JP2001304700A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2001304700A
JP2001304700A JP2000126283A JP2000126283A JP2001304700A JP 2001304700 A JP2001304700 A JP 2001304700A JP 2000126283 A JP2000126283 A JP 2000126283A JP 2000126283 A JP2000126283 A JP 2000126283A JP 2001304700 A JP2001304700 A JP 2001304700A
Authority
JP
Japan
Prior art keywords
compressor
expansion valve
degree
air conditioner
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000126283A
Other languages
Japanese (ja)
Other versions
JP3760259B2 (en
Inventor
Atsuhiko Yokozeki
敦彦 横関
Susumu Nakayama
進 中山
Hiroaki Tsuboe
宏明 坪江
Kenichi Nakamura
憲一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000126283A priority Critical patent/JP3760259B2/en
Publication of JP2001304700A publication Critical patent/JP2001304700A/en
Application granted granted Critical
Publication of JP3760259B2 publication Critical patent/JP3760259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To contrive the enhancement of COP (energy consumption efficiency), achievement of a reference value which is a target prescribed by New Energy Saving Law to be achieved by the year 2007, and the reduction of yearly power consumption, by reducing the power consumption of an air conditioner more. SOLUTION: In an air conditioner where a compressor 81, whose capacity is variably controlled, a condenser 11, an expansion valve 22, and an evaporator 12 are connected in circular form by pipe, the temperature of gas discharged from the compressor 81 is controlled by the opening of the expansion valve 22, and the opening of the expansion valve 22 is controlled, so that the temperature of discharged gas at compressor 81 operation with its lowest capacity is lower than the temperature of the discharged gas at the compressor 81 which is operated with its rated capacity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍サイクルの制
御を行う空気調和機に関するもので、特に空気調和機の
省電力化に好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner for controlling a refrigeration cycle, and is particularly suitable for power saving of an air conditioner.

【0002】[0002]

【従来の技術】従来、空気調和機を省電力とするため、
圧縮機の運転容量、膨張弁の開度をわずかに調整して消
費電力の最小値を探索することが知られ、例えば、特開
平7−110165号公報に記載されている。
2. Description of the Related Art Conventionally, in order to save power in an air conditioner,
It is known to search for the minimum value of the power consumption by slightly adjusting the operating capacity of the compressor and the opening of the expansion valve, and is described in, for example, JP-A-7-110165.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、消費
電力の最小値を圧縮機の運転容量と膨張弁の開度を常に
変化させて探索するため、冷凍サイクルの運転状態が不
安定になったり、消費電力を検知するためのセンサが必
要であるため、コストアップになったりする恐れがあ
る。
In the above prior art, since the minimum value of the power consumption is searched for by constantly changing the operating capacity of the compressor and the opening of the expansion valve, the operating state of the refrigeration cycle becomes unstable. Or a sensor for detecting power consumption is required, which may increase the cost.

【0004】本発明の目的は、空気調和機の消費電力を
より一層少なくし、COP(エネルギ消費効率)の向
上、新省エネ法2007年の基準値を達成し、年間消費
電力の低減も図ることにある。また、単に消費電力の低
減だけでなく、冷凍サイクルの安定化及び快適性の向上
を図ることにある。
[0004] It is an object of the present invention to further reduce the power consumption of an air conditioner, improve the COP (energy consumption efficiency), achieve the new energy saving law 2007 standard value, and reduce the annual power consumption. It is in. Another object of the present invention is not only to reduce power consumption, but also to stabilize a refrigeration cycle and improve comfort.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、容量が可変制御される圧縮機、凝縮器、
膨張弁、蒸発器を配管で環状に接続された空気調和機に
おいて、圧縮機の吐出ガス温度は膨張弁の開度によって
制御され、圧縮機が最低容量で運転されるときの吐出ガ
ス温度は、圧縮機が定格容量で運転されるときの吐出ガ
ス温度より低くなるように膨張弁の開度が制御されるも
のである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a compressor, a condenser and a compressor whose capacity is variably controlled.
In an air conditioner in which an expansion valve and an evaporator are connected in a ring by piping, the discharge gas temperature of the compressor is controlled by the degree of opening of the expansion valve, and the discharge gas temperature when the compressor is operated at the minimum capacity is: The opening of the expansion valve is controlled so as to be lower than the discharge gas temperature when the compressor is operated at the rated capacity.

【0006】上記のものにおいて、吐出ガス温度は圧縮
機の吐出圧力が所定の値になるまでは比例させ、所定の
値以上では一定の目標温度となるように制御され、圧縮
機が最低容量で運転されるときの目標温度は、圧縮機が
定格容量で運転されるときの目標温度よりも低くされる
ことが望ましい。
In the above, the discharge gas temperature is made proportional to the discharge pressure of the compressor until the discharge pressure reaches a predetermined value, and is controlled so as to be a constant target temperature above the predetermined value. It is desirable that the target temperature when the compressor is operated be lower than the target temperature when the compressor is operated at the rated capacity.

【0007】また、本発明は、容量が可変制御される圧
縮機、凝縮器、膨張弁、蒸発器を配管で環状に接続さ
れ、圧縮機の吸入または吐出の冷媒過熱度が膨張弁の開
度で制御される空気調和機において、 圧縮機が最低容
量で運転されるときの冷媒過熱度は、圧縮機が定格容量
で運転されるときの冷媒過熱度より低くなるように膨張
弁の開度が制御されるものである。
Further, according to the present invention, a compressor, a condenser, an expansion valve, and an evaporator whose capacity is variably controlled is connected in a ring shape by piping, and the degree of superheating of the refrigerant at the suction or discharge of the compressor is determined by the opening degree of the expansion valve. In the air conditioner controlled by the above, the degree of superheat of the refrigerant when the compressor is operated at the minimum capacity is such that the opening degree of the expansion valve is lower than the degree of superheat of the refrigerant when the compressor is operated at the rated capacity. Is controlled.

【0008】上記のものにおいて、冷媒過熱度は圧縮機
が定格容量以上で運転されるときは一定の目標値とさ
れ、定格容量未満のときは一定の目標値よりも低くなる
ようにされることが望ましい。
In the above, the degree of superheat of the refrigerant is set to a fixed target value when the compressor is operated at a rated capacity or more, and is set to be lower than the fixed target value when the compressor is less than the rated capacity. Is desirable.

【0009】さらに、本発明は、運転周波数が可変とさ
れた圧縮機、室外熱交換器、室外ファンを有する室外ユ
ニットと、室内熱交換器、室内膨張弁を有する室内ユニ
ットとを備え、圧縮機の吸入または吐出の冷媒過熱度が
膨張弁の開度で制御されるた空気調和機において、室外
機は固定絞りの絞り機構を備え、圧縮機が所定運転周波
数未満のときは運転周波数が小さくなるに従って、冷媒
過熱度が低くされるものである。
Further, the present invention includes an outdoor unit having a compressor, an outdoor heat exchanger, and an outdoor fan having a variable operating frequency, and an indoor unit having an indoor heat exchanger and an indoor expansion valve. In an air conditioner in which the degree of superheat of refrigerant at the suction or discharge of the air is controlled by the degree of opening of an expansion valve, the outdoor unit has a throttle mechanism of a fixed throttle, and the operating frequency is reduced when the compressor is lower than a predetermined operating frequency. , The degree of superheat of the refrigerant is reduced.

【0010】[0010]

【発明の実施の形態】本発明の一実施の形態を図1、図
2に示して、以下説明する。図1は一実施の形態による
冷凍サイクルを示したもので、室外ユニット1は運転周
波数が可変されて、容量が可変制御される圧縮機81、
圧縮機出口の冷媒温度を検出する吐出温度センサ13
1、圧縮機出口の冷媒圧力を検出する吐出圧力センサ1
41、四方弁61、室外熱交換器11、室外ファン3
1、絞り機構21、液タンク101、ガス阻止弁41、
液阻止弁51を有している。四方弁61は、冷房時、圧
縮機81の吐出側と室外熱交換器11とが連通し、圧縮
機81の低圧側とガス阻止弁41とが連通するように、
また、暖房時、圧縮機81の吐出側とガス阻止弁41と
が連通し、圧縮機81の低圧側と室外熱交換器11とが
連通するようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a refrigeration cycle according to one embodiment. An outdoor unit 1 has a compressor 81 whose operating frequency is variable and whose capacity is variably controlled.
Discharge temperature sensor 13 for detecting the refrigerant temperature at the compressor outlet
1. Discharge pressure sensor 1 for detecting refrigerant pressure at compressor outlet
41, four-way valve 61, outdoor heat exchanger 11, outdoor fan 3
1, throttle mechanism 21, liquid tank 101, gas blocking valve 41,
It has a liquid blocking valve 51. During cooling, the four-way valve 61 communicates with the discharge side of the compressor 81 and the outdoor heat exchanger 11, and communicates with the low-pressure side of the compressor 81 and the gas blocking valve 41.
During heating, the discharge side of the compressor 81 communicates with the gas blocking valve 41, and the low-pressure side of the compressor 81 communicates with the outdoor heat exchanger 11.

【0011】室外熱交換器11の一端は前述のように四
方弁61に接続され、室外熱交換器11の他端は絞り機
構21を介して液タンク101に接続されている。さら
に液タンク101は液阻止弁51に接続されている。液
阻止弁51の他端は液配管111に接続され、ガス阻止
弁41の他端はガス配管121に接続されている。液配
管111及びガス配管121の他端は室内ユニット2に
接続されている。室内ユニット2は室内熱交換器12、
流量調整可能な室内膨張弁22および室内ファン32を
有し、本図では1台であるが、複数台接続されることが
多い。室内熱交換器12の一端はガス配管121と結合
され、他端は室内膨張弁22と結合され、室内膨張弁2
2の他端は液配管111に結合されている。
One end of the outdoor heat exchanger 11 is connected to the four-way valve 61 as described above, and the other end of the outdoor heat exchanger 11 is connected to the liquid tank 101 via the throttle mechanism 21. Further, the liquid tank 101 is connected to the liquid blocking valve 51. The other end of the liquid blocking valve 51 is connected to a liquid pipe 111, and the other end of the gas blocking valve 41 is connected to a gas pipe 121. The other ends of the liquid pipe 111 and the gas pipe 121 are connected to the indoor unit 2. The indoor unit 2 includes an indoor heat exchanger 12,
It has the indoor expansion valve 22 and the indoor fan 32 that can adjust the flow rate, and although one is shown in the figure, a plurality of them are often connected. One end of the indoor heat exchanger 12 is connected to the gas pipe 121, and the other end is connected to the indoor expansion valve 22.
The other end of 2 is connected to liquid pipe 111.

【0012】空気調和機の年間の空調負荷状況を見る
と、空気調和機の定格能力に相当する負荷の発生頻度は
非常に少なく、空気調和機の最小能力以下に相当する負
荷の発生頻度が多い。したがって、空気調和機の省電力
化するには、最小能力運転時の効率向上が効果的であ
る。最小能力運転は空気調和機能力が少なくて良い運転
であるから、消費電力を低減するには暖房では吐出圧力
を下げることが必要とされる。
Looking at the annual air conditioner load condition of the air conditioner, the frequency of occurrence of a load corresponding to the rated capacity of the air conditioner is extremely low, and the frequency of occurrence of the load corresponding to the minimum capacity or less of the air conditioner is high. . Therefore, to reduce the power consumption of the air conditioner, it is effective to improve the efficiency at the time of the minimum capacity operation. Since the minimum capacity operation is an operation that requires less air conditioning function, it is necessary to lower the discharge pressure in heating in order to reduce power consumption.

【0013】次に動作を説明する。図1の破線矢印が冷
房運転、実線矢印が暖房運転の冷媒流れを示す。まず、
室内ユニット2を冷房運転する場合について説明する。
四方弁61は冷房モードになっている。圧縮機81から
吐出された高圧ガス冷媒は、四方弁61を通って室外熱
交換器11へ流れる。室外熱交換器11へ入った高圧ガ
ス冷媒は室外ファン31によって送風された室外空気と
熱交換されて凝縮し液冷媒となり、固定絞りである絞り
機構21で一次減圧されてから液タンク101へ入る。
液タンク101の液冷媒は液阻止弁51、液配管111
を通って、室内ユニット2に入り、室内膨張弁22で二
次減圧されて、室内熱交換器12に入り、室内ファン3
2によって送風された室内空気と熱交換されて蒸発しガ
ス冷媒となる。このとき室内は冷房される。室内熱交換
器12を出たガス冷媒はガス配管121を通って室外ユ
ニット1へ入り、ガス阻止弁41、四方弁61を通って
圧縮機81に吸入される。
Next, the operation will be described. The dashed arrow in FIG. 1 indicates the cooling operation and the solid arrow indicates the refrigerant flow in the heating operation. First,
The case where the indoor unit 2 performs the cooling operation will be described.
The four-way valve 61 is in the cooling mode. The high-pressure gas refrigerant discharged from the compressor 81 flows to the outdoor heat exchanger 11 through the four-way valve 61. The high-pressure gas refrigerant that has entered the outdoor heat exchanger 11 undergoes heat exchange with the outdoor air blown by the outdoor fan 31 to be condensed into a liquid refrigerant. The refrigerant is first depressurized by the throttle mechanism 21 that is a fixed throttle, and then enters the liquid tank 101. .
The liquid refrigerant in the liquid tank 101 is supplied to the liquid blocking valve 51 and the liquid pipe 111.
Through the indoor unit 2, is subjected to secondary pressure reduction by the indoor expansion valve 22, enters the indoor heat exchanger 12, and
The heat is exchanged with the room air blown by 2 to evaporate to become a gas refrigerant. At this time, the room is cooled. The gas refrigerant that has exited the indoor heat exchanger 12 enters the outdoor unit 1 through the gas pipe 121, and is drawn into the compressor 81 through the gas blocking valve 41 and the four-way valve 61.

【0014】次に、室内ユニット2を暖房運転する場合
について説明する。四方弁61は暖房モードになってい
る。圧縮機81から吐出された高圧ガス冷媒は四方弁6
1、ガス阻止弁41を通って、ガス配管121へ流れ
る。ガス配管121を通った高圧ガス冷媒は室内ユニッ
ト2の室内熱交換器12に入り、室内ファン32によっ
て送風された室内空気と熱交換されて凝縮し液冷媒とな
る。このとき室内は暖房される。液冷媒は室内膨張弁2
2で一次減圧された後、液配管111、液阻止弁51を
通って液タンク101に入る。液タンク111の液冷媒
は絞り機構21で二次減圧されて室外熱交換器11に入
り、室外ファン31によって送風された室外空気と熱交
換されて蒸発し低圧のガス状の冷媒となり、四方弁61
を通って圧縮機81に吸入される。
Next, a case where the indoor unit 2 is operated for heating will be described. The four-way valve 61 is in the heating mode. The high-pressure gas refrigerant discharged from the compressor 81 is supplied to the four-way valve 6.
1. The gas flows through the gas check valve 41 to the gas pipe 121. The high-pressure gas refrigerant that has passed through the gas pipe 121 enters the indoor heat exchanger 12 of the indoor unit 2 and exchanges heat with the indoor air blown by the indoor fan 32 to condense into a liquid refrigerant. At this time, the room is heated. The liquid refrigerant is the indoor expansion valve 2
After the primary pressure reduction in step 2, the liquid enters the liquid tank 101 through the liquid pipe 111 and the liquid blocking valve 51. The liquid refrigerant in the liquid tank 111 is secondarily decompressed by the throttle mechanism 21 and enters the outdoor heat exchanger 11, where it exchanges heat with the outdoor air blown by the outdoor fan 31 and evaporates to become a low-pressure gaseous refrigerant. 61
Through the compressor 81.

【0015】次に、室内膨張弁22の制御方法を図2を
参照して説明する。空気調和機の定格能力が得られる圧
縮機周波数を定格周波数とすると図2の表に示すよう
に、圧縮機周波数が定格周波数以上の時は目標吐出ガス
温度を目標温度1とし、圧縮機周波数が定格周波数未満
の時は目標吐出ガス温度を圧縮機周波数が小さくなるに
従って目標温度1より低くなるように設定する。図2の
グラフに圧縮機周波数が定格周波数以上の目標温度1と
圧縮機周波数が最低周波数のときの目標温度2の関係を
示す。目標温度は両者とも吐出圧力に比例しており、吐
出圧力がある圧力以上になると目標温度は一定になる。
また、目標温度は吐出圧力の飽和温度より高い温度にす
る。圧縮機の運転周波数が最低周波数のときの目標吐出
ガス温度を定格周波数のときの目標吐出ガス温度より低
く設定することによって室内膨張弁22の開度が大きく
なり、暖房時の吐出圧力を下げることができる。
Next, a method of controlling the indoor expansion valve 22 will be described with reference to FIG. Assuming that the compressor frequency at which the rated capacity of the air conditioner is obtained is the rated frequency, as shown in the table of FIG. 2, when the compressor frequency is equal to or higher than the rated frequency, the target discharge gas temperature is set to the target temperature 1, and the compressor frequency is set to When the frequency is lower than the rated frequency, the target discharge gas temperature is set to be lower than the target temperature 1 as the compressor frequency decreases. The graph of FIG. 2 shows the relationship between the target temperature 1 where the compressor frequency is equal to or higher than the rated frequency and the target temperature 2 when the compressor frequency is the lowest frequency. The target temperature is proportional to the discharge pressure in both cases, and when the discharge pressure exceeds a certain pressure, the target temperature becomes constant.
The target temperature is set to a temperature higher than the saturation temperature of the discharge pressure. By setting the target discharge gas temperature at the time when the operating frequency of the compressor is the lowest frequency lower than the target discharge gas temperature at the rated frequency, the opening degree of the indoor expansion valve 22 is increased and the discharge pressure during heating is reduced. Can be.

【0016】吐出圧力は吐出圧力センサ141で検出
し、吐出ガス温度は吐出温度センサ131で検出し、膨
張弁開度は、最小能力運転時の吐出ガス温度または過熱
度が定格能力運転時より低くなるように制御する。これ
によって、凝縮器内に液冷媒が溜まりにくくなり有効伝
熱面積が大きくなり吐出圧力が低下する。
The discharge pressure is detected by a discharge pressure sensor 141, the discharge gas temperature is detected by a discharge temperature sensor 131, and the opening degree of the expansion valve is such that the discharge gas temperature or superheat at the time of the minimum capacity operation is lower than at the time of the rated capacity operation. Control so that This makes it difficult for the liquid refrigerant to accumulate in the condenser, increases the effective heat transfer area, and lowers the discharge pressure.

【0017】次に、室内膨張弁22の制御方法の他の実
施例を図3で説明する。図3の表に示すように、圧縮機
周波数が定格周波数以上の時は目標吐出ガス過熱度をS
Hooとし、圧縮機周波数が定格周波数未満の時は目標
吐出ガス過熱度を圧縮機周波数が小さくなるに従ってS
Hooより低くなるように設定する。図2のグラフに圧
縮機周波数と目標吐出ガス過熱度の関係を示す。目標吐
出ガス過熱度は圧縮機周波数が定格周波数以上の時はS
Hoo一定とし、圧縮機周波数が定格周波数未満の時は
周波数に比例して目標吐出ガス過熱度を小さくする。こ
のように圧縮機周波数が定格周波数より低いとき、目標
吐出ガス過熱度を小さくすることによって、圧縮機周波
数が最低周波数のときの室内膨張弁22の開度が大きく
なり、暖房時の吐出圧力を下げることができる。また、
吐出ガス過熱度は吐出圧力センサ141と吐出温度セン
サ131の検出値によって演算される。
Next, another embodiment of the control method of the indoor expansion valve 22 will be described with reference to FIG. As shown in the table of FIG. 3, when the compressor frequency is equal to or higher than the rated frequency, the target discharge gas superheat degree is set to S.
Hoo, when the compressor frequency is lower than the rated frequency, the target discharge gas superheat degree is set to S as the compressor frequency decreases.
Set to be lower than Hoo. The relationship between the compressor frequency and the target discharge gas superheat degree is shown in the graph of FIG. The target discharge gas superheat degree is S when the compressor frequency is higher than the rated frequency.
Ho is constant, and when the compressor frequency is less than the rated frequency, the target discharge gas superheat degree is reduced in proportion to the frequency. As described above, when the compressor frequency is lower than the rated frequency, by reducing the target discharge gas superheat degree, the opening degree of the indoor expansion valve 22 when the compressor frequency is the lowest frequency increases, and the discharge pressure during heating increases. Can be lowered. Also,
The superheat degree of the discharge gas is calculated based on the detection values of the discharge pressure sensor 141 and the discharge temperature sensor 131.

【0018】図1の冷凍サイクルでは冷房時と暖房時で
は膨張弁22と絞り機構21の順番が入れ替わり、吐出
過熱度を低くすることによって、暖房時は吐出圧力が下
がり、冷房時は、吸入圧力が上がる。よって、暖房時は
電入力が減少し、冷房時は能力が増加する。
In the refrigeration cycle shown in FIG. 1, the order of the expansion valve 22 and the throttle mechanism 21 is switched between during cooling and during heating, and the discharge pressure is reduced during heating by lowering the degree of discharge superheat, and the suction pressure is reduced during cooling. Goes up. Therefore, the power input decreases during heating, and the capacity increases during cooling.

【0019】次に、本発明の他の実施例を図4に示す。
図4の冷凍サイクルは図1の冷凍サイクルに対し液タン
ク101と絞り機構21を除去し、圧縮機81の吸入側
と四方弁61との間にアキュムレータ91を設けたもの
である。動作は図1と同様である。
Next, another embodiment of the present invention is shown in FIG.
The refrigeration cycle of FIG. 4 is different from the refrigeration cycle of FIG. 1 in that the liquid tank 101 and the throttle mechanism 21 are removed, and an accumulator 91 is provided between the suction side of the compressor 81 and the four-way valve 61. The operation is the same as in FIG.

【0020】図4の例では、吐出ガス温度または吐出ガ
ス過熱度を図2または図3のように室内膨張弁22を制
御することによって、暖房運転の圧縮機周波数が最低周
波数のとき吐出圧力を下げることができる。また、図4
の構成は膨張機構が室内膨張弁22だけであるため、冷
房運転においても暖房と同様の制御によって圧縮機周波
数が最低周波数のとき室内膨張弁22の開度が開くこと
ので吐出圧力を下げることができる。また、電気入力を
検出しなくても、省電力が可能であるので、電気入力の
検出センサが不要になり原価低減ができる。
In the example of FIG. 4, the discharge gas temperature or the degree of superheat of the discharge gas is controlled by controlling the indoor expansion valve 22 as shown in FIG. 2 or 3, so that the discharge pressure is reduced when the compressor frequency in the heating operation is the lowest frequency. Can be lowered. FIG.
Since the expansion mechanism is only the indoor expansion valve 22, the opening pressure of the indoor expansion valve 22 is opened when the compressor frequency is the lowest frequency even in the cooling operation by the same control as the heating, so that the discharge pressure can be reduced. it can. In addition, since power can be saved without detecting an electric input, a sensor for detecting an electric input is not required, and cost can be reduced.

【0021】[0021]

【発明の効果】本発明によれば、圧縮機周波数が最低周
波数のときの目標吐出ガス温度または過熱度を定格周波
数のときの目標吐出ガス温度または過熱度より低く設定
することによって室内膨張弁22の開度が大きくなり、
吐出圧力を下げることができる。これによって、圧縮機
の仕事が減り電気入力が低減でき、空気調和機の省電力
の効果が得られる。
According to the present invention, the indoor expansion valve 22 is set by setting the target discharge gas temperature or superheat degree when the compressor frequency is the lowest frequency lower than the target discharge gas temperature or superheat degree when the compressor frequency is the rated frequency. The opening of
The discharge pressure can be reduced. Thereby, the work of the compressor is reduced, the electric input can be reduced, and the effect of power saving of the air conditioner can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例を示すサイクル構成図。FIG. 1 is a cycle configuration diagram showing one embodiment of the present invention.

【図2】 本発明による室内膨張弁の制御方法を示す説
明図。
FIG. 2 is an explanatory view showing a method of controlling an indoor expansion valve according to the present invention.

【図3】 本発明の他の実施例による室内膨張弁の制御
方法を示す説明図。
FIG. 3 is an explanatory diagram showing a method for controlling an indoor expansion valve according to another embodiment of the present invention.

【図4】 本発明の他の実施例を示すサイクル構成図。FIG. 4 is a cycle configuration diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…室外ユニット、 2…室内ユニット、11…室外熱
交換器、 12…室内熱交換器、21…絞り機構、 2
2…室内膨張弁、31…室外ファン、 32…室内ファ
ン、 41、51、…阻止弁、61…四方弁、 81…
圧縮機、 91…アキュムレータ、111…液配管、
121…ガス配管131…吐出温度センサ、 141…
吐出圧力センサ
DESCRIPTION OF SYMBOLS 1 ... Outdoor unit, 2 ... Indoor unit, 11 ... Outdoor heat exchanger, 12 ... Indoor heat exchanger, 21 ... Throttle mechanism, 2
2 ... indoor expansion valve, 31 ... outdoor fan, 32 ... indoor fan, 41, 51 ... blocking valve, 61 ... four-way valve, 81 ...
Compressor, 91: accumulator, 111: liquid pipe,
121 ... gas pipe 131 ... discharge temperature sensor, 141 ...
Discharge pressure sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坪江 宏明 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 (72)発明者 中村 憲一 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 Fターム(参考) 3L060 CC04 CC16 CC19 DD08 EE09 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroaki Tsuboe 390 Muramatsu, Shimizu-shi, Shizuoka Pref.Hitachi Air Conditioning Systems Co., Ltd. F term in Shimizu Production Headquarters (reference) 3L060 CC04 CC16 CC19 DD08 EE09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】容量が可変制御される圧縮機、凝縮器、膨
張弁、蒸発器を配管で環状に接続された空気調和機にお
いて、 前記圧縮機の吐出ガス温度は前記膨張弁の開度によって
制御され、前記圧縮機が最低容量で運転されるときの吐
出ガス温度は、前記圧縮機が定格容量で運転されるとき
の吐出ガス温度より低くなるように前記膨張弁の開度が
制御されることを特徴とする空気調和機。
1. An air conditioner in which a compressor, a condenser, an expansion valve, and an evaporator whose capacity is variably controlled is connected in a ring shape with a pipe, the discharge gas temperature of the compressor depends on the degree of opening of the expansion valve. The opening degree of the expansion valve is controlled such that the discharge gas temperature when the compressor is operated at the minimum capacity is lower than the discharge gas temperature when the compressor is operated at the rated capacity. An air conditioner characterized by that:
【請求項2】請求項1に記載のものにおいて、前記吐出
ガス温度は前記圧縮機の吐出圧力が所定の値になるまで
は比例させ、所定の値以上では一定の目標温度となるよ
うに制御され、前記圧縮機が最低容量で運転されるとき
の前記目標温度は、前記圧縮機が定格容量で運転される
ときの前記目標温度よりも低くされることを特徴とする
空気調和機。
2. The method according to claim 1, wherein the discharge gas temperature is controlled so as to be proportional until the discharge pressure of the compressor reaches a predetermined value, and to be a constant target temperature above the predetermined value. The air conditioner is characterized in that the target temperature when the compressor is operated at the minimum capacity is lower than the target temperature when the compressor is operated at the rated capacity.
【請求項3】容量が可変制御される圧縮機、凝縮器、膨
張弁、蒸発器を配管で環状に接続され、前記圧縮機の吸
入または吐出の冷媒過熱度が前記膨張弁の開度で制御さ
れる空気調和機において、 前記圧縮機が最低容量で運転されるときの前記冷媒過熱
度は、前記圧縮機が定格容量で運転されるときの前記冷
媒過熱度より低くなるように前記膨張弁の開度が制御さ
れることを特徴とする空気調和機。
3. A compressor, a condenser, an expansion valve, and an evaporator, whose capacity is variably controlled, are connected in a ring shape by piping, and the degree of superheat of refrigerant at the suction or discharge of the compressor is controlled by the opening degree of the expansion valve. In the air conditioner, the refrigerant superheat degree when the compressor is operated at the minimum capacity is lower than the refrigerant superheat degree when the compressor is operated at the rated capacity. An air conditioner characterized in that the opening is controlled.
【請求項4】請求項3に記載のものにおいて、前記冷媒
過熱度は前記圧縮機が定格容量以上で運転されるときは
一定の目標値とされ、定格容量未満のときは前記一定の
目標値よりも低くなるようにされることを特徴とする空
気調和機。
4. The refrigerant superheat degree according to claim 3, wherein the refrigerant superheat degree is a constant target value when the compressor is operated at a rated capacity or more, and the refrigerant superheat degree is a constant target value when the compressor is less than the rated capacity. An air conditioner characterized in that it is made lower.
【請求項5】運転周波数が可変とされた圧縮機、室外熱
交換器、室外ファンを有する室外ユニットと、室内熱交
換器、室内膨張弁を有する室内ユニットとを備え、前記
圧縮機の吸入または吐出の冷媒過熱度が前記膨張弁の開
度で制御されるた空気調和機において、 前記室外機は固定絞りの絞り機構を備え、前記圧縮機が
所定運転周波数未満のときは運転周波数が小さくなるに
従って、前記冷媒過熱度が低くされることを特徴とする
空気調和機。
5. An outdoor unit having a compressor, an outdoor heat exchanger, and an outdoor fan having a variable operating frequency, and an indoor unit having an indoor heat exchanger and an indoor expansion valve. In the air conditioner in which the degree of superheat of the refrigerant discharged is controlled by the degree of opening of the expansion valve, the outdoor unit includes a throttle mechanism of a fixed throttle, and the operating frequency decreases when the compressor is lower than a predetermined operating frequency. , The degree of superheat of the refrigerant is reduced.
JP2000126283A 2000-04-21 2000-04-21 Air conditioner Expired - Fee Related JP3760259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000126283A JP3760259B2 (en) 2000-04-21 2000-04-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000126283A JP3760259B2 (en) 2000-04-21 2000-04-21 Air conditioner

Publications (2)

Publication Number Publication Date
JP2001304700A true JP2001304700A (en) 2001-10-31
JP3760259B2 JP3760259B2 (en) 2006-03-29

Family

ID=18636093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000126283A Expired - Fee Related JP3760259B2 (en) 2000-04-21 2000-04-21 Air conditioner

Country Status (1)

Country Link
JP (1) JP3760259B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127353A (en) * 2005-11-04 2007-05-24 Hitachi Ltd Air-conditioner
JP2008082653A (en) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp Hot water supply cold and warm water air conditioner
JP2015075294A (en) * 2013-10-10 2015-04-20 日立アプライアンス株式会社 Air conditioner
WO2015083399A1 (en) * 2013-12-06 2015-06-11 シャープ株式会社 Air conditioner
JP2017036881A (en) * 2015-08-10 2017-02-16 三菱重工業株式会社 Refrigeration/air conditioning device
CN115127205A (en) * 2021-03-26 2022-09-30 松下电器研究开发(苏州)有限公司 Air conditioner and control method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127353A (en) * 2005-11-04 2007-05-24 Hitachi Ltd Air-conditioner
JP2008082653A (en) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp Hot water supply cold and warm water air conditioner
JP2015075294A (en) * 2013-10-10 2015-04-20 日立アプライアンス株式会社 Air conditioner
WO2015083399A1 (en) * 2013-12-06 2015-06-11 シャープ株式会社 Air conditioner
JP2015111020A (en) * 2013-12-06 2015-06-18 シャープ株式会社 Air conditioner
JP2017036881A (en) * 2015-08-10 2017-02-16 三菱重工業株式会社 Refrigeration/air conditioning device
CN115127205A (en) * 2021-03-26 2022-09-30 松下电器研究开发(苏州)有限公司 Air conditioner and control method thereof
CN115127205B (en) * 2021-03-26 2024-02-13 松下电气设备(中国)有限公司 Air conditioner and control method thereof

Also Published As

Publication number Publication date
JP3760259B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
KR100484800B1 (en) Compressor's Operating Method in Air Conditioner
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
KR930005666B1 (en) Air conditioner and operating method
KR20110028180A (en) Air conditioner and control method thereof
US20200378642A1 (en) Air conditioner
KR100640855B1 (en) control method for multi-airconditioner
US6807817B2 (en) Method for operating compressors of air conditioner
JP2001280669A (en) Refrigerating cycle device
KR100640856B1 (en) Control method for multi-airconditioner
KR20060066840A (en) Structure and method for controlling indoor unit of multi-air conditioner
CN111928410A (en) Control method for multi-split air conditioning unit
US20040103676A1 (en) Method for controlling cooling/heating of heat pump system
JP2001304700A (en) Air conditioner
KR20040024242A (en) Linear expansion valve of heat pump system using multi compressors
KR0161217B1 (en) A controlling method of multi-airconditioner
JP4063041B2 (en) Control method of multi-room air conditioner
JPH07332795A (en) Multiroom type air-conditioning system
JP2005037052A (en) Air conditioner
KR100608684B1 (en) Solenoid valve control method for airconditioner
KR100723946B1 (en) Method for controlling dehumidification operation of multi type air-conditioner
JP2003042585A (en) Air conditioner
JP6370425B2 (en) Air conditioner using direct expansion coil
KR100812780B1 (en) Heat-pump having inverter-type compressor for preventing heating overload and control method of the same
CN116222041B (en) Secondary condensation defrosting medium flow control method for refrigeration system
CN212457128U (en) Air conditioning system and air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R151 Written notification of patent or utility model registration

Ref document number: 3760259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees