JP6594698B2 - Refrigeration and air conditioning equipment - Google Patents

Refrigeration and air conditioning equipment Download PDF

Info

Publication number
JP6594698B2
JP6594698B2 JP2015158200A JP2015158200A JP6594698B2 JP 6594698 B2 JP6594698 B2 JP 6594698B2 JP 2015158200 A JP2015158200 A JP 2015158200A JP 2015158200 A JP2015158200 A JP 2015158200A JP 6594698 B2 JP6594698 B2 JP 6594698B2
Authority
JP
Japan
Prior art keywords
discharge
discharge temperature
constant
temperature
superheat degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015158200A
Other languages
Japanese (ja)
Other versions
JP2017036881A (en
Inventor
容之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2015158200A priority Critical patent/JP6594698B2/en
Priority to AU2016213701A priority patent/AU2016213701B2/en
Priority to EP16183268.8A priority patent/EP3130870B1/en
Publication of JP2017036881A publication Critical patent/JP2017036881A/en
Application granted granted Critical
Publication of JP6594698B2 publication Critical patent/JP6594698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、吐出温度Tdが上昇し易い冷媒、例えばR32冷媒を用いた冷凍・空調装置に関するものである。   The present invention relates to a refrigeration / air-conditioning apparatus using a refrigerant whose discharge temperature Td is likely to rise, for example, an R32 refrigerant.

各種冷凍機、空気調和機、ヒートポンプ等(以下、総称して冷凍・空調装置という。)等では、膨張弁の開度を吸入過熱度SHが一定となるように制御することにより圧縮機への液バックを防止し、信頼性を確保していた。一方、環境負荷を低減するため、昨今、地球温暖化係数(GWP)がR410A冷媒に対比で1/3程度と低く、かつオゾン破壊係数(ODP)が零であるR32冷媒またはR32冷媒リッチの混合冷媒(以下、本願発明においては、単にR32冷媒という。)が用いられている。   In various refrigerators, air conditioners, heat pumps, etc. (hereinafter collectively referred to as refrigeration / air conditioners), etc., by controlling the opening of the expansion valve so that the suction superheat degree SH is constant, Liquid back was prevented and reliability was ensured. On the other hand, in order to reduce environmental impact, recently, a mixture of R32 refrigerant or R32 refrigerant rich in which the global warming potential (GWP) is as low as about 1/3 of that of R410A refrigerant and the ozone depletion potential (ODP) is zero. A refrigerant (hereinafter simply referred to as R32 refrigerant in the present invention) is used.

しかし、R32冷媒は、物性によりR410A冷媒に対して吐出温度Tdが10〜20℃程高く、冷媒の高低圧差が大きくなるほど、吐出温度Tdが高くなる傾向がある。このため、R410A冷媒の場合、図6のモリエル線図に示すとおり、通常の使用範囲では吐出温度Tdが圧縮機モータの絶縁を破壊しない温度範囲内に制御できるが、R32冷媒を用いた場合、図7のモリエル線図に示すとおり、吸入過熱度SH一定の制御では、吐出温度Tdが圧縮機モータの絶縁を破壊する温度を超えてしまい、吐出温度Tdが上昇し易い条件下(高低圧差大)において、モータ効率の低下や能力の確保ができなくなる等の虞があった。また、かかる問題を解消して運転範囲を確保しようとすると、モータ巻腺の絶縁グレードを上げる必要があり、コスト高となる等の問題があった。   However, the discharge temperature Td of the R32 refrigerant is higher by about 10 to 20 ° C. than the R410A refrigerant due to physical properties, and the discharge temperature Td tends to increase as the difference between the high and low pressures of the refrigerant increases. For this reason, in the case of the R410A refrigerant, as shown in the Mollier diagram of FIG. 6, the discharge temperature Td can be controlled within a temperature range that does not break the insulation of the compressor motor in the normal use range, but when the R32 refrigerant is used, As shown in the Mollier diagram of FIG. 7, in the control with the constant suction superheat degree SH, the discharge temperature Td exceeds the temperature at which the insulation of the compressor motor is broken, and the discharge temperature Td is likely to rise (high and low pressure difference large ), There is a possibility that the motor efficiency may be lowered and the capacity cannot be secured. In addition, in order to solve this problem and secure the operating range, there is a problem that it is necessary to increase the insulation grade of the motor winding gland and the cost is increased.

そこで、吸入過熱度SHが所定温度となるように電子膨張弁(EEV)の開度を制御する一方、圧縮機の吐出温度Tdが上限値を超えると、吐出温度Tdに基づいて電子膨張弁(EEV)の開度を制御する構成としたものが特許文献1に示されている。また、特許文献2には、圧縮機入口の冷媒乾き度を0.85以上とすべく、圧縮機の圧縮比が上限値よりも小さくなるように、圧縮機回転数を調節するとともに、吐出過熱度TdSHが目標値に近づくように電子膨張弁(EEV)の開度を調節する構成としたものが示されている。   Therefore, the opening degree of the electronic expansion valve (EEV) is controlled so that the suction superheat degree SH becomes a predetermined temperature. On the other hand, when the discharge temperature Td of the compressor exceeds the upper limit value, the electronic expansion valve ( Patent Document 1 discloses a configuration in which the opening degree of EEV) is controlled. Further, in Patent Document 2, in order to set the refrigerant dryness at the compressor inlet to 0.85 or more, the compressor rotation speed is adjusted so that the compression ratio of the compressor becomes smaller than the upper limit value, and the discharge overheating is also performed. A configuration in which the degree of opening of the electronic expansion valve (EEV) is adjusted so that the degree TdSH approaches the target value is shown.

特開2001−174075号公報JP 2001-174075 A 特開2014−190632号公報JP 2014-190632 A

しかしなから、特許文献1,2に示すものでは、吐出温度Tdの過上昇やそれに伴うモータ効率の低下等を防止することができるものの、運転状況や運転点の変化に伴う吸入過熱度SHの増大、それに起因する運転効率の低下、過剰な液バック発生による安定運転の阻害、あるいは外気温の変化による吐出温度Tdの限界値超え等に対して十分な対応ができないばかりか、電子膨張弁の開度制御に加えて圧縮機の回転数制御をも併用しなければならず、制御系が複雑化する等の課題があった。   However, although those disclosed in Patent Documents 1 and 2 can prevent an excessive increase in the discharge temperature Td and a decrease in the motor efficiency associated therewith, the suction superheat degree SH associated with a change in the operation state or the operation point can be prevented. Not only can it not cope sufficiently with an increase, a decrease in operation efficiency resulting from this, an impediment to stable operation due to the occurrence of excessive liquid back, or a limit value of the discharge temperature Td due to a change in the outside air temperature. In addition to the opening degree control, the rotation speed control of the compressor must be used in combination, which causes problems such as a complicated control system.

本発明は、このような事情に鑑みてなされたものであって、電子膨張弁の開度制御のみで運転状況や運転点の変化に対し、適切な運転状態を確保することができるとともに、圧縮機を使用制限内で運転し、信頼性を確保することができる冷凍・空調装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to ensure an appropriate operating state with respect to changes in operating conditions and operating points only by controlling the opening degree of the electronic expansion valve, and compression. An object of the present invention is to provide a refrigeration / air-conditioning apparatus that can operate a machine within the usage limits and ensure reliability.

上記した課題を解決するために、本発明の冷凍・空調装置は、以下の手段を採用する。
すなわち、本発明にかかる冷凍・空調装置は、少なくとも圧縮機、熱源側熱交換器、電子膨張弁および利用側熱交換器が冷媒配管を介して接続され、内部に吐出温度TdがR410A冷媒よりも上昇し易い冷媒が充填された冷凍サイクルと、前記吐出温度Tdが上限値以下のとき、前記電子膨張弁の開度を吸入ガス過熱度SH一定で制御し、前記吐出温度Tdが前記上限値を超えたとき、吐出過熱度TdSH一定もしくは吐出温度Td一定で前記電子膨張弁の開度を制御する膨張弁制御手段と、を備え、前記膨張弁制御手段は、前記吐出過熱度TdSH一定もしくは前記吐出温度Td一定で制御中、前記吐出過熱度TdSH一定制御を行っている場合、圧縮機回転数の演算から得られた目標吐出過熱度TdSH+高圧圧力飽和温度と、前記吐出温度Tdの上限値とのいずれか低い方を目標値とした前記吐出過熱度TdSH一定制御か前記吐出温度Td一定制御に切替え、前記吐出温度Td一定制御を行っている場合、圧縮機回転数と前記高圧圧力飽和温度との演算から得られた目標吐出温度Tdと、前記上限値とを比較し、いずれか低い方を目標吐出温度Tdに採用する目標値切替え手段を備えていることを特徴とする。
In order to solve the above-described problems, the refrigeration / air-conditioning apparatus of the present invention employs the following means.
That is, in the refrigeration / air conditioning apparatus according to the present invention, at least the compressor, the heat source side heat exchanger, the electronic expansion valve, and the use side heat exchanger are connected via the refrigerant pipe, and the discharge temperature Td is higher than that of the R410A refrigerant. When the refrigeration cycle is filled with a refrigerant that tends to rise and the discharge temperature Td is less than or equal to the upper limit value, the opening of the electronic expansion valve is controlled at a constant intake gas superheat degree SH, and the discharge temperature Td reaches the upper limit value. Expansion valve control means for controlling the degree of opening of the electronic expansion valve at a discharge superheat degree TdSH constant or discharge temperature Td constant when the discharge superheat degree exceeds the discharge superheat degree TdSH constant or the discharge When the discharge superheat degree TdSH constant control is being performed during the control at the constant temperature Td, the target discharge superheat degree TdSH + high pressure saturation temperature obtained from the calculation of the compressor rotation speed, and the discharge temperature When the discharge superheat degree TdSH constant control or the discharge temperature Td constant control with the lower one of the upper limit values of the temperature Td as a target value is switched and the discharge temperature Td constant control is performed, It comprises target value switching means for comparing the target discharge temperature Td obtained from the calculation with the high pressure saturation temperature and the upper limit value, and adopting the lower one as the target discharge temperature Td. To do.

本発明によれば、運転中に圧縮機から吐出される冷媒の吐出温度Tdが予め設定されている上限値以下のとき、電子膨張弁の開度は吸入ガス過熱度SH一定で制御され、吐出温度Tdが上限値を超えたとき、吐出過熱度TdSH一定もしくは吐出温度Td一定で電子膨張弁の開度が制御されるため、吐出温度Tdが上昇し易いR32冷媒を用いた場合においても、吐出温度Tdが使用上限値を超えるのを防止し、圧縮機モータの絶縁グレードをそのままで使用可能とすることでコストアップを回避することができるとともに、吐出温度Tdを上がりにくくすることで冷凍機油の劣化を防ぐことができる。また、吐出過熱度TdSH一定もしくは吐出温度Td一定で制御中、吐出過熱度TdSH一定制御を行っている場合、圧縮機回転数の演算から得られた目標吐出過熱度TdSH+高圧圧力飽和温度と、吐出温度Tdの上限値とのいずれか低い方を目標値とした吐出過熱度TdSH一定制御か吐出温度Td一定制御に切替え、目標吐出温度Td一定制御を行っている場合、圧縮機回転数と高圧圧力飽和温度との演算から得られた目標吐出温度Tdと、上限値とを比較し、いずれか低い方を目標吐出温度Tdに採用するようにしているため、圧縮機回転数が変化せずに運転点が変化した場合でも、許容される吐出温度Tdの使用上限値と目標吐出過熱度TdSH+高圧圧力飽和温度とのいずれか低い方の値を目標値として電子膨張弁の開度を制御することができ、吐出温度Tdを圧縮機の使用上限値以下に抑えて、確実に使用制限を守ることができる。   According to the present invention, when the discharge temperature Td of the refrigerant discharged from the compressor during operation is equal to or lower than a preset upper limit value, the opening of the electronic expansion valve is controlled at a constant suction gas superheat degree SH, and the discharge When the temperature Td exceeds the upper limit value, the opening degree of the electronic expansion valve is controlled with the discharge superheat degree TdSH constant or the discharge temperature Td constant, so that even when the R32 refrigerant that easily increases the discharge temperature Td is used The temperature Td is prevented from exceeding the upper limit of use, and the compressor motor insulation grade can be used as it is, thereby avoiding an increase in cost and making the discharge temperature Td difficult to increase. Deterioration can be prevented. Further, when the discharge superheat degree TdSH is constant or the discharge temperature Td is constant and the discharge superheat degree TdSH is constant, the target discharge superheat degree TdSH + high pressure saturation temperature obtained from the calculation of the compressor rotation speed, When the discharge superheat degree TdSH constant control or the discharge temperature Td constant control with the lower one of the upper limit values of the temperature Td as the target value is switched and the target discharge temperature Td constant control is performed, the compressor rotational speed and the high pressure The target discharge temperature Td obtained from the calculation with the saturation temperature is compared with the upper limit value, and the lower one is adopted as the target discharge temperature Td. Therefore, the compressor rotation speed is not changed. Even when the point changes, the opening of the electronic expansion valve is controlled with the lower of the allowable upper limit value of the discharge temperature Td and the target discharge superheat degree TdSH + high pressure saturation temperature as the target value. Rukoto can, by suppressing discharge temperature Td below the upper limit value of the compressor can be protected reliably use restrictions.

さらに、本発明の冷凍・空調装置は、上記の冷凍・空調装置において、前記膨張弁制御手段は、更に前記圧縮機の回転数に応じて目標吐出過熱度TdSHもしくは目標吐出温度Tdを可変する目標値可変手段を備えていることを特徴とする。   Furthermore, in the refrigeration / air conditioning apparatus according to the present invention, in the above-described refrigeration / air conditioning apparatus, the expansion valve control means further changes a target discharge superheat degree TdSH or a target discharge temperature Td according to the rotation speed of the compressor. A value variable means is provided.

本発明によれば、膨張弁制御手段が、更に圧縮機の回転数に応じて目標吐出過熱度TdSHもしくは目標吐出温度Tdを可変する目標値可変手段を備えているため、電子膨張弁の開度を吐出過熱度TdSH一定もしくは吐出温度Td一定で制御中に、圧縮機回転数が低下して圧縮比が小さくなると、電子膨張弁の開度を絞り過ぎる結果、吸入過熱度SHが大きくなり過ぎて熱交換性能が悪化するが、圧縮機回転数に応じて目標吐出過熱度TdSHもしくは吐出温度Tdを可変することによって、電子膨張弁の絞り過ぎを防止し、適切な運転状態を維持することができる。従って、吸入過熱度SHが大きくなり過ぎることによる熱交換性能の悪化を抑制し、効率のよい運転を行わせることができる。   According to the present invention, since the expansion valve control means further includes the target value variable means for changing the target discharge superheat degree TdSH or the target discharge temperature Td according to the rotational speed of the compressor, the opening degree of the electronic expansion valve If the compressor rotation speed decreases and the compression ratio decreases during the control with the discharge superheat degree TdSH constant or the discharge temperature Td constant, the opening degree of the electronic expansion valve becomes too narrow, resulting in the intake superheat degree SH becoming too large. Although the heat exchange performance is deteriorated, by varying the target discharge superheat degree TdSH or the discharge temperature Td according to the compressor rotational speed, it is possible to prevent the electronic expansion valve from being excessively throttled and maintain an appropriate operation state. . Therefore, it is possible to suppress the deterioration of the heat exchange performance due to the excessive suction superheat degree SH and to perform an efficient operation.

さらに、本発明の参考例にかかる冷凍・空調装置は、少なくとも圧縮機、熱源側熱交換器、電子膨張弁および利用側熱交換器が冷媒配管を介して接続され、内部に吐出温度TdがR410A冷媒よりも上昇し易い冷媒が充填された冷凍サイクルと、前記吐出温度Tdが上限値以下のとき、前記電子膨張弁の開度を吸入ガス過熱度SH一定で制御し、前記吐出温度Tdが前記上限値を超えたとき、吐出過熱度TdSH一定もしくは吐出温度Td一定で前記電子膨張弁の開度を制御する膨張弁制御手段と、を備え、前記膨張弁制御手段は、更に前記圧縮機の回転数に応じて目標吐出過熱度TdSHもしくは目標吐出温度Tdを可変する目標値可変手段を備えていることを特徴とする。 Furthermore, in the refrigeration / air-conditioning apparatus according to the reference example of the present invention, at least a compressor, a heat source side heat exchanger, an electronic expansion valve, and a use side heat exchanger are connected via a refrigerant pipe, and a discharge temperature Td is R410A inside. When the refrigeration cycle is filled with a refrigerant that is more likely to rise than the refrigerant and the discharge temperature Td is less than or equal to the upper limit, the opening of the electronic expansion valve is controlled at a constant intake gas superheat degree SH, and the discharge temperature Td Expansion valve control means for controlling the degree of opening of the electronic expansion valve at a discharge superheat degree TdSH constant or a discharge temperature Td constant when the upper limit value is exceeded, and the expansion valve control means further rotates the compressor There is provided a target value varying means for varying the target discharge superheat degree TdSH or the target discharge temperature Td according to the number.

本発明の参考例によれば、運転中に圧縮機から吐出される冷媒の吐出温度Tdが予め設定されている上限値以下のとき、電子膨張弁の開度は吸入ガス過熱度SH一定で制御され、吐出温度Tdが上限値を超えたとき、吐出過熱度TdSH一定もしくは吐出温度Td一定で電子膨張弁の開度が制御されるため、吐出温度Tdが上昇し易いR32冷媒を用いた場合においても、吐出温度Tdが使用上限値を超えるのを防止し、圧縮機モータの絶縁グレードをそのままで使用可能とすることでコストアップを回避することができるとともに、吐出温度Tdを上がりにくくすることで冷凍機油の劣化を防ぐことができる。また、電子膨張弁の開度を吐出過熱度TdSH一定もしくは吐出温度Td一定で制御中に、圧縮機回転数が低下して圧縮比が小さくなると、電子膨張弁の開度を絞り過ぎる結果、吸入過熱度SHが大きくなり過ぎて熱交換性能が悪化するが、圧縮機回転数に応じて目標吐出過熱度TdSHもしくは吐出温度Tdを可変することにより、電子膨張弁の絞り過ぎを防止し、適切な運転状態を維持することができる。従って、吸入過熱度SHが大きくなり過ぎることによる熱交換性能の悪化を抑制し、効率のよい運転を行わせることができる。 According to the reference example of the present invention , when the discharge temperature Td of the refrigerant discharged from the compressor during operation is equal to or lower than a preset upper limit value, the opening degree of the electronic expansion valve is controlled at a constant intake gas superheat degree SH. When the discharge temperature Td exceeds the upper limit value, the opening degree of the electronic expansion valve is controlled with the discharge superheat degree TdSH constant or the discharge temperature Td constant. However, by preventing the discharge temperature Td from exceeding the upper limit of use and making the insulation grade of the compressor motor usable as it is, it is possible to avoid an increase in cost and to make the discharge temperature Td difficult to increase. Deterioration of refrigeration oil can be prevented. In addition, when the opening degree of the electronic expansion valve is controlled with the discharge superheat degree TdSH constant or the discharge temperature Td constant, if the compressor speed decreases and the compression ratio becomes small, the opening degree of the electronic expansion valve is reduced too much. Although the degree of superheat SH becomes too large and the heat exchange performance deteriorates, by varying the target discharge superheat degree TdSH or the discharge temperature Td according to the compressor rotational speed, the electronic expansion valve is prevented from being excessively throttled and appropriately The driving state can be maintained. Therefore, it is possible to suppress the deterioration of the heat exchange performance due to the excessive suction superheat degree SH and to perform an efficient operation.

本発明によると、吐出温度Tdが上昇し易いR32冷媒を用いた場合においても、吐出温度Tdが使用上限値を超えるのを防止し、圧縮機モータの絶縁グレードをそのままで使用可能とすることでコストアップを回避することができるとともに、吐出温度Tdを上がりにくくすることで冷凍機油の劣化を防ぐことができる。また、圧縮機回転数が変化せずに運転点が変化した場合でも、許容される吐出温度Tdの使用上限値と目標吐出過熱度TdSH+高圧圧力飽和温度とのいずれか低い方の値を目標値として電子膨張弁の開度を制御することができ、吐出温度Tdを圧縮機の使用上限値以下に抑えて、確実に使用制限を守ることができる。   According to the present invention, even when the R32 refrigerant that easily increases the discharge temperature Td is used, the discharge temperature Td is prevented from exceeding the upper limit of use, and the insulation grade of the compressor motor can be used as it is. Cost increase can be avoided and deterioration of the refrigerating machine oil can be prevented by making it difficult to raise the discharge temperature Td. Even when the operating point changes without changing the compressor rotation speed, the lower of the allowable upper limit value of the discharge temperature Td and the target discharge superheat degree TdSH + high pressure saturation temperature is set to the target value. As a result, the opening degree of the electronic expansion valve can be controlled, and the discharge temperature Td can be kept below the upper limit value for use of the compressor, so that the use limit can be reliably observed.

また、本発明によると、電子膨張弁の開度を吐出過熱度TdSH一定もしくは吐出温度Td一定で制御中に、圧縮機回転数が低下して圧縮比が小さくなると、電子膨張弁の開度を絞り過ぎる結果、吸入過熱度SHが大きくなり過ぎて熱交換性能が悪化するが、圧縮機回転数に応じて目標吐出過熱度TdSHもしくは吐出温度Tdを可変することにより、電子膨張弁の絞り過ぎを防止し、適切な運転状態を維持することができるため、吸入過熱度SHが大きくなり過ぎることによる熱交換性能の悪化を抑制し、効率のよい運転を行わせることができる。   Further, according to the present invention, when the opening degree of the electronic expansion valve is controlled at a constant discharge superheat degree TdSH or a constant discharge temperature Td, the opening degree of the electronic expansion valve is reduced when the compressor rotation speed is reduced and the compression ratio is reduced. As a result of excessive throttle, the suction superheat degree SH becomes too large and the heat exchange performance deteriorates. However, by varying the target discharge superheat degree TdSH or the discharge temperature Td according to the compressor rotation speed, the electronic expansion valve can be over throttled. Therefore, it is possible to prevent the heat exchange performance from being deteriorated due to excessive increase in the suction superheat degree SH, and to perform efficient operation.

本発明の一実施形態に係る冷凍・空調装置の冷媒回路図である。1 is a refrigerant circuit diagram of a refrigeration / air conditioning apparatus according to an embodiment of the present invention. 上記装置の電子膨張弁を吸入過熱度SH制御と吐出過熱度TdSHもしくは吐出温度Tdとで切替え制御する意義を説明するモリエル線図(A),(B)である。FIG. 5 is Mollier diagrams (A) and (B) for explaining the significance of switching control of the electronic expansion valve of the above apparatus between suction superheat degree SH control and discharge superheat degree TdSH or discharge temperature Td. 上記電子膨張弁を圧縮機の運転上限吐出温度Tdと演算による目標吐出過熱度TdSHもしくは吐出温度Tdとで目標値切替え制御する意義を説明するモリエル線図である。FIG. 6 is a Mollier diagram illustrating the significance of controlling the target value switching of the electronic expansion valve between the upper limit discharge temperature Td of the compressor and the calculated target discharge superheat degree TdSH or the discharge temperature Td. 上記電子膨張弁を圧縮機の回転数に応じて目標吐出過熱度TdSHもしくは吐出温度Tdを可変して制御する意義を説明するモリエル線図である。It is a Mollier diagram explaining the significance of controlling the electronic expansion valve by varying the target discharge superheat degree TdSH or the discharge temperature Td according to the rotation speed of the compressor. 上記圧縮機回転数とそれに応じて可変する目標吐出過熱度TdSHもしくは吐出温度Tdとの関係を示すグラフである。It is a graph which shows the relationship between the said compressor rotation speed and the target discharge superheat degree TdSH or discharge temperature Td which changes according to it. R410A冷媒を用いた冷凍サイクルのモリエル線図である。It is a Mollier diagram of the refrigerating cycle using R410A refrigerant. R32冷媒を用いた冷凍サイクルのモリエル線図である。It is a Mollier diagram of the refrigerating cycle using R32 refrigerant.

以下に、本発明の一実施形態について、図1ないし図5を用いて説明する。
図1には、本発明の一実施形態に係る冷凍・空調装置の冷媒回路図が示されている。
本実施形態に係る冷凍・空調装置1は、屋外に設置される熱源側ユニット(室外ユニット)2と、屋内の被空調空間内に設置される利用側ユニット(室内ユニット)3とを備えており、両ユニット2,3間を液側配管4およびガス側配管5を介して接続した構成とされている。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 5.
FIG. 1 shows a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus according to an embodiment of the present invention.
The refrigeration / air conditioning apparatus 1 according to the present embodiment includes a heat source side unit (outdoor unit) 2 installed outdoors and a use side unit (indoor unit) 3 installed in an indoor air-conditioned space. The units 2 and 3 are connected via a liquid side pipe 4 and a gas side pipe 5.

熱源側ユニット(室外ユニット)2は、冷媒を圧縮する圧縮機6、冷媒の循環方向を切換える四方切換弁7、冷媒と外気とを熱交換する熱源側熱交換器(室外熱交換器)8、暖房時、冷媒を減圧する暖房用電子膨張弁(EEVH)9、液冷媒を一時的に貯留するレシーバ10、冷房時、冷媒を減圧する冷房用電子膨張弁(EEVC)11、液側配管4を接続する液側操作弁12、ガス側配管5を接続するガス側操作弁13、液分を分離して圧縮機6にガス冷媒のみを吸入させるアキュームレータ14等を備えており、それらの機器類を冷媒配管15により図示の如く接続し、熱源側冷媒回路16を構成している。   The heat source side unit (outdoor unit) 2 includes a compressor 6 that compresses the refrigerant, a four-way switching valve 7 that switches the circulation direction of the refrigerant, a heat source side heat exchanger (outdoor heat exchanger) 8 that exchanges heat between the refrigerant and the outside air, A heating electronic expansion valve (EEVH) 9 that depressurizes the refrigerant during heating, a receiver 10 that temporarily stores liquid refrigerant, a cooling electronic expansion valve (EEVC) 11 that depressurizes the refrigerant during cooling, and a liquid side pipe 4. A liquid side operation valve 12 to be connected, a gas side operation valve 13 to which the gas side pipe 5 is connected, an accumulator 14 for separating the liquid component and sucking only the gas refrigerant into the compressor 6 and the like are provided. The heat source side refrigerant circuit 16 is configured by connecting the refrigerant pipes 15 as illustrated.

この熱源側ユニット2の熱源側冷媒回路16には、圧縮機6からの冷媒吐出配管15Aに対して、圧縮機6から吐出された高圧冷媒ガスの圧力が設定高圧で開閉する高圧圧力開閉器17および圧縮機6から吐出された冷媒ガスの温度を検出する吐出温度センサ(Td温度センサ)18が設けられるとともに、圧縮機6の冷媒吸入配管15Bに対して、圧縮機6に吸入される低圧冷媒ガスの圧力を検出する低圧圧力センサ19および圧縮機6に吸入される冷媒ガスの温度を検出する吸入温度センサ20が設けられている。   The heat source side refrigerant circuit 16 of the heat source side unit 2 has a high pressure switch 17 that opens and closes the pressure of the high pressure refrigerant gas discharged from the compressor 6 at a set high pressure with respect to the refrigerant discharge pipe 15A from the compressor 6. And a discharge temperature sensor (Td temperature sensor) 18 for detecting the temperature of the refrigerant gas discharged from the compressor 6 and a low-pressure refrigerant sucked into the compressor 6 with respect to the refrigerant suction pipe 15B of the compressor 6 A low-pressure sensor 19 that detects the gas pressure and a suction temperature sensor 20 that detects the temperature of the refrigerant gas sucked into the compressor 6 are provided.

また、熱源側熱交換器8には、中間部位の温度を検出する熱交温度センサ21および一端部位の温度を検出する熱交温度センサ22が設けられるとともに、熱源側熱交換器8に対して、図示省略した室外送風機を介して通風される外気の温度を検出する外気温センサ23が設けられている。   Further, the heat source side heat exchanger 8 is provided with a heat exchange temperature sensor 21 for detecting the temperature of the intermediate part and a heat exchange temperature sensor 22 for detecting the temperature of one end part, and for the heat source side heat exchanger 8. An outside air temperature sensor 23 is provided for detecting the temperature of outside air that is ventilated through an outdoor blower (not shown).

一方、利用側ユニット(室内ユニット)3は、利用側冷媒回路24に設けられ、冷媒と図示省略した室内送風機を介して循環される室内空気とを熱交換し、室内空気を冷却または加熱する利用側熱交換器(室外熱交換器)25を備えており、該利用側熱交換器25で冷却または加熱された空気を室内に吹出すことにより、室内の冷房または暖房に供されるものである。   On the other hand, the use side unit (indoor unit) 3 is provided in the use side refrigerant circuit 24, and exchanges heat between the refrigerant and indoor air circulated through an indoor fan (not shown) to cool or heat the indoor air. A side heat exchanger (outdoor heat exchanger) 25 is provided, and the air cooled or heated by the use side heat exchanger 25 is blown into the room to be used for indoor cooling or heating. .

利用側熱交換器25には、中間部位の温度を検出する熱交温度センサ26および一端部位の温度を検出する熱交温度センサ27が設けられているとともに、利用側熱交換器25に室内送風機を介して吸込まれる室内空気の温度を検出する吸込み温度センサ28が設けられている。   The use side heat exchanger 25 is provided with a heat exchange temperature sensor 26 for detecting the temperature of the intermediate part and a heat exchange temperature sensor 27 for detecting the temperature of one end part. A suction temperature sensor 28 is provided for detecting the temperature of room air sucked through the air.

そして、上記熱源側冷媒回路16と利用側冷媒回路24とを液側操作弁12およびガス側操作弁13を用い、液側配管4およびガス側配管5をフレア接続することにより、閉サイクルの冷凍サイクル29を構成しており、その冷凍サイクル29の内部に、R32冷媒のように吐出温度TdがR410A冷媒よりも上昇し易い冷媒を所要量充填することによって、冷凍・空調装置1を構成している。   Then, the heat source side refrigerant circuit 16 and the use side refrigerant circuit 24 are connected to the liquid side pipe 4 and the gas side pipe 5 by using the liquid side operation valve 12 and the gas side operation valve 13, thereby refrigeration in a closed cycle. The refrigeration / air-conditioning apparatus 1 is configured by filling the refrigeration cycle 29 with a required amount of refrigerant, such as R32 refrigerant, whose discharge temperature Td is likely to rise higher than that of the R410A refrigerant. Yes.

上記冷凍サイクル29において、圧縮機6で圧縮された冷媒を、四方切換弁7により実線矢印で示すように、熱源側熱交換器8、レシーバ10、冷房用電子膨張弁11、液側配管4、利用側熱交換器25、ガス側配管5、四方切換弁7、アキュームレータ14、圧縮機6の順に循環させることにより冷却・冷房サイクルを形成し、熱源側熱交換器8を凝縮器、利用側熱交換器25を蒸発器として機能させ、その蒸発器での冷媒の吸熱作用で冷却された空気を室内に吹出すことにより、冷却・冷房運転が行えるようにしている。   In the refrigeration cycle 29, the refrigerant compressed by the compressor 6, as indicated by a solid arrow by the four-way switching valve 7, is a heat source side heat exchanger 8, a receiver 10, a cooling electronic expansion valve 11, a liquid side pipe 4, A cooling / cooling cycle is formed by circulating the use side heat exchanger 25, the gas side pipe 5, the four-way switching valve 7, the accumulator 14, and the compressor 6 in this order, and the heat source side heat exchanger 8 is a condenser, use side heat. The exchanger 25 is made to function as an evaporator, and air cooled by the endothermic action of the refrigerant in the evaporator is blown into the room so that the cooling / cooling operation can be performed.

また、圧縮機6で圧縮された冷媒を、四方切換弁7により破線矢印で示すように、ガス側配管5、利用側熱交換器25、液側配管4、レシーバ10、暖房用電子膨張弁9、液側配管4、熱源側熱交換器8、四方切換弁7、アキュームレータ14、圧縮機6の順に循環させることにより加熱・暖房サイクルを形成し、利用側熱交換器25を凝縮器、熱源側熱交換器8を蒸発器として機能させ、その凝縮器での冷媒の放熱作用で加熱された空気を室内に吹出すことにより、加熱・暖房運転が行えるようにしている。   Further, the refrigerant compressed by the compressor 6 is indicated by broken arrows by the four-way switching valve 7, as shown by the gas side pipe 5, the use side heat exchanger 25, the liquid side pipe 4, the receiver 10, and the heating electronic expansion valve 9. , Liquid side piping 4, heat source side heat exchanger 8, four-way switching valve 7, accumulator 14, compressor 6 are circulated in this order to form a heating / heating cycle, and use side heat exchanger 25 is connected to the condenser, heat source side The heat exchanger 8 is made to function as an evaporator, and air heated by the heat radiation action of the refrigerant in the condenser is blown into the room so that heating / heating operation can be performed.

熱源側ユニット(室外ユニット)2および利用側ユニット(室内ユニット)3には、各ユニット2,3の運転を制御する熱源側および利用側コントローラ30,31が設けられており、各コントローラ30,31は互いに通信線32を介して接続されている。このコントローラ30,31は、上記各センサ類からの検出信号が入力され、その検出値とリモコン(図示省略)等から入力された運転信号、設定信号等に基づき、記憶部33,34に記憶されている制御プログラムに従い、マイコン等を介して圧縮機6のオンオフおよび回転数、四方切換弁7の切換え、図示省略した室外送風機のオンオフおよび回転数、暖房用電子膨張弁9および冷房用電子膨張弁11の開度、図示省略した室内送風機のオンオフおよび回転数等を適宜制御することにより、冷凍・空調装置1の運転をコントロールするものである。   The heat source side unit (outdoor unit) 2 and the use side unit (indoor unit) 3 are provided with heat source side and use side controllers 30, 31 for controlling the operation of the units 2, 3. Are connected to each other via a communication line 32. The controllers 30 and 31 receive detection signals from the sensors, and are stored in the storage units 33 and 34 based on the detected values and operation signals and setting signals input from a remote controller (not shown). In accordance with the control program, the compressor 6 is turned on / off and the rotational speed, the four-way switching valve 7 is switched, the outdoor blower on / off and the rotational speed are omitted, the heating electronic expansion valve 9 and the cooling electronic expansion valve. The operation of the refrigeration / air-conditioning apparatus 1 is controlled by appropriately controlling the opening degree of 11, the on / off of the indoor blower (not shown), the rotational speed, and the like.

また、本実施形態において、熱源側コントローラ30には、通常の冷房運転時、吸入温度センサ20の検出値と、熱交温度センサ26の検出値または低圧圧力センサ19で検出される圧力の飽和温度との差から求められる一方、暖房運転時、吸入温度センサ20の検出値と熱交温度センサ21の検出値または低圧圧力センサ19で検出される圧力の飽和温度との差から求められる吸入過熱度SHが一定となるように、冷房用電子膨張弁(EEVC)11または暖房用電子膨張弁(EEVH)9の開度を制御する膨張弁制御手段35が設けられている。   In the present embodiment, the heat source side controller 30 includes a detected value of the suction temperature sensor 20 and a detected value of the heat exchanger temperature sensor 26 or a saturation temperature of the pressure detected by the low pressure sensor 19 during normal cooling operation. On the other hand, during heating operation, the degree of suction superheat obtained from the difference between the detected value of the suction temperature sensor 20 and the detected value of the heat exchanger temperature sensor 21 or the saturation temperature of the pressure detected by the low pressure sensor 19 Expansion valve control means 35 for controlling the opening degree of the cooling electronic expansion valve (EEVC) 11 or the heating electronic expansion valve (EEVH) 9 is provided so that SH is constant.

この膨張弁制御手段35は、通常の冷・暖房運転中に、吐出温度センサ(Td温度センサ)18で検出される圧縮機6から吐出された冷媒の温度(吐出温度)Tdが予め設定された温度(例えば、95℃)を超えたとき、吸入過熱度SH一定制御から吐出過熱度TdSH一定制御もしくは吐出温度Td一定制御に切替える機能を有するものとされている。
なお、吐出過熱度TdSHは、吐出温度センサ18の検出値と冷房時は熱交温度センサ21の検出値、暖房時は熱交温度センサ26の検出値との差(高圧圧力センサを備えているものでは、その検出圧力の飽和温度(高圧圧力飽和温度)を用いてもよい。)から求めることができる。
The expansion valve control means 35 is preset with the temperature (discharge temperature) Td of the refrigerant discharged from the compressor 6 detected by the discharge temperature sensor (Td temperature sensor) 18 during normal cooling / heating operation. When the temperature (for example, 95 ° C.) is exceeded, it has a function of switching from the suction superheat degree SH constant control to the discharge superheat degree TdSH constant control or the discharge temperature Td constant control.
The discharge superheat degree TdSH is a difference between the detection value of the discharge temperature sensor 18 and the detection value of the heat exchange temperature sensor 21 during cooling, and the detection value of the heat exchange temperature sensor 26 during heating (a high pressure sensor is provided. In this case, the saturation temperature of the detected pressure (high pressure saturation temperature) may be used).

上記切替え制御は、図2(A)に示されるように、吸入過熱度SH一定制御中に、例えば圧縮機6の回転数が上昇し、圧縮比が白抜き矢印で示すように大きくなった場合、吸入過熱度SH一定をキープしたままだと、吐出温度Tdが使用上限値(太い一点鎖線)を超える場合が発生する。そこで、吐出温度Tdが予め設定されている温度(使用上限値;例えば95℃)を超えた場合、冷房用電子膨張弁11または暖房用電子膨張弁9の開度制御を吐出過熱度TdSH一定制御もしくは吐出温度Td一定制御に切替えるものである。   In the above switching control, as shown in FIG. 2A, during the suction superheat degree SH constant control, for example, when the rotation speed of the compressor 6 increases and the compression ratio increases as shown by the white arrow. If the suction superheat degree SH is kept constant, the discharge temperature Td may exceed the use upper limit value (thick one-dot chain line). Thus, when the discharge temperature Td exceeds a preset temperature (upper limit value; for example, 95 ° C.), the opening degree control of the cooling electronic expansion valve 11 or the heating electronic expansion valve 9 is controlled to a constant discharge superheat degree TdSH. Or it switches to discharge temperature Td fixed control.

このように、冷房用電子膨張弁11または暖房用電子膨張弁9の開度を吐出過熱度TdSH一定制御もしくは吐出温度Td一定制御に切替えることにより、図2(B)に示すように、圧縮機6による圧縮作用を白抜き矢印の如く制御し、吐出温度Tdを圧縮機6のモータ巻線の絶縁を破壊しない使用制限内の温度に抑制することができる。この場合、図2(B)に示すように、吸入過熱度SHが0以下(飽和ガス線よりも左側領域)となり、湿りガスが吸入され、若干の液バック気味運転となるが、吐出過熱度TdSHを十分高く保つことにより、信頼性を確保することができる。   In this way, by switching the opening degree of the cooling electronic expansion valve 11 or the heating electronic expansion valve 9 to the discharge superheat degree TdSH constant control or the discharge temperature Td constant control, as shown in FIG. 6 can be controlled as indicated by white arrows, and the discharge temperature Td can be suppressed to a temperature within the usage limit that does not break the insulation of the motor winding of the compressor 6. In this case, as shown in FIG. 2 (B), the suction superheat degree SH becomes 0 or less (the left side region from the saturated gas line), the wet gas is sucked, and a slight liquid back operation is performed. Reliability can be ensured by keeping TdSH sufficiently high.

さらに、上記膨張弁制御手段35により、冷房用電子膨張弁11または暖房用電子膨張弁9の開度を吐出過熱度TdSH一定もしくは吐出温度Td一定で制御中に、圧縮機回転数が変わらないまま運転点が変化した場合(例えば、冷房運転中に外気温が上昇し、高圧が上昇した場合等)、図3に破線で示すように運転点が変化することがあり、この場合、吐出過熱度TdSHを一定に制御したとしても、吐出温度Tdが使用上限値を超える可能性がある。   Further, while the opening degree of the cooling electronic expansion valve 11 or the heating electronic expansion valve 9 is controlled by the expansion valve control means 35 at a constant discharge superheat degree TdSH or a constant discharge temperature Td, the compressor rotational speed remains unchanged. When the operating point changes (for example, when the outside air temperature rises and the high pressure rises during the cooling operation), the operating point may change as shown by a broken line in FIG. Even if TdSH is controlled to be constant, the discharge temperature Td may exceed the upper limit of use.

かかる事態を回避するため、膨張弁制御手段35に対し目標値切替え手段36を設けている。目標値切替え手段36は、吐出過熱度TdSH一定もしくは吐出温度Td一定で制御中に、吐出過熱度TdSH一定で制御を行っている場合、圧縮機回転数から演算により得られる目標吐出過熱度TdSH+高圧圧力飽和温度と、圧縮機6として許容される吐出温度Tdの使用上限値とを比較し、いずれか低い方の値を目標値として吐出過熱度TdSH一定で制御するか、吐出温度Td一定で制御するかを切替えるものである。   In order to avoid such a situation, target value switching means 36 is provided for expansion valve control means 35. When the target value switching means 36 is performing control with the discharge superheat degree TdSH constant or the discharge temperature Td constant, and the control with the discharge superheat degree TdSH constant, the target discharge superheat degree TdSH + high pressure obtained by calculation from the compressor rotational speed. The pressure saturation temperature is compared with the upper limit value of the discharge temperature Td allowed for the compressor 6, and the lower value is set as a target value to control the discharge superheat degree TdSH constant, or the discharge temperature Td constant control. It is to switch whether to do.

また、上記目標値切替え手段36は、吐出過熱度TdSH一定もしくは吐出温度Td一定で制御中に、吐出温度Td一定で制御を行っている場合、圧縮機回転数と高圧圧力飽和温度から演算により得られる目標吐出温度Tdと、圧縮機6として許容される吐出温度Tdの使用上限値とを比較し、いずれか低い方の値を目標値として吐出温度Td一定で制御を行う構成とされている。   Further, the target value switching means 36 can be obtained by calculation from the compressor rotational speed and the high pressure saturation temperature when the control is performed at the discharge temperature Td constant during the control at the discharge superheat degree TdSH constant or the discharge temperature Td constant. The target discharge temperature Td and the upper limit value of the discharge temperature Td allowed for the compressor 6 are compared, and the control is performed with the discharge temperature Td constant with the lower value as the target value.

更に、本実施形態の参考例においては、膨張弁制御手段35に対して、冷房用電子膨張弁11または暖房用電子膨張弁9の開度を吐出過熱度TdSH一定もしくは吐出温度Td一定で制御中に、圧縮機6の回転数に応じて吐出過熱度TdSHもしくは吐出温度Tdの目標値を可変する目標値可変手段37が設けられている。 Further, in the reference example of the present embodiment, the opening degree of the cooling electronic expansion valve 11 or the heating electronic expansion valve 9 is being controlled by the expansion valve control means 35 at a constant discharge superheat degree TdSH or a constant discharge temperature Td. In addition, a target value variable means 37 for changing the target value of the discharge superheat degree TdSH or the discharge temperature Td according to the rotation speed of the compressor 6 is provided.

一般的に、圧縮機6の回転数が低下してくると、熱交換器の性能が余ってくることから高圧が低下、低圧が上昇し、圧縮比が小さくなる。このため、図4に示すように、目標吐出過熱度TdSHもしくは目標吐出温度Tdが一定のままだと、結果として細かい破線で示すように、吸入過熱度SHが吸入過熱度SH一定制御している時の制御値よりも大きくなる可能性がある。そこで、圧縮機6の回転数に応じて吐出過熱度TdSHもしくは吐出温度Tdの目標値を可変する目標値可変手段37を設け、冷房用電子膨張弁11または暖房用電子膨張弁9の絞り過ぎを防止するようにしている。   Generally, when the rotational speed of the compressor 6 decreases, the performance of the heat exchanger increases, so the high pressure decreases, the low pressure increases, and the compression ratio decreases. Therefore, as shown in FIG. 4, if the target discharge superheat degree TdSH or the target discharge temperature Td remains constant, as a result, the suction superheat degree SH is controlled to be constant as shown by a fine broken line. It may be larger than the control value of the hour. Therefore, a target value variable means 37 for changing the target value of the discharge superheat degree TdSH or the discharge temperature Td according to the rotation speed of the compressor 6 is provided, and the cooling electronic expansion valve 11 or the heating electronic expansion valve 9 is excessively throttled. I try to prevent it.

この際、圧縮機回転数と吐出過熱度TdSHもしくは吐出温度Tdとの関係は、図5に示すように、一定の回転数範囲で吐出過熱度TdSHもしくは吐出温度Tdの目標値がリニアに変化するように設定すればよく、吐出過熱度TdSHもしくは吐出温度Tdが小さくなり過ぎると、液バック状態となることから、一定値以上の目標値(吐出過熱度TdSHもしくは吐出温度Td)を確保し、吐出過熱度TdSHもしくは吐出温度Tdが大きくなり過ぎると、吐出温度Tdが使用上限値を超えることから、或る値で頭打ちとなるように設定している。   At this time, as shown in FIG. 5, the relationship between the compressor rotational speed and the discharge superheat degree TdSH or the discharge temperature Td is such that the target value of the discharge superheat degree TdSH or the discharge temperature Td changes linearly within a certain rotational speed range. If the discharge superheat degree TdSH or the discharge temperature Td becomes too small, the liquid back state occurs. Therefore, a target value (discharge superheat degree TdSH or discharge temperature Td) equal to or higher than a certain value is secured and discharged. If the degree of superheat TdSH or the discharge temperature Td becomes too high, the discharge temperature Td exceeds the upper limit value for use, so that the value reaches a certain value.

また、図4に示すように、吸入過熱度SHが大きくなってきた場合、基本的には吐出過熱度TdSH一定制御もしくは吐出温度Td一定制御から、吸入過熱度SH一定制御に戻すことになるが、頻繁に制御が切替わると安定運転が阻害されることになるので、ヒステリシスを設け、一度制御が切替わったら、ある程度吸入過熱度SHが上昇するか、吐出過熱度TdSHもしくは吐出温度Tdが規定値以上低下するまで、制御を切替えないようにすればよい。   Further, as shown in FIG. 4, when the suction superheat degree SH becomes larger, basically, the control is returned from the discharge superheat degree TdSH constant control or the discharge temperature Td constant control to the suction superheat degree SH constant control. If the control is frequently switched, stable operation is hindered. Therefore, hysteresis is provided, and once the control is switched, the suction superheat degree SH rises to some extent or the discharge superheat degree TdSH or the discharge temperature Td is specified. Control may not be switched until the value drops by more than the value.

以上に説明の実施形態によれば、以下の作用効果を奏する。
上記冷凍・空調装置1において、圧縮機6から吐出された高温高圧の冷媒ガスを、四方切換弁7により実線矢印方向に循環させて冷却・冷房サイクルを形成し、熱源側熱交換器8を凝縮器、利用側熱交換器25を蒸発器として機能させることにより、冷却・冷房運転を行うことができる一方、圧縮機6から吐出された高温高圧の冷媒ガスを、四方切換弁7により破線矢印方向に循環させて加熱・暖房サイクルを形成し、利用側熱交換器25を凝縮器、熱源側熱交換器8を蒸発器として機能させることにより、加熱・暖房運転を行うことができる。
According to the embodiment described above, the following operational effects are obtained.
In the refrigeration / air-conditioning apparatus 1, the high-temperature and high-pressure refrigerant gas discharged from the compressor 6 is circulated in the direction of the solid arrow by the four-way switching valve 7 to form a cooling / cooling cycle, and the heat source side heat exchanger 8 is condensed. The cooling / cooling operation can be performed by making the use side heat exchanger 25 function as an evaporator, while the high-temperature and high-pressure refrigerant gas discharged from the compressor 6 is fed by the four-way switching valve 7 in the direction of the broken line arrow It is possible to perform heating / heating operation by forming a heating / heating cycle and causing the use side heat exchanger 25 to function as a condenser and the heat source side heat exchanger 8 as an evaporator.

これらの冷却・冷房および加熱・暖房運転中、冷房用電子膨張弁(EEVC)11または暖房用電子膨張弁(EEVH)9は、膨張弁制御手段35を介して吸入過熱度SHが一定となるように開度が制御される。そして、かかる運転中に吐出温度センサ18により検出された冷媒の吐出温度Tdが予め設定されている使用上限値(本実施形態の場合、95℃)を超えると、吸入過熱度SH一定から吐出過熱度TdSH一定制御もしくは吐出温度Td一定制御に切替えられる。   During these cooling / cooling and heating / heating operations, the cooling electronic expansion valve (EEVC) 11 or the heating electronic expansion valve (EEVH) 9 has a constant suction superheat degree SH via the expansion valve control means 35. The opening degree is controlled. When the refrigerant discharge temperature Td detected by the discharge temperature sensor 18 during such operation exceeds a preset use upper limit value (95 ° C. in this embodiment), the discharge superheat from a constant suction superheat degree SH. The control is switched to constant TdSH control or discharge temperature Td constant control.

これによって、R410A冷媒に比べ吐出温度Tdが上昇し易いR32冷媒を用いた場合でも、低圧縮比領域では、吸入過熱度SHを一定に制御することにより、液バックを確実に防止して信頼性の高い運転を行うことができ、また、高圧縮比で吐出温度Tdが上昇し易い領域では、若干液バック気味で運転することにより、吐出温度Tdが使用上限値を超えるのを防止し、圧縮機モータの絶縁グレードをそのままで使用可能とすることでコストアップを回避することができる。しかも、吐出温度Tdを上がりにくくすることで冷凍機油の劣化を防止することができる。   As a result, even when the R32 refrigerant whose discharge temperature Td is likely to rise as compared with the R410A refrigerant is used, in the low compression ratio region, by controlling the suction superheat degree SH to be constant, the liquid back is surely prevented and the reliability is improved. In a region where the discharge temperature Td is likely to rise at a high compression ratio, the discharge temperature Td can be prevented from exceeding the upper limit of use by operating with a slight liquid back. The cost increase can be avoided by making the insulation grade of the machine motor usable as it is. Moreover, deterioration of the refrigerating machine oil can be prevented by making it difficult to raise the discharge temperature Td.

また、冷房用電子膨張弁11または暖房用電子膨張弁9を吐出過熱度TdSH一定もしくは吐出温度Td一定で制御している場合において、運転中の高圧レベルによって吐出温度Tdが変化することがある。例えば、冷房中に外気温が上昇して高圧が上昇することによって、圧縮機回転数が変わらないまま運転点が変化し、図3に示すように、吐出過熱度TdSHだけを制御していると、吐出温度Tdが許容されている使用上限値を超える可能性がある。   Further, when the cooling electronic expansion valve 11 or the heating electronic expansion valve 9 is controlled at a constant discharge superheat TdSH or a constant discharge temperature Td, the discharge temperature Td may change depending on the high pressure level during operation. For example, when the outside air temperature rises and the high pressure rises during cooling, the operating point changes without changing the compressor rotation speed, and only the discharge superheat degree TdSH is controlled as shown in FIG. There is a possibility that the discharge temperature Td may exceed the allowable upper limit value.

しかし、上記の如く吐出過熱度TdSH一定もしくは吐出温度Td一定で制御中は、目標値切替え手段36により、吐出過熱度TdSH一定で制御を行っている場合、圧縮機回転数から演算により得られる目標吐出過熱度TdSH+高圧圧力飽和温度と、圧縮機6として許容される吐出温度Tdの使用上限値とを比較し、いずれか低い方の値を目標値として吐出過熱度TdSH一定で制御するか、吐出温度Td一定で制御するかを切替える。また、吐出温度Td一定で制御を行っている場合、圧縮機回転数と高圧圧力飽和温度から演算により得られる目標吐出温度Tdと、圧縮機6として許容される吐出温度Tdの使用上限値とを比較し、いずれか低い方の値を目標値として採用し、吐出温度Td一定で制御するようにしている。   However, during the control with the discharge superheat degree TdSH constant or the discharge temperature Td constant as described above, when the target value switching means 36 performs the control with the discharge superheat degree TdSH constant, the target obtained by calculation from the compressor rotational speed. Comparing the discharge superheat degree TdSH + high pressure saturation temperature with the upper limit value of the discharge temperature Td allowed for the compressor 6, and controlling the discharge superheat degree TdSH constant with the lower value as the target value Switches whether to control at a constant temperature Td. Further, when the control is performed with the discharge temperature Td constant, the target discharge temperature Td obtained by calculation from the compressor rotation speed and the high pressure saturation temperature, and the upper limit value of the discharge temperature Td allowed for the compressor 6 are set. In comparison, the lower value is adopted as the target value, and the discharge temperature Td is controlled to be constant.

このため、上記の如く、圧縮機6の回転数が変わらずに運転点が変化した場合でも、許容される吐出温度Tdの上限値と目標吐出過熱度TdSH+高圧圧力飽和温度とのいずれか低い方の値を目標値として、冷房用電子膨張弁11または暖房用電子膨張弁9の開度を制御することにより、吐出温度Tdを圧縮機6の使用上限値以下に抑え、その使用制限を守ることができる。   Therefore, as described above, even when the operating point changes without changing the rotation speed of the compressor 6, the lower of the upper limit value of the allowable discharge temperature Td and the target discharge superheat degree TdSH + high pressure saturation temperature. By controlling the opening degree of the cooling electronic expansion valve 11 or the heating electronic expansion valve 9 with the value of the value as a target value, the discharge temperature Td can be kept below the upper limit of use of the compressor 6 and the use limit can be observed. Can do.

さらに、本実施形態の参考例においては、膨張弁制御手段35に対して圧縮機6の回転数に応じて吐出過熱度TdSHもしくは吐出温度Tdの目標値を可変する目標値可変手段37を設けている。つまり、冷房用電子膨張弁11または暖房用電子膨張弁9の開度を吐出過熱度TdSH一定もしくは吐出温度Td一定で制御中に、圧縮機6の回転数が低下して圧縮比が小さくなると、目標吐出過熱度TdSHもしくは吐出温度Tdが一定の場合、冷房用電子膨張弁11または暖房用電子膨張弁9の開度を絞り過ぎる結果、吸入過熱度SHが大きくなり過ぎて熱交換性能が悪化する。 Further, in the reference example of the present embodiment, the target value variable means 37 for changing the target value of the discharge superheat degree TdSH or the discharge temperature Td according to the rotation speed of the compressor 6 is provided for the expansion valve control means 35. Yes. That is, when the opening degree of the cooling electronic expansion valve 11 or the heating electronic expansion valve 9 is controlled with the discharge superheat degree TdSH constant or the discharge temperature Td constant, when the rotation speed of the compressor 6 decreases and the compression ratio decreases, When the target discharge superheat degree TdSH or the discharge temperature Td is constant, the opening degree of the cooling electronic expansion valve 11 or the heating electronic expansion valve 9 is excessively narrowed. As a result, the intake superheat degree SH becomes too large and the heat exchange performance deteriorates. .

しかるに、目標値可変手段37により圧縮機6の回転数に応じて、図5に示すように目標値の吐出過熱度TdSHもしくは吐出温度Tdを可変することにより、適切な運転状態を維持して効率のよい運転を行うことができる。   However, by changing the target value discharge superheat degree TdSH or the discharge temperature Td as shown in FIG. 5 according to the number of rotations of the compressor 6 by the target value variable means 37, an appropriate operation state is maintained and efficiency is improved. Can perform good driving.

なお、本発明は、上記実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。例えば、上記実施形態では、制御目標値である吐出過熱度TdSHもしくは吐出温度Tdを圧縮機6の回転数に応じて可変する形態について、吐出過熱度TdSHと吐出温度Tdとを便宜的に同列で扱い、吐出過熱度TdSHを可変とし、吐出温度Tdを一定としている例について説明をしたが、吐出過熱度TdSHを使わずに、高圧圧力飽和温度と目標吐出温度Tdとの関係をマップとして持っている構成としてもよいことはもちろんである。   In addition, this invention is not limited to the invention concerning the said embodiment, In the range which does not deviate from the summary, it can change suitably. For example, in the above-described embodiment, the discharge superheat degree TdSH and the discharge temperature Td are arranged in the same row for convenience in the form in which the discharge superheat degree TdSH or the discharge temperature Td, which is the control target value, is varied according to the rotation speed of the compressor 6. In this example, the discharge superheat degree TdSH is variable and the discharge temperature Td is constant. However, the relationship between the high pressure saturation temperature and the target discharge temperature Td is used as a map without using the discharge superheat degree TdSH. Of course, the configuration may be good.

さらに、上記実施形態では、暖房用電子膨張弁(EEVH)9と冷房用電子膨張弁(EEVC)11とを別個に設けた冷凍・空調装置1の例について説明したが、単一の電子膨張弁(EEV)を用いた構成としてもよく、あるいは冷房用電子膨張弁(EEVC)11を利用側ユニット(室内ユニット)3内に配設した構成としてもよい。また、冷凍サイクル29は、圧縮機、熱源側熱交換器、電子膨張弁および利用側熱交換器を備えた基本サイクルを有するものであればよく、上記実施形態の冷凍サイクルに限らず、様々な構成のサイクルに変形可能なことは云うまでもない。   Furthermore, although the said embodiment demonstrated the example of the freezing / air-conditioning apparatus 1 which provided the electronic expansion valve for heating (EEVH) 9 and the electronic expansion valve for cooling (EEVC) 11 separately, single electronic expansion valve (EEV) may be used, or a cooling electronic expansion valve (EEVC) 11 may be provided in the use side unit (indoor unit) 3. Further, the refrigeration cycle 29 only needs to have a basic cycle including a compressor, a heat source side heat exchanger, an electronic expansion valve, and a use side heat exchanger, and is not limited to the refrigeration cycle of the above embodiment. It goes without saying that it can be transformed into a cycle of construction.

1 冷凍・空調装置
6 圧縮機
8 熱源側熱交換器
9 暖房用電子膨張弁(EEVH)
11 冷房用電子膨張弁(EEVC)
15 冷媒配管
18 吐出温度センサ
19 低圧圧力センサ
20 吸入温度センサ
21,22,26,27 熱交温度センサ
29 冷凍サイクル
30 熱源側コントローラ
31 利用側コントローラ
35 膨張弁制御手段
36 目標値切替え手段
37 目標値可変手段
1 Refrigeration / air-conditioning device 6 Compressor 8 Heat source side heat exchanger 9 Heating electronic expansion valve (EEVH)
11 Electronic expansion valve for cooling (EEVC)
15 Refrigerant piping 18 Discharge temperature sensor 19 Low pressure sensor 20 Suction temperature sensors 21, 22, 26, 27 Heat exchange temperature sensor 29 Refrigeration cycle 30 Heat source side controller 31 Use side controller 35 Expansion valve control means 36 Target value switching means 37 Target value Variable means

Claims (2)

少なくとも圧縮機、熱源側熱交換器、電子膨張弁および利用側熱交換器が冷媒配管を介して接続され、内部に吐出温度TdがR410A冷媒よりも上昇し易い冷媒が充填された冷凍サイクルと、
前記吐出温度Tdが上限値以下のとき、前記電子膨張弁の開度を吸入ガス過熱度SH一定で制御し、前記吐出温度Tdが前記上限値を超えたとき、吐出過熱度TdSH一定もしくは吐出温度Td一定で前記電子膨張弁の開度を制御する膨張弁制御手段と、を備え、
前記膨張弁制御手段は、前記吐出過熱度TdSH一定もしくは前記吐出温度Td一定で制御中、前記吐出過熱度TdSH一定制御を行っている場合、圧縮機回転数の演算から得られた目標吐出過熱度TdSH+高圧圧力飽和温度と、前記吐出温度Tdの上限値とのいずれか低い方を目標値とした前記吐出過熱度TdSH一定制御か前記吐出温度Td一定制御に切替え、前記吐出温度Td一定制御を行っている場合、圧縮機回転数と前記高圧圧力飽和温度との演算から得られた目標吐出温度Tdと、前記上限値とを比較し、いずれか低い方を目標吐出温度Tdに採用する目標値切替え手段を備えていることを特徴とする冷凍・空調装置。
A refrigeration cycle in which at least a compressor, a heat source side heat exchanger, an electronic expansion valve, and a use side heat exchanger are connected via a refrigerant pipe, and the inside is filled with a refrigerant whose discharge temperature Td is more likely to rise than the R410A refrigerant;
When the discharge temperature Td is equal to or lower than the upper limit value, the opening degree of the electronic expansion valve is controlled at a constant suction gas superheat degree SH, and when the discharge temperature Td exceeds the upper limit value, the discharge superheat degree TdSH constant or the discharge temperature is controlled. Expansion valve control means for controlling the opening of the electronic expansion valve at a constant Td,
When the expansion valve control means performs the discharge superheat degree TdSH constant control during the discharge superheat degree TdSH constant or the discharge temperature Td constant control, the target discharge superheat degree obtained from the calculation of the compressor rotation speed is performed. Switching to the discharge superheat degree TdSH constant control or the discharge temperature Td constant control with the lower one of TdSH + high pressure saturation temperature and the upper limit of the discharge temperature Td as a target value, and performing the discharge temperature Td constant control If it is, the target discharge temperature Td obtained from the calculation of the compressor speed and the high pressure saturation temperature is compared with the upper limit value, and the lower one is adopted as the target discharge temperature Td. A refrigeration / air-conditioning device comprising means.
前記膨張弁制御手段は、更に前記圧縮機の回転数に応じて目標吐出過熱度TdSHもしくは目標吐出温度Tdを可変する目標値可変手段を備えていることを特徴とする請求項1に記載の冷凍・空調装置。   2. The refrigeration according to claim 1, wherein the expansion valve control means further comprises target value variable means for varying the target discharge superheat degree TdSH or the target discharge temperature Td in accordance with the rotational speed of the compressor.・ Air conditioning equipment.
JP2015158200A 2015-08-10 2015-08-10 Refrigeration and air conditioning equipment Active JP6594698B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015158200A JP6594698B2 (en) 2015-08-10 2015-08-10 Refrigeration and air conditioning equipment
AU2016213701A AU2016213701B2 (en) 2015-08-10 2016-08-08 Refrigeration / air-conditioning device
EP16183268.8A EP3130870B1 (en) 2015-08-10 2016-08-08 Refrigerating/air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015158200A JP6594698B2 (en) 2015-08-10 2015-08-10 Refrigeration and air conditioning equipment

Publications (2)

Publication Number Publication Date
JP2017036881A JP2017036881A (en) 2017-02-16
JP6594698B2 true JP6594698B2 (en) 2019-10-23

Family

ID=57046947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015158200A Active JP6594698B2 (en) 2015-08-10 2015-08-10 Refrigeration and air conditioning equipment

Country Status (3)

Country Link
EP (1) EP3130870B1 (en)
JP (1) JP6594698B2 (en)
AU (1) AU2016213701B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4343233A1 (en) 2022-09-20 2024-03-27 Ariston S.P.A. Optimized management method of an environmentally friendly heat pump

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6767841B2 (en) * 2016-10-14 2020-10-14 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
EP3721154A1 (en) * 2017-12-06 2020-10-14 Johnson Controls Technology Company Control system and a control method for a hvac unit and a media comprising such processor-executable instructions
US10955179B2 (en) 2017-12-29 2021-03-23 Johnson Controls Technology Company Redistributing refrigerant between an evaporator and a condenser of a vapor compression system
KR102067447B1 (en) * 2018-01-25 2020-01-20 삼성전자주식회사 Air conditioner and control method thereof
CN109798626A (en) * 2019-01-07 2019-05-24 广东美的暖通设备有限公司 The control method and device of the electric expansion valve of outer machine heat exchanger
CN112556127B (en) 2019-09-10 2022-03-11 广东美的制冷设备有限公司 Air conditioner cold accumulation control method and device and computer readable storage medium
IT201900021534A1 (en) * 2019-11-19 2021-05-19 Carel Ind Spa CO2 SINGLE VALVE REFRIGERATOR AND REGULATION METHOD OF THE SAME
CN111664559B (en) * 2020-06-28 2021-08-24 珠海拓芯科技有限公司 Control method and device of electronic expansion valve and air conditioner
CN112710071B (en) * 2020-12-28 2022-07-26 宁波奥克斯电气股份有限公司 Method and device for controlling adjusting speed of electronic expansion valve and multi-split air conditioning system
CN113639436B (en) * 2021-08-02 2022-12-23 海尔(深圳)研发有限责任公司 Method and device for adjusting heat exchange quantity of air conditioner outdoor unit and air conditioner outdoor unit
JP7139031B1 (en) 2022-02-15 2022-09-20 日立ジョンソンコントロールズ空調株式会社 air conditioner
CN115930392A (en) * 2022-12-22 2023-04-07 珠海格力电器股份有限公司 Control method of air conditioning system, air conditioning system and medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689949B2 (en) * 1988-06-10 1994-11-14 株式会社日立製作所 Air conditioner
JP3465654B2 (en) * 1999-12-14 2003-11-10 ダイキン工業株式会社 Refrigeration equipment
JP3760259B2 (en) * 2000-04-21 2006-03-29 株式会社日立製作所 Air conditioner
JP5386141B2 (en) * 2008-10-23 2014-01-15 三菱重工業株式会社 Heat pump device control method, heat pump device outdoor unit and heat pump device
JP5981376B2 (en) * 2013-03-27 2016-08-31 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner and method of operating air conditioner
JP6091614B2 (en) * 2013-06-20 2017-03-08 三菱電機株式会社 Heat pump equipment
JP6321363B2 (en) * 2013-12-06 2018-05-09 シャープ株式会社 Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4343233A1 (en) 2022-09-20 2024-03-27 Ariston S.P.A. Optimized management method of an environmentally friendly heat pump

Also Published As

Publication number Publication date
EP3130870B1 (en) 2018-05-09
JP2017036881A (en) 2017-02-16
AU2016213701B2 (en) 2017-11-30
EP3130870A1 (en) 2017-02-15
AU2016213701A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6594698B2 (en) Refrigeration and air conditioning equipment
JP6935720B2 (en) Refrigeration equipment
JP5125124B2 (en) Refrigeration equipment
JP6370545B2 (en) Heat pump system
WO2011089938A1 (en) Air conditioner
JP6312830B2 (en) Air conditioner
JP2013178046A (en) Air conditioner
JP5999171B2 (en) Air conditioner
JP2018204896A (en) Control device of multiple air conditioner, multiple air conditioner, control method of multiple air conditioner, and control program of multiple air conditioner
JP2008215734A (en) Multiple air conditioner
JP2008241065A (en) Refrigerating device and oil returning method of refrigerating device
JP6836421B2 (en) Air conditioner
JP6758506B2 (en) Air conditioner
JP6650567B2 (en) Air conditioner
KR101186326B1 (en) Air-Condition and the control method for the same
CN113614469B (en) Air conditioner
JP2020034250A (en) Refrigeration cycle device
JP2008209021A (en) Multi-air conditioner
JP2016156569A (en) Freezer
JP5999163B2 (en) Air conditioner
JP2015148414A (en) air conditioner
WO2018167866A1 (en) Air conditioning device
WO2022254825A1 (en) Air conditioner
JP2008106953A (en) Refrigerating device
JP5858022B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190925

R150 Certificate of patent or registration of utility model

Ref document number: 6594698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150