JPH04186064A - Binary refrigerating cycle - Google Patents

Binary refrigerating cycle

Info

Publication number
JPH04186064A
JPH04186064A JP30892490A JP30892490A JPH04186064A JP H04186064 A JPH04186064 A JP H04186064A JP 30892490 A JP30892490 A JP 30892490A JP 30892490 A JP30892490 A JP 30892490A JP H04186064 A JPH04186064 A JP H04186064A
Authority
JP
Japan
Prior art keywords
refrigerating
refrigerating capacity
capacity
compressor
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30892490A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ozeki
尾関 弘行
Tatsuo Hayashida
林田 辰雄
Hidehiro Sonoda
英博 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Shimizu Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Shimizu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Shimizu Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP30892490A priority Critical patent/JPH04186064A/en
Publication of JPH04186064A publication Critical patent/JPH04186064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To make energy saving possible by a method wherein a plurality of temperature type expansion valves which correspond with different refrigerating capacities are provided at high temperature sides and low temperature sides for each refrigerating cycle, and the expansion valves are switched in response to the variation of refrigerating capacities by inverter control of a compressor. CONSTITUTION:A most suitable refrigerating capacity 24 is obtained by changing the discharge quantity 25 of a compressor by controlling the compressor operation frequency in response to load 23 of an evaporator 18, using refrigerating scroll compressors 3, 4 by inverter control. That is, when the load 23 of the evaporator decreases, the refrigerating capacity 24 decreases, and when the refrigerating capacity 24 becomes lower than a switching value 26, temperature type automatic expansion valves 8, 9, 16, 17 are switched from ones 8, 16 which have larger corresponding refrigerating capacity to one 9, 17 which have smaller corresponding refrigerating capacity by solenoid valves 6, 7, 14, 15. Also, when the load 23 increases, the refrigerating capacity 24 increases, and the temperature type automatic expansion valves 8, 9, 16, 17 are switched. By this method, the efficiency of the binary refrigerating cycle is improved, and energy saving can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷熱衝撃試験装置等におけるインバータ制御
による二元冷凍サイクルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dual refrigeration cycle controlled by an inverter in a thermal shock testing device or the like.

〔従来の技術〕[Conventional technology]

従来、二元冷凍サイクルにインバータ制御を用いたもの
がなく、また、それによる膨張弁の切換を制御している
例もない。
Conventionally, there is no binary refrigeration cycle that uses inverter control, and there is also no example of controlling switching of an expansion valve using it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来技術は、二元冷凍サイクルのインバータ制御におい
て、圧縮機の吐出量の変化に伴う冷凍能力の変化に追従
できる温度式自動□膨張弁が無いため、二元冷凍サイク
ルのインバータ制御が実用化できなかった。
In the conventional technology, inverter control of a binary refrigeration cycle cannot be put to practical use because there is no temperature-type automatic □ expansion valve that can follow changes in refrigeration capacity due to changes in the discharge amount of the compressor. There wasn't.

本発明の目的は、温度式自動膨張弁を冷凍能力の変化に
追従できる範囲で切換えて使用することにより、インバ
ータ制御による二元冷凍サイクルを実用化し、さらに、
省エネルギの二元冷凍サイクルを提供することにある。
The purpose of the present invention is to put into practical use a dual refrigeration cycle controlled by an inverter by switching and using a thermostatic automatic expansion valve within a range that can follow changes in refrigeration capacity;
The purpose is to provide an energy-saving dual refrigeration cycle.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、対応する冷凍能力の異なる複
数個の温度式膨張弁を高温側、低温側の各冷凍サイクル
に設けたもので、圧縮機のインバータ制御による冷凍能
力の変化に対して、使用する膨張弁を切換するようにし
たものである。
In order to achieve the above objective, a plurality of thermostatic expansion valves with different corresponding refrigeration capacities are installed in each refrigeration cycle on the high temperature side and the low temperature side. The expansion valve used can be switched.

〔作用〕[Effect]

インバータ制御による二元冷凍サイクルにおいて、圧縮
機の周波数制御により冷凍能力が可変であるが、一つの
温度式膨張弁では、この冷凍能力の変化の範囲をカバー
できないため、この範囲を膨張弁の適用冷凍能力の範囲
で分割し、その分割数の膨張弁を並列に用いて、電磁弁
による切換で動作する。蒸発温度の変化に対しては、そ
れぞれの膨張弁を独立して自動的に制御を行う。
In a dual refrigeration cycle controlled by an inverter, the refrigeration capacity is variable by frequency control of the compressor, but since a single thermostatic expansion valve cannot cover this range of changes in refrigeration capacity, an expansion valve is applied to this range. It is divided into parts within the range of refrigeration capacity, and the divided number of expansion valves are used in parallel and operated by switching with a solenoid valve. In response to changes in evaporation temperature, each expansion valve is automatically and independently controlled.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図ないし第3図に従って
説明する。第1図は本発明の二元冷凍サイクル系統図、
第2図は本発明の二元冷凍サイクルの冷凍能力とそれに
対応する温度式膨張弁の冷凍能力範囲図、第3図は本発
明の二元冷凍サイクルの圧縮機の周波数制御と膨張弁切
換の制御動作図を示している。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. FIG. 1 is a system diagram of the dual refrigeration cycle of the present invention.
Fig. 2 shows the refrigerating capacity of the binary refrigeration cycle of the present invention and the corresponding range of the refrigerating capacity of the thermostatic expansion valve, and Fig. 3 shows the frequency control of the compressor and expansion valve switching of the binary refrigeration cycle of the present invention. A control operation diagram is shown.

第1図において、二元冷凍サイクルは、高温側冷凍サイ
クル1.低温側冷凍サイクル2から成っている。高温側
サイクル1は、インバータ制御冷凍用スクロール圧縮機
3.凝縮機5.サイクル能力大用膨張弁8.冷凍能力小
用膨張弁9.切換用電磁弁6,7.カスケードコンデン
サ1oよりなっている。低温側冷凍サイクル2は、イン
バータ制御冷凍用スクロール圧縮機4.オイルセパレー
タ11.リリーフ弁12.膨張タンク13.カスケード
コンデンサ10.冷凍能力入用膨張弁16゜冷凍能力小
用膨張弁17.切換電磁弁14,15、蒸発器18より
成っている。カスケードコンデンサ10は、高温用冷凍
サイクル1の蒸発器であり。
In FIG. 1, the binary refrigeration cycle consists of high temperature side refrigeration cycle 1. It consists of a low temperature side refrigeration cycle 2. The high temperature side cycle 1 includes an inverter-controlled refrigeration scroll compressor 3. Condenser 5. Expansion valve for large cycle capacity 8. Expansion valve for small refrigeration capacity9. Switching solenoid valve 6, 7. It consists of a cascade capacitor 1o. The low temperature side refrigeration cycle 2 includes an inverter-controlled refrigeration scroll compressor 4. Oil separator 11. Relief valve 12. Expansion tank 13. Cascade capacitor 10. Expansion valve for small refrigeration capacity 16° Expansion valve for small refrigeration capacity 17. It consists of switching solenoid valves 14, 15 and an evaporator 18. The cascade condenser 10 is an evaporator of the high temperature refrigeration cycle 1.

又、低温用冷凍サイクル2の凝縮器であり、熱交換器が
行われる。
It also serves as a condenser for the low-temperature refrigeration cycle 2 and functions as a heat exchanger.

第2図は本発明の冷凍能力と圧縮機の吐出量の関係と膨
張弁の適用範囲を示す、圧縮機吐出量に対する冷凍能力
線23に対して冷凍能力入用膨張弁8,16の冷凍能力
範囲19とそれに対する圧縮機吐出量範囲21となる。
FIG. 2 shows the relationship between the refrigerating capacity and the discharge amount of the compressor and the applicable range of the expansion valve according to the present invention. There is a range 19 and a compressor discharge amount range 21 corresponding thereto.

又、冷凍能力小用膨張弁9,17の冷凍能力範囲20と
それに対する圧縮機吐出量範囲22となる。
Furthermore, there is a refrigerating capacity range 20 of the small refrigerating capacity expansion valves 9 and 17, and a compressor discharge amount range 22 corresponding thereto.

次に1本実施例の作用について第3図により説明する0
本発明の二元冷凍サイクルは、インバータ制御による冷
凍スクロール圧縮機3,4を用いているが、その制御は
、蒸発器18の負荷23により、圧縮機運転周波数を制
御することにより圧縮機の吐出量25を変化させ最適な
冷凍能力24を得る様になっている。しかし、温度式自
動膨張弁−個ではその使用冷凍能力範囲が限られている
Next, the operation of this embodiment will be explained with reference to FIG.
The binary refrigeration cycle of the present invention uses refrigeration scroll compressors 3 and 4 controlled by an inverter. The optimum refrigerating capacity 24 is obtained by changing the amount 25. However, the temperature-type automatic expansion valve has a limited range of refrigerating capacity.

そのため、温度式自動膨張弁8,9,16,17により
、冷凍能力による切換を行い対応する。蒸発器18の負
荷25が減ると冷凍能力24が減り、切換値26を下回
った時、温度式自動膨張弁8゜9.16,17は、対応
冷凍能力が大きいもの8゜16から小さいもの9,17
へと電磁弁6,7゜14.15によって切換えられる。
Therefore, the temperature type automatic expansion valves 8, 9, 16, and 17 are used to switch according to the refrigerating capacity. When the load 25 of the evaporator 18 decreases, the refrigerating capacity 24 decreases, and when it falls below the switching value 26, the thermostatic automatic expansion valves 8°9. ,17
It is switched to and fro by solenoid valves 6,7°14.15.

又、逆に負荷23が増すと冷凍能力24が増し、温度式
自動膨張弁8,9,16,17を切換える。ただし、冷
凍能力の変化が、その温度式自動膨張弁8,9゜16.
17の適応範囲ならば(第2図の19゜20に対する2
1.22)切換えはされない。
Conversely, when the load 23 increases, the refrigerating capacity 24 increases, and the thermostatic automatic expansion valves 8, 9, 16, and 17 are switched. However, the change in refrigerating capacity is caused by the temperature-type automatic expansion valve 8,9°16.
If the applicable range is 17 (2 for 19°20 in Figure 2)
1.22) No switching occurs.

又1本実施例では、温度式自動膨張弁を二個で切換えて
いるが、対応冷凍能力によって、さらに膨張弁の数を三
個、四個それ以上に増し、細かな切換としてインバータ
制御による二元冷凍サイクルの冷凍能力の変化を安定さ
せることができる。
In addition, in this embodiment, two temperature-type automatic expansion valves are used for switching, but depending on the corresponding refrigeration capacity, the number of expansion valves can be increased to three, four or more, and fine switching can be performed using two or more temperature-type automatic expansion valves. Changes in the refrigerating capacity of the original refrigerating cycle can be stabilized.

このように本実施例によれば、二元冷凍サイクルのイン
バータ化による冷凍能力の可変に対する膨張弁の追従が
可能であり、これにより、インバータ制御による二元冷
凍サイクルの実用化ができる。
As described above, according to this embodiment, the expansion valve can follow changes in the refrigerating capacity due to the use of an inverter in the binary refrigeration cycle, thereby making it possible to put the binary refrigeration cycle into practical use under inverter control.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、インバータ制御による二元冷凍サイク
ルが実用化でき、かつ、二元冷凍サイクルの効率が向上
して省エネの効果があがる。
According to the present invention, a binary refrigeration cycle controlled by an inverter can be put into practical use, and the efficiency of the binary refrigeration cycle is improved, resulting in an increased energy saving effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の冷凍サイクルの系統図、第
2図は本発明の一実施例の二元冷凍サイクルにおける圧
縮機吐出量と冷凍能力の関係と、それに合う膨張弁の選
定特性図、第3図は本発明の実施例のタイムチャートで
ある。 1・・・高温側冷凍サイクル、2・・・低温側冷凍サイ
クル、3,4・・・インバータ制御冷凍スクロール圧縮
機、5・・・凝縮器、6,7,14.15・・・電磁弁
、8.16・・・冷凍能力入用温度式自動膨張弁、9゜
17・・・冷凍能力小用温度式自動膨張弁、10・・・
力スケート・コンデンサ、11・・・オイル・セパレー
タ、12・・・リリーフ弁、13・・・膨張タンク、1
8・・蒸発器、19・・・冷凍能力大川温度式自動膨張
弁適用冷凍能力範囲、2o・・・冷凍能力小用温度式自
動膨張弁適用冷凍能力範囲、21・・・冷凍能力入用温
度式自動膨張弁適用圧縮機吐出量範囲、22・・・冷凍
能力小用温度式自動膨張弁適用圧縮機吐出量範囲、23
・・・蒸発器負荷、24・・・冷凍能力、25・・・圧
縮機吐出量、26・・・切換値。
Fig. 1 is a system diagram of a refrigeration cycle according to an embodiment of the present invention, and Fig. 2 is a diagram showing the relationship between the compressor discharge amount and refrigeration capacity in a binary refrigeration cycle according to an embodiment of the present invention, and the selection of expansion valves that match the relationship. The characteristic diagram, FIG. 3, is a time chart of an embodiment of the present invention. 1... High temperature side refrigeration cycle, 2... Low temperature side refrigeration cycle, 3, 4... Inverter controlled refrigeration scroll compressor, 5... Condenser, 6, 7, 14. 15... Solenoid valve , 8.16...Temperature-type automatic expansion valve for low refrigeration capacity, 9゜17...Temperature-type automatic expansion valve for small refrigeration capacity, 10...
Power skate capacitor, 11... Oil separator, 12... Relief valve, 13... Expansion tank, 1
8...Evaporator, 19...Refrigerating capacity Okawa temperature-type automatic expansion valve applicable refrigerating capacity range, 2o...Refrigerating capacity range applicable to temperature-type automatic expansion valve for small refrigerating capacity, 21...Refrigerating capacity required temperature Compressor discharge amount range to which a type automatic expansion valve is applicable, 22... Compressor discharge amount range to which a temperature type automatic expansion valve for small refrigeration capacity is applicable, 23
...Evaporator load, 24...Refrigerating capacity, 25...Compressor discharge amount, 26...Switching value.

Claims (1)

【特許請求の範囲】 1、インバータ制御による圧縮機を用いた二元冷凍サイ
クルにおいて、 複数個の冷凍能力の異なる減圧機構を低温側、高温側の
冷凍サイクルにそれぞれ設け、前記圧縮機の冷凍能力の
変化に対し減圧機構を切換ることにより対応することを
特徴とする二元冷凍サイクル。
[Claims] 1. In a binary refrigeration cycle using an inverter-controlled compressor, a plurality of pressure reducing mechanisms with different refrigeration capacities are provided in the refrigeration cycles on the low temperature side and high temperature side, respectively, and the refrigeration capacity of the compressor is A two-way refrigeration cycle is characterized in that it responds to changes in the pressure by switching the pressure reduction mechanism.
JP30892490A 1990-11-16 1990-11-16 Binary refrigerating cycle Pending JPH04186064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30892490A JPH04186064A (en) 1990-11-16 1990-11-16 Binary refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30892490A JPH04186064A (en) 1990-11-16 1990-11-16 Binary refrigerating cycle

Publications (1)

Publication Number Publication Date
JPH04186064A true JPH04186064A (en) 1992-07-02

Family

ID=17986920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30892490A Pending JPH04186064A (en) 1990-11-16 1990-11-16 Binary refrigerating cycle

Country Status (1)

Country Link
JP (1) JPH04186064A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102541A (en) * 2013-11-28 2015-06-04 エスペック株式会社 Environmental test device and cooling system
EP3789694A1 (en) * 2008-09-16 2021-03-10 PHC Holdings Corporation Refrigeration device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3789694A1 (en) * 2008-09-16 2021-03-10 PHC Holdings Corporation Refrigeration device
JP2015102541A (en) * 2013-11-28 2015-06-04 エスペック株式会社 Environmental test device and cooling system

Similar Documents

Publication Publication Date Title
US20040187504A1 (en) Cooling system with isolation valve
JPH0333985B2 (en)
JPH04186064A (en) Binary refrigerating cycle
CN111486613A (en) Air conditioning system, control method and device thereof and storage medium
KR100470476B1 (en) Cooling system
JPS60555B2 (en) Capacity control device for multi-type refrigerators
JPH0799287B2 (en) Air conditioner
JPS62116862A (en) Refrigerator
JPS6099947A (en) Operation control of air conditioner
JP2001304700A (en) Air conditioner
JPH03294750A (en) Freezing apparatus
JPS60114669A (en) Air conditioner
JPH0338592Y2 (en)
CN113606840B (en) Refrigerating system, control method and device thereof, storage medium and processor
CN212278706U (en) Constant temperature dehumidification refrigerating plant
KR100389640B1 (en) System for controlling air conditioner and method thereof
JPS6337865B2 (en)
JPH07103593A (en) Multiroom type air-conditioner
JPS58221349A (en) Refrigeration cycle device
KR0127650Y1 (en) Refrigerator control method for a refrigerator
JPH08145494A (en) Absorption type heat pump
JPS6387556A (en) Heat pump device
JPS6383556A (en) Refrigeration cycle
JPH0639980B2 (en) Parallel refrigerator
JPH03137457A (en) Freezer device