WO2015083399A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2015083399A1
WO2015083399A1 PCT/JP2014/070980 JP2014070980W WO2015083399A1 WO 2015083399 A1 WO2015083399 A1 WO 2015083399A1 JP 2014070980 W JP2014070980 W JP 2014070980W WO 2015083399 A1 WO2015083399 A1 WO 2015083399A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
superheat degree
discharge temperature
temperature
discharge
Prior art date
Application number
PCT/JP2014/070980
Other languages
French (fr)
Japanese (ja)
Inventor
六角雄一
武田篤志
上野円
飯尾和史
西村達男
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to SE1650785A priority Critical patent/SE542540C2/en
Priority to CN201480065897.4A priority patent/CN105814373B/en
Publication of WO2015083399A1 publication Critical patent/WO2015083399A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/23High amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to an air conditioner capable of adjusting a circulating refrigerant amount and performing stable air conditioning operation.
  • a compressor, a condenser, a throttling device, and an evaporator are connected to form a refrigerant circuit, and the refrigerant circulates through the refrigerant circuit to perform air conditioning operations such as cooling, heating, and dehumidification.
  • the opening degree of the expansion valve as the expansion device is controlled according to the degree of superheat of suction obtained from the temperature of the evaporator and the outlet temperature of the evaporator.
  • coolant amount which circulates is adjusted appropriately, and efficient air-conditioning driving
  • the difference between the discharge temperature of the compressor and the temperature of the condenser is calculated as the discharge superheat degree, and the expansion valve is based on the calculated temperature difference and the target discharge temperature difference. Is controlled.
  • the target discharge temperature difference is calculated from the rotation speed of the compressor.
  • the amount of refrigerant to be circulated is determined according to the rotational speed of the compressor.
  • the discharge temperature is not stable until the compressor is warmed up even if the operation is started. For this reason, it takes time until the discharge temperature is stabilized, and the expansion valve cannot be controlled. During this time, the air conditioner must perform an inefficient operation.
  • the discharge temperature is quickly stabilized.
  • the temperature difference between the temperature of the evaporator and the suction temperature of the refrigerant sucked into the compressor is small. Therefore, the suction superheat degree is small, and it becomes difficult to control the expansion valve.
  • an object of the present invention is to provide an air conditioner that can perform a quick and efficient air-conditioning operation regardless of the amount of circulating refrigerant.
  • the air conditioner of the present invention includes a control device that controls the operation of the throttle device in accordance with the amount of refrigerant circulating in the refrigerant circuit by connecting a compressor, a condenser, a throttle device, and an evaporator to form a refrigerant circuit. It is a thing.
  • the control device judges the operating state and operates the throttle device based on the suction superheat degree control for operating the throttle device based on the refrigerant suction temperature sucked into the compressor and the refrigerant discharge temperature discharged from the compressor Switch the superheat control to be performed and perform optimal air conditioning operation.
  • control device performs suction superheat control that operates the expansion device based on the suction temperature of the refrigerant sucked into the compressor when the amount of refrigerant circulating is large, and discharges from the compressor when the amount of refrigerant circulating is small.
  • Discharge superheat degree control for operating the expansion device based on the discharge temperature of the refrigerant to be performed is performed.
  • the control device determines the operating state based on the amount of circulating refrigerant.
  • the superheat control is switched according to the amount of refrigerant circulating in the refrigerant circuit, and the suction superheat control is performed when the amount of refrigerant circulating is large, so that the refrigeration cycle is stabilized quickly.
  • the amount of refrigerant circulating is small, the difference between the suction temperature and the evaporation temperature is small, so that superheat control based on the suction temperature becomes difficult. Therefore, the discharge superheat control is performed when the amount of refrigerant circulating is small, so that the superheat control can be performed reliably, and an efficient air conditioning operation can be performed regardless of the amount of refrigerant circulating.
  • the controller performs suction superheat control until the refrigeration cycle is stabilized when the amount of refrigerant circulating is small, and performs discharge superheat control after the refrigeration cycle is stabilized. In this way, when the air-conditioning operation is started, the suction superheat degree control is performed first, so that the refrigeration cycle is quickly stabilized. Since discharge superheat degree control is performed in a state where the refrigeration cycle is stable, efficient air-conditioning operation can be performed even if the amount of circulating refrigerant is small.
  • control device performs suction superheat control when the refrigeration cycle becomes unstable while performing discharge superheat control. In this way, if the discharge superheat control is continued when the refrigeration cycle becomes unstable, the time until stabilization becomes longer. At this time, the refrigeration cycle is quickly stabilized by switching to suction superheat control.
  • control device compares the target suction superheat degree with the actual suction superheat degree to determine whether or not the refrigeration cycle is unstable. In this way, when the refrigeration cycle becomes unstable, the fluctuation of the suction superheat degree becomes significant, so that it can be quickly detected that it has become unstable.
  • the controller determines that the refrigeration cycle is stable when the actual suction superheat varies around the target suction superheat. If it does in this way, when the state where the actual suction superheat degree is hunting continues, it cannot be determined that it is stable forever. Thus, when it is in such a state, it can be promptly switched to the discharge superheat degree control by determining that it is stable.
  • the control device performs discharge temperature control that operates the throttle device so that the discharge temperature approaches the set temperature as superheat degree control when the amount of circulating refrigerant is large, determines the operating state based on the discharge temperature, and depends on the discharge temperature It is preferable to switch between discharge temperature control and suction superheat control. In this way, when the discharge temperature control is performed, the discharge temperature can be prevented from becoming high.
  • the control device performs discharge temperature control when the discharge temperature is high, and performs suction superheat degree control when the discharge temperature is low. In this way, if the suction superheat control is performed when the discharge temperature is low, the suction superheat can be brought close to the target suction superheat, and an efficient air conditioning operation can be performed. When the discharge temperature increases in this state, the discharge temperature control is performed. By switching superheat degree control in this way, it is possible to prevent the discharge temperature from becoming high while performing efficient air conditioning operation.
  • the control device performs discharge temperature control when the difference between the target suction superheat degree and the actual suction superheat degree is small, and performs the suction superheat degree control when the difference between the target suction superheat degree and the actual suction superheat degree is large. preferable. In this way, if the suction superheat degree control is performed when the difference between the target suction superheat degree and the actual suction superheat degree is large, the difference between the two becomes small, and the discharge temperature control is performed. Thereby, the air conditioning operation can be performed so that the discharge temperature does not become high while the actual suction superheat degree is maintained close to the target suction superheat degree.
  • the determination formula of the discharge temperature is determined by the evaporation temperature, the condensation temperature, and the suction superheat degree, and the control device performs the discharge temperature control based on the discharge temperature calculated from the determination formula so that the discharge temperature does not exceed the upper limit value. Is preferred. In this way, by performing the discharge temperature control based on the discharge temperature obtained from the discriminant, the discharge temperature can be controlled so that the actual discharge temperature does not exceed the upper limit of the discharge temperature.
  • control device performs discharge temperature control when the discharge temperature calculated from the determination formula is high, and performs suction superheat degree control when the discharge temperature calculated from the determination formula is low. In this way, it is possible to prevent the discharge temperature from rising excessively by performing the discharge temperature control when the discharge temperature is high.
  • the target discharge superheat degree for the minimum rotation speed of the compressor is set lower than the normal target discharge superheat degree, and the control device sets the target It is preferable to perform discharge superheat control based on the discharge superheat.
  • the discharge superheat degree control is performed so that the discharge superheat degree becomes the target discharge superheat degree, but since the target discharge superheat degree is set low, the compressor is operating at the minimum rotation speed. When it becomes difficult to obtain the target discharge superheat degree. Therefore, the air-conditioning capability when the compressor is operating at the minimum rotation speed is reduced.
  • the degree of superheat can be brought close to the target degree of superheat, and efficient air conditioning operation can always be performed.
  • Air conditioner control block diagram Flowchart of air conditioning operation by superheat degree control of the first embodiment Flow chart of determination process for suction superheat degree control and discharge superheat degree control Flow chart of suction superheat control Flow chart of discharge superheat control Flowchart of air conditioning operation by discharge superheat degree control of the second embodiment Flow chart for determining the stability of the refrigeration cycle Flowchart of determination of stability of refrigeration cycle when there is hunting according to the third embodiment Flowchart when the refrigeration cycle becomes unstable during execution of the discharge superheat degree control of the fourth embodiment The flowchart when determining superheat degree control based on the refrigerant
  • the air conditioner of the first embodiment is shown in FIG.
  • the air conditioner is configured by connecting an outdoor unit 1 and an indoor unit 2 by piping and wiring.
  • the outdoor unit 1 includes a compressor 3, a four-way valve 4, an outdoor heat exchanger 5, an expansion valve 6, and an outdoor fan 7.
  • the indoor unit 2 includes an indoor heat exchanger 8 and an indoor fan 9.
  • the compressor 3, the four-way valve 4, the outdoor heat exchanger 5, the expansion valve 6, and the indoor heat exchanger 8 are connected by piping to form a refrigerant circuit.
  • a two-way valve 10 and a three-way valve 11 are provided in the outdoor unit.
  • a two-way valve 10 is interposed in a pipe connecting the expansion valve 6 and the indoor heat exchanger 8, and a three-way valve 11 is interposed in a pipe connecting the four-way valve 4 and the indoor heat exchanger 8.
  • the refrigerant circulates through the refrigerant circuit.
  • the opening of the expansion valve 6 is adjusted stepwise by driving the stepping motor, and functions as a throttle device that adjusts the pressure of the circulating refrigerant and the amount of refrigerant.
  • a refrigeration cycle is formed. In the refrigeration cycle during cooling, the refrigerant circulates in the order of the compressor 3, the four-way valve 4, the outdoor heat exchanger 5, the expansion valve 6, and the indoor heat exchanger 8.
  • the outdoor heat exchanger 5 functions as a condenser
  • the indoor heat exchanger 8 functions as an evaporator.
  • the refrigerant circulates in the order of the compressor 3, the four-way valve 4, the indoor heat exchanger 8, the expansion valve 6, and the outdoor heat exchanger 5.
  • the indoor heat exchanger 8 functions as a condenser
  • the outdoor heat exchanger 5 functions as an evaporator.
  • a capillary tube or the like may be used instead of the expansion valve 6 as the expansion device, and the amount of circulating refrigerant can be adjusted by changing the combination of a plurality of capillary tubes.
  • the air conditioner includes a control device 12 that controls the refrigeration cycle and performs air conditioning operations such as cooling, heating, and dehumidification.
  • the air conditioner also includes a room temperature detector 13, an outside air temperature detector 14, a discharge temperature detector 15 that detects the discharge temperature of the refrigerant discharged from the compressor 3, and a suction temperature (suction) of the refrigerant sucked into the compressor 3.
  • a first temperature detector 17 for detecting the temperature of the outdoor heat exchanger 5
  • a second temperature detector 18 for detecting the temperature of the indoor heat exchanger 8.
  • Each temperature detector 13-18 uses a temperature sensor such as a thermistor.
  • a temperature detector that detects the temperature of the refrigerant flowing in the pipe between the expansion valve 6 and the indoor heat exchanger 8 is used as the second temperature detector 18.
  • the second temperature detector 18 is disposed between the expansion valve 6 and the two-way valve 10, and all other temperature detectors except the room temperature detector 13 are provided in the outdoor unit 1.
  • the temperature of the refrigerant flowing through the indoor heat exchanger 8 during the cooling operation is the same as the temperature of the refrigerant passing through the expansion valve 6. Therefore, instead of providing a temperature detector that detects the temperature of the indoor heat exchanger 8, the temperature of the refrigerant is detected by a temperature detector provided between the expansion valve 6 and the indoor heat exchanger 8, thereby The temperature of the exchanger 8 can be detected.
  • the control device 12 controls the rotation speed (operation frequency) of the compressor 3, the opening degree of the expansion valve 6, the outdoor fan 7 according to the instructed operation mode. And the rotation speed of the indoor fan 9 are respectively controlled.
  • the control device 12 includes an indoor control unit provided in the indoor unit 2 and an outdoor control unit provided in the outdoor unit 1.
  • the indoor control unit and the outdoor control unit are connected so as to be communicable with each other, and both cooperate to control operations of the indoor unit 2 and the outdoor unit 1.
  • the outdoor control unit collectively transmits detection signals input from the plurality of temperature detectors 14 to 18 to the indoor control unit, and the indoor control unit manages the detected temperature information.
  • the operating frequency of the compressor 3 is controlled in stages based on the frequency code (FD).
  • a plurality of frequency codes are set for each operation frequency. The higher the frequency code, the higher the operating frequency.
  • the number of rotations corresponds to each frequency code.
  • the control device 12 selects a frequency code according to the control temperature determined from the room temperature and the set temperature, and outputs the frequency code to the driver of the compressor 3.
  • the driver drives the compressor 3 at an operation frequency corresponding to the frequency code.
  • the control device 12 issues a command to the expansion valve 6, the expansion valve 6 has a specified opening degree. The amount of refrigerant passing through the expansion valve 6 is varied according to the opening.
  • the control device 12 determines the rotation speed of the compressor 3 based on the set temperature set by the user or the set temperature set in advance in the automatic operation mode and the detected load such as room temperature and outside temperature. Then, the rotational speed of the indoor fan 9 is determined in accordance with the rotational speed of the compressor 3. The control device 12 controls the compressor 3 at a determined rotational speed, changes the rotational speed of the compressor 3 in accordance with the room temperature, and based on the rotational speed in accordance with the rotational speed of the compressor 3, the indoor fan 9. To control. Further, the control device 12 determines the opening degree of the expansion valve 6 according to the determined rotation speed of the compressor 3.
  • the first temperature detector 17 detects the temperature of the outdoor heat exchanger 5 that is a condenser, that is, the condensation temperature
  • the second temperature detector 18 is the temperature of the indoor heat exchanger 8 that is an evaporator, That is, the evaporation temperature is detected.
  • the first temperature detector 17 detects the evaporation temperature
  • the second temperature detector 18 detects the condensation temperature.
  • the air conditioner controls the refrigeration cycle so as to achieve a target superheat degree corresponding to the amount of refrigerant circulating in the refrigerant circuit. That is, when the control device 12 controls the opening degree of the expansion valve 6 according to the degree of superheat, the amount of circulating refrigerant is adjusted, and the degree of superheat becomes the target degree of superheat.
  • the control device 12 determines the operating state, and controls the degree of suction superheat to operate the expansion valve 6 based on the suction temperature of the refrigerant sucked into the compressor 3 and the discharge temperature of the refrigerant discharged from the compressor 3. Is switched to discharge superheat degree control for operating the expansion valve 6 to perform the air conditioning operation.
  • the control device 12 controls the opening degree of the expansion valve 6 so that the temperature difference between the suction temperature and the evaporation temperature approaches a predetermined value in the suction superheat degree control.
  • the control device 12 sets the discharge temperature and the condensation temperature.
  • the opening degree of the expansion valve 6 is controlled so that the temperature difference approaches a predetermined value.
  • the suction superheat degree is a difference between the suction temperature and the evaporation temperature
  • the target suction superheat degree is a suction superheat degree set according to the amount of refrigerant circulating.
  • the suction superheat degree calculated during the air conditioning operation approaches the target suction superheat degree.
  • the discharge superheat degree is a difference between the discharge temperature and the condensation temperature
  • the target discharge superheat degree is a discharge superheat degree set in accordance with the amount of refrigerant circulating.
  • the discharge superheat calculated during the air conditioning operation approaches the target discharge superheat.
  • the control apparatus 12 judges an operating state based on the refrigerant
  • Suction superheat control can immediately respond to changes in the refrigeration cycle, and can stabilize the refrigeration cycle quickly.
  • suction superheat control since the change in the temperature of the refrigerant is small when the amount of refrigerant circulating is small, it is difficult to control the refrigeration cycle with the suction superheat control. That is, when the amount of circulating refrigerant is large, suction superheat control is suitable. When the amount of circulating refrigerant is small, discharge superheat control is suitable.
  • the control device 12 determines the rotation speed of the compressor 3 based on the load such as the difference between the set temperature and the room temperature, the outside air temperature, and the like (S1).
  • the rotation speed of the compressor 3 corresponds to the amount of refrigerant circulating in the refrigerant circuit. The higher the rotation speed of the compressor 3 is, the more refrigerant is circulated, and the lower the rotation speed is, the less refrigerant is circulated.
  • the control device 12 performs a determination process for determining superheat degree control to be executed from the determined rotation speed of the compressor 3 (S2).
  • the control device 12 When the rotation speed of the compressor 3 is high, that is, when the amount of circulating refrigerant is large, the control device 12 performs suction superheat degree control (S3). When the rotation speed of the compressor 3 is low, that is, when the amount of circulating refrigerant is small, the control device 12 performs discharge superheat degree control (S4).
  • the control device 12 checks whether or not the determined rotation speed of the compressor 3 is equal to or higher than a preset first rotation speed (S5). That is, it is checked whether or not the circulating refrigerant amount is greater than or equal to the first set amount.
  • the control device 12 selects the suction superheat degree control (S6).
  • the control device 12 selects the discharge superheat degree control (S7).
  • the first rotation speed (first set amount) is experimentally determined in advance and is set for each air conditioner.
  • the control device 12 When the air conditioning operation is started, the control device 12 performs an initial operation in which the compressor 3 is driven at a rotation speed lower than a predetermined rotation speed for a predetermined time. Thereby, a refrigerant
  • the control device 12 drives the compressor 3 at a rotational speed determined based on the load, and sets the opening degree of the expansion valve 6 to a predetermined opening degree.
  • the control device 12 determines the target suction superheat degree from the rotation speed of the compressor 3 corresponding to the circulating refrigerant amount ( S11).
  • the target suction superheat degree is experimentally obtained in advance, and the target suction superheat degree is stored in the nonvolatile memory of the control device 12 for each rotation speed of the compressor 3.
  • the target discharge superheat degree is similarly stored in the memory.
  • the control device 12 reads out the target suction superheat degree corresponding to the determined rotation speed of the compressor 3 from the memory.
  • the control device 12 acquires the actual suction superheat degree (S12). By subtracting the evaporation temperature detected by the first temperature detector 17 or the second temperature detector 18 from the actual suction temperature detected by the suction temperature detector 16, the actual suction superheat degree is calculated.
  • the control device 12 uses the temperature detected by the second temperature detector 18 as the evaporation temperature.
  • the control device 12 uses the temperature detected by the first temperature detector 17 as the evaporation temperature.
  • the control device 12 compares the target suction superheat degree with the acquired actual suction superheat degree (S13). When the actual suction superheat degree is larger than the target suction superheat degree, the control device 12 controls to increase the opening degree of the expansion valve 6 (S14).
  • the expansion valve 6 is opened by a predetermined opening degree from the current opening degree. As the opening degree of the expansion valve 6 increases, the amount of refrigerant passing through the expansion valve 6 increases, the amount of liquid refrigerant that evaporates in the evaporator increases, and the temperature of the refrigerant discharged from the evaporator decreases. As a result, the suction temperature decreases, the actual suction superheat degree decreases, and the actual suction superheat degree approaches the target suction superheat degree.
  • the control device 12 When the actual suction superheat degree is smaller than the target suction superheat degree, the control device 12 performs control so as to reduce the opening degree of the expansion valve 6 (S15).
  • the expansion valve 6 is closed by a predetermined opening degree from the current opening degree.
  • the opening degree of the expansion valve 6 is reduced, the refrigerant passing through the expansion valve 6 is reduced, the liquid refrigerant evaporating in the evaporator is reduced, and the temperature drop of the refrigerant exiting the evaporator is suppressed.
  • the suction temperature rises, the actual suction superheat degree increases, and the actual suction superheat degree approaches the target suction superheat degree.
  • the control device 12 does not change the opening degree of the expansion valve 6.
  • the control device 12 determines the target discharge superheat degree from the rotation speed of the compressor 3 corresponding to the circulating refrigerant amount (S21).
  • the control device 12 acquires the actual discharge superheat degree from the detected discharge temperature and the detected condensation temperature (S22).
  • the control device 12 compares the target discharge superheat degree with the acquired actual discharge superheat degree (S23). When the actual discharge superheat degree is larger than the target discharge superheat degree, the control device 12 controls to increase the opening degree of the expansion valve 6 (S24).
  • the expansion valve 6 opens by a predetermined opening degree. As the opening degree of the expansion valve 6 increases, the refrigerant passing through the expansion valve 6 increases, the liquid refrigerant evaporated in the evaporator increases, and the temperature of the refrigerant sucked into the compressor 3 decreases. As a result, the discharge temperature of the refrigerant discharged from the compressor 3 decreases, the actual discharge superheat degree decreases, and the actual discharge superheat degree approaches the target discharge superheat degree.
  • the control device 12 When the actual discharge superheat degree is smaller than the target discharge superheat degree, the control device 12 performs control so as to reduce the opening degree of the expansion valve 6 (S25).
  • the expansion valve 6 is closed by a predetermined opening degree.
  • the opening degree of the expansion valve 6 decreases, the amount of refrigerant passing through the expansion valve 6 decreases and the amount of liquid refrigerant that evaporates in the evaporator decreases.
  • the temperature drop of the refrigerant sucked into the compressor 3 decreases, the discharge temperature rises, the actual discharge superheat degree increases, and the actual discharge superheat degree approaches the target discharge superheat degree.
  • the room temperature changes.
  • the number of revolutions of the compressor 3 is reduced, and the amount of circulating refrigerant changes.
  • the control device 12 selects the superheat degree control to be executed based on the rotation speed of the compressor 3 after the change, and performs any one of the selected superheat degree controls. One of the selected superheat control is performed until the air-conditioning operation is stopped.
  • the discharge temperature is not stable.
  • the opening degree of the expansion valve 6 is frequently changed according to the discharge temperature, and the refrigeration cycle is not stable. Therefore, the expansion valve 6 must be operated slowly, and the time until the refrigeration cycle is stabilized becomes long.
  • the control device 12 performs suction superheat degree control until the refrigeration cycle is stabilized when the amount of refrigerant circulating is small, and performs discharge superheat degree control after the refrigeration cycle is stabilized.
  • Other configurations are the same as those in the first embodiment.
  • the control device 12 determines the rotation speed of the compressor 3 based on a load such as a difference between the set temperature and the room temperature and an outside air temperature. At this time, the rotation speed of the compressor 3 is set to be lower than the first rotation speed. Therefore, the control device 12 determines superheat degree control to be performed as discharge superheat degree control based on the determined rotation speed of the compressor 3 (S31).
  • the control device 12 first performs suction superheat control (S32), and determines whether the refrigeration cycle is stable (S33). If it determines with the refrigerating cycle having been stabilized, the control apparatus 12 will switch from suction superheat degree control to discharge superheat degree control, and will perform discharge superheat degree control (S34).
  • the stability of the refrigeration cycle is determined based on the suction temperature. As shown in FIG. 8, the control device 12 confirms that the rotational speed of the compressor 3 is low during execution of the suction superheat degree control, and determines whether the detected actual suction superheat degree approaches the target suction superheat degree. Check (S35). When the state where the rotation speed of the compressor 3 is smaller than the first rotation speed and the absolute value of the difference between the target suction superheat degree and the actual suction superheat degree is smaller than the stability determination value continues for a certain time, that is, continuously for a certain time. ,
  • the stability determination value A is determined in advance by a test or the like.
  • the control device 12 determines that the refrigeration cycle is not yet stable. At this time, the control device 12 continues the suction superheat control until the refrigeration cycle is stabilized. In addition, when the rotation speed of the compressor 3 becomes more than 1st rotation speed, the control apparatus 12 continues suction superheat degree control, without performing discharge superheat degree control.
  • the suction superheat degree control is performed at the start of operation, so that the actual suction superheat degree approaches the target suction superheat degree.
  • the target suction superheat degree is low, the actual suction superheat degree is close to the target superheat degree, but if the actual suction superheat degree is not stable and hunting, the difference between the two superheat degrees may become smaller or larger. is there. In this case, the determination that the refrigeration cycle is stable cannot be made.
  • the air conditioner of the third embodiment considers that the refrigeration cycle is stable when the actual suction superheat degree is hunting near the target superheat degree. That is, when the actual suction superheat degree varies up and down around the target suction superheat degree such that the actual suction superheat degree becomes greater than or less than the target suction superheat degree, the control device 12 Is determined to be stable.
  • Other configurations are the same as those in the first and second embodiments.
  • the control device 12 performs suction superheat degree control (S41).
  • the control device 12 confirms that the rotational speed of the compressor 3 is low, and checks whether the detected actual suction superheat degree approaches the target suction superheat degree (S42).
  • the control device 12 continues the suction superheat degree control and checks again.
  • the control device 12 detects that the absolute value of the difference between the target suction superheat degree and the actual suction superheat degree is smaller than the stability determination value, the actual suction superheat degree is not hunting with respect to the target suction superheat degree. (S43).
  • the control device 12 determines that the refrigeration cycle is stable (S44), switches from the suction superheat control to the discharge superheat control, and discharge superheat control. (S45).
  • the control device 12 calculates the absolute value of the difference between the target suction superheat degree and the actual suction superheat degree. Is smaller than the stability determination value, it is confirmed whether or not it continues for a certain time (S46). When this state continues for a predetermined time, the control device 12 determines that the refrigeration cycle is stable (S44), and performs discharge superheat degree control (S45).
  • the control device 12 determines that the refrigeration cycle is not stable and performs suction until it is stable. Continue superheat control.
  • the rotation speed of the compressor 3 or the rotation speed of the indoor and outdoor fans changes according to changes in the outside air temperature, room temperature, and the like.
  • the driving state changes.
  • the degree of superheat changes greatly and the refrigeration cycle becomes unstable.
  • the discharge superheat degree control is continued, it takes time for the refrigeration cycle to be stabilized, and the inefficient air-conditioning operation is performed for a long time.
  • the air conditioner according to the fourth embodiment switches superheat degree control when the refrigeration cycle becomes unstable.
  • the control device 12 switches from the discharge superheat degree control to the suction superheat degree control and performs the suction superheat degree control.
  • the control device 12 continues the discharge superheat degree control.
  • Other configurations are the same as those in the first to third embodiments.
  • the control device 12 determines the target discharge superheat degree and the target suction based on the circulating refrigerant amount, that is, the current rotation speed of the compressor 3.
  • the degree of superheat is determined (S51).
  • the target discharge superheat degree and the target suction superheat degree are determined each time the rotation speed of the compressor 3 is changed.
  • the control device 12 acquires the actual discharge superheat degree and the actual suction superheat degree (S52).
  • the actual discharge superheat degree is calculated from the discharge temperature and the condensation temperature detected by each temperature detector, and the actual suction superheat degree is calculated from the suction temperature and the evaporation temperature.
  • the control device 12 compares the target suction superheat degree with the acquired actual suction superheat degree (S53). When the difference between the target suction superheat degree and the actual suction superheat degree is equal to or less than a preset stability reference value, the control device 12 determines that the refrigeration cycle is stable and continues the discharge superheat degree control. In this case, the control device 12 compares the target discharge superheat degree with the acquired actual discharge superheat degree (S54).
  • the control device 12 When the actual discharge superheat degree is larger than the target discharge superheat degree, the control device 12 performs control to increase the opening degree of the expansion valve 6 (S55).
  • the expansion valve 6 opens by a predetermined opening, the refrigerant passing through the expansion valve 6 increases, the liquid refrigerant that evaporates in the evaporator increases, and the temperature of the refrigerant sucked into the compressor 3 decreases.
  • the discharge temperature of the refrigerant discharged from the compressor 3 decreases, the actual discharge superheat degree decreases, the actual discharge superheat degree decreases, and the target discharge superheat degree approaches the target discharge superheat degree.
  • the control device 12 When the actual discharge superheat degree is smaller than the target discharge superheat degree, the control device 12 performs control so as to reduce the opening degree of the expansion valve 6 (S56).
  • the expansion valve 6 When the expansion valve 6 is closed by a predetermined opening, the refrigerant passing through the expansion valve 6 is reduced, and the liquid refrigerant evaporated in the evaporator is reduced. As a result, the suction temperature rises, the discharge temperature rises, the actual discharge superheat degree increases, and the actual discharge superheat degree approaches the target discharge superheat degree.
  • the control device 12 determines that the refrigeration cycle is unstable, switches from discharge superheat degree control to suction superheat degree control, and performs suction superheat degree control (S57).
  • the control device 12 compares the target suction superheat degree with the actual suction superheat degree to check whether the refrigeration cycle is stable (S58). When the difference between the target suction superheat degree and the actual suction superheat degree is larger than the stability reference value, the control device 12 determines that the refrigeration cycle is unstable, and continues the suction superheat degree control. When the difference between the target suction superheat degree and the actual suction superheat degree is equal to or less than the stability reference value, the control device 12 determines that the refrigeration cycle is stable, switches from suction superheat degree control to discharge superheat degree control, and discharge superheat. Degree control is performed (S59).
  • R407C, R410A, and the like refrigerants used in the air conditioner.
  • R32 and R1234yf are refrigerants having a global warming potential smaller than those of these refrigerants.
  • the discharge temperature becomes high, for example, 110 to 120 ° C.
  • components constituting the refrigeration cycle such as the compressor 3 are exposed to such a high temperature, the components may be damaged.
  • the discharge temperature tends to be high and parts having high heat resistance must be used.
  • the air conditioner of the fifth embodiment performs discharge temperature control so that the discharge temperature does not become high.
  • the discharge temperature control is performed when the discharge temperature is high, and the control device 12 controls the refrigeration cycle according to the actual discharge temperature so that the discharge temperature does not exceed a predetermined temperature.
  • discharge temperature control and suction superheat degree control are switched and performed. That is, the discharge temperature control is performed when the amount of circulating refrigerant is large.
  • Other configurations are the same as those in the first to fourth embodiments.
  • the control device 12 When the air conditioning operation is started, the control device 12 performs suction superheat control until the refrigeration cycle is stabilized.
  • the control device 12 determines the rotation speed of the compressor 3 based on the current load (S61), and the determined rotation speed of the compressor 3, that is, the circulating refrigerant. Control to be executed based on the amount is determined from discharge superheat control, suction superheat control, and discharge temperature control (S62).
  • the control device 12 determines the operating state based on the circulating refrigerant amount and the discharge temperature, and selects the superheat degree control to be executed.
  • the discharge superheat degree control is selected (S63).
  • suction superheat control or discharge temperature control is selected (S64, S65).
  • the second rotation number is a higher rotation number than the first rotation number.
  • the control device 12 When the rotation speed of the compressor 3 is lower than the second rotation speed, the control device 12 performs suction superheat degree control (S67). When the rotation speed of the compressor 3 is equal to or higher than the second rotation speed, the control device 12 compares the detected discharge temperature (Td) with the determined discharge temperature (Ta) (S68). When the detected discharge temperature is higher than the determination discharge temperature, the control device 12 performs discharge temperature control (S69). For example, when the suction control superheat degree is performed, the discharge temperature control is performed when the discharge temperature becomes high.
  • the control device 12 When the detected discharge temperature is equal to or lower than the determination discharge temperature, the control device 12 performs suction superheat degree control (S68). Even if the rotation speed of the compressor 3 is high, that is, the amount of circulating refrigerant is large, when the discharge temperature is not high, the discharge temperature is less likely to become high during the air conditioning operation. Therefore, even if normal suction superheat control is performed, the air-conditioning operation can be performed so that the discharge temperature does not become high.
  • the control device 12 controls the opening degree of the expansion valve 6 based on the detected discharge temperature so that the discharge temperature does not exceed the upper limit discharge temperature. As shown in FIG. 13, the control device 12 determines a target discharge temperature (Taim) from the rotational speed of the compressor 3 (S71). The target discharge temperature is set according to the refrigerant to be used.
  • the discharge temperature detector detects the discharge temperature (Td) (S72). The control device 12 compares the target discharge temperature with the actual discharge temperature (S73).
  • the control device 12 increases the opening degree of the expansion valve 6 (S74).
  • the refrigerant passing through the expansion valve 6 increases, the degree of superheat decreases, and the discharge temperature from the compressor 3 decreases. As a result, the actual discharge temperature approaches the target discharge temperature.
  • the control device 12 decreases the opening degree of the expansion valve 6 (S75).
  • the refrigerant passing through the expansion valve 6 decreases, the degree of superheat increases, and the discharge temperature increases. As a result, the actual discharge temperature approaches the target discharge temperature.
  • the actual discharge temperature can be prevented from exceeding the upper limit discharge temperature.
  • R32 which tends to be high in temperature
  • the refrigerant can be prevented from becoming high temperature, so that failure of parts such as the compressor 3 can be reduced, and the use of heat-resistant parts is eliminated.
  • the air conditioner of the sixth embodiment adds the actual suction superheat degree to the rotation speed and the discharge temperature of the compressor 3, and performs the suction superheat. Select either degree control or discharge temperature control.
  • the operating state is determined based on the circulating refrigerant amount, the discharge temperature, and the suction superheat degree.
  • Other configurations are the same as those of the first to fifth embodiments.
  • the control device 12 confirms that the rotation speed of the compressor 3 determined according to the current load is equal to or higher than the second rotation speed. (S66), it is confirmed whether the detected discharge temperature is higher than the determination discharge temperature (S68). When the detected discharge temperature is higher than the determination discharge temperature, the control device 12 compares the target suction superheat degree with the actual suction superheat degree (S70).
  • the control device 12 Degree control is performed (S67).
  • the suction superheat degree control is performed, the actual suction superheat degree approaches the target suction superheat degree.
  • the control device 12 When the difference between the target suction superheat degree and the actual suction superheat degree is small, that is, when the absolute value of the difference between the target suction superheat degree and the actual suction superheat degree is smaller than the determination reference value, the control device 12 performs discharge temperature control ( S69). When the difference between the actual suction superheat degree and the target suction superheat degree is small, the actual suction superheat degree is close to the target suction superheat degree. Since it is not necessary to set the suction superheat degree as a control target, the control device 12 controls the refrigeration cycle so that the discharge temperature does not rise too much with the discharge temperature as the control target.
  • the control device 12 monitors the suction superheat degree and checks the difference between the target suction superheat degree and the actual suction superheat degree. If the difference between the target suction superheat degree and the actual suction superheat degree becomes large, the control device 12 switches from the discharge temperature control to the suction superheat degree control. When the actual suction superheat degree approaches the target suction superheat degree by executing the suction superheat degree control, the control device 12 switches to the discharge temperature control and performs the discharge temperature control. In this way, it is possible to prevent the discharge temperature from becoming high while performing an efficient air conditioning operation.
  • the air conditioner according to the seventh embodiment switches between discharge temperature control and suction superheat degree control in accordance with the amount of circulating refrigerant so that it can quickly cope with the fluctuation in the degree of superheat.
  • Other configurations are the same as those in the first to sixth embodiments.
  • the control device 12 selects the discharge temperature control and the suction superheat degree control according to the rotation speed of the compressor 3 when changing the rotation speed of the compressor 3 based on the load. . As shown in FIG. 15, the control device 12 detects the rotational speed of the compressor 3 during the air-conditioning operation and checks whether there is a change in the rotational speed (S77).
  • the control device 12 continues the discharge temperature control (S71 to S76).
  • the control device 12 confirms whether the rotational speed has decreased.
  • the control device 12 switches from the discharge temperature control to the suction superheat degree control (S78).
  • the rotation speed of the compressor 3 decreases, the amount of circulating refrigerant decreases and the suction superheat degree increases. Since the difference between the actual suction superheat degree and the target suction superheat degree becomes large, the actual suction superheat degree can be brought close to the target suction superheat degree by performing the suction superheat degree control.
  • the control device 12 checks whether the suction superheat degree control can be switched to the discharge temperature control (S79). That is, the control device 12 confirms the rotation speed of the compressor 3 and checks the difference between the discharge temperature or the actual suction superheat degree and the target suction superheat degree. When the rotational speed of the compressor 3 increases, the discharge temperature becomes higher than the determination discharge temperature, or the absolute value of the difference between the actual suction superheat degree and the target suction superheat degree falls below the determination reference value, The control device 12 performs discharge temperature control by switching from suction superheat degree control to discharge temperature control.
  • the air conditioner of the eighth embodiment performs discharge temperature control so that the discharge temperature falls within a predetermined temperature range.
  • the control device 12 controls the expansion valve 6 according to the discharge temperature.
  • Other configurations are the same as those of the first to seventh embodiments.
  • the control device 12 determines the target discharge temperature and the target suction superheat degree from the current rotational speed of the compressor 3 (S81).
  • the control device 12 acquires the detected discharge temperature and the actual suction superheat degree (S82).
  • An upper limit discharge temperature Th and a lower limit discharge temperature Tl are set in advance.
  • the upper limit discharge temperature is 100 ° C.
  • the lower limit discharge temperature is 95 ° C.
  • the control device 12 determines the detected discharge temperature (S83). That is, the control device 12 compares the actual discharge temperature Td with the set discharge temperature.
  • the control device 12 increases the opening of the expansion valve 6 (S84).
  • the expansion valve 6 is opened by a predetermined opening from the current opening. By opening the expansion valve 6, the degree of superheat is lowered and the discharge temperature is also lowered. Thereby, the discharge temperature falls within a predetermined temperature range.
  • the control device 12 decreases the opening of the expansion valve 6 (S85).
  • the expansion valve 6 is closed by a predetermined opening degree from the current opening degree. By closing the expansion valve 6, the degree of superheat increases and the discharge temperature rises. Thereby, the discharge temperature falls within a predetermined temperature range.
  • the control device 12 compares the actual suction superheat degree with the target suction superheat degree (S86). When the actual suction superheat degree is equal to or lower than the target suction superheat degree, the control device 12 does not change the opening degree of the expansion valve 6 (S87). The discharge temperature is maintained within a predetermined temperature range.
  • the control device 12 switches from the discharge temperature control to the suction superheat degree control, and performs the suction superheat degree control (S88).
  • the control device 12 increases the opening degree of the expansion valve 6.
  • the expansion valve 6 is opened more than the current opening degree, the temperature of the refrigerant coming out of the evaporator is lowered, the suction temperature is lowered, and the actual suction superheat degree is reduced. Thereby, the actual suction superheat degree approaches the target suction superheat degree while the discharge temperature is maintained within a predetermined temperature range.
  • the discharge temperature is controlled by controlling the expansion valve 6 so that the discharge temperature does not become high and the discharge temperature is within a predetermined temperature range.
  • the air conditioner of the ninth embodiment controls the compressor 3 so that the discharge temperature does not become high.
  • Other configurations are the same as those of the first to seventh embodiments.
  • the control device 12 controls the rotation speed of the compressor 3 based on the discharge temperature. As shown in FIG. 17, when the discharge temperature control is being performed, the control device 12 determines a target discharge temperature (Taim) from the rotational speed of the compressor 3 (S71). When the air conditioning operation is started, the discharge temperature detector detects the discharge temperature (Td) (S72). The control device 12 compares the target discharge temperature with the actual discharge temperature (S73).
  • the control device 12 decreases the rotational speed of the compressor 3 (S91).
  • the rotational speed of the compressor 3 is lower than the current rotational speed by a predetermined rotational speed.
  • the discharge pressure from the compressor 3 is lowered, so that the discharge temperature is lowered.
  • the actual discharge temperature approaches the target discharge temperature.
  • the control device 12 increases the rotation speed of the compressor 3 (S92).
  • the rotation speed of the compressor 3 is higher than the current rotation speed by a predetermined rotation speed.
  • the air conditioner of the tenth embodiment controls the indoor and outdoor fans 7 and 9 so that the discharge temperature does not become high.
  • Other configurations are the same as those of the first to seventh embodiments.
  • the control device 12 controls the driving of the indoor fan 9 or the outdoor fan 7 based on the discharge temperature. As shown in FIG. 18, when the discharge temperature control is being performed, the control device 12 determines a target discharge temperature (Taim) from the rotational speed of the compressor 3 (S71). When the air conditioning operation is started, the discharge temperature detector 15 detects the discharge temperature (Td) (S72). The control device 12 compares the target discharge temperature with the actual discharge temperature (S73).
  • the control device 12 increases the rotational speed of the indoor fan 9 or the outdoor fan 7 (S94). It is good to raise the rotation speed of the fan with respect to the heat exchanger used as a condenser in air-conditioning operation. That is, the rotational speed of the outdoor fan 7 is increased when the cooling operation is performed, and the rotational speed of the indoor fan 9 is increased when the heating operation is performed.
  • the rotational speed of the fan is higher than the current rotational speed by a predetermined rotational speed. Heat exchange in the condenser is promoted, and the amount of liquid refrigerant flowing out of the condenser increases, so that the amount of circulating refrigerant increases. As a result, the discharge temperature decreases and the actual discharge temperature approaches the target discharge temperature.
  • the control device 12 decreases the rotational speed of the indoor fan 9 or the outdoor fan 7 (S95). It is good to reduce the rotation speed of the fan with respect to the heat exchanger used as a condenser in air-conditioning operation. That is, the rotational speed of the outdoor fan 7 is reduced when the cooling operation is performed, and the rotational speed of the indoor fan 9 is decreased when the heating operation is performed.
  • the rotational speed of the fan is lower than the current rotational speed by a predetermined rotational speed. Since the heat exchange in the condenser is suppressed and the liquid refrigerant flowing out of the condenser is reduced, the amount of circulating refrigerant is reduced. As the amount of refrigerant that evaporates in the evaporator increases, the degree of suction superheat increases. As a result, the discharge temperature rises and the actual discharge temperature approaches the target discharge temperature.
  • the rotation speed of the fan relative to the evaporator may be changed together with the rotation speed of the fan relative to the condenser. That is, both the rotation speed of the indoor fan 9 and the rotation speed of the outdoor fan 7 may be changed.
  • the controller 12 decreases the rotational speed of the fan relative to the evaporator when increasing the rotational speed of the fan relative to the condenser, and increases the rotational speed of the fan relative to the condenser when decreasing the rotational speed of the fan relative to the condenser.
  • the air conditioner of the eleventh embodiment controls at least one of the compressor 3, the expansion valve 6, and the indoor and outdoor fans 7 and 9 so that the discharge temperature does not become high.
  • Other configurations are the same as those in the first to tenth embodiments.
  • the control device 12 controls at least one of the rotational speed of the compressor 3, the opening degree of the expansion valve 6, the rotational speed of the indoor fan 9, and the rotational speed of the outdoor fan 7 based on the discharge temperature. As shown in FIG. 19, when the discharge temperature control is being performed, the control device 12 determines a target discharge temperature (Taim) from the rotation speed of the compressor 3 (S71). When the air conditioning operation is started, the discharge temperature detector detects the discharge temperature (Td) (S72). The control device 12 compares the target discharge temperature with the actual discharge temperature (S73).
  • the control device 12 decreases the rotation speed of the compressor 3, increases the opening degree of the expansion valve 6, and changes the rotation speed of the indoor fan 9. Any one or a combination of changing the number of rotations of the outdoor fan 7 is performed (S97). In addition, regarding the control of each fan 7 and 9, the rotation speed of the fan with respect to the heat exchanger used as a condenser is raised. As a result, the discharge temperature decreases and the actual discharge temperature approaches the target discharge temperature.
  • the control device 12 increases the rotation speed of the compressor 3, decreases the opening degree of the expansion valve 6, and changes the rotation speed of the indoor fan 9. Any one or a combination of changing the number of rotations of the outdoor fan 7 is performed (S98). In addition, regarding the control of each fan 7 and 9, the rotation speed of the fan with respect to the heat exchanger used as a condenser is raised. As a result, the discharge temperature rises and the actual discharge temperature approaches the target discharge temperature.
  • the compressor 3 has the largest influence on the discharge temperature, and the expansion valve 6 and the fans 7 and 9 are in this order. Therefore, when the discharge temperature suddenly increases, the control by the compressor 3 is selected, and when the change in the discharge temperature is slow, the control by the fans 7 and 9 is selected. Furthermore, this control may be combined with other controls. However, the combination of the compressor 3, the expansion valve 6, and the fans 7 and 9 is arbitrary.
  • the air conditioner of the twelfth embodiment uses a determination formula relating to the discharge temperature, so that the discharge temperature does not become high and a predetermined temperature range.
  • the superheat control is performed so that Other configurations are the same as those in the first to eleventh embodiments.
  • Td ⁇ Tc + ⁇ -Te + SH
  • Td discharge temperature
  • Tc condensation temperature
  • Te evaporation temperature
  • SH suction superheat degree 1 ⁇ ⁇ 2, 0 ⁇ ⁇ 10 ⁇ and ⁇ are experimentally determined in advance.
  • the discharge temperature obtained from this equation is almost equal to the theoretical value, and the discharge temperature can be controlled by using this equation. Therefore, the control device 12 performs superheat degree control based on the discharge temperature obtained from the discriminant so that the discharge temperature does not become high.
  • the superheat degree control at least one of the number of rotations of the compressor 3, the opening degree of the expansion valve 6, the number of rotations 9 of the indoor fan, and the number of rotations of the outdoor fan 7 is controlled.
  • the control device 12 performs discharge temperature control when the discharge temperature calculated from the determination formula is high, and performs suction superheat degree control when the discharge temperature calculated from the determination formula is low. That is, the control device 12 compares the detected discharge temperature (Td) with the determined discharge temperature (Ta). When the detected discharge temperature is higher than the determination discharge temperature, the control device 12 performs discharge temperature control. For example, when the suction control superheat degree is performed, the discharge temperature control is performed when the discharge temperature becomes high. When the detected discharge temperature is equal to or lower than the determination discharge temperature, the control device 12 performs suction superheat degree control.
  • the control device 12 determines the target suction superheat degree from the current rotational speed of the compressor 3 (S101).
  • the control device 12 acquires the actual suction superheat degree based on the detected condensation temperature and evaporation temperature, and further calculates the discharge temperature from the discriminant (S102).
  • the control device 12 determines the calculated discharge temperature based on the preset upper limit discharge temperature and lower limit discharge temperature (S103). For example, the upper limit discharge temperature Th is 100 ° C., and the lower limit discharge temperature Tl is 95 ° C. That is, the control device 12 compares the discharge temperature Td obtained from the discriminant with the set discharge temperature.
  • the control device 12 decreases the rotation speed of the compressor 3, increases the opening degree of the expansion valve 6, and changes the rotation speed of the indoor fan 9. Any one or a combination of changing the number of rotations of the outdoor fan 7 is performed (S104). As a result, the discharge temperature decreases, the actual discharge temperature becomes lower than the upper limit discharge temperature, and falls within a predetermined temperature range.
  • the control device 12 increases the rotation speed of the compressor 3, decreases the opening degree of the expansion valve 6, and changes the rotation speed of the indoor fan 9. Any one or a combination of changing the number of rotations of the outdoor fan 7 is performed (S105). Thereby, the discharge temperature rises, the actual discharge temperature becomes higher than the lower limit discharge temperature, and falls within a predetermined temperature range.
  • the control device 12 compares the actual suction superheat degree with the target suction superheat degree (S106). When the actual suction superheat degree is equal to or lower than the target suction superheat degree, the control device 12 does not change the operations of the compressor 3, the expansion valve 6, and the indoor and outdoor fans 7, 9, and keeps the current state (S107). As a result, the actual discharge temperature is maintained within a predetermined temperature range.
  • the control device 12 switches from the discharge temperature control to the suction superheat degree control, and performs the suction superheat degree control (S108).
  • the control device 12 decreases the rotation speed of the compressor 3 and increases the opening degree of the expansion valve 6. Or changing the number of rotations of the outdoor fan 7 or any combination thereof. Thereby, the actual suction superheat degree approaches the target suction superheat degree while the actual discharge temperature is maintained within a predetermined temperature range.
  • the actual discharge temperature approaches the discharge temperature obtained from the discriminant when time elapses. That is, the trend of the discharge temperature can be predicted. For example, when the actual discharge temperature is lower than the discharge temperature obtained from the discriminant, it can be predicted that the discharge temperature further increases. In such a case, if the discharge temperature control is performed based on the discharge temperature obtained from the discriminant, it is possible to prevent the discharge temperature from rising excessively.
  • the refrigerant when R32 is used as a refrigerant, the refrigerant has characteristics such as a low pressure loss and a large amount of heat exchange per mass flow rate compared to other refrigerants such as R410. Have. Therefore, the minimum air conditioning capability is higher than other refrigerants.
  • the discharge superheat degree control is performed, but the discharge superheat degree becomes smaller as the rotation speed of the compressor 3 is lower, and the compressor 3 is driven at the minimum rotation speed.
  • the minimum air conditioning capability when the refrigerant is R32, even if the compressor 3 is driven at the minimum number of rotations, the air-conditioning capability is increased, and thus the operating temperature range is narrowed.
  • the air conditioner of the thirteenth embodiment lowers the air conditioning capability when the compressor 3 operates at the minimum rotation speed. Therefore, the target discharge superheat degree is set lower as the rotation speed of the compressor 3 is lower, and the control device 12 performs the discharge superheat degree control based on the set target discharge superheat degree.
  • Other configurations are the same as those in the first to twelfth embodiments.
  • the minimum rotation speed of the compressor 3 is lower than the rotation speed when the frequency code is FD1.
  • the target discharge superheat degree with respect to the minimum rotation speed is set lower than the target discharge superheat degree with respect to FD1.
  • the normal target discharge superheat degree with respect to the minimum rotation speed is set to the superheat degree on the line connecting the target discharge superheat degree with respect to FD1 of the frequency code and the target discharge superheat degree with respect to the intermediate rotation speed. Yes.
  • the target discharge superheat degree with respect to the minimum rotation speed when performing the discharge superheat degree control is set to a superheat degree lower than the normal target discharge superheat degree.
  • the target discharge superheat degree of the minimum rotation speed is lower than the line connecting the target discharge superheat degree for FD1 and the target discharge superheat degree for the intermediate rotation speed.
  • the control device 12 When the discharge superheat degree control is performed, the control device 12 performs the discharge temperature control aiming at the target discharge superheat degree. At this time, the control device 12 controls the opening degree of the expansion valve 6 according to the difference between the target discharge superheat degree and the actual discharge superheat degree. When the actual discharge superheat degree is larger than the target discharge superheat degree, the target discharge superheat degree is set low, so that the difference between the target discharge superheat degree and the actual discharge superheat degree becomes large. The control device 12 makes the opening degree of the expansion valve 6 larger than the normal opening degree.
  • the opening degree of the expansion valve 6 is larger than normal. Since it becomes difficult to take the target discharge superheat degree, the air-conditioning capacity is lowered.
  • the air conditioning capability is lowered.
  • the compressor 3, the condenser, the throttle device, and the evaporator are connected to form a refrigerant circuit, and the operation of the throttle device is controlled according to the amount of refrigerant circulating in the refrigerant circuit.
  • the control device 12 is provided.
  • the control device 12 performs suction superheat degree control for operating the expansion device based on the suction temperature of the refrigerant sucked into the compressor 3 when the amount of refrigerant circulating is large, and from the compressor 3 when the amount of refrigerant circulating is small Based on the discharge temperature of the discharged refrigerant, discharge superheat control for operating the expansion device is performed.
  • the control device 12 performs suction superheat degree control until the refrigeration cycle is stabilized when the amount of refrigerant circulating is small, and performs discharge superheat degree control after the refrigeration cycle is stabilized.
  • Suction superheat control can stabilize the refrigeration cycle quickly, so efficient air conditioning operation can be performed quickly by sequentially performing suction superheat control and discharge superheat control.
  • the control device 12 controls the opening degree of the throttle device so that the temperature difference between the suction temperature and the evaporation temperature approaches a predetermined value in the suction superheat degree control, and in the discharge superheat degree control, the temperature between the discharge temperature and the condensation temperature.
  • the opening degree of the expansion device is controlled so that the difference approaches a predetermined value.
  • the control device 12 When the refrigeration cycle becomes unstable while performing the discharge superheat control, the control device 12 performs the suction superheat control. By switching to the suction superheat control when the refrigeration cycle becomes unstable, the refrigeration cycle stabilizes quickly, so that the time until returning to the discharge superheat control can be shortened.
  • the control device 12 compares the target suction superheat degree with the actual suction superheat degree to determine whether or not the refrigeration cycle is unstable. That is, when the difference between the target suction superheat degree and the actual suction superheat degree is large, the control device 12 determines that the refrigeration cycle is unstable, and the difference between the target suction superheat degree and the actual suction superheat degree is small. When it is determined that the refrigeration cycle is stable.
  • the control device 12 determines that the refrigeration cycle is stable when the actual suction superheat varies around the target suction superheat. Thereby, it can switch to suitable superheat degree control quickly.
  • the air conditioner includes a control device 12 that controls the operation of the throttle device according to the amount of refrigerant circulating in the refrigerant circuit by connecting the compressor 3, the condenser, the throttle device, and the evaporator to form a refrigerant circuit.
  • the control device determines the operating state and operates the expansion device based on the suction temperature of the refrigerant sucked into the compressor, and the expansion device based on the discharge temperature of the refrigerant discharged from the compressor Switch the superheat control to operate the, and perform the optimal air conditioning operation.
  • control device 12 controls the degree of suction superheat to operate the throttle device based on the suction temperature of the refrigerant sucked into the compressor 3 according to the operation state determined by the amount of circulating refrigerant, etc., and discharges from the compressor 3
  • One of the superheat degree control for operating the throttle device based on the discharged refrigerant temperature and the discharge temperature control for operating the throttle device so that the discharge temperature approaches the set temperature is performed.
  • Appropriate superheat control is selected from the three superheat control depending on the amount of refrigerant to be circulated, the discharge temperature, and the suction superheat, and optimal air conditioning operation can be performed.
  • the control device 12 performs discharge temperature control for operating the throttle device so that the discharge temperature approaches the set temperature when the amount of circulating refrigerant is large, and switches between discharge temperature control and suction superheat degree control according to the discharge temperature. By performing the discharge temperature control, the discharge temperature can be prevented from exceeding a predetermined temperature.
  • the control device 12 performs discharge temperature control when the discharge temperature is high, and performs suction superheat degree control when the discharge temperature is low.
  • the suction superheat degree becomes close to the target suction superheat degree and the discharge temperature becomes high, the discharge temperature can be prevented from exceeding a predetermined temperature.
  • the control device 12 performs discharge temperature control when the difference between the target suction superheat degree and the actual suction superheat degree is small, and performs suction superheat degree control when the difference between the target suction superheat degree and the actual suction superheat degree is large.
  • the determination formula of the discharge temperature is determined by the evaporation temperature, the condensation temperature, and the suction superheat degree, and the control device 12 performs the discharge temperature control based on the discharge temperature calculated from the determination formula so that the discharge temperature does not exceed the predetermined temperature. .
  • the trend of the discharge temperature can be predicted by the judgment formula, it can be controlled so that the discharge temperature does not exceed the predetermined temperature.
  • the control device 12 performs discharge temperature control when the discharge temperature calculated from the determination formula is high, and performs suction superheat degree control when the discharge temperature calculated from the determination formula is low.
  • the control device 12 controls at least one of the rotational speed of the compressor 3, the opening degree of the expansion device, and the rotational speed of the heat exchanger fan according to the target value of the discharge temperature and the calculated discharge temperature. .
  • control device 12 When controlling the discharge temperature, the control device 12 increases the opening degree of the expansion device according to the discharge temperature so that the discharge temperature does not exceed a predetermined temperature, decreases the rotation speed of the compressor 3, and sets the fan for the heat exchanger. Either one of increasing the number of rotations, in particular, increasing the number of rotations of the fan with respect to the condenser, or a combination of two or more.
  • the target discharge superheat degree with respect to the minimum rotation speed of the compressor 3 is set lower than the normal target discharge superheat degree, and the control device 12 The discharge superheat degree control is performed based on the target discharge superheat degree.
  • the compressor 3 Since the air conditioning capability when the compressor 3 operates at the minimum rotation speed is reduced, the compressor 3 can operate without stopping even at a low operating temperature. Thereby, an air-conditioning operation can be performed in a wide operating temperature range.
  • the control device 12 determines whether the amount of refrigerant circulating is large or small depending on the number of rotations of the compressor 3, and when the number of rotations of the compressor 3 is higher than a predetermined number, the amount of refrigerant circulating is large and the rotation of the compressor 3 When the number is lower than the predetermined number, it is determined that the amount of circulating refrigerant is small. If the rotation speed of the compressor 3 changes according to the load during the air conditioning operation, the superheat degree control is switched.
  • suction superheat control and the discharge superheat control not only the expansion valve 6 but also the compressor 3 and the indoor and outdoor fans 7 and 9 may be controlled.
  • a temperature detector may be provided for the indoor heat exchanger 8.
  • the second temperature detector 18 directly detects the temperature of the indoor heat exchanger 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

In the present invention a compressor (3), a condenser, a throttle device, and an evaporator are connected to form a refrigerant circuit, and when a large amount of refrigerant is circulating in the refrigerant circuit, an intake degree-of-superheat control is performed, whereby the throttle device is operated on the basis of the intake temperature of the refrigerant drawn into the compressor (3). When a small of amount of refrigerant is circulating the intake degree-of-superheat control is performed until the refrigeration cycle stabilizes, and after the refrigeration cycle has stabilized a discharge degree-of-superheat control is performed, whereby the throttle device is operated on the basis of discharge temperature of the refrigerant discharged from the compressor (3). Thus, an efficient air conditioning operation can be performed regardless of the amount of refrigerant circulating in the refrigerant circuit.

Description

空気調和機Air conditioner
 本発明は、循環する冷媒量を調整して、安定した空調運転を行える空気調和機に関する。 The present invention relates to an air conditioner capable of adjusting a circulating refrigerant amount and performing stable air conditioning operation.
 空気調和機では、圧縮機、凝縮器、絞り装置、蒸発器が接続されて冷媒回路が形成され、冷媒が冷媒回路を循環することにより、冷房、暖房、除湿などの空調運転が行われる。ここで、蒸発器の温度と蒸発器の出口温度とから得られる吸込過熱度に応じて絞り装置としての膨張弁の開度が制御される。これにより、循環する冷媒量が適正に調整され、効率のよい空調運転が行われる。 In an air conditioner, a compressor, a condenser, a throttling device, and an evaporator are connected to form a refrigerant circuit, and the refrigerant circulates through the refrigerant circuit to perform air conditioning operations such as cooling, heating, and dehumidification. Here, the opening degree of the expansion valve as the expansion device is controlled according to the degree of superheat of suction obtained from the temperature of the evaporator and the outlet temperature of the evaporator. Thereby, the refrigerant | coolant amount which circulates is adjusted appropriately, and efficient air-conditioning driving | operation is performed.
 膨張弁の他の制御として、特許文献1では、吐出過熱度として圧縮機の吐出温度と凝縮器の温度との差が算出され、算出された温度差と目標の吐出温度差に基づいて膨張弁の開度が制御される。目標の吐出温度差は、圧縮機の回転数により算出される。圧縮機の回転数に応じて、循環する冷媒量が決まる。圧縮機の回転数に応じて決まる吐出温度差に基づいて膨張弁の開度が制御されることにより、循環する冷媒量が適正に調整される。 As another control of the expansion valve, in Patent Document 1, the difference between the discharge temperature of the compressor and the temperature of the condenser is calculated as the discharge superheat degree, and the expansion valve is based on the calculated temperature difference and the target discharge temperature difference. Is controlled. The target discharge temperature difference is calculated from the rotation speed of the compressor. The amount of refrigerant to be circulated is determined according to the rotational speed of the compressor. By controlling the opening degree of the expansion valve based on the discharge temperature difference determined in accordance with the rotation speed of the compressor, the amount of circulating refrigerant is appropriately adjusted.
特開2011-122756号公報JP 2011-122756 A
 吐出過熱度に基づく膨張弁の制御において、運転が開始されても圧縮機が温まるまで、吐出温度は安定しない。そのため、吐出温度が安定するまで時間がかかり、膨張弁の制御ができず、この間、空気調和機は効率の悪い運転を行わなければならない。 In the control of the expansion valve based on the discharge superheat degree, the discharge temperature is not stable until the compressor is warmed up even if the operation is started. For this reason, it takes time until the discharge temperature is stabilized, and the expansion valve cannot be controlled. During this time, the air conditioner must perform an inefficient operation.
 一方、吸込過熱度に基づく膨張弁の制御では、吐出温度が安定するのは早い。しかし、循環する冷媒量が少ないとき、最も効率のよい運転をする場合、蒸発器の温度と圧縮機に吸い込まれる冷媒の吸込温度との温度差が小さい。そのため、吸込過熱度が小さく、膨張弁の制御が困難となる。 On the other hand, in the control of the expansion valve based on the suction superheat degree, the discharge temperature is quickly stabilized. However, when the amount of circulating refrigerant is small and the most efficient operation is performed, the temperature difference between the temperature of the evaporator and the suction temperature of the refrigerant sucked into the compressor is small. Therefore, the suction superheat degree is small, and it becomes difficult to control the expansion valve.
 本発明は、上記に鑑み、循環する冷媒量の多少にかかわらず、すばやく効率のよい空調運転を行うことができる空気調和機の提供を目的とする。 In view of the above, an object of the present invention is to provide an air conditioner that can perform a quick and efficient air-conditioning operation regardless of the amount of circulating refrigerant.
 本発明の空気調和機は、圧縮機、凝縮器、絞り装置、蒸発器が接続されて冷媒回路が形成され、冷媒回路を循環する冷媒量に応じて絞り装置の動作を制御する制御装置を備えたものである。制御装置は、運転状態を判断して、圧縮機に吸い込まれる冷媒の吸込温度に基づいて絞り装置を動作させる吸込過熱度制御と圧縮機から吐出される冷媒の吐出温度に基づいて絞り装置を動作させる過熱度制御を切り替え、最適な空調運転を行う。 The air conditioner of the present invention includes a control device that controls the operation of the throttle device in accordance with the amount of refrigerant circulating in the refrigerant circuit by connecting a compressor, a condenser, a throttle device, and an evaporator to form a refrigerant circuit. It is a thing. The control device judges the operating state and operates the throttle device based on the suction superheat degree control for operating the throttle device based on the refrigerant suction temperature sucked into the compressor and the refrigerant discharge temperature discharged from the compressor Switch the superheat control to be performed and perform optimal air conditioning operation.
 すなわち、制御装置は、循環する冷媒量が多いとき、圧縮機に吸い込まれる冷媒の吸込温度に基づいて絞り装置を動作させる吸込過熱度制御を行い、循環する冷媒量が少ないとき、圧縮機から吐出される冷媒の吐出温度に基づいて絞り装置を動作させる吐出過熱度制御を行う。 That is, the control device performs suction superheat control that operates the expansion device based on the suction temperature of the refrigerant sucked into the compressor when the amount of refrigerant circulating is large, and discharges from the compressor when the amount of refrigerant circulating is small. Discharge superheat degree control for operating the expansion device based on the discharge temperature of the refrigerant to be performed is performed.
 制御装置は、循環する冷媒量の多少に基づいて運転状態を判断する。冷媒回路を循環する冷媒量に応じて過熱度制御の切り替えが行われ、循環する冷媒量が多いときに吸込過熱度制御が行われることにより、冷凍サイクルが早く安定する。循環する冷媒量が少ないときには、吸込温度と蒸発温度との差が小さいので、吸込温度に基づく過熱度制御は困難となる。そこで、循環する冷媒量が少ないときに吐出過熱度制御が行われることにより、過熱度制御を確実に行え、循環する冷媒量の多少にかかわらず効率のよい空調運転を行える。 The control device determines the operating state based on the amount of circulating refrigerant. The superheat control is switched according to the amount of refrigerant circulating in the refrigerant circuit, and the suction superheat control is performed when the amount of refrigerant circulating is large, so that the refrigeration cycle is stabilized quickly. When the amount of refrigerant circulating is small, the difference between the suction temperature and the evaporation temperature is small, so that superheat control based on the suction temperature becomes difficult. Therefore, the discharge superheat control is performed when the amount of refrigerant circulating is small, so that the superheat control can be performed reliably, and an efficient air conditioning operation can be performed regardless of the amount of refrigerant circulating.
 制御装置は、循環する冷媒量が少ないとき、冷凍サイクルが安定するまで吸込過熱度制御を行い、冷凍サイクルの安定後に吐出過熱度制御を行うことが好ましい。このようにすれば、空調運転が開始されたとき、先に吸込過熱度制御が行われるので、冷凍サイクルが早く安定する。冷凍サイクルが安定した状態で吐出過熱度制御が行われるので、循環する冷媒量が少なくても効率のよい空調運転を行える。 It is preferable that the controller performs suction superheat control until the refrigeration cycle is stabilized when the amount of refrigerant circulating is small, and performs discharge superheat control after the refrigeration cycle is stabilized. In this way, when the air-conditioning operation is started, the suction superheat degree control is performed first, so that the refrigeration cycle is quickly stabilized. Since discharge superheat degree control is performed in a state where the refrigeration cycle is stable, efficient air-conditioning operation can be performed even if the amount of circulating refrigerant is small.
 制御装置は、吐出過熱度制御を行っているときに冷凍サイクルが不安定になると、吸込過熱度制御を行うことが好ましい。このようにすれば、冷凍サイクルが不安定になったとき、吐出過熱度制御を続けていると、安定するまでの時間が長くなる。このとき、吸込過熱度制御に切り替えることにより、冷凍サイクルが早く安定する。 It is preferable that the control device performs suction superheat control when the refrigeration cycle becomes unstable while performing discharge superheat control. In this way, if the discharge superheat control is continued when the refrigeration cycle becomes unstable, the time until stabilization becomes longer. At this time, the refrigeration cycle is quickly stabilized by switching to suction superheat control.
 制御装置は、目標吸込過熱度と実際の吸込過熱度とを比較して、冷凍サイクルが不安定か否かを判断することが好ましい。このようにすれば、冷凍サイクルが不安定になると、吸込過熱度の変動が顕著となるので、不安定になったことをすばやく検知できる。 It is preferable that the control device compares the target suction superheat degree with the actual suction superheat degree to determine whether or not the refrigeration cycle is unstable. In this way, when the refrigeration cycle becomes unstable, the fluctuation of the suction superheat degree becomes significant, so that it can be quickly detected that it has become unstable.
 制御装置は、実際の吸込過熱度が目標吸込過熱度を中心として変動するとき、冷凍サイクルが安定したと判断することが好ましい。このようにすれば、実吸込過熱度がハンチングした状態が続くとき、いつまでも安定したと判断することができない。そこで、このような状態にあるとき、安定したと判断することにより、速やかに吐出過熱度制御に切り替えることができる。 It is preferable that the controller determines that the refrigeration cycle is stable when the actual suction superheat varies around the target suction superheat. If it does in this way, when the state where the actual suction superheat degree is hunting continues, it cannot be determined that it is stable forever. Thus, when it is in such a state, it can be promptly switched to the discharge superheat degree control by determining that it is stable.
 制御装置は、循環する冷媒量が多いときの過熱度制御として、吐出温度が設定温度に近づくように絞り装置を動作させる吐出温度制御を行い、運転状態を吐出温度によって判断し、吐出温度に応じて吐出温度制御と吸込過熱度制御とを切り替えることが好ましい。このようにすれば、吐出温度制御が行われると、吐出温度が高温になることを防げる。 The control device performs discharge temperature control that operates the throttle device so that the discharge temperature approaches the set temperature as superheat degree control when the amount of circulating refrigerant is large, determines the operating state based on the discharge temperature, and depends on the discharge temperature It is preferable to switch between discharge temperature control and suction superheat control. In this way, when the discharge temperature control is performed, the discharge temperature can be prevented from becoming high.
 制御装置は、吐出温度が高い時、吐出温度制御を行い、吐出温度が低いとき、吸込過熱度制御を行うことが好ましい。このようにすれば、吐出温度が低いときに吸込過熱度制御が行われると、吸込過熱度を目標吸込過熱度に近付けることができ、効率のよい空調運転を行える。この状態で吐出温度が高くなると、吐出温度制御が行われる。このように過熱度制御を切り替えることにより、効率のよい空調運転を行いながら、吐出温度が高温になることを防げる。 It is preferable that the control device performs discharge temperature control when the discharge temperature is high, and performs suction superheat degree control when the discharge temperature is low. In this way, if the suction superheat control is performed when the discharge temperature is low, the suction superheat can be brought close to the target suction superheat, and an efficient air conditioning operation can be performed. When the discharge temperature increases in this state, the discharge temperature control is performed. By switching superheat degree control in this way, it is possible to prevent the discharge temperature from becoming high while performing efficient air conditioning operation.
 制御装置は、目標吸込過熱度と実際の吸込過熱度との差が小さいときには吐出温度制御を行い、目標吸込過熱度と実際の吸込過熱度との差が大きいときには吸込過熱度制御を行うことが好ましい。このようにすれば、目標吸込過熱度と実吸込過熱度との差が大きいときに吸込過熱度制御が行われると、両者の差が小さくなり、吐出温度制御が行われる。これにより、実吸込過熱度を目標吸込過熱度近くに維持したまま、吐出温度が高温にならないように空調運転を行える。 The control device performs discharge temperature control when the difference between the target suction superheat degree and the actual suction superheat degree is small, and performs the suction superheat degree control when the difference between the target suction superheat degree and the actual suction superheat degree is large. preferable. In this way, if the suction superheat degree control is performed when the difference between the target suction superheat degree and the actual suction superheat degree is large, the difference between the two becomes small, and the discharge temperature control is performed. Thereby, the air conditioning operation can be performed so that the discharge temperature does not become high while the actual suction superheat degree is maintained close to the target suction superheat degree.
 蒸発温度、凝縮温度および吸込過熱度により吐出温度の判定式が決められ、制御装置は、判定式から算出した吐出温度に基づいて、吐出温度が上限値を超えないように吐出温度制御を行うことが好ましい。このようにすれば、判別式から得られる吐出温度に基づいて吐出温度制御を行うことにより、実吐出温度が吐出温度の上限を超えないように吐出温度を制御することができる。 The determination formula of the discharge temperature is determined by the evaporation temperature, the condensation temperature, and the suction superheat degree, and the control device performs the discharge temperature control based on the discharge temperature calculated from the determination formula so that the discharge temperature does not exceed the upper limit value. Is preferred. In this way, by performing the discharge temperature control based on the discharge temperature obtained from the discriminant, the discharge temperature can be controlled so that the actual discharge temperature does not exceed the upper limit of the discharge temperature.
 制御装置は、判定式から算出した吐出温度が高いとき、吐出温度制御を行い、判定式から算出した吐出温度が低いとき、吸込過熱度制御を行うことが好ましい。このようにすれば、吐出温度が高いときに吐出温度制御を行うことにより、吐出温度が上がり過ぎることを防げる。 It is preferable that the control device performs discharge temperature control when the discharge temperature calculated from the determination formula is high, and performs suction superheat degree control when the discharge temperature calculated from the determination formula is low. In this way, it is possible to prevent the discharge temperature from rising excessively by performing the discharge temperature control when the discharge temperature is high.
 圧縮機が最小回転数で動作するときの空調能力を下げるために、圧縮機の最小回転数に対する目標吐出過熱度が通常の目標吐出過熱度よりも低く設定され、制御装置は、設定された目標吐出過熱度に基づいて吐出過熱度制御を行うことが好ましい。 In order to reduce the air conditioning capacity when the compressor operates at the minimum rotation speed, the target discharge superheat degree for the minimum rotation speed of the compressor is set lower than the normal target discharge superheat degree, and the control device sets the target It is preferable to perform discharge superheat control based on the discharge superheat.
 このようにすれば、吐出過熱度が目標吐出過熱度になるように吐出過熱度制御が行われるが、目標吐出過熱度が低く設定されているので、圧縮機が最小回転数で動作しているとき、目標吐出過熱度を取りにくくなる。そのため、最小回転数で圧縮機が動作しているときの空調能力が下がる。 In this way, the discharge superheat degree control is performed so that the discharge superheat degree becomes the target discharge superheat degree, but since the target discharge superheat degree is set low, the compressor is operating at the minimum rotation speed. When it becomes difficult to obtain the target discharge superheat degree. Therefore, the air-conditioning capability when the compressor is operating at the minimum rotation speed is reduced.
 本発明によると、冷媒回路を循環する冷媒量の多少にかかわらず、過熱度を目標過熱度に近づけることができ、常に効率のよい空調運転を行うことができる。 According to the present invention, regardless of the amount of refrigerant circulating in the refrigerant circuit, the degree of superheat can be brought close to the target degree of superheat, and efficient air conditioning operation can always be performed.
本発明の空気調和機の冷凍サイクルの概略構成図Schematic configuration diagram of the refrigeration cycle of the air conditioner of the present invention 空気調和機の制御ブロック図Air conditioner control block diagram 第1の実施形態の過熱度制御による空調運転のフローチャートFlowchart of air conditioning operation by superheat degree control of the first embodiment 吸込過熱度制御と吐出過熱度制御に対する判定処理のフローチャートFlow chart of determination process for suction superheat degree control and discharge superheat degree control 吸込過熱度制御のフローチャートFlow chart of suction superheat control 吐出過熱度制御のフローチャートFlow chart of discharge superheat control 第2の実施形態の吐出過熱度制御による空調運転のフローチャートFlowchart of air conditioning operation by discharge superheat degree control of the second embodiment 冷凍サイクルの安定の判断のフローチャートFlow chart for determining the stability of the refrigeration cycle 第3の実施形態のハンチングがあるときの冷凍サイクルの安定の判断のフローチャートFlowchart of determination of stability of refrigeration cycle when there is hunting according to the third embodiment 第4の実施形態の吐出過熱度制御の実行中、冷凍サイクルが不安定になったときのフローチャートFlowchart when the refrigeration cycle becomes unstable during execution of the discharge superheat degree control of the fourth embodiment 第5の実施形態の循環する冷媒量に基づいて過熱度制御を決定するときのフローチャートThe flowchart when determining superheat degree control based on the refrigerant | coolant amount which circulates of 5th Embodiment. 吸込過熱度制御と吐出温度制御に対する判定処理のフローチャートFlow chart of determination process for suction superheat control and discharge temperature control 吐出温度制御のフローチャートFlow chart of discharge temperature control 第6の実施形態の吸込過熱度制御と吐出温度制御に対する判定処理のフローチャートFlowchart of determination processing for suction superheat control and discharge temperature control of the sixth embodiment 第7の実施形態の吐出温度制御のフローチャートFlowchart of discharge temperature control of the seventh embodiment 第8の実施形態の吐出温度制御のフローチャートFlowchart of discharge temperature control of the eighth embodiment 第9の実施形態の吐出温度制御のフローチャートFlowchart of discharge temperature control of the ninth embodiment 第10の実施形態の吐出温度制御のフローチャートFlowchart of discharge temperature control according to the tenth embodiment 第11の実施形態の吐出温度制御のフローチャートFlowchart of discharge temperature control of the eleventh embodiment 第12の実施形態の吐出温度制御のフローチャートFlowchart of discharge temperature control of the twelfth embodiment 従来の圧縮機の回転数と吐出過熱度との関係を示す図The figure which shows the relationship between the rotation speed and discharge superheat degree of the conventional compressor 第13の実施形態の圧縮機の回転数と吐出過熱度との関係を示す図The figure which shows the relationship between the rotation speed of the compressor of 13th Embodiment, and discharge superheat degree.
 第1の実施形態の空気調和機を図1に示す。空気調和機は、室外機1と室内機2とが配管および配線により接続されて構成される。室外機1は、圧縮機3、四方弁4、室外熱交換器5、膨張弁6、室外ファン7を備える。室内機2は、室内熱交換器8、室内ファン9を備える。圧縮機3、四方弁4、室外熱交換器5、膨張弁6、室内熱交換器8が配管により接続されて冷媒回路が形成される。室内機2の配管と室外機1の配管を接続するために、室外機に二方弁10および三方弁11が設けられる。膨張弁6と室内熱交換器8とを接続する配管に、二方弁10が介装され、四方弁4と室内熱交換器8とを接続する配管に、三方弁11が介装される。 The air conditioner of the first embodiment is shown in FIG. The air conditioner is configured by connecting an outdoor unit 1 and an indoor unit 2 by piping and wiring. The outdoor unit 1 includes a compressor 3, a four-way valve 4, an outdoor heat exchanger 5, an expansion valve 6, and an outdoor fan 7. The indoor unit 2 includes an indoor heat exchanger 8 and an indoor fan 9. The compressor 3, the four-way valve 4, the outdoor heat exchanger 5, the expansion valve 6, and the indoor heat exchanger 8 are connected by piping to form a refrigerant circuit. In order to connect the piping of the indoor unit 2 and the piping of the outdoor unit 1, a two-way valve 10 and a three-way valve 11 are provided in the outdoor unit. A two-way valve 10 is interposed in a pipe connecting the expansion valve 6 and the indoor heat exchanger 8, and a three-way valve 11 is interposed in a pipe connecting the four-way valve 4 and the indoor heat exchanger 8.
 圧縮機3が駆動されると、冷媒が冷媒回路を循環する。膨張弁6は、ステッピングモータの駆動により段階的に開度が調整され、循環する冷媒の減圧と冷媒量を調整する絞り装置として機能する。冷媒が冷媒回路を循環することにより、冷凍サイクルが形成される。冷房時の冷凍サイクルでは、圧縮機3、四方弁4、室外熱交換器5、膨張弁6、室内熱交換器8の順に冷媒が循環する。室外熱交換器5が凝縮器として機能し、室内熱交換器8が蒸発器として機能する。暖房時の冷凍サイクルでは、圧縮機3、四方弁4、室内熱交換器8、膨張弁6、室外熱交換器5の順に冷媒が循環する。室内熱交換器8が凝縮器として機能し、室外熱交換器5が蒸発器として機能する。なお、絞り装置として、膨張弁6の代わりに、キャピラリチューブなどを使用してもよく、複数のキャピラリチューブの組み合わせを変えることにより、循環する冷媒量を調整できる。 When the compressor 3 is driven, the refrigerant circulates through the refrigerant circuit. The opening of the expansion valve 6 is adjusted stepwise by driving the stepping motor, and functions as a throttle device that adjusts the pressure of the circulating refrigerant and the amount of refrigerant. As the refrigerant circulates through the refrigerant circuit, a refrigeration cycle is formed. In the refrigeration cycle during cooling, the refrigerant circulates in the order of the compressor 3, the four-way valve 4, the outdoor heat exchanger 5, the expansion valve 6, and the indoor heat exchanger 8. The outdoor heat exchanger 5 functions as a condenser, and the indoor heat exchanger 8 functions as an evaporator. In the refrigeration cycle during heating, the refrigerant circulates in the order of the compressor 3, the four-way valve 4, the indoor heat exchanger 8, the expansion valve 6, and the outdoor heat exchanger 5. The indoor heat exchanger 8 functions as a condenser, and the outdoor heat exchanger 5 functions as an evaporator. Note that a capillary tube or the like may be used instead of the expansion valve 6 as the expansion device, and the amount of circulating refrigerant can be adjusted by changing the combination of a plurality of capillary tubes.
 そして、図2に示すように、空気調和機は、冷凍サイクルを制御して、冷房、暖房、除湿などの空調運転を行う制御装置12を備えている。また、空気調和機は、室温検出器13、外気温検出器14、圧縮機3から吐出される冷媒の吐出温度を検出する吐出温度検出器15、圧縮機3に吸い込まれる冷媒の吸込温度(サクション温度)を検出する吸込温度検出器16、室外熱交換器5の温度を検出する第1温度検出器17、室内熱交換器8の温度を検出する第2温度検出器18を備えている。各温度検出器13~18は、サーミスタなどの温度センサを用いる。 As shown in FIG. 2, the air conditioner includes a control device 12 that controls the refrigeration cycle and performs air conditioning operations such as cooling, heating, and dehumidification. The air conditioner also includes a room temperature detector 13, an outside air temperature detector 14, a discharge temperature detector 15 that detects the discharge temperature of the refrigerant discharged from the compressor 3, and a suction temperature (suction) of the refrigerant sucked into the compressor 3. A suction temperature detector 16 for detecting the temperature), a first temperature detector 17 for detecting the temperature of the outdoor heat exchanger 5, and a second temperature detector 18 for detecting the temperature of the indoor heat exchanger 8. Each temperature detector 13-18 uses a temperature sensor such as a thermistor.
 なお、第2温度検出器18として、膨張弁6と室内熱交換器8との間の配管を流れる冷媒の温度を検出する温度検出器が用いられる。第2温度検出器18は、膨張弁6と二方弁10との間に配置され、室温検出器13を除く他の温度検出器は、全て室外機1に設けられる。冷房運転時に室内熱交換器8を流れる冷媒の温度は膨張弁6を通り過ぎた冷媒の温度と同じである。そこで、室内熱交換器8の温度を検出する温度検出器を設ける代わりに、膨張弁6と室内熱交換器8との間に設けた温度検出器で冷媒の温度を検出することにより、室内熱交換器8の温度が検出可能となる。 Note that a temperature detector that detects the temperature of the refrigerant flowing in the pipe between the expansion valve 6 and the indoor heat exchanger 8 is used as the second temperature detector 18. The second temperature detector 18 is disposed between the expansion valve 6 and the two-way valve 10, and all other temperature detectors except the room temperature detector 13 are provided in the outdoor unit 1. The temperature of the refrigerant flowing through the indoor heat exchanger 8 during the cooling operation is the same as the temperature of the refrigerant passing through the expansion valve 6. Therefore, instead of providing a temperature detector that detects the temperature of the indoor heat exchanger 8, the temperature of the refrigerant is detected by a temperature detector provided between the expansion valve 6 and the indoor heat exchanger 8, thereby The temperature of the exchanger 8 can be detected.
 制御装置12は、指示された運転モードに応じて、各温度検出器13~18によって検出された温度に基づいて圧縮機3の回転数(運転周波数)、膨張弁6の開度、室外ファン7の回転数、室内ファン9の回転数をそれぞれ制御する。なお、制御装置12は、室内機2に設けられた室内制御部と、室外機1に設けられた室外制御部とから構成される。室内制御部と室外制御部とは互いに通信可能に接続され、両者が連携して室内機2および室外機1の動作を制御する。室外制御部は、複数の温度検出器14~18から入力された検出信号をまとめて室内制御部に送信し、室内制御部が検出された温度情報を管理する。 Based on the temperature detected by each of the temperature detectors 13 to 18, the control device 12 controls the rotation speed (operation frequency) of the compressor 3, the opening degree of the expansion valve 6, the outdoor fan 7 according to the instructed operation mode. And the rotation speed of the indoor fan 9 are respectively controlled. The control device 12 includes an indoor control unit provided in the indoor unit 2 and an outdoor control unit provided in the outdoor unit 1. The indoor control unit and the outdoor control unit are connected so as to be communicable with each other, and both cooperate to control operations of the indoor unit 2 and the outdoor unit 1. The outdoor control unit collectively transmits detection signals input from the plurality of temperature detectors 14 to 18 to the indoor control unit, and the indoor control unit manages the detected temperature information.
 圧縮機3の運転周波数は、周波数コード(FD)に基づいて段階的に制御される。周波数コードは、運転周波数毎に複数段設定されている。周波数コードが高いほど、運転周波数が高くなる。それぞれの周波数コードに回転数が対応している。制御装置12は、室温と設定温度から決められた制御温度に応じて周波数コードを選択して、周波数コードを圧縮機3のドライバに出力する。ドライバは、周波数コードに応じた運転周波数で圧縮機3を駆動する。制御装置12が膨張弁6に指令を出すと、膨張弁6は指定された開度となる。開度に応じて膨張弁6を通過する冷媒量が可変される。 The operating frequency of the compressor 3 is controlled in stages based on the frequency code (FD). A plurality of frequency codes are set for each operation frequency. The higher the frequency code, the higher the operating frequency. The number of rotations corresponds to each frequency code. The control device 12 selects a frequency code according to the control temperature determined from the room temperature and the set temperature, and outputs the frequency code to the driver of the compressor 3. The driver drives the compressor 3 at an operation frequency corresponding to the frequency code. When the control device 12 issues a command to the expansion valve 6, the expansion valve 6 has a specified opening degree. The amount of refrigerant passing through the expansion valve 6 is varied according to the opening.
 制御装置12は、ユーザにより設定された設定温度あるいは自動運転モード時に予め設定された設定温度と検出された室温、外気温などの負荷に基づいて、圧縮機3の回転数を決める。そして、圧縮機3の回転数に対応して、室内ファン9の回転数が決定される。制御装置12は、決められた回転数で圧縮機3を制御し、室温に応じて圧縮機3の回転数を変化させるとともに、圧縮機3の回転数に応じた回転数に基づいて室内ファン9を制御する。また、制御装置12は、決められた圧縮機3の回転数に応じて膨張弁6の開度を決める。 The control device 12 determines the rotation speed of the compressor 3 based on the set temperature set by the user or the set temperature set in advance in the automatic operation mode and the detected load such as room temperature and outside temperature. Then, the rotational speed of the indoor fan 9 is determined in accordance with the rotational speed of the compressor 3. The control device 12 controls the compressor 3 at a determined rotational speed, changes the rotational speed of the compressor 3 in accordance with the room temperature, and based on the rotational speed in accordance with the rotational speed of the compressor 3, the indoor fan 9. To control. Further, the control device 12 determines the opening degree of the expansion valve 6 according to the determined rotation speed of the compressor 3.
 空調運転が行われると、圧縮機3の回転数に応じた量の冷媒が冷媒回路を循環する。冷房運転のとき、第1温度検出器17は凝縮器である室外熱交換器5の温度、すなわち凝縮温度を検出し、第2温度検出器18は蒸発器である室内熱交換器8の温度、すなわち蒸発温度を検出する。暖房運転のとき、第1温度検出器17は蒸発温度を検出し、第2温度検出器18は凝縮温度を検出する。 When the air conditioning operation is performed, an amount of refrigerant according to the rotation speed of the compressor 3 circulates in the refrigerant circuit. During the cooling operation, the first temperature detector 17 detects the temperature of the outdoor heat exchanger 5 that is a condenser, that is, the condensation temperature, and the second temperature detector 18 is the temperature of the indoor heat exchanger 8 that is an evaporator, That is, the evaporation temperature is detected. During the heating operation, the first temperature detector 17 detects the evaporation temperature, and the second temperature detector 18 detects the condensation temperature.
 空気調和機は、効率のよい冷凍サイクルを実現するために、冷媒回路を循環する冷媒量に応じた目標過熱度となるように冷凍サイクルを制御する。すなわち、制御装置12が過熱度に応じて膨張弁6の開度を制御することにより、循環する冷媒量が調整され、過熱度が目標過熱度になる。 In order to realize an efficient refrigeration cycle, the air conditioner controls the refrigeration cycle so as to achieve a target superheat degree corresponding to the amount of refrigerant circulating in the refrigerant circuit. That is, when the control device 12 controls the opening degree of the expansion valve 6 according to the degree of superheat, the amount of circulating refrigerant is adjusted, and the degree of superheat becomes the target degree of superheat.
 ここで、制御装置12は、運転状態を判断して、圧縮機3に吸い込まれる冷媒の吸込温度に基づいて膨張弁6を動作させる吸込過熱度制御と圧縮機3から吐出される冷媒の吐出温度に基づいて膨張弁6を動作させる吐出過熱度制御とを切り替えて、空調運転を行う。制御装置12は、吸込過熱度制御において、吸込温度と蒸発温度との温度差が所定値に近づくように膨張弁6の開度を制御し、吐出過熱度制御において、吐出温度と凝縮温度との温度差が所定値に近づくように膨張弁6の開度を制御する。 Here, the control device 12 determines the operating state, and controls the degree of suction superheat to operate the expansion valve 6 based on the suction temperature of the refrigerant sucked into the compressor 3 and the discharge temperature of the refrigerant discharged from the compressor 3. Is switched to discharge superheat degree control for operating the expansion valve 6 to perform the air conditioning operation. The control device 12 controls the opening degree of the expansion valve 6 so that the temperature difference between the suction temperature and the evaporation temperature approaches a predetermined value in the suction superheat degree control. In the discharge superheat degree control, the control device 12 sets the discharge temperature and the condensation temperature. The opening degree of the expansion valve 6 is controlled so that the temperature difference approaches a predetermined value.
 吸込過熱度は、吸込温度と蒸発温度との差であり、目標吸込過熱度は、循環する冷媒量に応じて設定された吸込過熱度とされる。吸込温度と蒸発温度との温度差が所定値に近づくことにより、空調運転中に算出された吸込過熱度が目標吸込過熱度に近付く。吐出過熱度は、吐出温度と凝縮温度との差であり、目標吐出過熱度は、循環する冷媒量に応じて設定された吐出過熱度とされる。吐出温度と凝縮温度との温度差が所定値に近づくことにより、空調運転中に算出された吐出過熱度が目標吐出過熱度に近付く。 The suction superheat degree is a difference between the suction temperature and the evaporation temperature, and the target suction superheat degree is a suction superheat degree set according to the amount of refrigerant circulating. When the temperature difference between the suction temperature and the evaporation temperature approaches a predetermined value, the suction superheat degree calculated during the air conditioning operation approaches the target suction superheat degree. The discharge superheat degree is a difference between the discharge temperature and the condensation temperature, and the target discharge superheat degree is a discharge superheat degree set in accordance with the amount of refrigerant circulating. When the temperature difference between the discharge temperature and the condensing temperature approaches a predetermined value, the discharge superheat calculated during the air conditioning operation approaches the target discharge superheat.
 そして、制御装置12は、冷媒回路を循環する冷媒量に基づいて運転状態を判断し、循環する冷媒量に応じてそれぞれの過熱度制御を切り替える。吸込過熱度制御は、冷凍サイクルの変化にすぐ対応でき、冷凍サイクルを早く安定させることができる。一方、循環する冷媒量が少ないとき、冷媒の温度の変化が小さいので、吸込過熱度制御では、冷凍サイクルの制御が困難である。すなわち、循環する冷媒量が多いときは、吸込過熱度制御が適している。循環する冷媒量が少ないときは、吐出過熱度制御が適している。 And the control apparatus 12 judges an operating state based on the refrigerant | coolant amount which circulates through a refrigerant circuit, and switches each superheat degree control according to the refrigerant | coolant amount circulated. Suction superheat control can immediately respond to changes in the refrigeration cycle, and can stabilize the refrigeration cycle quickly. On the other hand, since the change in the temperature of the refrigerant is small when the amount of refrigerant circulating is small, it is difficult to control the refrigeration cycle with the suction superheat control. That is, when the amount of circulating refrigerant is large, suction superheat control is suitable. When the amount of circulating refrigerant is small, discharge superheat control is suitable.
 図3に示すように、空調運転が行われるとき、制御装置12は、設定温度と室温との差、外気温などの負荷に基づいて圧縮機3の回転数を決める(S1)。圧縮機3の回転数は、冷媒回路を循環する冷媒量に対応している。圧縮機3の回転数が高いほど循環する冷媒量は多く、回転数が低いほど循環する冷媒量は少ない。制御装置12は、決められた圧縮機3の回転数から実行する過熱度制御を決める判定処理を行う(S2)。圧縮機3の回転数が高い、すなわち循環する冷媒量が多いとき、制御装置12は、吸込過熱度制御を行う(S3)。圧縮機3の回転数が低い、すなわち循環する冷媒量が少ないとき、制御装置12は、吐出過熱度制御を行う(S4)。 As shown in FIG. 3, when the air-conditioning operation is performed, the control device 12 determines the rotation speed of the compressor 3 based on the load such as the difference between the set temperature and the room temperature, the outside air temperature, and the like (S1). The rotation speed of the compressor 3 corresponds to the amount of refrigerant circulating in the refrigerant circuit. The higher the rotation speed of the compressor 3 is, the more refrigerant is circulated, and the lower the rotation speed is, the less refrigerant is circulated. The control device 12 performs a determination process for determining superheat degree control to be executed from the determined rotation speed of the compressor 3 (S2). When the rotation speed of the compressor 3 is high, that is, when the amount of circulating refrigerant is large, the control device 12 performs suction superheat degree control (S3). When the rotation speed of the compressor 3 is low, that is, when the amount of circulating refrigerant is small, the control device 12 performs discharge superheat degree control (S4).
 判定処理において、図4に示すように、制御装置12は、決められた圧縮機3の回転数が予め設定された第1回転数以上か否かをチェックする(S5)。すなわち、循環する冷媒量が第1設定量以上か否かがチェックされる。回転数が第1回転数以上(循環する冷媒量が第1設定量以上)のとき、制御装置12は、吸込過熱度制御を選択する(S6)。回転数が第1回転数より低い(循環する冷媒量が第1設定量より少ない)とき、制御装置12は、吐出過熱度制御を選択する(S7)。なお、第1回転数(第1設定量)は、予め実験的に決められ、空気調和機ごとに設定される。 In the determination process, as shown in FIG. 4, the control device 12 checks whether or not the determined rotation speed of the compressor 3 is equal to or higher than a preset first rotation speed (S5). That is, it is checked whether or not the circulating refrigerant amount is greater than or equal to the first set amount. When the rotational speed is equal to or higher than the first rotational speed (the circulating refrigerant amount is equal to or higher than the first set amount), the control device 12 selects the suction superheat degree control (S6). When the rotational speed is lower than the first rotational speed (the circulating refrigerant amount is smaller than the first set amount), the control device 12 selects the discharge superheat degree control (S7). The first rotation speed (first set amount) is experimentally determined in advance and is set for each air conditioner.
 制御装置12は、空調運転を開始したとき、圧縮機3を決められた回転数よりも低い回転数で一定時間だけ駆動する初期運転を行う。これにより、冷媒回路に冷媒が行き渡り、早く圧縮機3の動作を安定させることができる。初期運転の後、制御装置12は、負荷に基づいて決められた回転数で圧縮機3を駆動し、膨張弁6の開度も決められた開度にする。 When the air conditioning operation is started, the control device 12 performs an initial operation in which the compressor 3 is driven at a rotation speed lower than a predetermined rotation speed for a predetermined time. Thereby, a refrigerant | coolant spreads to a refrigerant circuit and the operation | movement of the compressor 3 can be stabilized quickly. After the initial operation, the control device 12 drives the compressor 3 at a rotational speed determined based on the load, and sets the opening degree of the expansion valve 6 to a predetermined opening degree.
 吸込過熱度制御による空調運転が行われるとき、初期運転中に、図5に示すように、制御装置12は、循環する冷媒量に対応する圧縮機3の回転数から目標吸込過熱度を決める(S11)。目標吸込過熱度は、予め実験的に求められ、制御装置12が有する不揮発性のメモリに圧縮機3の回転数毎に目標吸込過熱度が記憶される。なお、目標吐出過熱度も同様にメモリに記憶される。制御装置12は、決められた圧縮機3の回転数に応じた目標吸込過熱度をメモリから読み出す。 When the air conditioning operation by the suction superheat degree control is performed, as shown in FIG. 5, during the initial operation, the control device 12 determines the target suction superheat degree from the rotation speed of the compressor 3 corresponding to the circulating refrigerant amount ( S11). The target suction superheat degree is experimentally obtained in advance, and the target suction superheat degree is stored in the nonvolatile memory of the control device 12 for each rotation speed of the compressor 3. The target discharge superheat degree is similarly stored in the memory. The control device 12 reads out the target suction superheat degree corresponding to the determined rotation speed of the compressor 3 from the memory.
 決められた回転数で圧縮機3が駆動されると、制御装置12は、実吸込過熱度を取得する(S12)。吸込温度検出器16が検出した実際の吸込温度から第1温度検出器17あるいは第2温度検出器18が検出した蒸発温度を引くことにより、実吸込過熱度が算出される。冷房運転が行われるとき、制御装置12は、第2温度検出器18が検出した温度を蒸発温度として用いる。暖房運転が行われるとき、制御装置12は、第1温度検出器17が検出した温度を蒸発温度として用いる。 When the compressor 3 is driven at the determined rotational speed, the control device 12 acquires the actual suction superheat degree (S12). By subtracting the evaporation temperature detected by the first temperature detector 17 or the second temperature detector 18 from the actual suction temperature detected by the suction temperature detector 16, the actual suction superheat degree is calculated. When the cooling operation is performed, the control device 12 uses the temperature detected by the second temperature detector 18 as the evaporation temperature. When the heating operation is performed, the control device 12 uses the temperature detected by the first temperature detector 17 as the evaporation temperature.
 制御装置12は、目標吸込過熱度と取得した実吸込過熱度とを比較する(S13)。実吸込過熱度が目標吸込過熱度より大きいとき、制御装置12は、膨張弁6の開度を大きくするように制御する(S14)。膨張弁6は、現在の開度から予め決められた開度だけ開かれる。膨張弁6の開度が大きくなることにより、膨張弁6を通過する冷媒が増え、蒸発器において蒸発する液冷媒が多くなり、蒸発器から出た冷媒の温度が下がる。その結果、吸込温度が下がり、実吸込過熱度が小さくなって、実吸込過熱度が目標吸込過熱度に近づく。 The control device 12 compares the target suction superheat degree with the acquired actual suction superheat degree (S13). When the actual suction superheat degree is larger than the target suction superheat degree, the control device 12 controls to increase the opening degree of the expansion valve 6 (S14). The expansion valve 6 is opened by a predetermined opening degree from the current opening degree. As the opening degree of the expansion valve 6 increases, the amount of refrigerant passing through the expansion valve 6 increases, the amount of liquid refrigerant that evaporates in the evaporator increases, and the temperature of the refrigerant discharged from the evaporator decreases. As a result, the suction temperature decreases, the actual suction superheat degree decreases, and the actual suction superheat degree approaches the target suction superheat degree.
 実吸込過熱度が目標吸込過熱度より小さいとき、制御装置12は、膨張弁6の開度を小さくするように制御する(S15)。膨張弁6は、現在の開度から予め決められた開度だけ閉じられる。膨張弁6の開度が小さくなることにより、膨張弁6を通過する冷媒が減り、蒸発器において蒸発する液冷媒が少なくなり、蒸発器から出る冷媒の温度の低下が抑えられる。その結果、吸込温度が上がり、実吸込過熱度が大きくなって、実吸込過熱度が目標吸込過熱度に近づく。なお、実吸込過熱度が目標吸込過熱度に等しいとき、制御装置12は、膨張弁6の開度を変えない。 When the actual suction superheat degree is smaller than the target suction superheat degree, the control device 12 performs control so as to reduce the opening degree of the expansion valve 6 (S15). The expansion valve 6 is closed by a predetermined opening degree from the current opening degree. When the opening degree of the expansion valve 6 is reduced, the refrigerant passing through the expansion valve 6 is reduced, the liquid refrigerant evaporating in the evaporator is reduced, and the temperature drop of the refrigerant exiting the evaporator is suppressed. As a result, the suction temperature rises, the actual suction superheat degree increases, and the actual suction superheat degree approaches the target suction superheat degree. When the actual suction superheat degree is equal to the target suction superheat degree, the control device 12 does not change the opening degree of the expansion valve 6.
 吐出過熱度制御による空調運転が行われるとき、図6に示すように、制御装置12は、循環する冷媒量に対応する圧縮機3の回転数から目標吐出過熱度を決める(S21)。決められた回転数で圧縮機3が駆動されると、制御装置12は、検出された吐出温度および検出された凝縮温度から実吐出過熱度を取得する(S22)。 When the air conditioning operation by the discharge superheat degree control is performed, as shown in FIG. 6, the control device 12 determines the target discharge superheat degree from the rotation speed of the compressor 3 corresponding to the circulating refrigerant amount (S21). When the compressor 3 is driven at the determined rotational speed, the control device 12 acquires the actual discharge superheat degree from the detected discharge temperature and the detected condensation temperature (S22).
 制御装置12は、目標吐出過熱度と取得した実吐出過熱度とを比較する(S23)。実吐出過熱度が目標吐出過熱度より大きいとき、制御装置12は、膨張弁6の開度を大きくするように制御する(S24)。膨張弁6は、予め決められた開度だけ開く。膨張弁6の開度が大きくなることにより、膨張弁6を通過する冷媒が増え、蒸発器において蒸発する液冷媒が多くなり、圧縮機3に吸い込まれる冷媒の温度が下がる。その結果、圧縮機3から吐出される冷媒の吐出温度が下がり、実吐出過熱度が小さくなって、実吐出過熱度が目標吐出過熱度に近づく。 The control device 12 compares the target discharge superheat degree with the acquired actual discharge superheat degree (S23). When the actual discharge superheat degree is larger than the target discharge superheat degree, the control device 12 controls to increase the opening degree of the expansion valve 6 (S24). The expansion valve 6 opens by a predetermined opening degree. As the opening degree of the expansion valve 6 increases, the refrigerant passing through the expansion valve 6 increases, the liquid refrigerant evaporated in the evaporator increases, and the temperature of the refrigerant sucked into the compressor 3 decreases. As a result, the discharge temperature of the refrigerant discharged from the compressor 3 decreases, the actual discharge superheat degree decreases, and the actual discharge superheat degree approaches the target discharge superheat degree.
 実吐出過熱度が目標吐出過熱度より小さいとき、制御装置12は、膨張弁6の開度を小さくするように制御する(S25)。膨張弁6は、予め決められた開度だけ閉じる。膨張弁6の開度が小さくなることにより、膨張弁6を通過する冷媒が減り、蒸発器において蒸発する液冷媒が少なくなる。その結果、圧縮機3に吸い込まれる冷媒の温度低下が小さくなり、吐出温度が上がって、実吐出過熱度が大きくなり、実吐出過熱度が目標吐出過熱度に近づく。 When the actual discharge superheat degree is smaller than the target discharge superheat degree, the control device 12 performs control so as to reduce the opening degree of the expansion valve 6 (S25). The expansion valve 6 is closed by a predetermined opening degree. As the opening degree of the expansion valve 6 decreases, the amount of refrigerant passing through the expansion valve 6 decreases and the amount of liquid refrigerant that evaporates in the evaporator decreases. As a result, the temperature drop of the refrigerant sucked into the compressor 3 decreases, the discharge temperature rises, the actual discharge superheat degree increases, and the actual discharge superheat degree approaches the target discharge superheat degree.
 上記のように過熱度制御によって空調運転が行われると、室温が変化する。室温が設定温度に近づくと、圧縮機3の回転数が下げられ、循環する冷媒量が変化する。制御装置12は、変更後の圧縮機3の回転数に基づいて、実行する過熱度制御を選択し、選択されたいずれか一方の過熱度制御を行う。空調運転が停止されるまで、選択されたいずれか一方の過熱度制御が行われる。 When the air conditioning operation is performed by the superheat control as described above, the room temperature changes. When the room temperature approaches the set temperature, the number of revolutions of the compressor 3 is reduced, and the amount of circulating refrigerant changes. The control device 12 selects the superheat degree control to be executed based on the rotation speed of the compressor 3 after the change, and performs any one of the selected superheat degree controls. One of the selected superheat control is performed until the air-conditioning operation is stopped.
 上記のように、循環する冷媒量が多い空調運転時に吸込過熱度制御を行うことにより、冷凍サイクルを早く安定させることができ、効率のよい空調運転をすばやく行える。しかし、循環する冷媒量が少ない空調運転時には、吸込過熱度制御では、冷媒量の調整が困難である。そこで、循環する冷媒量が少ない空調運転時に吐出過熱度制御を行うことにより、冷媒量を適切に調整することができ、効率のよい空調運転が行われる。したがって、循環する冷媒量の多少にかかわらず、常に効率のよい空調運転を行える。 As described above, by performing suction superheat control during air conditioning operation with a large amount of circulating refrigerant, the refrigeration cycle can be stabilized quickly, and efficient air conditioning operation can be performed quickly. However, at the time of air conditioning operation with a small amount of circulating refrigerant, it is difficult to adjust the amount of refrigerant by suction superheat control. Therefore, by performing the discharge superheat control during the air conditioning operation with a small amount of circulating refrigerant, the refrigerant amount can be appropriately adjusted, and an efficient air conditioning operation is performed. Therefore, efficient air-conditioning operation can always be performed regardless of the amount of circulating refrigerant.
 ところで、空調運転が開始してしばらくは、圧縮機3が温まっていないので、吐出温度が安定しない。吐出過熱度制御において膨張弁6の開度を制御するとき、吐出温度に応じて膨張弁6の開度の変更が頻繁に行われ、冷凍サイクルが安定しない。そのため、膨張弁6をゆっくり動作させなければならず、冷凍サイクルが安定するまでの時間が長くなってしまう。 By the way, since the compressor 3 is not warmed for a while after the air-conditioning operation is started, the discharge temperature is not stable. When controlling the opening degree of the expansion valve 6 in the discharge superheat degree control, the opening degree of the expansion valve 6 is frequently changed according to the discharge temperature, and the refrigeration cycle is not stable. Therefore, the expansion valve 6 must be operated slowly, and the time until the refrigeration cycle is stabilized becomes long.
 そこで、第2の実施形態の空気調和機は、循環する冷媒量が少ない空調運転を行うとき、過熱度制御を切り替えて、先に吸込過熱度制御を行い、この後吐出過熱度制御を行う。吸込過熱度制御は、冷媒の温度の変化にすぐに対応できるので、冷媒の温度上昇が大きい運転開始時の過熱度制御に適している。そのため、制御装置12は、循環する冷媒量が少ないとき、冷凍サイクルが安定するまで吸込過熱度制御を行い、冷凍サイクルの安定後に吐出過熱度制御を行う。なお、その他の構成は、第1の実施形態と同じである。 Therefore, when the air conditioner of the second embodiment performs an air conditioning operation with a small amount of circulating refrigerant, the superheat degree control is switched, the suction superheat degree control is performed first, and the discharge superheat degree control is performed thereafter. The suction superheat degree control is suitable for the superheat degree control at the start of operation where the temperature rise of the refrigerant is large because it can immediately respond to the change in the refrigerant temperature. Therefore, the control device 12 performs suction superheat degree control until the refrigeration cycle is stabilized when the amount of refrigerant circulating is small, and performs discharge superheat degree control after the refrigeration cycle is stabilized. Other configurations are the same as those in the first embodiment.
 図7に示すように、空調運転が開始されると、制御装置12は、設定温度と室温との差、外気温などの負荷に基づいて圧縮機3の回転数を決める。このとき、圧縮機3の回転数は第1回転数より低い回転数に設定される。そのため、制御装置12は、決められた圧縮機3の回転数に基づいて、実行する過熱度制御を吐出過熱度制御に決める(S31)。 As shown in FIG. 7, when the air-conditioning operation is started, the control device 12 determines the rotation speed of the compressor 3 based on a load such as a difference between the set temperature and the room temperature and an outside air temperature. At this time, the rotation speed of the compressor 3 is set to be lower than the first rotation speed. Therefore, the control device 12 determines superheat degree control to be performed as discharge superheat degree control based on the determined rotation speed of the compressor 3 (S31).
 制御装置12は、まず吸込過熱度制御を行い(S32)、冷凍サイクルが安定したかを判定する(S33)。制御装置12は、冷凍サイクルが安定したと判定すると、吸込過熱度制御から吐出過熱度制御に切り替え、吐出過熱度制御を行う(S34)。 The control device 12 first performs suction superheat control (S32), and determines whether the refrigeration cycle is stable (S33). If it determines with the refrigerating cycle having been stabilized, the control apparatus 12 will switch from suction superheat degree control to discharge superheat degree control, and will perform discharge superheat degree control (S34).
 冷凍サイクルの安定の判定は、吸込温度に基づいて行われる。図8に示すように、制御装置12は、吸込過熱度制御の実行中、圧縮機3の回転数が低いことを確認して、検出された実吸込過熱度が目標吸込過熱度に近づいたかをチェックする(S35)。圧縮機3の回転数が第1回転数より小さく、かつ目標吸込過熱度と実吸込過熱度との差の絶対値が安定判定値より小さい状態が一定時間続くとき、すなわち、一定時間継続して、|目標吸込過熱度-実吸込過熱度|<Aであるとき、制御装置12は、冷凍サイクルが安定したと判断する(S36)。なお、安定判定値Aは予め試験等により決められている。 The stability of the refrigeration cycle is determined based on the suction temperature. As shown in FIG. 8, the control device 12 confirms that the rotational speed of the compressor 3 is low during execution of the suction superheat degree control, and determines whether the detected actual suction superheat degree approaches the target suction superheat degree. Check (S35). When the state where the rotation speed of the compressor 3 is smaller than the first rotation speed and the absolute value of the difference between the target suction superheat degree and the actual suction superheat degree is smaller than the stability determination value continues for a certain time, that is, continuously for a certain time. , | Target suction superheat degree−actual suction superheat degree | <A, the control device 12 determines that the refrigeration cycle is stable (S36). The stability determination value A is determined in advance by a test or the like.
 圧縮機3の回転数が第1回転数より小さいが、目標吸込過熱度と実吸込過熱度との差の絶対値が安定判定値以上のとき、あるいは目標吸込過熱度と実吸込過熱度との差の絶対値が安定判定値より小さい状態が一定時間続かなかったとき、制御装置12は、冷凍サイクルはまだ安定していないと判断する。このとき、制御装置12は、冷凍サイクルが安定するまで吸込過熱度制御を続ける。なお、圧縮機3の回転数が第1回転数以上になったとき、制御装置12は、吐出過熱度制御を行わずに、吸込過熱度制御を続行する。 Although the rotation speed of the compressor 3 is smaller than the first rotation speed, the absolute value of the difference between the target suction superheat degree and the actual suction superheat degree is greater than or equal to the stability determination value, or the target suction superheat degree and the actual suction superheat degree When the state where the absolute value of the difference is smaller than the stability determination value does not continue for a certain period of time, the control device 12 determines that the refrigeration cycle is not yet stable. At this time, the control device 12 continues the suction superheat control until the refrigeration cycle is stabilized. In addition, when the rotation speed of the compressor 3 becomes more than 1st rotation speed, the control apparatus 12 continues suction superheat degree control, without performing discharge superheat degree control.
 上記のように、先に吸込過熱度制御を行うことにより、循環する冷媒量が少ないときでも、冷媒の温度変化にすばやく対応でき、早く冷凍サイクルを安定させることができる。そして、安定後に吐出過熱度制御に切り替えることにより、循環する冷媒量が少ないときに効率のよい空調運転を早く行える。 As described above, by performing the suction superheat control first, even when the amount of circulating refrigerant is small, it is possible to quickly respond to the temperature change of the refrigerant and to quickly stabilize the refrigeration cycle. By switching to discharge superheat control after stabilization, efficient air-conditioning operation can be performed quickly when the amount of circulating refrigerant is small.
 ここで、運転開始時に吸込過熱度制御が行われることにより、実際の吸込過熱度は目標吸込過熱度に近づいていく。例えば目標吸込過熱度が低いとき、実吸込過熱度が目標過熱度に近づいているが、実吸込過熱度が安定せずハンチングすると、両過熱度の差が小さくなったり、大きくなったりする場合がある。この場合、冷凍サイクルが安定したとの判断がいつまでたってもできない。 Here, the suction superheat degree control is performed at the start of operation, so that the actual suction superheat degree approaches the target suction superheat degree. For example, when the target suction superheat degree is low, the actual suction superheat degree is close to the target superheat degree, but if the actual suction superheat degree is not stable and hunting, the difference between the two superheat degrees may become smaller or larger. is there. In this case, the determination that the refrigeration cycle is stable cannot be made.
 そこで、冷凍サイクルの安定の判定における他の実施形態として、第3の実施形態の空気調和機は、実吸込過熱度が目標過熱度近くでハンチングしているとき、冷凍サイクルが安定したとみなす。すなわち、実際の吸込過熱度が目標吸込過熱度以上になったり以下になったりするといったように、実吸込過熱度が目標吸込過熱度を中心として上下に変動するとき、制御装置12は、冷凍サイクルが安定したと判断する。なお、その他の構成は、第1、第2の実施形態と同じである。 Therefore, as another embodiment in determining the stability of the refrigeration cycle, the air conditioner of the third embodiment considers that the refrigeration cycle is stable when the actual suction superheat degree is hunting near the target superheat degree. That is, when the actual suction superheat degree varies up and down around the target suction superheat degree such that the actual suction superheat degree becomes greater than or less than the target suction superheat degree, the control device 12 Is determined to be stable. Other configurations are the same as those in the first and second embodiments.
 図9に示すように、循環する冷媒量が少ない空調運転が開始されると、制御装置12は、吸込過熱度制御を行う(S41)。制御装置12は、圧縮機3の回転数が低いことを確認して、検出された実吸込過熱度が目標吸込過熱度に近づいたかをチェックする(S42)。目標吸込過熱度と実吸込過熱度との差の絶対値が安定判定値以上のとき、制御装置12は、吸込過熱度制御を続行し、再度チェックする。 As shown in FIG. 9, when the air-conditioning operation with a small amount of circulating refrigerant is started, the control device 12 performs suction superheat degree control (S41). The control device 12 confirms that the rotational speed of the compressor 3 is low, and checks whether the detected actual suction superheat degree approaches the target suction superheat degree (S42). When the absolute value of the difference between the target suction superheat degree and the actual suction superheat degree is equal to or greater than the stability determination value, the control device 12 continues the suction superheat degree control and checks again.
 ここで、制御装置12は、目標吸込過熱度と実吸込過熱度との差の絶対値が安定判定値より小さいことを検知すると、実吸込過熱度が目標吸込過熱度に対してハンチングしていないかを確認する(S43)。実吸込過熱度が一定時間続けてハンチングしているとき、制御装置12は、冷凍サイクルが安定していると判断し(S44)、吸込過熱度制御から吐出過熱度制御に切り替え、吐出過熱度制御を行う(S45)。 Here, when the control device 12 detects that the absolute value of the difference between the target suction superheat degree and the actual suction superheat degree is smaller than the stability determination value, the actual suction superheat degree is not hunting with respect to the target suction superheat degree. (S43). When the actual suction superheat is continuously hunting for a certain time, the control device 12 determines that the refrigeration cycle is stable (S44), switches from the suction superheat control to the discharge superheat control, and discharge superheat control. (S45).
 実吸込過熱度がハンチングしていないとき、あるいは実吸込過熱度がハンチングしているが、一定時間続いていないとき、制御装置12は、目標吸込過熱度と実吸込過熱度との差の絶対値が安定判定値より小さい状態が一定時間続いているかを確認する(S46)。この状態が一定時間続いているとき、制御装置12は、冷凍サイクルが安定していると判断し(S44)、吐出過熱度制御を行う(S45)。目標吸込過熱度と実吸込過熱度との差の絶対値が安定判定値より小さい状態が一定時間続いていないとき、制御装置12は、冷凍サイクルは安定していないと判断し、安定するまで吸込過熱度制御を続行する。 When the actual suction superheat degree is not hunting or when the actual suction superheat degree is hunting but does not continue for a certain time, the control device 12 calculates the absolute value of the difference between the target suction superheat degree and the actual suction superheat degree. Is smaller than the stability determination value, it is confirmed whether or not it continues for a certain time (S46). When this state continues for a predetermined time, the control device 12 determines that the refrigeration cycle is stable (S44), and performs discharge superheat degree control (S45). When the absolute value of the difference between the target suction superheat degree and the actual suction superheat degree is not smaller than the stability determination value for a certain period of time, the control device 12 determines that the refrigeration cycle is not stable and performs suction until it is stable. Continue superheat control.
 上記のように、実吸込過熱度が目標吸込過熱度に近づいているにもかかわらず、安定しない状態が続いているとき、冷凍サイクルが安定したと判定することにより、速やかに吸込過熱度制御から吐出過熱度制御に移行できる。したがって、循環する冷媒量が少ないときに、早く効率のよい空調運転を行えるようになる。 As described above, when the actual suction superheat degree is close to the target suction superheat degree, when the unstable state continues, by determining that the refrigeration cycle is stable, the suction superheat degree control is quickly performed. It is possible to shift to discharge superheat degree control. Therefore, when the amount of circulating refrigerant is small, an efficient and efficient air conditioning operation can be performed.
 次に、吐出過熱度制御による空調運転が行われているとき、外気温の変化、室温の変化などに応じて、圧縮機3の回転数が変化したり、室内外のファンの回転数が変化するといったように、運転状態が変化する。循環する冷媒量が少ないとき、このような変化が起こると、過熱度が大きく変化し、冷凍サイクルが不安定になる。吐出過熱度制御が続けられたとき、冷凍サイクルが安定するのに時間がかかり、効率の悪い空調運転が長く行われることになる。この冷凍サイクルの不安定を早く解消するために、第4の実施形態の空気調和機は、冷凍サイクルが不安定になったとき、過熱度制御の切り替えを行う。 Next, when the air-conditioning operation by the discharge superheat degree control is performed, the rotation speed of the compressor 3 or the rotation speed of the indoor and outdoor fans changes according to changes in the outside air temperature, room temperature, and the like. The driving state changes. When such a change occurs when the amount of circulating refrigerant is small, the degree of superheat changes greatly and the refrigeration cycle becomes unstable. When the discharge superheat degree control is continued, it takes time for the refrigeration cycle to be stabilized, and the inefficient air-conditioning operation is performed for a long time. In order to quickly eliminate the instability of the refrigeration cycle, the air conditioner according to the fourth embodiment switches superheat degree control when the refrigeration cycle becomes unstable.
 すなわち、吐出過熱度制御による空調運転時に冷凍サイクルが不安定になると、制御装置12は、吐出過熱度制御から吸込過熱度制御に切り替え、吸込過熱度制御を行う。冷凍サイクルが安定しているとき、制御装置12は、吐出過熱度制御を続行する。その他の構成は、第1~3の実施形態と同じである。 That is, when the refrigeration cycle becomes unstable during the air conditioning operation by the discharge superheat degree control, the control device 12 switches from the discharge superheat degree control to the suction superheat degree control and performs the suction superheat degree control. When the refrigeration cycle is stable, the control device 12 continues the discharge superheat degree control. Other configurations are the same as those in the first to third embodiments.
 吐出過熱度制御による空調運転が行われているとき、図10に示すように、制御装置12は、循環する冷媒量、すなわち現時点の圧縮機3の回転数に基づいて目標吐出過熱度および目標吸込過熱度を決める(S51)。なお、目標吐出過熱度および目標吸込過熱度は、圧縮機3の回転数が変更されたときにその都度決められる。 When the air conditioning operation by the discharge superheat degree control is performed, as shown in FIG. 10, the control device 12 determines the target discharge superheat degree and the target suction based on the circulating refrigerant amount, that is, the current rotation speed of the compressor 3. The degree of superheat is determined (S51). The target discharge superheat degree and the target suction superheat degree are determined each time the rotation speed of the compressor 3 is changed.
 そして、制御装置12は、実吐出過熱度および実吸込過熱度を取得する(S52)。各温度検出器がそれぞれ検出した吐出温度と凝縮温度とから実吐出過熱度が算出され、吸込温度と蒸発温度とから実吸込過熱度が算出される。 The control device 12 acquires the actual discharge superheat degree and the actual suction superheat degree (S52). The actual discharge superheat degree is calculated from the discharge temperature and the condensation temperature detected by each temperature detector, and the actual suction superheat degree is calculated from the suction temperature and the evaporation temperature.
 制御装置12は、目標吸込過熱度と取得した実吸込過熱度とを比較する(S53)。目標吸込過熱度と実吸込過熱度との差が予め設定された安定基準値以下のとき、制御装置12は、冷凍サイクルは安定していると判断し、吐出過熱度制御を続行する。この場合、制御装置12は、目標吐出過熱度と取得した実吐出過熱度とを比較する(S54)。 The control device 12 compares the target suction superheat degree with the acquired actual suction superheat degree (S53). When the difference between the target suction superheat degree and the actual suction superheat degree is equal to or less than a preset stability reference value, the control device 12 determines that the refrigeration cycle is stable and continues the discharge superheat degree control. In this case, the control device 12 compares the target discharge superheat degree with the acquired actual discharge superheat degree (S54).
 実吐出過熱度が目標吐出過熱度より大きいとき、制御装置12は、膨張弁6の開度を大きくするように制御する(S55)。膨張弁6は、予め決められた開度だけ開き、膨張弁6を通過する冷媒が増え、蒸発器において蒸発する液冷媒が多くなり、圧縮機3に吸い込まれる冷媒の温度が下がる。その結果、圧縮機3から吐出される冷媒の吐出温度が下がり、実吐出過熱度が小さくなって、実吐出過熱度が目標吐出過熱度が下がって、目標吐出過熱度に近づく。 When the actual discharge superheat degree is larger than the target discharge superheat degree, the control device 12 performs control to increase the opening degree of the expansion valve 6 (S55). The expansion valve 6 opens by a predetermined opening, the refrigerant passing through the expansion valve 6 increases, the liquid refrigerant that evaporates in the evaporator increases, and the temperature of the refrigerant sucked into the compressor 3 decreases. As a result, the discharge temperature of the refrigerant discharged from the compressor 3 decreases, the actual discharge superheat degree decreases, the actual discharge superheat degree decreases, and the target discharge superheat degree approaches the target discharge superheat degree.
 実吐出過熱度が目標吐出過熱度より小さいとき、制御装置12は、膨張弁6の開度を小さくするように制御する(S56)。膨張弁6は、予め決められた開度だけ閉じることにより、膨張弁6を通過する冷媒が減り、蒸発器において蒸発する液冷媒が少なくなる。その結果、吸込温度が上がって、吐出温度も上がり、実吐出過熱度が大きくなって、実吐出過熱度が目標吐出過熱度に近づく。 When the actual discharge superheat degree is smaller than the target discharge superheat degree, the control device 12 performs control so as to reduce the opening degree of the expansion valve 6 (S56). When the expansion valve 6 is closed by a predetermined opening, the refrigerant passing through the expansion valve 6 is reduced, and the liquid refrigerant evaporated in the evaporator is reduced. As a result, the suction temperature rises, the discharge temperature rises, the actual discharge superheat degree increases, and the actual discharge superheat degree approaches the target discharge superheat degree.
 環境の変化により運転状態が変化すると、S53において、目標吸込過熱度と実吸込過熱度との差が安定基準値より大きくなる。このとき、制御装置12は、冷凍サイクルは不安定であると判断し、吐出過熱度制御から吸込過熱度制御に切り替え、吸込過熱度制御を行う(S57)。 When the operating state changes due to environmental changes, in S53, the difference between the target suction superheat degree and the actual suction superheat degree becomes larger than the stability reference value. At this time, the control device 12 determines that the refrigeration cycle is unstable, switches from discharge superheat degree control to suction superheat degree control, and performs suction superheat degree control (S57).
 吸込過熱度制御に移行後、制御装置12は、目標吸込過熱度と実吸込過熱度とを比較して、冷凍サイクルが安定したかをチェックする(S58)。目標吸込過熱度と実吸込過熱度との差が安定基準値より大きいとき、制御装置12は、冷凍サイクルは不安定であると判断し、吸込過熱度制御を続行する。目標吸込過熱度と実吸込過熱度との差が安定基準値以下のとき、制御装置12は、冷凍サイクルは安定していると判断し、吸込過熱度制御から吐出過熱度制御に切り替え、吐出過熱度制御を行う(S59)。 After shifting to the suction superheat degree control, the control device 12 compares the target suction superheat degree with the actual suction superheat degree to check whether the refrigeration cycle is stable (S58). When the difference between the target suction superheat degree and the actual suction superheat degree is larger than the stability reference value, the control device 12 determines that the refrigeration cycle is unstable, and continues the suction superheat degree control. When the difference between the target suction superheat degree and the actual suction superheat degree is equal to or less than the stability reference value, the control device 12 determines that the refrigeration cycle is stable, switches from suction superheat degree control to discharge superheat degree control, and discharge superheat. Degree control is performed (S59).
 上記のように、吐出過熱度制御による空調運転が行われているときに冷凍サイクルが不安定になると、吸込過熱度制御に切り替えることにより、すばやく冷凍サイクルが安定して、効率の悪い空調運転が長引くことを防止できる。 As described above, if the refrigeration cycle becomes unstable when air-conditioning operation using discharge superheat degree control is performed, switching to suction superheat degree control quickly stabilizes the refrigeration cycle, resulting in inefficient air-conditioning operation. Prolonging can be prevented.
 ここで、空気調和機で使用される冷媒として、R407CやR410Aなどがある。さらに、これらの冷媒よりも地球温暖化係数が小さい冷媒として、R32、R1234yfがある。このような冷媒を用いた空気調和機において、上記のような過熱度を目標過熱度に近付けるように過熱度制御が行われると、吐出温度が高温、例えば110~120℃になってしまう。圧縮機3などの冷凍サイクルを構成する部品がこのような高温にさらされると、部品の故障の原因となる。特に、R32などの冷媒を用いた場合、吐出温度が高温になりやすく、耐熱性の高い部品を使用しなければならない。 Here, there are R407C, R410A, and the like as refrigerants used in the air conditioner. Further, R32 and R1234yf are refrigerants having a global warming potential smaller than those of these refrigerants. In an air conditioner using such a refrigerant, when the superheat control is performed so that the superheat degree as described above approaches the target superheat degree, the discharge temperature becomes high, for example, 110 to 120 ° C. When components constituting the refrigeration cycle such as the compressor 3 are exposed to such a high temperature, the components may be damaged. In particular, when a refrigerant such as R32 is used, the discharge temperature tends to be high and parts having high heat resistance must be used.
 そこで、第5の実施形態の空気調和機は、吐出温度が高温にならないように吐出温度制御を行う。吐出温度制御は、吐出温度が高いときに行われ、制御装置12は、吐出温度が所定温度を超えないように、実際の吐出温度に応じて冷凍サイクルを制御する。また、吐出温度制御と吸込過熱度制御とは、切り替えて行われる。すなわち、吐出温度制御は、循環する冷媒量が多いときに行われる。なお、その他の構成は、第1~第4の実施形態と同じである。 Therefore, the air conditioner of the fifth embodiment performs discharge temperature control so that the discharge temperature does not become high. The discharge temperature control is performed when the discharge temperature is high, and the control device 12 controls the refrigeration cycle according to the actual discharge temperature so that the discharge temperature does not exceed a predetermined temperature. Moreover, discharge temperature control and suction superheat degree control are switched and performed. That is, the discharge temperature control is performed when the amount of circulating refrigerant is large. Other configurations are the same as those in the first to fourth embodiments.
 空調運転が開始されると、制御装置12は、冷凍サイクルが安定するまで吸込過熱度制御を行う。冷凍サイクルが安定すると、図11に示すように、制御装置12は、現在の負荷に基づいて圧縮機3の回転数を決め(S61)、決められた圧縮機3の回転数、すなわち循環する冷媒量に基づいて実行する制御を吐出過熱度制御、吸込過熱度制御、吐出温度制御の中から決める(S62)。ここでは、制御装置12は、循環する冷媒量と吐出温度により運転状態を判断し、実行する過熱度制御を選択する。 When the air conditioning operation is started, the control device 12 performs suction superheat control until the refrigeration cycle is stabilized. When the refrigeration cycle is stabilized, as shown in FIG. 11, the control device 12 determines the rotation speed of the compressor 3 based on the current load (S61), and the determined rotation speed of the compressor 3, that is, the circulating refrigerant. Control to be executed based on the amount is determined from discharge superheat control, suction superheat control, and discharge temperature control (S62). Here, the control device 12 determines the operating state based on the circulating refrigerant amount and the discharge temperature, and selects the superheat degree control to be executed.
 圧縮機3の回転数が第1回転数より低いとき、吐出過熱度制御が選択される(S63)。圧縮機3の回転数が第1回転数以上のとき、吸込過熱度制御あるいは吐出温度制御のいずれかが選択される(S64、S65)。 When the rotation speed of the compressor 3 is lower than the first rotation speed, the discharge superheat degree control is selected (S63). When the rotation speed of the compressor 3 is equal to or higher than the first rotation speed, either suction superheat control or discharge temperature control is selected (S64, S65).
 吸込過熱度制御と吐出温度制御との判定処理として、図12に示すように、制御装置12は、現在の負荷に応じて圧縮機3の回転数が予め設定された第2回転数以上かを確認する(S66)。第2回転数は、第1回転数よりも高い回転数である。 As a determination process between the suction superheat degree control and the discharge temperature control, as shown in FIG. Confirm (S66). The second rotation number is a higher rotation number than the first rotation number.
 圧縮機3の回転数が第2回転数より低いとき、制御装置12は、吸込過熱度制御を行う(S67)。圧縮機3の回転数が第2回転数以上のとき、制御装置12は、検出された吐出温度(Td)と判定吐出温度(Ta)とを比較する(S68)。検出された吐出温度が判定吐出温度より高いとき、制御装置12は、吐出温度制御を行う(S69)。例えば、吸込制御過熱度が行われているとき、吐出温度が高くなると、吐出温度制御が行われる。 When the rotation speed of the compressor 3 is lower than the second rotation speed, the control device 12 performs suction superheat degree control (S67). When the rotation speed of the compressor 3 is equal to or higher than the second rotation speed, the control device 12 compares the detected discharge temperature (Td) with the determined discharge temperature (Ta) (S68). When the detected discharge temperature is higher than the determination discharge temperature, the control device 12 performs discharge temperature control (S69). For example, when the suction control superheat degree is performed, the discharge temperature control is performed when the discharge temperature becomes high.
 検出された吐出温度が判定吐出温度以下のとき、制御装置12は、吸込過熱度制御を行う(S68)。圧縮機3の回転数が高い、すなわち循環する冷媒量が多くても、吐出温度が高くないとき、空調運転中に吐出温度が高温になるおそれが少ない。したがって、通常の吸込過熱度制御が行われても、吐出温度が高温にならないように空調運転を行うことができる。 When the detected discharge temperature is equal to or lower than the determination discharge temperature, the control device 12 performs suction superheat degree control (S68). Even if the rotation speed of the compressor 3 is high, that is, the amount of circulating refrigerant is large, when the discharge temperature is not high, the discharge temperature is less likely to become high during the air conditioning operation. Therefore, even if normal suction superheat control is performed, the air-conditioning operation can be performed so that the discharge temperature does not become high.
 吐出温度制御による空調運転が行われるとき、制御装置12は、吐出温度が上限吐出温度を超えないように、検出された吐出温度に基づいて膨張弁6の開度を制御する。図13に示すように、制御装置12は、圧縮機3の回転数から目標吐出温度(Taim)を決める(S71)。目標吐出温度は、使用する冷媒に応じて設定される。空調運転が開始されると、吐出温度検出器が吐出温度(Td)を検出する(S72)。制御装置12は、目標吐出温度と実吐出温度を比較する(S73)。 When the air conditioning operation is performed by the discharge temperature control, the control device 12 controls the opening degree of the expansion valve 6 based on the detected discharge temperature so that the discharge temperature does not exceed the upper limit discharge temperature. As shown in FIG. 13, the control device 12 determines a target discharge temperature (Taim) from the rotational speed of the compressor 3 (S71). The target discharge temperature is set according to the refrigerant to be used. When the air conditioning operation is started, the discharge temperature detector detects the discharge temperature (Td) (S72). The control device 12 compares the target discharge temperature with the actual discharge temperature (S73).
 実吐出温度が目標吐出温度よりも高い(Td>Taim)とき、制御装置12は、膨張弁6の開度を大きくする(S74)。膨張弁6を通過する冷媒が増え、過熱度が下がり、圧縮機3からの吐出温度が下がる。これにより、実吐出温度が目標吐出温度に近づく。 When the actual discharge temperature is higher than the target discharge temperature (Td> Taim), the control device 12 increases the opening degree of the expansion valve 6 (S74). The refrigerant passing through the expansion valve 6 increases, the degree of superheat decreases, and the discharge temperature from the compressor 3 decreases. As a result, the actual discharge temperature approaches the target discharge temperature.
 実吐出温度が目標吐出温度よりも低い(Td<Taim)とき、制御装置12は、膨張弁6の開度を小さくする(S75)。膨張弁6を通過する冷媒が減り、過熱度が大きくなり、吐出温度が上がる。これにより、実吐出温度が目標吐出温度に近づく。 When the actual discharge temperature is lower than the target discharge temperature (Td <Taim), the control device 12 decreases the opening degree of the expansion valve 6 (S75). The refrigerant passing through the expansion valve 6 decreases, the degree of superheat increases, and the discharge temperature increases. As a result, the actual discharge temperature approaches the target discharge temperature.
 実吐出温度が目標吐出温度と同じ(Td=Taim)であるとき、制御装置12は、膨張弁6の開度を変更しない(S76)。実吐出温度は目標吐出温度に維持される。 When the actual discharge temperature is the same as the target discharge temperature (Td = Taim), the control device 12 does not change the opening degree of the expansion valve 6 (S76). The actual discharge temperature is maintained at the target discharge temperature.
 上記のように、吐出温度が目標吐出温度に近づくように過熱度制御が行われることにより、実際の吐出温度が上限吐出温度を超えないようにすることができる。これにより、高温になりやすいR32を冷媒に使用しても、冷媒が高温にならないようにできるので、圧縮機3などの部品の故障を低減でき、耐熱性の部品を用いる必要がなくなる。 As described above, by controlling the degree of superheat so that the discharge temperature approaches the target discharge temperature, the actual discharge temperature can be prevented from exceeding the upper limit discharge temperature. As a result, even if R32, which tends to be high in temperature, is used as the refrigerant, the refrigerant can be prevented from becoming high temperature, so that failure of parts such as the compressor 3 can be reduced, and the use of heat-resistant parts is eliminated.
 吸込過熱度制御と吐出温度制御との判定処理の他の形態として、第6の実施形態の空気調和機は、圧縮機3の回転数および吐出温度に実際の吸込過熱度を加えて、吸込過熱度制御と吐出温度制御のいずれかを選択する。ここでは、循環する冷媒量、吐出温度および吸込過熱度に基づいて、運転状態が判断される。その他の構成は、第1~第5の実施形態と同じである。 As another form of the determination process of the suction superheat degree control and the discharge temperature control, the air conditioner of the sixth embodiment adds the actual suction superheat degree to the rotation speed and the discharge temperature of the compressor 3, and performs the suction superheat. Select either degree control or discharge temperature control. Here, the operating state is determined based on the circulating refrigerant amount, the discharge temperature, and the suction superheat degree. Other configurations are the same as those of the first to fifth embodiments.
 空調運転が行われ、冷凍サイクルが安定すると、図14に示すように、制御装置12は、現在の負荷に応じて決められた圧縮機3の回転数が第2回転数以上であることを確認し(S66)、検出された吐出温度が判定吐出温度より高いかを確認する(S68)。検出された吐出温度が判定吐出温度より高いとき、制御装置12は、目標吸込過熱度と実吸込過熱度とを比較する(S70)。 When the air conditioning operation is performed and the refrigeration cycle is stabilized, as shown in FIG. 14, the control device 12 confirms that the rotation speed of the compressor 3 determined according to the current load is equal to or higher than the second rotation speed. (S66), it is confirmed whether the detected discharge temperature is higher than the determination discharge temperature (S68). When the detected discharge temperature is higher than the determination discharge temperature, the control device 12 compares the target suction superheat degree with the actual suction superheat degree (S70).
 目標吸込過熱度と実吸込過熱度との差が大きい、すなわち目標吸込過熱度と実吸込過熱度との差の絶対値が予め設定された判定基準値以上のとき、制御装置12は、吸込過熱度制御を行う(S67)。吸込過熱度制御が行われると、実吸込過熱度が目標吸込過熱度に近づいていく。 When the difference between the target suction superheat degree and the actual suction superheat degree is large, that is, when the absolute value of the difference between the target suction superheat degree and the actual suction superheat degree is equal to or larger than a predetermined criterion value, the control device 12 Degree control is performed (S67). When the suction superheat degree control is performed, the actual suction superheat degree approaches the target suction superheat degree.
 目標吸込過熱度と実吸込過熱度との差が小さい、すなわち目標吸込過熱度と実吸込過熱度との差の絶対値が判定基準値より小さいとき、制御装置12は、吐出温度制御を行う(S69)。実際の吸込過熱度と目標吸込過熱度との差が小さいとき、実吸込過熱度は目標吸込過熱度に近い状態にある。吸込過熱度を制御対象にする必要がないので、制御装置12は、吐出温度を制御対象にして、吐出温度が上がり過ぎないように冷凍サイクルを制御する。 When the difference between the target suction superheat degree and the actual suction superheat degree is small, that is, when the absolute value of the difference between the target suction superheat degree and the actual suction superheat degree is smaller than the determination reference value, the control device 12 performs discharge temperature control ( S69). When the difference between the actual suction superheat degree and the target suction superheat degree is small, the actual suction superheat degree is close to the target suction superheat degree. Since it is not necessary to set the suction superheat degree as a control target, the control device 12 controls the refrigeration cycle so that the discharge temperature does not rise too much with the discharge temperature as the control target.
 吐出温度制御が行われているとき、制御装置12は、吸込過熱度を監視して、目標吸込過熱度と実吸込過熱度との差をチェックする。目標吸込過熱度と実吸込過熱度との差が大きくなれば、制御装置12は、吐出温度制御から吸込過熱度制御に切り替える。そして、吸込過熱度制御実行により実吸込過熱度が目標吸込過熱度に近づくと、制御装置12は、吐出温度制御に切り替え、吐出温度制御を行う。このようにして、効率のよい空調運転を行いながら、吐出温度が高温になることを防げる。 When the discharge temperature control is being performed, the control device 12 monitors the suction superheat degree and checks the difference between the target suction superheat degree and the actual suction superheat degree. If the difference between the target suction superheat degree and the actual suction superheat degree becomes large, the control device 12 switches from the discharge temperature control to the suction superheat degree control. When the actual suction superheat degree approaches the target suction superheat degree by executing the suction superheat degree control, the control device 12 switches to the discharge temperature control and performs the discharge temperature control. In this way, it is possible to prevent the discharge temperature from becoming high while performing an efficient air conditioning operation.
 吐出温度制御の実行中、室温の変化などにより負荷が変化する。これに応じて圧縮機3の回転数が変更され、冷媒回路を循環する冷媒量も変化して、過熱度が変動する。この過熱度の変動にすばやく対応できるように、第7の実施形態の空気調和機は、循環する冷媒量に応じて吐出温度制御と吸込過熱度制御とを切り替える。なお、その他の構成は、第1~第6の実施形態と同じである。 During the discharge temperature control, the load changes due to changes in room temperature. Accordingly, the rotational speed of the compressor 3 is changed, the amount of refrigerant circulating in the refrigerant circuit is also changed, and the degree of superheat varies. The air conditioner according to the seventh embodiment switches between discharge temperature control and suction superheat degree control in accordance with the amount of circulating refrigerant so that it can quickly cope with the fluctuation in the degree of superheat. Other configurations are the same as those in the first to sixth embodiments.
 吐出温度制御が行われているとき、制御装置12は、負荷に基づいて圧縮機3の回転数を変えるとき、圧縮機3の回転数に応じて吐出温度制御と吸込過熱度制御とを選択する。図15に示すように、制御装置12は、空調運転中、圧縮機3の回転数を検出して、回転数の変化の有無をチェックする(S77)。 When the discharge temperature control is being performed, the control device 12 selects the discharge temperature control and the suction superheat degree control according to the rotation speed of the compressor 3 when changing the rotation speed of the compressor 3 based on the load. . As shown in FIG. 15, the control device 12 detects the rotational speed of the compressor 3 during the air-conditioning operation and checks whether there is a change in the rotational speed (S77).
 圧縮機3の回転数が変化していないとき、制御装置12は、吐出温度制御を続行する(S71~S76)。圧縮機3の回転数が変化しているとき、制御装置12は、回転数が下がったかを確認する。回転数が下がっているとき、制御装置12は、吐出温度制御から吸込過熱度制御に切り替える(S78)。圧縮機3の回転数が下がると、循環する冷媒量が減って、吸込過熱度が上がる。実際の吸込過熱度と目標吸込過熱度との差が大きくなるので、吸込過熱度制御を行うことにより、実際の吸込過熱度を目標吸込過熱度に近付けることができる。 When the rotation speed of the compressor 3 has not changed, the control device 12 continues the discharge temperature control (S71 to S76). When the rotational speed of the compressor 3 is changing, the control device 12 confirms whether the rotational speed has decreased. When the rotational speed is decreasing, the control device 12 switches from the discharge temperature control to the suction superheat degree control (S78). When the rotation speed of the compressor 3 decreases, the amount of circulating refrigerant decreases and the suction superheat degree increases. Since the difference between the actual suction superheat degree and the target suction superheat degree becomes large, the actual suction superheat degree can be brought close to the target suction superheat degree by performing the suction superheat degree control.
 吸込過熱度制御の実行中、制御装置12は、吸込過熱度制御から吐出温度制御に切り替え可能かをチェックする(S79)。すなわち、制御装置12は、圧縮機3の回転数を確認し、吐出温度あるいは実吸込過熱度と目標吸込過熱度との差をチェックする。圧縮機3の回転数が上がる、吐出温度が判定吐出温度より高くなる、実吸込過熱度と目標吸込過熱度との差の絶対値が判定基準値より小さくなる、のいずれかに該当するとき、制御装置12は、吸込過熱度制御から吐出温度制御に切り替えて、吐出温度制御を行う。 During execution of the suction superheat degree control, the control device 12 checks whether the suction superheat degree control can be switched to the discharge temperature control (S79). That is, the control device 12 confirms the rotation speed of the compressor 3 and checks the difference between the discharge temperature or the actual suction superheat degree and the target suction superheat degree. When the rotational speed of the compressor 3 increases, the discharge temperature becomes higher than the determination discharge temperature, or the absolute value of the difference between the actual suction superheat degree and the target suction superheat degree falls below the determination reference value, The control device 12 performs discharge temperature control by switching from suction superheat degree control to discharge temperature control.
 なお、S77において、圧縮機3の回転数が上がっているとき、制御装置12は、過熱度制御の切り替えを行わず、吐出温度制御を続行する。圧縮機3の回転数が上がると、吐出温度が上がる可能性がある。そのため、この変化があったときには、吐出温度制御が行われ、吐出温度が高温にならないようにされる。 In S77, when the rotation speed of the compressor 3 is increasing, the control device 12 continues the discharge temperature control without switching the superheat degree control. When the rotation speed of the compressor 3 increases, the discharge temperature may increase. Therefore, when this change occurs, the discharge temperature is controlled so that the discharge temperature does not become high.
 吐出温度が高温にならないようにする吐出温度制御の他の形態として、第8の実施形態の空気調和機は、吐出温度が所定の温度範囲になるように吐出温度制御を行う。吐出温度制御として、制御装置12は、吐出温度に応じて膨張弁6を制御する。なお、その他の構成は、第1~第7の実施形態と同じである。 As another form of discharge temperature control that prevents the discharge temperature from becoming high, the air conditioner of the eighth embodiment performs discharge temperature control so that the discharge temperature falls within a predetermined temperature range. As the discharge temperature control, the control device 12 controls the expansion valve 6 according to the discharge temperature. Other configurations are the same as those of the first to seventh embodiments.
 図16に示すように、吐出温度制御が行われているとき、制御装置12は、現在の圧縮機3の回転数から目標吐出温度および目標吸込過熱度を決める(S81)。制御装置12は、検出された吐出温度と実吸込過熱度を取得する(S82)。上限吐出温度Thおよび下限吐出温度Tlが予め設定される。例えば、上限吐出温度は100℃、下限吐出温度は95℃とされる。制御装置12は、検出された吐出温度を判定する(S83)。すなわち制御装置12は、実際の吐出温度Tdを設定された吐出温度と比較する。 As shown in FIG. 16, when the discharge temperature control is being performed, the control device 12 determines the target discharge temperature and the target suction superheat degree from the current rotational speed of the compressor 3 (S81). The control device 12 acquires the detected discharge temperature and the actual suction superheat degree (S82). An upper limit discharge temperature Th and a lower limit discharge temperature Tl are set in advance. For example, the upper limit discharge temperature is 100 ° C., and the lower limit discharge temperature is 95 ° C. The control device 12 determines the detected discharge temperature (S83). That is, the control device 12 compares the actual discharge temperature Td with the set discharge temperature.
 吐出温度Tdが上限吐出温度Thより高い(Td>Th)とき、制御装置12は、膨張弁6の開度を大きくする(S84)。膨張弁6は、現在の開度より所定の開度だけ開かれる。膨張弁6が開かれることにより、過熱度が下がり、吐出温度も下がる。これにより、吐出温度は所定の温度範囲内に入る。 When the discharge temperature Td is higher than the upper limit discharge temperature Th (Td> Th), the control device 12 increases the opening of the expansion valve 6 (S84). The expansion valve 6 is opened by a predetermined opening from the current opening. By opening the expansion valve 6, the degree of superheat is lowered and the discharge temperature is also lowered. Thereby, the discharge temperature falls within a predetermined temperature range.
 吐出温度Tdが下限吐出温度Tlより低い(Td<Tl)とき、制御装置12は、膨張弁6の開度を小さくする(S85)。膨張弁6は、現在の開度より所定の開度だけ閉じられる。膨張弁6が閉じられることにより、過熱度が上がり、吐出温度が上がる。これにより、吐出温度は所定の温度範囲内に入る。 When the discharge temperature Td is lower than the lower limit discharge temperature Tl (Td <Tl), the control device 12 decreases the opening of the expansion valve 6 (S85). The expansion valve 6 is closed by a predetermined opening degree from the current opening degree. By closing the expansion valve 6, the degree of superheat increases and the discharge temperature rises. Thereby, the discharge temperature falls within a predetermined temperature range.
 吐出温度Tdが上限吐出温度Thと下限吐出温度Tlとの間にある(Tl≦Td≦Th)とき、制御装置12は、実吸込過熱度と目標吸込過熱度を比較する(S86)。実吸込過熱度が目標吸込過熱度以下のとき、制御装置12は、膨張弁6の開度を変えない(S87)。吐出温度は所定の温度範囲内に維持される。 When the discharge temperature Td is between the upper limit discharge temperature Th and the lower limit discharge temperature Tl (Tl ≦ Td ≦ Th), the control device 12 compares the actual suction superheat degree with the target suction superheat degree (S86). When the actual suction superheat degree is equal to or lower than the target suction superheat degree, the control device 12 does not change the opening degree of the expansion valve 6 (S87). The discharge temperature is maintained within a predetermined temperature range.
 実吸込過熱度が目標吸込過熱度より大きいとき、制御装置12は、吐出温度制御から吸込過熱度制御に切り替え、吸込過熱度制御を行う(S88)。この吸込過熱度制御において、実吸込過熱度が目標吸込過熱度より大きいので、制御装置12は、膨張弁6の開度を大きくする。膨張弁6が現在の開度よりも開かれると、蒸発器から出る冷媒の温度が下がり、吸込温度が下がって、実吸込過熱度が小さくなる。これにより、吐出温度は所定の温度範囲内に維持されながら、実吸込過熱度が目標吸込過熱度に近づく。 When the actual suction superheat degree is larger than the target suction superheat degree, the control device 12 switches from the discharge temperature control to the suction superheat degree control, and performs the suction superheat degree control (S88). In this suction superheat degree control, since the actual suction superheat degree is larger than the target suction superheat degree, the control device 12 increases the opening degree of the expansion valve 6. When the expansion valve 6 is opened more than the current opening degree, the temperature of the refrigerant coming out of the evaporator is lowered, the suction temperature is lowered, and the actual suction superheat degree is reduced. Thereby, the actual suction superheat degree approaches the target suction superheat degree while the discharge temperature is maintained within a predetermined temperature range.
 上記の各実施形態では、吐出温度制御において、膨張弁6が制御されることにより、吐出温度が高温にならないように、さらに吐出温度が所定の温度範囲内にあるように、吐出温度が制御される。第9の実施形態の空気調和機は、吐出温度が高温にならないように圧縮機3を制御する。なお、その他の構成は、第1~第7の実施形態と同じである。 In each of the above embodiments, in the discharge temperature control, the discharge temperature is controlled by controlling the expansion valve 6 so that the discharge temperature does not become high and the discharge temperature is within a predetermined temperature range. The The air conditioner of the ninth embodiment controls the compressor 3 so that the discharge temperature does not become high. Other configurations are the same as those of the first to seventh embodiments.
 制御装置12は、吐出温度に基づいて圧縮機3の回転数を制御する。図17に示すように、吐出温度制御が行われているとき、制御装置12は、圧縮機3の回転数から目標吐出温度(Taim)を決める(S71)。空調運転が開始されると、吐出温度検出器が吐出温度(Td)を検出する(S72)。制御装置12は、目標吐出温度と実吐出温度を比較する(S73)。 The control device 12 controls the rotation speed of the compressor 3 based on the discharge temperature. As shown in FIG. 17, when the discharge temperature control is being performed, the control device 12 determines a target discharge temperature (Taim) from the rotational speed of the compressor 3 (S71). When the air conditioning operation is started, the discharge temperature detector detects the discharge temperature (Td) (S72). The control device 12 compares the target discharge temperature with the actual discharge temperature (S73).
 実吐出温度が目標吐出温度よりも高い(Td>Taim)とき、制御装置12は、圧縮機3の回転数を下げる(S91)。圧縮機3の回転数は、現在の回転数より所定の回転数だけ低くなる。冷媒回路を循環する冷媒量は減るが、圧縮機3からの吐出圧力が下がるので、吐出温度が下がる。これにより、実吐出温度が目標吐出温度に近づく。 When the actual discharge temperature is higher than the target discharge temperature (Td> Taim), the control device 12 decreases the rotational speed of the compressor 3 (S91). The rotational speed of the compressor 3 is lower than the current rotational speed by a predetermined rotational speed. Although the amount of refrigerant circulating in the refrigerant circuit is reduced, the discharge pressure from the compressor 3 is lowered, so that the discharge temperature is lowered. As a result, the actual discharge temperature approaches the target discharge temperature.
 実吐出温度が目標吐出温度よりも低い(Td<Taim)とき、制御装置12は、圧縮機3の回転数を上げる(S92)。圧縮機3の回転数は、現在の回転数より所定の回転数だけ高くなる。循環する冷媒量は増えるが、圧縮機3からの吐出圧力が上がるので、吐出温度が上がる。これにより、実吐出温度が目標吐出温度に近づく。 When the actual discharge temperature is lower than the target discharge temperature (Td <Taim), the control device 12 increases the rotation speed of the compressor 3 (S92). The rotation speed of the compressor 3 is higher than the current rotation speed by a predetermined rotation speed. Although the amount of circulating refrigerant increases, the discharge pressure from the compressor 3 increases, so the discharge temperature increases. As a result, the actual discharge temperature approaches the target discharge temperature.
 実吐出温度が目標吐出温度と同じ(Td=Taim)であるとき、制御装置12は、圧縮機3の回転数を変更しない(S93)。これにより、実吐出温度は目標吐出温度に維持される。 When the actual discharge temperature is the same as the target discharge temperature (Td = Taim), the control device 12 does not change the rotation speed of the compressor 3 (S93). Thereby, the actual discharge temperature is maintained at the target discharge temperature.
 また、第10の実施形態の空気調和機は、吐出温度が高温にならないように室内外のファン7、9を制御する。なお、その他の構成は、第1~第7の実施形態と同じである。 Also, the air conditioner of the tenth embodiment controls the indoor and outdoor fans 7 and 9 so that the discharge temperature does not become high. Other configurations are the same as those of the first to seventh embodiments.
 制御装置12は、吐出温度に基づいて室内ファン9あるいは室外ファン7の駆動を制御する。図18に示すように、吐出温度制御が行われているとき、制御装置12は、圧縮機3の回転数から目標吐出温度(Taim)を決める(S71)。空調運転が開始されると、吐出温度検出器15が吐出温度(Td)を検出する(S72)。制御装置12は、目標吐出温度と実吐出温度を比較する(S73)。 The control device 12 controls the driving of the indoor fan 9 or the outdoor fan 7 based on the discharge temperature. As shown in FIG. 18, when the discharge temperature control is being performed, the control device 12 determines a target discharge temperature (Taim) from the rotational speed of the compressor 3 (S71). When the air conditioning operation is started, the discharge temperature detector 15 detects the discharge temperature (Td) (S72). The control device 12 compares the target discharge temperature with the actual discharge temperature (S73).
 実吐出温度が目標吐出温度よりも高い(Td>Taim)とき、制御装置12は、室内ファン9あるいは室外ファン7の回転数を上げる(S94)。空調運転において凝縮器となる熱交換器に対するファンの回転数を上げるとよい。すなわち、冷房運転が行われているときは室外ファン7の回転数が上げられ、暖房運転が行われているときは室内ファン9の回転数が上げられる。ファンの回転数は、現在の回転数より所定の回転数だけ高くなる。凝縮器での熱交換が促進されて、凝縮器から流れ出る液冷媒が増えることにより、循環する冷媒量が増える。これにより、吐出温度が下がり、実吐出温度が目標吐出温度に近づく。 When the actual discharge temperature is higher than the target discharge temperature (Td> Taim), the control device 12 increases the rotational speed of the indoor fan 9 or the outdoor fan 7 (S94). It is good to raise the rotation speed of the fan with respect to the heat exchanger used as a condenser in air-conditioning operation. That is, the rotational speed of the outdoor fan 7 is increased when the cooling operation is performed, and the rotational speed of the indoor fan 9 is increased when the heating operation is performed. The rotational speed of the fan is higher than the current rotational speed by a predetermined rotational speed. Heat exchange in the condenser is promoted, and the amount of liquid refrigerant flowing out of the condenser increases, so that the amount of circulating refrigerant increases. As a result, the discharge temperature decreases and the actual discharge temperature approaches the target discharge temperature.
 実吐出温度が目標吐出温度よりも低い(Td<Taim)とき、制御装置12は、室内ファン9あるいは室外ファン7の回転数を下げる(S95)。空調運転において凝縮器となる熱交換器に対するファンの回転数を下げるとよい。すなわち、冷房運転が行われているときは室外ファン7の回転数が下げられ、暖房運転が行われているときは室内ファン9の回転数が下げられる。ファンの回転数は、現在の回転数より所定の回転数だけ低くなる。凝縮器での熱交換が抑制されて、凝縮器から流れ出る液冷媒が減ることにより、循環する冷媒量が減る。蒸発器で気化する冷媒が増えるので、吸込過熱度が上がる。これにより、吐出温度が上がり、実吐出温度が目標吐出温度に近づく。 When the actual discharge temperature is lower than the target discharge temperature (Td <Taim), the control device 12 decreases the rotational speed of the indoor fan 9 or the outdoor fan 7 (S95). It is good to reduce the rotation speed of the fan with respect to the heat exchanger used as a condenser in air-conditioning operation. That is, the rotational speed of the outdoor fan 7 is reduced when the cooling operation is performed, and the rotational speed of the indoor fan 9 is decreased when the heating operation is performed. The rotational speed of the fan is lower than the current rotational speed by a predetermined rotational speed. Since the heat exchange in the condenser is suppressed and the liquid refrigerant flowing out of the condenser is reduced, the amount of circulating refrigerant is reduced. As the amount of refrigerant that evaporates in the evaporator increases, the degree of suction superheat increases. As a result, the discharge temperature rises and the actual discharge temperature approaches the target discharge temperature.
 実吐出温度が目標吐出温度と同じ(Td=Taim)であるとき、制御装置12は、室内外のファン7、9の回転数を変更しない(S96)。これにより、実吐出温度は目標吐出温度に維持される。 When the actual discharge temperature is the same as the target discharge temperature (Td = Taim), the control device 12 does not change the rotation speeds of the indoor and outdoor fans 7 and 9 (S96). Thereby, the actual discharge temperature is maintained at the target discharge temperature.
 凝縮器に対するファンの回転数とともに蒸発器に対するファンの回転数を変えてもよい。すなわち、室内ファン9の回転数と室外ファン7の回転数をともに変更してもよい。制御装置12は、凝縮器に対するファンの回転数を上げるときは、蒸発器に対するファンの回転数を下げ、凝縮器に対するファンの回転数を下げるときは、凝縮器に対するファンの回転数を上げる。 ¡The rotation speed of the fan relative to the evaporator may be changed together with the rotation speed of the fan relative to the condenser. That is, both the rotation speed of the indoor fan 9 and the rotation speed of the outdoor fan 7 may be changed. The controller 12 decreases the rotational speed of the fan relative to the evaporator when increasing the rotational speed of the fan relative to the condenser, and increases the rotational speed of the fan relative to the condenser when decreasing the rotational speed of the fan relative to the condenser.
 また、第11の実施形態の空気調和機は、吐出温度が高温にならないように圧縮機3、膨張弁6、室内外のファン7、9の少なくとも1つを制御する。なお、その他の構成は、第1~第10の実施形態と同じである。 Also, the air conditioner of the eleventh embodiment controls at least one of the compressor 3, the expansion valve 6, and the indoor and outdoor fans 7 and 9 so that the discharge temperature does not become high. Other configurations are the same as those in the first to tenth embodiments.
 制御装置12は、吐出温度に基づいて、圧縮機3の回転数、膨張弁6の開度、室内ファン9の回転数、室外ファン7の回転数のうち少なくとも1つを制御する。図19に示すように、吐出温度制御が行われているとき、制御装置12は、圧縮機3の回転数から目標吐出温度(Taim)を決める(S71)。空調運転が開始されると、吐出温度検出器が吐出温度(Td)を検出する(S72)。制御装置12は、目標吐出温度と実吐出温度を比較する(S73)。 The control device 12 controls at least one of the rotational speed of the compressor 3, the opening degree of the expansion valve 6, the rotational speed of the indoor fan 9, and the rotational speed of the outdoor fan 7 based on the discharge temperature. As shown in FIG. 19, when the discharge temperature control is being performed, the control device 12 determines a target discharge temperature (Taim) from the rotation speed of the compressor 3 (S71). When the air conditioning operation is started, the discharge temperature detector detects the discharge temperature (Td) (S72). The control device 12 compares the target discharge temperature with the actual discharge temperature (S73).
 実吐出温度が目標吐出温度よりも高い(Td>Taim)とき、制御装置12は、圧縮機3の回転数を下げる、膨張弁6の開度を大きくする、室内ファン9の回転数を変える、室外ファン7の回転数を変える、のいずれか1つあるいは複数を組み合わせて行う(S97)。なお、各ファン7、9の制御に関し、凝縮器となる熱交換器に対するファンの回転数を上げる。これにより、吐出温度が下がり、実吐出温度が目標吐出温度に近づく。 When the actual discharge temperature is higher than the target discharge temperature (Td> Taim), the control device 12 decreases the rotation speed of the compressor 3, increases the opening degree of the expansion valve 6, and changes the rotation speed of the indoor fan 9. Any one or a combination of changing the number of rotations of the outdoor fan 7 is performed (S97). In addition, regarding the control of each fan 7 and 9, the rotation speed of the fan with respect to the heat exchanger used as a condenser is raised. As a result, the discharge temperature decreases and the actual discharge temperature approaches the target discharge temperature.
 実吐出温度が目標吐出温度よりも低い(Td<Taim)とき、制御装置12は、圧縮機3の回転数を上げる、膨張弁6の開度を小さくする、室内ファン9の回転数を変える、室外ファン7の回転数を変える、のいずれか1つあるいは複数を組み合わせて行う(S98)。なお、各ファン7、9の制御に関し、凝縮器となる熱交換器に対するファンの回転数を上げる。これにより、吐出温度が上がり、実吐出温度が目標吐出温度に近づく。 When the actual discharge temperature is lower than the target discharge temperature (Td <Taim), the control device 12 increases the rotation speed of the compressor 3, decreases the opening degree of the expansion valve 6, and changes the rotation speed of the indoor fan 9. Any one or a combination of changing the number of rotations of the outdoor fan 7 is performed (S98). In addition, regarding the control of each fan 7 and 9, the rotation speed of the fan with respect to the heat exchanger used as a condenser is raised. As a result, the discharge temperature rises and the actual discharge temperature approaches the target discharge temperature.
 実吐出温度が目標吐出温度と同じ(Td=Taim)であるとき、制御装置12は、圧縮機3、膨張弁6、室内外のファン7、9の動作を変更せず、現状のままとする(S99)。これにより、実吐出温度は目標吐出温度に維持される。 When the actual discharge temperature is the same as the target discharge temperature (Td = Taim), the control device 12 does not change the operations of the compressor 3, the expansion valve 6, and the indoor and outdoor fans 7, 9, and keeps the current state. (S99). Thereby, the actual discharge temperature is maintained at the target discharge temperature.
 ここで、吐出温度に対する影響は、圧縮機3が一番大きく、膨張弁6、ファン7、9の順となる。そのため、吐出温度が急に高くなるような場合、圧縮機3による制御が選択され、吐出温度の変化がゆっくりしている場合、ファン7、9による制御が選択される。さらに、この制御に他の制御を組み合わせてもよい。ただし、圧縮機3、膨張弁6およびファン7、9の組み合わせは任意である。 Here, the compressor 3 has the largest influence on the discharge temperature, and the expansion valve 6 and the fans 7 and 9 are in this order. Therefore, when the discharge temperature suddenly increases, the control by the compressor 3 is selected, and when the change in the discharge temperature is slow, the control by the fans 7 and 9 is selected. Furthermore, this control may be combined with other controls. However, the combination of the compressor 3, the expansion valve 6, and the fans 7 and 9 is arbitrary.
 吐出温度が高温にならないようにする吐出温度制御の他の形態として、第12の実施形態の空気調和機は、吐出温度に関する判定式を用いて、吐出温度が高温にならず、所定の温度範囲になるように過熱度制御を行う。なお、その他の構成は、第1~第11の実施形態と同じである。 As another form of the discharge temperature control for preventing the discharge temperature from becoming high, the air conditioner of the twelfth embodiment uses a determination formula relating to the discharge temperature, so that the discharge temperature does not become high and a predetermined temperature range. The superheat control is performed so that Other configurations are the same as those in the first to eleventh embodiments.
 下記に示す吐出温度に関する判別式は、凝縮温度、蒸発温度、吸込過熱度に基づいて作成される。
Td=αTc+β-Te+SH
Td:吐出温度、Tc:凝縮温度、Te:蒸発温度、SH:吸込過熱度
1<α<2、0<β<10
α、βは予め実験的に決められる。
The discriminant relating to the discharge temperature shown below is created based on the condensation temperature, evaporation temperature, and suction superheat degree.
Td = αTc + β-Te + SH
Td: discharge temperature, Tc: condensation temperature, Te: evaporation temperature, SH: suction superheat degree 1 <α <2, 0 <β <10
α and β are experimentally determined in advance.
 この式から得られた吐出温度は理論値とほぼ同等となり、この式を用いることにより吐出温度制御が可能となる。そこで、制御装置12は、判別式から得られる吐出温度に基づいて、吐出温度が高温にならないように過熱度制御を行う。過熱度制御として、圧縮機3の回転数、膨張弁6の開度、室内ファンの回転数9、室外ファン7の回転数のうち少なくとも1つを制御する。 The discharge temperature obtained from this equation is almost equal to the theoretical value, and the discharge temperature can be controlled by using this equation. Therefore, the control device 12 performs superheat degree control based on the discharge temperature obtained from the discriminant so that the discharge temperature does not become high. As the superheat degree control, at least one of the number of rotations of the compressor 3, the opening degree of the expansion valve 6, the number of rotations 9 of the indoor fan, and the number of rotations of the outdoor fan 7 is controlled.
 制御装置12は、判定式から算出した吐出温度が高いとき、吐出温度制御を行い、判定式から算出した吐出温度が低いとき、吸込過熱度制御を行う。すなわち、制御装置12は、検出された吐出温度(Td)と判定吐出温度(Ta)とを比較する。検出された吐出温度が判定吐出温度より高いとき、制御装置12は、吐出温度制御を行う。例えば、吸込制御過熱度が行われているとき、吐出温度が高くなると、吐出温度制御が行われる。検出された吐出温度が判定吐出温度以下のとき、制御装置12は、吸込過熱度制御を行う。 The control device 12 performs discharge temperature control when the discharge temperature calculated from the determination formula is high, and performs suction superheat degree control when the discharge temperature calculated from the determination formula is low. That is, the control device 12 compares the detected discharge temperature (Td) with the determined discharge temperature (Ta). When the detected discharge temperature is higher than the determination discharge temperature, the control device 12 performs discharge temperature control. For example, when the suction control superheat degree is performed, the discharge temperature control is performed when the discharge temperature becomes high. When the detected discharge temperature is equal to or lower than the determination discharge temperature, the control device 12 performs suction superheat degree control.
 吐出温度制御が行われているとき、図20に示すように、制御装置12は、現在の圧縮機3の回転数から目標吸込過熱度を決める(S101)。制御装置12は、検出された凝縮温度および蒸発温度に基づいて、実吸込過熱度を取得し、さらに判別式から吐出温度を算出する(S102)。制御装置12は、予め設定されている上限吐出温度および下限吐出温度に基づいて、算出された吐出温度を判定する(S103)。例えば、上限吐出温度Thは100℃、下限吐出温度Tlは95℃とされる。すなわち、制御装置12は、判別式より得た吐出温度Tdを設定された吐出温度と比較する。 When the discharge temperature control is performed, as shown in FIG. 20, the control device 12 determines the target suction superheat degree from the current rotational speed of the compressor 3 (S101). The control device 12 acquires the actual suction superheat degree based on the detected condensation temperature and evaporation temperature, and further calculates the discharge temperature from the discriminant (S102). The control device 12 determines the calculated discharge temperature based on the preset upper limit discharge temperature and lower limit discharge temperature (S103). For example, the upper limit discharge temperature Th is 100 ° C., and the lower limit discharge temperature Tl is 95 ° C. That is, the control device 12 compares the discharge temperature Td obtained from the discriminant with the set discharge temperature.
 吐出温度Tdが上限吐出温度Thより高い(Td>Th)とき、制御装置12は、圧縮機3の回転数を下げる、膨張弁6の開度を大きくする、室内ファン9の回転数を変える、室外ファン7の回転数を変える、のいずれか1つあるいは複数を組み合わせて行う(S104)。これにより、吐出温度が下がり、実吐出温度が上限吐出温度よりも低くなり、所定の温度範囲内に入る。 When the discharge temperature Td is higher than the upper limit discharge temperature Th (Td> Th), the control device 12 decreases the rotation speed of the compressor 3, increases the opening degree of the expansion valve 6, and changes the rotation speed of the indoor fan 9. Any one or a combination of changing the number of rotations of the outdoor fan 7 is performed (S104). As a result, the discharge temperature decreases, the actual discharge temperature becomes lower than the upper limit discharge temperature, and falls within a predetermined temperature range.
 吐出温度Tdが下限吐出温度Tlより低い(Td<Tl)とき、制御装置12は、圧縮機3の回転数を上げる、膨張弁6の開度を小さくする、室内ファン9の回転数を変える、室外ファン7の回転数を変える、のいずれか1つあるいは複数を組み合わせて行う(S105)。これにより、吐出温度が上がり、実吐出温度が下限吐出温度よりも高くなり、所定の温度範囲内に入る。 When the discharge temperature Td is lower than the lower limit discharge temperature Tl (Td <Tl), the control device 12 increases the rotation speed of the compressor 3, decreases the opening degree of the expansion valve 6, and changes the rotation speed of the indoor fan 9. Any one or a combination of changing the number of rotations of the outdoor fan 7 is performed (S105). Thereby, the discharge temperature rises, the actual discharge temperature becomes higher than the lower limit discharge temperature, and falls within a predetermined temperature range.
 吐出温度Tdが上限吐出温度Thと下限吐出温度Tlとの間にある(Tl≦Td≦Th)とき、制御装置12は、実吸込過熱度と目標吸込過熱度を比較する(S106)。実吸込過熱度が目標吸込過熱度以下のとき、制御装置12は、圧縮機3、膨張弁6、室内外のファン7、9の動作を変更せず、現状のままとする(S107)。これにより、実吐出温度は所定の温度範囲内に維持される。 When the discharge temperature Td is between the upper limit discharge temperature Th and the lower limit discharge temperature Tl (Tl ≦ Td ≦ Th), the control device 12 compares the actual suction superheat degree with the target suction superheat degree (S106). When the actual suction superheat degree is equal to or lower than the target suction superheat degree, the control device 12 does not change the operations of the compressor 3, the expansion valve 6, and the indoor and outdoor fans 7, 9, and keeps the current state (S107). As a result, the actual discharge temperature is maintained within a predetermined temperature range.
 実吸込過熱度が目標吸込過熱度より大きいとき、制御装置12は、吐出温度制御から吸込過熱度制御に切り替え、吸込過熱度制御を行う(S108)。この吸込過熱度制御において、実吸込過熱度が目標吸込過熱度より大きいので、制御装置12は、圧縮機3の回転数を下げる、膨張弁6の開度を大きくする、室内ファン9の回転数を変える、室外ファン7の回転数を変える、のいずれか1つあるいは複数を組み合わせて行う。これにより、実吐出温度は所定の温度範囲内に維持されながら、実吸込過熱度が目標吸込過熱度に近づく。 When the actual suction superheat degree is larger than the target suction superheat degree, the control device 12 switches from the discharge temperature control to the suction superheat degree control, and performs the suction superheat degree control (S108). In this suction superheat degree control, since the actual suction superheat degree is larger than the target suction superheat degree, the control device 12 decreases the rotation speed of the compressor 3 and increases the opening degree of the expansion valve 6. Or changing the number of rotations of the outdoor fan 7 or any combination thereof. Thereby, the actual suction superheat degree approaches the target suction superheat degree while the actual discharge temperature is maintained within a predetermined temperature range.
 判別式から得られる吐出温度と実際の吐出温度との差が大きくても、時間が経過すれば、実吐出温度は判別式から得られる吐出温度に近づく。すなわち、吐出温度の動向を予測できる。例えば、判別式から得られる吐出温度に比べて、実際の吐出温度が低いとき、吐出温度がさらに上がることが予測できる。このような場合、判別式から得られる吐出温度に基づいて吐出温度制御が行われると、吐出温度が上がり過ぎることを防止できる。 Even if the difference between the discharge temperature obtained from the discriminant and the actual discharge temperature is large, the actual discharge temperature approaches the discharge temperature obtained from the discriminant when time elapses. That is, the trend of the discharge temperature can be predicted. For example, when the actual discharge temperature is lower than the discharge temperature obtained from the discriminant, it can be predicted that the discharge temperature further increases. In such a case, if the discharge temperature control is performed based on the discharge temperature obtained from the discriminant, it is possible to prevent the discharge temperature from rising excessively.
 上記の各実施形態の空気調和機において、冷媒としてR32が使用される場合、この冷媒は、R410などの他の冷媒に比べて圧力損失が低く、質量流量当たりの熱交換量が多いといった特性を有する。そのため、最小の空調能力が他の冷媒より高い。ところで、冷媒回路を循環する冷媒量が少ないとき、吐出過熱度制御が行われるが、圧縮機3の回転数が低いほど吐出過熱度は小さくなり、圧縮機3が最小回転数で駆動されるとき、最小の空調能力となる。しかし、冷媒がR32の場合、圧縮機3が最小回転数で駆動されても、空調能力は高くなるので、運転温度範囲が狭くなってしまう。 In the air conditioner of each of the above embodiments, when R32 is used as a refrigerant, the refrigerant has characteristics such as a low pressure loss and a large amount of heat exchange per mass flow rate compared to other refrigerants such as R410. Have. Therefore, the minimum air conditioning capability is higher than other refrigerants. By the way, when the amount of refrigerant circulating through the refrigerant circuit is small, the discharge superheat degree control is performed, but the discharge superheat degree becomes smaller as the rotation speed of the compressor 3 is lower, and the compressor 3 is driven at the minimum rotation speed. The minimum air conditioning capability. However, when the refrigerant is R32, even if the compressor 3 is driven at the minimum number of rotations, the air-conditioning capability is increased, and thus the operating temperature range is narrowed.
 そこで、第13の実施形態の空気調和機は、圧縮機3が最小回転数で動作するときの空調能力を下げる。そのために、圧縮機3の回転数が低いほど目標吐出過熱度が低く設定され、制御装置12は、低く設定された目標吐出過熱度に基づいて吐出過熱度制御を行う。なお、その他の構成は、第1~第12の実施形態と同じである。 Therefore, the air conditioner of the thirteenth embodiment lowers the air conditioning capability when the compressor 3 operates at the minimum rotation speed. Therefore, the target discharge superheat degree is set lower as the rotation speed of the compressor 3 is lower, and the control device 12 performs the discharge superheat degree control based on the set target discharge superheat degree. Other configurations are the same as those in the first to twelfth embodiments.
 圧縮機3の最小回転数は、周波数コードのFD1のときの回転数より低い。そして、最小回転数に対する目標吐出過熱度は、FD1に対する目標吐出過熱度よりも低く設定される。図21に示すように、最小回転数に対する通常の目標吐出過熱度は、周波数コードのFD1に対する目標吐出過熱度と中間の回転数に対する目標吐出過熱度とを結ぶライン上の過熱度に設定されている。 The minimum rotation speed of the compressor 3 is lower than the rotation speed when the frequency code is FD1. And the target discharge superheat degree with respect to the minimum rotation speed is set lower than the target discharge superheat degree with respect to FD1. As shown in FIG. 21, the normal target discharge superheat degree with respect to the minimum rotation speed is set to the superheat degree on the line connecting the target discharge superheat degree with respect to FD1 of the frequency code and the target discharge superheat degree with respect to the intermediate rotation speed. Yes.
 これに対し、図22に示すように、吐出過熱度制御を行うときの最小回転数に対する目標吐出過熱度は通常の目標吐出過熱度より低い過熱度に設定される。最小回転数の目標吐出過熱度は、FD1に対する目標吐出過熱度と中間の回転数に対する目標吐出過熱度とを結ぶラインよりも低い過熱度である。 On the other hand, as shown in FIG. 22, the target discharge superheat degree with respect to the minimum rotation speed when performing the discharge superheat degree control is set to a superheat degree lower than the normal target discharge superheat degree. The target discharge superheat degree of the minimum rotation speed is lower than the line connecting the target discharge superheat degree for FD1 and the target discharge superheat degree for the intermediate rotation speed.
 吐出過熱度制御が行われるとき、制御装置12は、目標吐出過熱度を目指して吐出温度制御を行う。このとき、制御装置12は、目標吐出過熱度と実際の吐出過熱度との差に応じて膨張弁6の開度を制御する。実吐出過熱度が目標吐出過熱度よりも大きいとき、目標吐出過熱度が低く設定されているので、目標吐出過熱度と実吐出過熱度との差は大きくなる。制御装置12は、膨張弁6の開度を通常の開度よりも大きくする。 When the discharge superheat degree control is performed, the control device 12 performs the discharge temperature control aiming at the target discharge superheat degree. At this time, the control device 12 controls the opening degree of the expansion valve 6 according to the difference between the target discharge superheat degree and the actual discharge superheat degree. When the actual discharge superheat degree is larger than the target discharge superheat degree, the target discharge superheat degree is set low, so that the difference between the target discharge superheat degree and the actual discharge superheat degree becomes large. The control device 12 makes the opening degree of the expansion valve 6 larger than the normal opening degree.
 圧縮機3が最小回転数で動作しているとき、膨張弁6の開度は通常時よりも大き目となる。目標吐出過熱度を取りにくくなるため、空調能力が下がる。最小回転数のときの空調能力が低くなることにより、圧縮機3にかかる負荷が減り、圧縮機3が停止してしまうことを防止できる。これにより、圧縮機3が低回転で動作しても、圧縮機3は停止することがないので、空調運転を続けることができ、ユーザの快適性を損なうことがない。このように、空調能力を下げることが可能となるので、低い運転温度での空調運転が可能となり、幅広い運転温度範囲に対応可能な空気調和機を実現できる。 When the compressor 3 is operating at the minimum number of rotations, the opening degree of the expansion valve 6 is larger than normal. Since it becomes difficult to take the target discharge superheat degree, the air-conditioning capacity is lowered. By reducing the air conditioning capability at the minimum rotation speed, it is possible to prevent the load on the compressor 3 from being reduced and the compressor 3 from being stopped. Thereby, even if the compressor 3 operates at a low speed, the compressor 3 does not stop, so that the air conditioning operation can be continued, and the user's comfort is not impaired. As described above, since the air conditioning capability can be lowered, an air conditioning operation at a low operating temperature is possible, and an air conditioner that can cope with a wide operating temperature range can be realized.
 以上の通り、本発明の空気調和機は、圧縮機3、凝縮器、絞り装置、蒸発器が接続されて冷媒回路が形成され、冷媒回路を循環する冷媒量に応じて絞り装置の動作を制御する制御装置12を備えている。制御装置12は、循環する冷媒量が多いとき、圧縮機3に吸い込まれる冷媒の吸込温度に基づいて絞り装置を動作させる吸込過熱度制御を行い、循環する冷媒量が少ないとき、圧縮機3から吐出される冷媒の吐出温度に基づいて絞り装置を動作させる吐出過熱度制御を行う。 As described above, in the air conditioner of the present invention, the compressor 3, the condenser, the throttle device, and the evaporator are connected to form a refrigerant circuit, and the operation of the throttle device is controlled according to the amount of refrigerant circulating in the refrigerant circuit. The control device 12 is provided. The control device 12 performs suction superheat degree control for operating the expansion device based on the suction temperature of the refrigerant sucked into the compressor 3 when the amount of refrigerant circulating is large, and from the compressor 3 when the amount of refrigerant circulating is small Based on the discharge temperature of the discharged refrigerant, discharge superheat control for operating the expansion device is performed.
 循環する冷媒量が多いときには、過熱度の変化に対する応答性のよい吸込過熱度制御が適しており、循環する冷媒量が少ないときには、過熱度の変化が小さくても対応できる吐出過熱度制御が適している。循環する冷媒量に応じて適切な過熱度制御を行うことができ、効率のよい空調運転を行える。 When the amount of circulating refrigerant is large, suction superheat control with good responsiveness to changes in superheat is suitable, and when the amount of refrigerant circulating is small, discharge superheat control that can cope with small changes in superheat is suitable ing. Appropriate superheat control can be performed according to the amount of circulating refrigerant, and efficient air-conditioning operation can be performed.
 制御装置12は、循環する冷媒量が少ないとき、冷凍サイクルが安定するまで吸込過熱度制御を行い、冷凍サイクルの安定後に吐出過熱度制御を行う。 The control device 12 performs suction superheat degree control until the refrigeration cycle is stabilized when the amount of refrigerant circulating is small, and performs discharge superheat degree control after the refrigeration cycle is stabilized.
 吸込過熱度制御は、冷凍サイクルを早く安定させることができるので、吸込過熱度制御と吐出過熱度制御を順に行うことにより、効率のよい空調運転をすばやく行える。 Suction superheat control can stabilize the refrigeration cycle quickly, so efficient air conditioning operation can be performed quickly by sequentially performing suction superheat control and discharge superheat control.
 制御装置12は、吸込過熱度制御において、吸込温度と蒸発温度との温度差が所定値に近づくように絞り装置の開度を制御し、吐出過熱度制御において、吐出温度と凝縮温度との温度差が所定値に近づくように絞り装置の開度を制御する。 The control device 12 controls the opening degree of the throttle device so that the temperature difference between the suction temperature and the evaporation temperature approaches a predetermined value in the suction superheat degree control, and in the discharge superheat degree control, the temperature between the discharge temperature and the condensation temperature. The opening degree of the expansion device is controlled so that the difference approaches a predetermined value.
 制御装置12は、吐出過熱度制御を行っているときに冷凍サイクルが不安定になると、吸込過熱度制御を行う。冷凍サイクルが不安定になったときに吸込過熱度制御に切り替えることにより、冷凍サイクルが早く安定するので、吐出過熱度制御に復帰させるまでの時間を短くできる。 When the refrigeration cycle becomes unstable while performing the discharge superheat control, the control device 12 performs the suction superheat control. By switching to the suction superheat control when the refrigeration cycle becomes unstable, the refrigeration cycle stabilizes quickly, so that the time until returning to the discharge superheat control can be shortened.
 制御装置12は、目標吸込過熱度と実際の吸込過熱度とを比較して、冷凍サイクルが不安定か否かを判断する。すなわち、制御装置12は、目標吸込過熱度と実際の吸込過熱度との差が大きいとき、冷凍サイクルは不安定であると判断し、目標吸込過熱度と実際の吸込過熱度との差が小さいとき、冷凍サイクルは安定であると判断する。 The control device 12 compares the target suction superheat degree with the actual suction superheat degree to determine whether or not the refrigeration cycle is unstable. That is, when the difference between the target suction superheat degree and the actual suction superheat degree is large, the control device 12 determines that the refrigeration cycle is unstable, and the difference between the target suction superheat degree and the actual suction superheat degree is small. When it is determined that the refrigeration cycle is stable.
 冷凍サイクルが不安定になったとき、吸込過熱度の変化が吐出過熱度の変化よりも大きいので、吸込過熱度に基づいて判断することにより、冷凍サイクルが不安定になったことを早く検出することができる。 When the refrigeration cycle becomes unstable, the change in suction superheat is greater than the change in discharge superheat, so by judging based on the suction superheat, it quickly detects that the refrigeration cycle has become unstable. be able to.
 制御装置12は、実際の吸込過熱度が目標吸込過熱度を中心として変動するとき、冷凍サイクルが安定したと判断する。これにより、適切な過熱度制御にすばやく切り替えることができる。 The control device 12 determines that the refrigeration cycle is stable when the actual suction superheat varies around the target suction superheat. Thereby, it can switch to suitable superheat degree control quickly.
 また、空気調和機は、圧縮機3、凝縮器、絞り装置、蒸発器が接続されて冷媒回路が形成され、冷媒回路を循環する冷媒量に応じて絞り装置の動作を制御する制御装置12を備え、制御装置は、運転状態を判断して、圧縮機に吸い込まれる冷媒の吸込温度に基づいて絞り装置を動作させる吸込過熱度制御と圧縮機から吐出される冷媒の吐出温度に基づいて絞り装置を動作させる過熱度制御を切り替え、最適な空調運転を行う。 The air conditioner includes a control device 12 that controls the operation of the throttle device according to the amount of refrigerant circulating in the refrigerant circuit by connecting the compressor 3, the condenser, the throttle device, and the evaporator to form a refrigerant circuit. The control device determines the operating state and operates the expansion device based on the suction temperature of the refrigerant sucked into the compressor, and the expansion device based on the discharge temperature of the refrigerant discharged from the compressor Switch the superheat control to operate the, and perform the optimal air conditioning operation.
 すなわち、制御装置12は、循環する冷媒量などによって判断された運転状態に応じて、圧縮機3に吸い込まれる冷媒の吸込温度に基づいて絞り装置を動作させる吸込過熱度制御、圧縮機3から吐出される冷媒の吐出温度に基づいて絞り装置を動作させる吐出過熱度制御および吐出温度が設定温度に近づくように絞り装置を動作させる吐出温度制御のいずれか1つの制御を行う。 That is, the control device 12 controls the degree of suction superheat to operate the throttle device based on the suction temperature of the refrigerant sucked into the compressor 3 according to the operation state determined by the amount of circulating refrigerant, etc., and discharges from the compressor 3 One of the superheat degree control for operating the throttle device based on the discharged refrigerant temperature and the discharge temperature control for operating the throttle device so that the discharge temperature approaches the set temperature is performed.
 循環する冷媒量や吐出温度、さらには吸込過熱度に応じて、3つの過熱度制御の中から適切な過熱度制御が選択され、最適な空調運転を行うことができる。 Appropriate superheat control is selected from the three superheat control depending on the amount of refrigerant to be circulated, the discharge temperature, and the suction superheat, and optimal air conditioning operation can be performed.
 制御装置12は、循環する冷媒量が多いとき、吐出温度が設定温度に近づくように絞り装置を動作させる吐出温度制御を行い、吐出温度に応じて吐出温度制御と吸込過熱度制御とを切り替える。吐出温度制御を行うことにより、吐出温度が所定温度を超えないようにすることができる。 The control device 12 performs discharge temperature control for operating the throttle device so that the discharge temperature approaches the set temperature when the amount of circulating refrigerant is large, and switches between discharge temperature control and suction superheat degree control according to the discharge temperature. By performing the discharge temperature control, the discharge temperature can be prevented from exceeding a predetermined temperature.
 制御装置12は、吐出温度が高い時、吐出温度制御を行い、吐出温度が低いとき、吸込過熱度制御を行う。吸込過熱度が目標吸込過熱度に近づいた状態となって、吐出温度が高くなったとき、吐出温度が所定温度を超えないようにできる。 The control device 12 performs discharge temperature control when the discharge temperature is high, and performs suction superheat degree control when the discharge temperature is low. When the suction superheat degree becomes close to the target suction superheat degree and the discharge temperature becomes high, the discharge temperature can be prevented from exceeding a predetermined temperature.
 制御装置12は、目標吸込過熱度と実際の吸込過熱度との差が小さいときには吐出温度制御を行い、目標吸込過熱度と実際の吸込過熱度との差が大きいときには吸込過熱度制御を行う。 The control device 12 performs discharge temperature control when the difference between the target suction superheat degree and the actual suction superheat degree is small, and performs suction superheat degree control when the difference between the target suction superheat degree and the actual suction superheat degree is large.
 目標吸込過熱度と実吸込過熱度との差に応じて、吸込過熱度制御と吐出温度制御とを切り替えることにより、効率のよい空調運転を行いながら、吐出温度が高温になることを防げる。 ¡By switching between the suction superheat degree control and the discharge temperature control according to the difference between the target suction superheat degree and the actual suction superheat degree, it is possible to prevent the discharge temperature from becoming high while performing efficient air conditioning operation.
 蒸発温度、凝縮温度および吸込過熱度により吐出温度の判定式が決められ、制御装置12は、判定式から算出した吐出温度に基づいて、吐出温度が所定温度を超えないように吐出温度制御を行う。 The determination formula of the discharge temperature is determined by the evaporation temperature, the condensation temperature, and the suction superheat degree, and the control device 12 performs the discharge temperature control based on the discharge temperature calculated from the determination formula so that the discharge temperature does not exceed the predetermined temperature. .
 判定式により吐出温度の動向を予測できるので、吐出温度が所定温度を超えないように制御できる。 Since the trend of the discharge temperature can be predicted by the judgment formula, it can be controlled so that the discharge temperature does not exceed the predetermined temperature.
 制御装置12は、判定式から算出した吐出温度が高いとき、吐出温度制御を行い、判定式から算出した吐出温度が低いとき、吸込過熱度制御を行う。 The control device 12 performs discharge temperature control when the discharge temperature calculated from the determination formula is high, and performs suction superheat degree control when the discharge temperature calculated from the determination formula is low.
 これにより、吸込過熱度が目標吸込過熱度に近づき、吐出温度が所定温度を超えないようにすることができる。 This makes it possible to prevent the suction superheat degree from approaching the target suction superheat degree and the discharge temperature from exceeding the predetermined temperature.
 制御装置12は、吐出温度の目標値と算出された吐出温度とに応じて圧縮機3の回転数、絞り装置の開度および熱交換器用のファンの回転数のうち、少なくとも1つを制御する。 The control device 12 controls at least one of the rotational speed of the compressor 3, the opening degree of the expansion device, and the rotational speed of the heat exchanger fan according to the target value of the discharge temperature and the calculated discharge temperature. .
吐出温度の差に応じて3つの制御対象を適宜組み合わせることにより、吐出温度が所定温度を超えず、かつ所定の温度範囲内にあるように確実にすることができる。 By appropriately combining the three control objects according to the difference in the discharge temperature, it is possible to ensure that the discharge temperature does not exceed the predetermined temperature and is within the predetermined temperature range.
 制御装置12は、吐出温度制御時、吐出温度が所定温度を超えないように吐出温度に応じて、絞り装置の開度を大きくする、圧縮機3の回転数を下げる、熱交換器用のファンの回転数を上げる、特に凝縮器に対するファンの回転数を上げる、のうちいずれか1つを行う、あるいは複数を組み合わせて行う。 When controlling the discharge temperature, the control device 12 increases the opening degree of the expansion device according to the discharge temperature so that the discharge temperature does not exceed a predetermined temperature, decreases the rotation speed of the compressor 3, and sets the fan for the heat exchanger. Either one of increasing the number of rotations, in particular, increasing the number of rotations of the fan with respect to the condenser, or a combination of two or more.
 圧縮機3が最小回転数で動作するときの空調能力を下げるために、圧縮機3の最小回転数に対する目標吐出過熱度が通常の目標吐出過熱度よりも低く設定され、制御装置12は、設定された目標吐出過熱度に基づいて吐出過熱度制御を行う。 In order to reduce the air conditioning capability when the compressor 3 operates at the minimum rotation speed, the target discharge superheat degree with respect to the minimum rotation speed of the compressor 3 is set lower than the normal target discharge superheat degree, and the control device 12 The discharge superheat degree control is performed based on the target discharge superheat degree.
 圧縮機3が最小回転数で動作するときの空調能力が下がるので、低い運転温度であっても圧縮機3は停止することなく動作することができる。これにより、幅広い運転温度範囲で空調運転を行うことができる。 Since the air conditioning capability when the compressor 3 operates at the minimum rotation speed is reduced, the compressor 3 can operate without stopping even at a low operating temperature. Thereby, an air-conditioning operation can be performed in a wide operating temperature range.
 制御装置12は、圧縮機3の回転数によって循環する冷媒量が多いか少ないかを判定し、圧縮機3の回転数が所定数より高いとき、循環する冷媒量が多く、圧縮機3の回転数が所定数より低いとき、循環する冷媒量が少ないと判断する。空調運転中、負荷に応じて圧縮機3の回転数が変化すれば、過熱度制御が切り替えられる。 The control device 12 determines whether the amount of refrigerant circulating is large or small depending on the number of rotations of the compressor 3, and when the number of rotations of the compressor 3 is higher than a predetermined number, the amount of refrigerant circulating is large and the rotation of the compressor 3 When the number is lower than the predetermined number, it is determined that the amount of circulating refrigerant is small. If the rotation speed of the compressor 3 changes according to the load during the air conditioning operation, the superheat degree control is switched.
 なお、本発明は、上記実施形態に限定されるものではなく、本発明の範囲内で上記実施形態に多くの修正および変更を加え得ることは勿論である。吸込過熱度制御および吐出過熱度制御において、膨張弁6の制御だけでなく、圧縮機3および室内外のファン7、9の制御を行ってもよい。 In addition, this invention is not limited to the said embodiment, Of course, many corrections and changes can be added to the said embodiment within the scope of the present invention. In the suction superheat control and the discharge superheat control, not only the expansion valve 6 but also the compressor 3 and the indoor and outdoor fans 7 and 9 may be controlled.
 第2温度検出器18として、室内熱交換器8に対して温度検出器を設けてもよい。この第2温度検出器18は、直接室内熱交換器8の温度を検出する。 As the second temperature detector 18, a temperature detector may be provided for the indoor heat exchanger 8. The second temperature detector 18 directly detects the temperature of the indoor heat exchanger 8.
    1  室外機
    2  室内機
    3  圧縮機
    4  四方弁
    5  室外熱交換器
    6  膨張弁
    7  室外ファン
    8  室内熱交換器
    9  室内ファン
   10  二方弁
   12  制御装置
   13  室温検出器
   14  外気温検出器
   15  吐出温度検出器
   16  吸込温度検出器
   17  第1温度検出器
   18  第2温度検出器
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Indoor unit 3 Compressor 4 Four-way valve 5 Outdoor heat exchanger 6 Expansion valve 7 Outdoor fan 8 Indoor heat exchanger 9 Indoor fan 10 Two-way valve 12 Controller 13 Room temperature detector 14 Outdoor temperature detector 15 Discharge temperature Detector 16 Suction temperature detector 17 First temperature detector 18 Second temperature detector

Claims (12)

  1. 圧縮機、凝縮器、絞り装置、蒸発器が接続されて冷媒回路が形成され、冷媒回路を循環する冷媒量に応じて絞り装置の動作を制御する制御装置を備えた空気調和機であって、制御装置は、運転状態を判断して、圧縮機に吸い込まれる冷媒の吸込温度に基づいて絞り装置を動作させる吸込過熱度制御と圧縮機から吐出される冷媒の吐出温度に基づいて絞り装置を動作させる過熱度制御を切り替え、最適な空調運転を行うことを特徴とする空気調和機。 A compressor, a condenser, a throttle device, and an evaporator are connected to form a refrigerant circuit, and an air conditioner including a control device that controls the operation of the throttle device according to the amount of refrigerant circulating in the refrigerant circuit, The control device judges the operating state and operates the throttle device based on the suction superheat degree control for operating the throttle device based on the refrigerant suction temperature sucked into the compressor and the refrigerant discharge temperature discharged from the compressor An air conditioner characterized by switching the superheat degree control to be performed and performing optimal air conditioning operation.
  2. 制御装置は、循環する冷媒量が多いとき、圧縮機に吸い込まれる冷媒の吸込温度に基づいて絞り装置を動作させる吸込過熱度制御を行い、循環する冷媒量が少ないとき、圧縮機から吐出される冷媒の吐出温度に基づいて絞り装置を動作させる吐出過熱度制御を行うことを特徴とする請求項1記載の空気調和機。 The control device performs suction superheat control that operates the expansion device based on the suction temperature of the refrigerant sucked into the compressor when the amount of refrigerant circulating is large, and is discharged from the compressor when the amount of refrigerant circulating is small The air conditioner according to claim 1, wherein discharge superheat degree control is performed to operate the expansion device based on the discharge temperature of the refrigerant.
  3. 制御装置は、循環する冷媒量が少ないとき、冷凍サイクルが安定するまで吸込過熱度制御を行い、冷凍サイクルの安定後に吐出過熱度制御を行うことを特徴とする請求項1または2記載の空気調和機。 3. The air conditioner according to claim 1, wherein when the amount of refrigerant circulating is small, the control device performs suction superheat control until the refrigeration cycle is stabilized, and performs discharge superheat control after the refrigeration cycle is stabilized. Machine.
  4. 制御装置は、吐出過熱度制御を行っているときに冷凍サイクルが不安定になると、吸込過熱度制御を行うことを特徴とする請求項1~3のいずれかに記載の空気調和機。 The air conditioner according to any one of claims 1 to 3, wherein the control device performs suction superheat control when the refrigeration cycle becomes unstable while performing discharge superheat control.
  5. 制御装置は、目標吸込過熱度と実際の吸込過熱度とを比較して、冷凍サイクルが不安定か否かを判断することを特徴とする請求項3または4記載の空気調和機。 The air conditioner according to claim 3 or 4, wherein the control device compares the target suction superheat degree with the actual suction superheat degree to determine whether or not the refrigeration cycle is unstable.
  6. 制御装置は、実際の吸込過熱度が目標吸込過熱度を中心として変動するとき、冷凍サイクルが安定したと判断することを特徴とする請求項3~5のいずれかに記載の空気調和機。 6. The air conditioner according to claim 3, wherein the control device determines that the refrigeration cycle is stable when the actual suction superheat varies about the target suction superheat.
  7. 制御装置は、循環する冷媒量が多いとき、吐出温度が設定温度に近づくように絞り装置を動作させる吐出温度制御を行い、吐出温度に応じて吐出温度制御と吸込過熱度制御とを切り替えることを特徴とする請求項1~6のいずれかに記載の空気調和機。 The control device performs discharge temperature control that operates the throttle device so that the discharge temperature approaches the set temperature when the amount of circulating refrigerant is large, and switches between discharge temperature control and suction superheat degree control according to the discharge temperature. The air conditioner according to any one of claims 1 to 6, characterized in that:
  8. 制御装置は、吐出温度が高い時、吐出温度制御を行い、吐出温度が低いとき、吸込過熱度制御を行うことを特徴とする請求項7記載の空気調和機。 8. The air conditioner according to claim 7, wherein the control device performs discharge temperature control when the discharge temperature is high, and performs suction superheat degree control when the discharge temperature is low.
  9. 制御装置は、目標吸込過熱度と実際の吸込過熱度との差が小さいときには吐出温度制御を行い、目標吸込過熱度と実際の吸込過熱度との差が大きいときには吸込過熱度制御を行うことを特徴とする請求項7または8記載の空気調和機。 The control device performs discharge temperature control when the difference between the target suction superheat degree and the actual suction superheat degree is small, and performs the suction superheat degree control when the difference between the target suction superheat degree and the actual suction superheat degree is large. The air conditioner according to claim 7 or 8, characterized in that
  10. 蒸発温度、凝縮温度および吸込過熱度により吐出温度の判定式が決められ、制御装置は、判定式から算出した吐出温度に基づいて、吐出温度が所定温度を超えないように吐出温度制御を行うことを特徴とする請求項1~9のいずれかに記載の空気調和機。 The determination formula of the discharge temperature is determined by the evaporation temperature, the condensation temperature, and the suction superheat degree, and the control device performs the discharge temperature control based on the discharge temperature calculated from the determination formula so that the discharge temperature does not exceed the predetermined temperature. The air conditioner according to any one of claims 1 to 9, wherein:
  11. 制御装置は、判定式から算出した吐出温度が高いとき、吐出温度制御を行い、判定式から算出した吐出温度が低いとき、吸込過熱度制御を行うことを特徴とする請求項10記載の空気調和機。 The air conditioning according to claim 10, wherein the control device performs discharge temperature control when the discharge temperature calculated from the determination formula is high, and performs suction superheat degree control when the discharge temperature calculated from the determination formula is low. Machine.
  12. 圧縮機が最小回転数で動作するときの空調能力を下げるために、圧縮機の最小回転数に対する目標吐出過熱度が通常の目標吐出過熱度よりも低く設定され、制御装置は、設定された目標吐出過熱度に基づいて吐出過熱度制御を行うことを特徴とする請求項1~11のいずれかに記載の空気調和機。 In order to reduce the air conditioning capacity when the compressor operates at the minimum rotation speed, the target discharge superheat degree for the minimum rotation speed of the compressor is set lower than the normal target discharge superheat degree, and the control device sets the target The air conditioner according to any one of claims 1 to 11, wherein discharge superheat degree control is performed based on the discharge superheat degree.
PCT/JP2014/070980 2013-12-06 2014-08-08 Air conditioner WO2015083399A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SE1650785A SE542540C2 (en) 2013-12-06 2014-08-08 Air conditioner
CN201480065897.4A CN105814373B (en) 2013-12-06 2014-08-08 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-253370 2013-12-06
JP2013253370A JP6321363B2 (en) 2013-12-06 2013-12-06 Air conditioner

Publications (1)

Publication Number Publication Date
WO2015083399A1 true WO2015083399A1 (en) 2015-06-11

Family

ID=53273177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070980 WO2015083399A1 (en) 2013-12-06 2014-08-08 Air conditioner

Country Status (5)

Country Link
JP (1) JP6321363B2 (en)
CN (1) CN105814373B (en)
MY (1) MY174179A (en)
SE (1) SE542540C2 (en)
WO (1) WO2015083399A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190248209A1 (en) * 2016-10-14 2019-08-15 Sanden Automotive Climate Systems Corporation Vehicle Air Conditioner
JP6749507B1 (en) * 2019-08-30 2020-09-02 日立ジョンソンコントロールズ空調株式会社 Air conditioner
EP3760945A4 (en) * 2018-04-05 2021-05-19 Mitsubishi Heavy Industries Thermal Systems, Ltd. Control device of freezer, freezer, method for controlling freezer, and program for controlling freezer

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6557855B2 (en) * 2015-05-20 2019-08-14 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment
JP6594698B2 (en) * 2015-08-10 2019-10-23 三菱重工サーマルシステムズ株式会社 Refrigeration and air conditioning equipment
JP6948796B2 (en) * 2017-01-24 2021-10-13 三菱重工サーマルシステムズ株式会社 Refrigerant circuit system and control method
JP6987598B2 (en) * 2017-10-20 2022-01-05 三菱重工サーマルシステムズ株式会社 Refrigeration cycle control device, heat source device, and its control method
JP6881424B2 (en) * 2018-12-14 2021-06-02 ダイキン工業株式会社 Refrigerator
CN109624654A (en) * 2018-12-26 2019-04-16 郑州科林车用空调有限公司 A kind of single system changes in temperature pure electric vehicle air-conditioning using R410a refrigerant
CN113544443B (en) * 2019-03-11 2023-02-21 三菱电机株式会社 Refrigeration cycle device
CN111854200B (en) * 2019-04-28 2021-09-24 青岛海尔智能技术研发有限公司 Refrigerator equipment, refrigerating system and control method of refrigerating system
JPWO2022162819A1 (en) * 2021-01-28 2022-08-04
JP2024141183A (en) * 2023-03-29 2024-10-10 株式会社富士通ゼネラル Refrigeration Cycle Equipment

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611963A (en) * 1984-06-13 1986-01-07 松下精工株式会社 Method of controlling refrigerant for heat pump type air conditioner
JPS6162770A (en) * 1984-09-05 1986-03-31 株式会社日立製作所 Method of controlling refrigerating air conditioner
JPH01222164A (en) * 1988-02-29 1989-09-05 Nippon Denso Co Ltd Refrigerating cycle control device
JPH04240355A (en) * 1991-01-22 1992-08-27 Toshiba Corp Controlling method for electronic expansion valve of air conditioner
JPH04340056A (en) * 1991-05-16 1992-11-26 Toshiba Corp Refrigeration cycle device
JPH0798159A (en) * 1993-09-29 1995-04-11 Mitsubishi Electric Corp Discrete air-conditioner
JP2001227822A (en) * 2000-02-17 2001-08-24 Mitsubishi Electric Corp Refrigerating air conditioner
JP2001304700A (en) * 2000-04-21 2001-10-31 Hitachi Ltd Air conditioner
US6711911B1 (en) * 2002-11-21 2004-03-30 Carrier Corporation Expansion valve control
JP2010101558A (en) * 2008-10-23 2010-05-06 Mitsubishi Heavy Ind Ltd Control method for heat pump device, outdoor unit for heat pump device, and heat pump device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986084A (en) * 1988-06-20 1991-01-22 Carrier Corporation Quench expansion valve refrigeration circuit
JP3000805B2 (en) * 1992-10-27 2000-01-17 三菱電機株式会社 Controller for refrigerant circuit
JPH0735430A (en) * 1993-07-27 1995-02-07 Kubota Corp Operating method of air conditioner and air conditioner employing said method
JPH11294871A (en) * 1998-04-14 1999-10-29 Toshiba Corp Air conditioner
CN1690552A (en) * 2004-04-28 2005-11-02 乐金电子(天津)电器有限公司 Cooling agent temperature control system for air-conditioners and control method thereof
JP4969271B2 (en) * 2007-02-28 2012-07-04 三菱重工業株式会社 Air conditioner
KR101336720B1 (en) * 2008-01-02 2013-12-05 엘지전자 주식회사 Air conditioning system
JP5022920B2 (en) * 2008-01-16 2012-09-12 三洋電機株式会社 Air conditioner
CN101900448B (en) * 2009-06-01 2013-12-11 特灵空调系统(中国)有限公司 Steam jet enthalpy heat pump air-conditioning hot water unit
JP4854779B2 (en) * 2009-12-09 2012-01-18 シャープ株式会社 Air conditioner, expansion valve opening control method and program
JP5147889B2 (en) * 2010-04-12 2013-02-20 三菱電機株式会社 Air conditioner
JP5610843B2 (en) * 2010-05-24 2014-10-22 三菱電機株式会社 Air conditioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611963A (en) * 1984-06-13 1986-01-07 松下精工株式会社 Method of controlling refrigerant for heat pump type air conditioner
JPS6162770A (en) * 1984-09-05 1986-03-31 株式会社日立製作所 Method of controlling refrigerating air conditioner
JPH01222164A (en) * 1988-02-29 1989-09-05 Nippon Denso Co Ltd Refrigerating cycle control device
JPH04240355A (en) * 1991-01-22 1992-08-27 Toshiba Corp Controlling method for electronic expansion valve of air conditioner
JPH04340056A (en) * 1991-05-16 1992-11-26 Toshiba Corp Refrigeration cycle device
JPH0798159A (en) * 1993-09-29 1995-04-11 Mitsubishi Electric Corp Discrete air-conditioner
JP2001227822A (en) * 2000-02-17 2001-08-24 Mitsubishi Electric Corp Refrigerating air conditioner
JP2001304700A (en) * 2000-04-21 2001-10-31 Hitachi Ltd Air conditioner
US6711911B1 (en) * 2002-11-21 2004-03-30 Carrier Corporation Expansion valve control
JP2010101558A (en) * 2008-10-23 2010-05-06 Mitsubishi Heavy Ind Ltd Control method for heat pump device, outdoor unit for heat pump device, and heat pump device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190248209A1 (en) * 2016-10-14 2019-08-15 Sanden Automotive Climate Systems Corporation Vehicle Air Conditioner
US10870332B2 (en) * 2016-10-14 2020-12-22 Sanden Automotive Climate Systems Corporation Vehicle air conditioner
EP3760945A4 (en) * 2018-04-05 2021-05-19 Mitsubishi Heavy Industries Thermal Systems, Ltd. Control device of freezer, freezer, method for controlling freezer, and program for controlling freezer
JP6749507B1 (en) * 2019-08-30 2020-09-02 日立ジョンソンコントロールズ空調株式会社 Air conditioner
WO2021038818A1 (en) * 2019-08-30 2021-03-04 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Also Published As

Publication number Publication date
MY174179A (en) 2020-03-12
SE1650785A1 (en) 2016-06-03
CN105814373B (en) 2018-04-27
CN105814373A (en) 2016-07-27
JP2015111020A (en) 2015-06-18
SE542540C2 (en) 2020-06-02
JP6321363B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP6321363B2 (en) Air conditioner
JP6642379B2 (en) air conditioner
US8522568B2 (en) Refrigeration system
AU2016346536B2 (en) Air conditioning apparatus
JP6493432B2 (en) Air conditioner
KR20090115173A (en) Refrigeration device
CN110741208B (en) Air conditioner
JP2006300370A (en) Air conditioner
JP6401015B2 (en) Air conditioner
WO2020208776A1 (en) Air conditioning apparatus
US11525599B2 (en) Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
JP2010216761A (en) Multiple type air conditioner
JP2008241065A (en) Refrigerating device and oil returning method of refrigerating device
KR102558826B1 (en) Air conditioner system and control method
CN110637198B (en) Air conditioning system
WO2021214930A1 (en) Air-conditioning system and control method
JP4969271B2 (en) Air conditioner
JP2017009269A (en) Air conditioning system
JP2005147541A (en) Multi-chamber type air conditioner
JPH0833225B2 (en) Multi-room air conditioner
KR100667097B1 (en) Operation method for multi type air conditioner
WO2021214816A1 (en) Refrigeration cycle device, air conditioner, and cooling device
JP6271011B2 (en) Refrigeration air conditioner
JP2019049365A (en) air conditioner
WO2022168305A1 (en) Air-conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867940

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201603677

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867940

Country of ref document: EP

Kind code of ref document: A1