視図 (c)図7における膨張機の上側端板の斜視図(A) Perspective view of upper end plate fixing portion of expander in FIG. 7 (b) Perspective view of upper end plate movable portion of expander in FIG. 7 (c) Perspective view of upper end plate of expander in FIG. (a1)(a2)φ=20degにおける図7の膨張機一体型圧縮機の膨張機のD1−D1断面の拡大横断面とD2−D2断面の拡大横断面図 (b1)(b2)φ=90degにおける図7の膨張機一体型圧縮機の膨張機のD1−D1断面の拡大横断面とD2−D2断面の拡大横断面図 (c1)(c2)φ=180degにおける図7の膨張機一体型圧縮機の膨張機のD1−D1断面の拡大横断面とD2−D2断面の拡大横断面図(A1) (a2) An enlarged cross-sectional view of the D1-D1 cross section and an enlarged cross-sectional view of the D2-D2 cross section of the expander-integrated compressor of FIG. 7 at φ = 20 deg. (B1) (b2) φ = 90 deg. 7 is an enlarged cross-sectional view of the D1-D1 cross section and an enlarged cross-sectional view of the D2-D2 cross section of the expander-integrated compressor of FIG. 7 (c1) (c2) The expander-integrated compression of FIG. 7 at φ = 180 deg. Expanded cross section of D1-D1 cross section and expanded cross section of D2-D2 cross section of the expander バイパス回路を用いた従来の膨張機一体型圧縮機を用いた冷凍サイクルの図Diagram of refrigeration cycle using conventional expander-integrated compressor using bypass circuit バイパス回路を用いない従来の膨張機一体型圧縮機を用いた冷凍サイクルの図Diagram of refrigeration cycle using conventional expander-integrated compressor without bypass circuit 膨張機一体型圧縮機を用いた動力回収型冷凍サイクルのモリエル線図Mollier diagram of a power recovery refrigeration cycle using an expander-integrated compressor

符号の説明Explanation of symbols

1 圧縮機
2 ガスクーラ
3 膨張機
4 蒸発器
5 電動モータ
6 シャフト
7 膨張機一体型圧縮機
8 連通路
9 開閉手段
10 冷媒回路
11 吸入菅
12 吐出管
30 膨張弁
31 バイパス回路
32 シャフト結合部
34 オイル溜り
63 回転電動機
64 第1吸入孔
65 歯車
DESCRIPTION OF SYMBOLS 1 Compressor 2 Gas cooler 3 Expander 4 Evaporator 5 Electric motor 6 Shaft 7 Expander-integrated compressor 8 Communication path 9 Opening and closing means 10 Refrigerant circuit 11 Suction cup 12 Discharge pipe 30 Expansion valve 31 Bypass circuit 32 Shaft coupling part 34 Oil Pool 63 Rotating motor 64 First suction hole 65 Gear

Claims (6)

容積式の膨張機と、容積式の圧縮機と、前記膨張機と前記圧縮機とを一軸で連結した電動モータを密閉容器内に収納し、
前記密閉容器において、前記圧縮機吐出部である高圧部と、前記膨張機吐出部または前記圧縮機吸入部である低圧部とを連通するための、前記膨張機内に設けられた連通路を有し、
前記連通路には開閉可能な開閉手段を設けた膨張機一体型圧縮機。
A positive displacement expander, a positive displacement compressor, and an electric motor in which the expander and the compressor are connected in one shaft are housed in a sealed container,
The closed container has a communication path provided in the expander for communicating the high pressure portion that is the compressor discharge portion and the low pressure portion that is the expander discharge portion or the compressor suction portion. ,
An expander-integrated compressor provided with an openable / closable means in the communication path.
前記膨張機は、膨張室へ流入する流体の吸入容積を変更可能な容積可変手段を設けた請求項に記載の膨張機一体型圧縮機。 The expander-integrated compressor according to claim 1 , wherein the expander is provided with a variable volume means capable of changing a suction volume of a fluid flowing into the expansion chamber. 前記膨張機は、円筒形のシリンダと、偏心軸を有するシャフトと、前記偏心軸に嵌合し、前記シリンダの内側で偏心回転するピストンと、前記シリンダと前記ピストンの間の空間を、吸入側空間と吐出側空間に仕切る仕切り部材で構成されたロータリ式の流体機構をn個(nは2以上の整数)備えたロータリ式膨張機であり、前記ロータリ式膨張機のシリンダの端面を閉塞する端板の少なくとも一部が回転可能な可動部とし、前記可動部には前記シリンダへの吸入口と前記連通路を設けた、請求項に記載の膨張機一体型圧縮機。 The expander includes a cylindrical cylinder, a shaft having an eccentric shaft, a piston that is fitted to the eccentric shaft and rotates eccentrically inside the cylinder, and a space between the cylinder and the piston is provided on the suction side. A rotary expander provided with n rotary fluid mechanisms (n is an integer of 2 or more) composed of a partition member that partitions a space and a discharge side space, and closes an end surface of a cylinder of the rotary expander. At least a portion of the end plate and a movable portion rotating, said the movable part provided with the communicating passage and the suction port to the cylinder, expander-integrated compressor according to claim 1. 前記圧縮機は、圧縮室へ流入する流体の吸入容積を変更可能な容積可変手段を設けた請求項に記載の膨張機一体型圧縮機。 2. The expander-integrated compressor according to claim 1 , wherein the compressor is provided with volume variable means capable of changing a suction volume of a fluid flowing into the compression chamber. 請求項1から請求項のいずれかに記載の前記膨張機一体型圧縮機と、ガスクーラと、蒸発器とを有し、
前記圧縮機からの吐出冷媒が、前記ガスクーラ、前記膨張機、前記蒸発器の順に循環する冷凍サイクル装置。
The expander-integrated compressor according to any one of claims 1 to 4 , a gas cooler, and an evaporator,
A refrigeration cycle apparatus in which refrigerant discharged from the compressor circulates in the order of the gas cooler, the expander, and the evaporator.
前記冷凍サイクル装置停止時には、前記電動モータを停止し、前記開閉手段により前記連通路を連通するように設定した請求項に記載の冷凍サイクル装置。 6. The refrigeration cycle apparatus according to claim 5 , wherein when the refrigeration cycle apparatus is stopped, the electric motor is stopped and the communication path is communicated by the opening / closing means.
JP2005304167A 2005-10-19 2005-10-19 Expander-integrated compressor and refrigeration cycle apparatus Expired - Fee Related JP4682795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005304167A JP4682795B2 (en) 2005-10-19 2005-10-19 Expander-integrated compressor and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005304167A JP4682795B2 (en) 2005-10-19 2005-10-19 Expander-integrated compressor and refrigeration cycle apparatus

Publications (3)

Publication Number Publication Date
JP2007113447A JP2007113447A (en) 2007-05-10
JP2007113447A5 JP2007113447A5 (en) 2008-11-20
JP4682795B2 true JP4682795B2 (en) 2011-05-11

Family

ID=38095877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005304167A Expired - Fee Related JP4682795B2 (en) 2005-10-19 2005-10-19 Expander-integrated compressor and refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP4682795B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101515537B1 (en) 2013-09-03 2015-05-04 인천대학교 산학협력단 Integral compressor-expander

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5296065B2 (en) * 2008-05-22 2013-09-25 パナソニック株式会社 Refrigeration cycle equipment
JP2010043556A (en) * 2008-08-08 2010-02-25 Mitsubishi Electric Corp Expander unit and refrigeration cycle device including the same
ES2732350T3 (en) * 2010-01-19 2019-11-22 Mitsubishi Electric Corp Positive displacement expander and refrigeration cycle device using the positive displacement expander

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297770A (en) * 1999-04-15 2000-10-24 Mitsubishi Heavy Ind Ltd Clutchless scroll type fluid machine
JP2001116371A (en) * 1999-10-20 2001-04-27 Daikin Ind Ltd Air conditioner
JP2004190559A (en) * 2002-12-11 2004-07-08 Daikin Ind Ltd Displacement expander and fluid machine
JP2004197640A (en) * 2002-12-18 2004-07-15 Daikin Ind Ltd Positive displacement expander and fluid machinery
JP2004251528A (en) * 2003-02-20 2004-09-09 Mitsubishi Electric Corp Refrigerating air-conditioning device
JP2005240561A (en) * 2004-02-24 2005-09-08 Matsushita Electric Ind Co Ltd Expander

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297770A (en) * 1999-04-15 2000-10-24 Mitsubishi Heavy Ind Ltd Clutchless scroll type fluid machine
JP2001116371A (en) * 1999-10-20 2001-04-27 Daikin Ind Ltd Air conditioner
JP2004190559A (en) * 2002-12-11 2004-07-08 Daikin Ind Ltd Displacement expander and fluid machine
JP2004197640A (en) * 2002-12-18 2004-07-15 Daikin Ind Ltd Positive displacement expander and fluid machinery
JP2004251528A (en) * 2003-02-20 2004-09-09 Mitsubishi Electric Corp Refrigerating air-conditioning device
JP2005240561A (en) * 2004-02-24 2005-09-08 Matsushita Electric Ind Co Ltd Expander

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101515537B1 (en) 2013-09-03 2015-05-04 인천대학교 산학협력단 Integral compressor-expander

Also Published As

Publication number Publication date
JP2007113447A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
US10378539B2 (en) System including high-side and low-side compressors
AU2005240929B2 (en) Rotary compressor
JP5306478B2 (en) Heat pump device, two-stage compressor, and operation method of heat pump device
JP4396773B2 (en) Fluid machinery
JP4367567B2 (en) Compressor and refrigeration equipment
JP4806027B2 (en) Rotary expander
WO2006013959A1 (en) Displacement type expansion machine and fluid machine
EP3382205B1 (en) Compressor
JPWO2007052569A1 (en) Expander and heat pump using the same
JP5228905B2 (en) Refrigeration equipment
KR100725893B1 (en) Scroll-type fluid machine
JP4682795B2 (en) Expander-integrated compressor and refrigeration cycle apparatus
JP6568841B2 (en) Hermetic rotary compressor and refrigeration air conditioner
JP5338314B2 (en) Compressor and refrigeration equipment
JP5515289B2 (en) Refrigeration equipment
JP4924092B2 (en) Refrigeration cycle equipment
JP2012127565A (en) Refrigeration cycle device
JP5401899B2 (en) Refrigeration equipment
JP4784385B2 (en) Refrigeration cycle equipment
JP2010156246A (en) Compressor
JPH03260391A (en) Closed type rotary compressor
WO2012104934A1 (en) Scroll expander, and refrigeration cycle with the scroll expander
JP5321055B2 (en) Refrigeration equipment
JP6915398B2 (en) Compressor
JP2013224595A (en) Two-cylinder rotary compressor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081007

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees