JP6557855B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP6557855B2
JP6557855B2 JP2015102338A JP2015102338A JP6557855B2 JP 6557855 B2 JP6557855 B2 JP 6557855B2 JP 2015102338 A JP2015102338 A JP 2015102338A JP 2015102338 A JP2015102338 A JP 2015102338A JP 6557855 B2 JP6557855 B2 JP 6557855B2
Authority
JP
Japan
Prior art keywords
discharge temperature
superheat degree
suction superheat
value
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015102338A
Other languages
Japanese (ja)
Other versions
JP2016217615A (en
Inventor
陽介 森宗
陽介 森宗
円 落合
円 落合
渡部 岳志
岳志 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015102338A priority Critical patent/JP6557855B2/en
Publication of JP2016217615A publication Critical patent/JP2016217615A/en
Application granted granted Critical
Publication of JP6557855B2 publication Critical patent/JP6557855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、空気調和装置などの冷凍サイクル装置の制御に関するものである。   The present invention relates to control of a refrigeration cycle apparatus such as an air conditioner.

従来の空気調和装置では、圧縮機の吐出温度が限界値以下であると、圧縮機の吸入過熱度が所定温度になるように絞り装置の開度を制御し、圧縮機の吐出温度が限界値を超えると圧縮機の吐出温度が所定値になるように絞り装置の開度を調整するように制御されている(例えば、特許文献1)。   In the conventional air conditioner, if the discharge temperature of the compressor is below the limit value, the opening degree of the throttle device is controlled so that the suction superheat degree of the compressor becomes a predetermined temperature, and the discharge temperature of the compressor is the limit value. When the pressure exceeds the value, the opening degree of the expansion device is controlled so that the discharge temperature of the compressor becomes a predetermined value (for example, Patent Document 1).

特開2001−174075号公報JP 2001-174075 A

吐出温度が高くなる冷媒を用いた場合には、従来のように吸入過熱度を制御目標にすると、能力を素早く引き出すために絞り装置は急激に閉方向に動作し、適正な過熱度がとれたときには、絞り装置を閉めすぎた状態(過絞り状態)となることがある。過絞り状態では、吐出温度が急上昇し、圧縮機が正常に運転できる制限値を超えて保護動作に陥ることがある。   When a refrigerant with a high discharge temperature is used, if the suction superheat degree is set as a control target as in the past, the throttling device suddenly moved in the closing direction in order to quickly draw out the capacity, and an appropriate superheat degree was obtained. In some cases, the throttle device may be over-closed (over-throttle state). In an over-throttle state, the discharge temperature may rise rapidly, exceeding the limit value at which the compressor can operate normally and falling into a protective operation.

吐出温度が制限値を超えると、圧縮機モータの損傷や冷凍機油の劣化につながるため、吐出温度を下げようとして、絞り装置は急激に開方向に動作する。それでも吐出温度が下がらない場合には、圧縮機の周波数が抑制されるため、吐出温度の急低下を招き、快適性が損なわれる原因となっていた。   If the discharge temperature exceeds the limit value, it will lead to damage to the compressor motor and deterioration of the refrigeration oil, so that the throttle device operates in the opening direction rapidly in an attempt to lower the discharge temperature. If the discharge temperature still does not decrease, the frequency of the compressor is suppressed, causing a rapid decrease in the discharge temperature and causing a decrease in comfort.

また、圧縮機の吐出温度が急上昇することを避けるために、絞り装置を過剰に遅く動作させると、十分な過熱度がとれるまでに相当な時間がかかってしまう。この場合には、能力不足で快適性を損なうばかりでなく、圧縮機に液冷媒が戻りやすくなり、液圧縮で圧縮機内部のメカ部破損の原因となるので、信頼性低下につながる虞があった。   In addition, if the throttle device is operated too slowly in order to avoid a sudden rise in the discharge temperature of the compressor, it takes a considerable amount of time to obtain a sufficient degree of superheat. In this case, not only is the capacity inadequate, the comfort is impaired, but the liquid refrigerant easily returns to the compressor, and the liquid compression may cause damage to the internal mechanical parts of the compressor. It was.

さらに吐出温度が高くなる冷媒を用いた場合には、高負荷条件で運転をすると、適正な過熱度を維持しつつ、吐出温度の制限値以下で運転することが困難な状況も発生し、最適な制御方法を検討する必要があった。   In addition, when a refrigerant with a higher discharge temperature is used, operating under high load conditions may cause a situation where it is difficult to operate below the discharge temperature limit value while maintaining an appropriate degree of superheat. It was necessary to study a proper control method.

前記従来の課題を解決するために、本発明は、吐出温度検知部が検知する吐出温度が所定の吐出温度判定値より小さい場合には、前記吸入過熱度演算部が演算する吸入過熱度が、所定の吸入過熱度設定値となるように、前記絞り装置を通過する冷媒流量を調整し、前記吐出温度が所定の吐出温度判定値より大きい場合には、前記吸入過熱度と前記吐出温度の変化量に応じて、前記絞り装置を通過する冷媒流量を調整するものである。   In order to solve the above-described conventional problem, the present invention provides a suction superheat degree calculated by the suction superheat degree calculation unit when the discharge temperature detected by the discharge temperature detection unit is smaller than a predetermined discharge temperature determination value. When the flow rate of the refrigerant passing through the throttle device is adjusted so as to be a predetermined suction superheat degree setting value, and the discharge temperature is larger than a predetermined discharge temperature determination value, changes in the suction superheat degree and the discharge temperature The flow rate of the refrigerant passing through the expansion device is adjusted according to the amount.

また、本発明は、吐出温度検知部が検知する吐出温度が所定の吐出温度判定値より大きい場合には、前記吐出温度が吐出温度設定値となるように、前記絞り装置を通過する冷媒流量を調整するもので、前記吐出温度設定値は、前記所定の吐出温度を超えたときの前記吐出温度を基準とし、前記吸入過熱度が前記吸入過熱度設定値より大きく、前記吐出温度が前記吐出温度設定値より小さい場合には、前記吐出温度設定値を下げるものである。   In the present invention, when the discharge temperature detected by the discharge temperature detection unit is larger than a predetermined discharge temperature determination value, the refrigerant flow rate passing through the throttle device is adjusted so that the discharge temperature becomes a discharge temperature set value. The discharge temperature setting value is adjusted based on the discharge temperature when the predetermined discharge temperature is exceeded, the suction superheat degree is larger than the suction superheat degree set value, and the discharge temperature is the discharge temperature. When it is smaller than the set value, the discharge temperature set value is lowered.

このように、吸入過熱度制御と吐出温度制御を組み合わせて制御することで、素早く所定の能力を引き出すことや、吐出温度の急激な変化を回避して、機器の快適性と信頼性を向上させることが実現できる。   In this way, by controlling suction superheat degree control and discharge temperature control in combination, it is possible to quickly extract a predetermined capacity and avoid sudden changes in discharge temperature, thereby improving the comfort and reliability of the device. Can be realized.

本発明により、絞り装置の過剰な操作による吐出温度の急上昇または急低下が抑えられ、冷凍機油の劣化や圧縮機モータの焼損等の機器の信頼性低下が回避でき、快適で信頼性の高い機器の供給が可能となる。さらに、高負荷条件においても快適で安定した信頼性の高い機器の供給が可能となる。   According to the present invention, rapid increase or decrease in discharge temperature due to excessive operation of the throttle device can be suppressed, and deterioration of the reliability of the equipment such as deterioration of the refrigerating machine oil or burning of the compressor motor can be avoided, and the equipment is comfortable and highly reliable. Can be supplied. Furthermore, it is possible to supply a comfortable, stable and reliable device even under high load conditions.

本発明の実施の形態1における冷凍サイクル図Refrigeration cycle diagram in Embodiment 1 of the present invention 本発明の実施の形態1における制御ブロック図Control block diagram according to Embodiment 1 of the present invention 本発明の実施の形態1におけるフローチャートFlowchart in Embodiment 1 of the present invention 本発明の実施の形態2におけるフローチャートFlowchart in Embodiment 2 of the present invention 本発明の実施の形態3におけるフローチャートFlowchart in Embodiment 3 of the present invention

第1の発明は、圧縮機、凝縮器、絞り装置、蒸発器と、前記圧縮機から吐出される冷媒の温度を検知する吐出温度検知部と、前記圧縮機に吸入される冷媒の過熱度を演算する吸入過熱度演算部とを備え、前記吐出温度検知部が検知する吐出温度が所定の吐出温度判定値より小さい場合には、前記吸入過熱度演算部が演算する吸入過熱度が、所定の吸入過熱度設定値となるように、前記絞り装置を通過する冷媒流量を調整し、前記吐出温度が所定の吐出温度判定値より大きい場合には、前記吸入過熱度と前記吐出温度の変化量に応じて、前記絞り装置を通過する冷媒流量を調整するものである。   The first invention includes a compressor, a condenser, a throttle device, an evaporator, a discharge temperature detection unit that detects the temperature of the refrigerant discharged from the compressor, and the degree of superheat of the refrigerant sucked into the compressor. A suction superheat degree calculation unit for calculating, when the discharge temperature detected by the discharge temperature detection unit is smaller than a predetermined discharge temperature determination value, the suction superheat degree calculated by the suction superheat degree calculation unit is a predetermined value If the flow rate of the refrigerant passing through the throttle device is adjusted so that the suction superheat degree setting value is obtained, and the discharge temperature is larger than a predetermined discharge temperature determination value, the amount of change in the suction superheat degree and the discharge temperature is set. Accordingly, the flow rate of the refrigerant passing through the expansion device is adjusted.

これによれば、吐出温度制御をしながらも、吸入過熱度を最適な値に保つことができるため、絞り装置の絞り量の急激な変動による快適性や効率の低下、吐出温度の過上昇による冷凍機油の劣化や圧縮機モータの劣化等の機器の信頼性低下が回避でき、快適で信頼性の高い機器の供給が可能となる。   According to this, since the suction superheat degree can be maintained at an optimal value while controlling the discharge temperature, the comfort and efficiency are lowered due to a sudden change in the throttle amount of the throttle device, and the discharge temperature is excessively increased. It is possible to avoid deterioration of equipment reliability such as deterioration of refrigeration oil and compressor motor, and supply of comfortable and reliable equipment can be achieved.

第2の発明は、圧縮機、凝縮器、絞り装置、蒸発器と、前記圧縮機から吐出される冷媒の温度を検知する吐出温度検知部と、前記圧縮機に吸入される冷媒の過熱度を演算する吸入過熱度演算部とを備え、前記吐出温度検知部が検知する吐出温度が所定の吐出温度判定値より大きい場合には、前記吐出温度が吐出温度設定値となるように、前記絞り装置を通過する冷媒流量を調整するもので、前記吐出温度設定値は、前記所定の吐出温度を超えたときの前記吐出温度を基準とし、前記吸入過熱度が前記吸入過熱度設定値より大きく、前記吐出温度が前記吐出温度設定値より小さい場合には、前記吐出温度設定値を下げるものである。   According to a second aspect of the present invention, there is provided a compressor, a condenser, a throttling device, an evaporator, a discharge temperature detection unit that detects a temperature of refrigerant discharged from the compressor, and a degree of superheat of the refrigerant sucked into the compressor. A suction superheat degree calculation unit for calculating, and when the discharge temperature detected by the discharge temperature detection unit is larger than a predetermined discharge temperature determination value, the throttle device so that the discharge temperature becomes a discharge temperature set value The discharge temperature setting value is based on the discharge temperature when the predetermined discharge temperature is exceeded, and the suction superheat degree is larger than the suction superheat degree set value, When the discharge temperature is lower than the discharge temperature set value, the discharge temperature set value is lowered.

これによれば、吐出温度設定値を吸入過熱度と吐出温度に応じて変更することにより、吐出温度と吐出温度設定値の差を常に小さくできるので、絞り装置の絞りの変化量を小さくでき、吐出温度の急激な変動が抑えられる。   According to this, by changing the discharge temperature setting value according to the suction superheat degree and the discharge temperature, the difference between the discharge temperature and the discharge temperature setting value can always be reduced, so that the amount of change in the aperture of the expansion device can be reduced, Rapid fluctuations in discharge temperature can be suppressed.

第3の発明は、第2の発明において、前記吸入過熱度が前記吸入過熱度設定値より小さく、前記吐出温度が前記吐出温度設定値より大きい場合には、前記吐出温度設定値を上げるものである。   According to a third invention, in the second invention, when the suction superheat degree is smaller than the suction superheat degree set value and the discharge temperature is larger than the discharge temperature set value, the discharge temperature set value is increased. is there.

(実施の形態1)
図1は、本発明の実施の形態1における空気調和装置の冷凍サイクル図、図2は制御ブロック図、図3はフローチャートである。
(Embodiment 1)
1 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 1 of the present invention, FIG. 2 is a control block diagram, and FIG. 3 is a flowchart.

図1において、室外機1にはインバータ駆動の容量(周波数)可変形圧縮機2(以下単に圧縮機と称す)と、室外熱交換器3と、室外送風機4と、冷暖房切換用の四方弁5とが設けられる。圧縮機2に接続される吐出管、または、圧縮機2の頂部表面には圧縮機吐出温度検知装置(吐出温度検知部)15が、圧縮機2に接続される吸入管には圧縮機吸入温度検知装置(吸入温度検知部)16がそれぞれ設けられている。室外熱交換器3には室外熱交換器温度検知装置17が設けられている。   In FIG. 1, an outdoor unit 1 includes an inverter-driven capacity (frequency) variable compressor 2 (hereinafter simply referred to as a compressor), an outdoor heat exchanger 3, an outdoor blower 4, and a four-way valve 5 for switching between heating and cooling. And are provided. A compressor discharge temperature detection device (discharge temperature detection unit) 15 is provided on the discharge pipe connected to the compressor 2 or the top surface of the compressor 2, and the compressor intake temperature is provided on the suction pipe connected to the compressor 2. A detection device (intake temperature detection unit) 16 is provided. The outdoor heat exchanger 3 is provided with an outdoor heat exchanger temperature detection device 17.

一方、室内機7には室内送風機8と、室内熱交換器と9が設けられている。室内熱交換器9には室内熱交換器温度検知装置18が設けられている。   On the other hand, the indoor unit 7 is provided with an indoor fan 8 and an indoor heat exchanger 9. The indoor heat exchanger 9 is provided with an indoor heat exchanger temperature detection device 18.

室外機1は、液側接続部13とガス側接続部14とをそなえている。液側接続部13とガス側接続部14に接続された接続配管により、室外機1は室内機7に接続されている。   The outdoor unit 1 includes a liquid side connection portion 13 and a gas side connection portion 14. The outdoor unit 1 is connected to the indoor unit 7 by connection piping connected to the liquid side connection unit 13 and the gas side connection unit 14.

また、液側接続部13と室外熱交換器3とを接続する配管である冷媒液管11には、例えばステッピングモータ等により弁開度をパルス制御可能な絞り装置である電動膨張弁6が設けられている。   The refrigerant liquid pipe 11, which is a pipe connecting the liquid side connecting portion 13 and the outdoor heat exchanger 3, is provided with an electric expansion valve 6, which is a throttling device capable of pulse-controlling the valve opening by a stepping motor, for example. It has been.

圧縮機2、室外熱交換器3、四方弁5、電動膨張弁6、室内熱交換器9を環状に配管で接続し、冷凍サイクル回路を構成している。冷凍サイクル回路には、冷媒として、R32(ジフオロメタン)が封入されている。R32は、圧縮機2の吸入過熱度がある値を超えて大きくなると、圧縮機2の吐出温度が急激に上昇するような傾向を有する冷媒である。   The compressor 2, the outdoor heat exchanger 3, the four-way valve 5, the electric expansion valve 6, and the indoor heat exchanger 9 are connected in a ring shape to form a refrigeration cycle circuit. R32 (difluoromethane) is enclosed as a refrigerant in the refrigeration cycle circuit. R32 is a refrigerant having a tendency that the discharge temperature of the compressor 2 rapidly increases when the suction superheat degree of the compressor 2 exceeds a certain value.

また、室内機7には、居住者が希望する運転モード(冷房、除湿または暖房)や、目標室温を設定したり、運転あるいは停止を指示する運転設定装置10が設けられている。運転設定装置10は、例えば、リモコンである。   In addition, the indoor unit 7 is provided with an operation setting device 10 that sets an operation mode (cooling, dehumidification or heating) desired by a resident, a target room temperature, and instructs operation or stop. The operation setting device 10 is, for example, a remote controller.

室外機1には、運転設定装置10の設定に応じて、圧縮機2の回転数や、室外送風機4の回転数、四方弁5の切換、電動膨張弁6の開度などを調整する制御装置20を備えている。   The outdoor unit 1 includes a control device that adjusts the rotational speed of the compressor 2, the rotational speed of the outdoor blower 4, the switching of the four-way valve 5, the opening degree of the electric expansion valve 6, and the like according to the setting of the operation setting device 10. 20 is provided.

冷房あるいは除湿運転時には、室外熱交換器3が凝縮器となり、室内熱交換器9が蒸発器となる。このため、室内熱交換器温度検知装置18が蒸発器温度検知部となる。暖房運転時には、室内熱交換器9が凝縮器となり、室外熱交換器3が蒸発器となる。このため、室外熱交換器温度検知装置17が蒸発器温度検知部となる。   During the cooling or dehumidifying operation, the outdoor heat exchanger 3 serves as a condenser, and the indoor heat exchanger 9 serves as an evaporator. For this reason, the indoor heat exchanger temperature detector 18 serves as an evaporator temperature detector. During the heating operation, the indoor heat exchanger 9 serves as a condenser, and the outdoor heat exchanger 3 serves as an evaporator. For this reason, the outdoor heat exchanger temperature detector 17 serves as an evaporator temperature detector.

上記構成の冷凍サイクル装置において、冷房あるいは除湿運転時は、圧縮機2から吐出された冷媒は、四方弁5を介して室外熱交換器3へと流れ、室外送風機4の駆動により室外熱交換器3で室外空気と熱交換して凝縮液化する。その後、冷媒は、冷媒液管11を通り電動膨張弁6で流量制御される。電動膨張弁6で減圧された冷媒は、室内機7の室内熱交換器9で蒸発した後に、冷媒ガス管12、四方弁5を介して再び圧縮機2に吸入される。   In the refrigeration cycle apparatus having the above configuration, during cooling or dehumidifying operation, the refrigerant discharged from the compressor 2 flows to the outdoor heat exchanger 3 through the four-way valve 5, and the outdoor fan 4 is driven to drive the outdoor heat exchanger. 3 heat-exchanges with outdoor air and condensates. Thereafter, the flow rate of the refrigerant passes through the refrigerant liquid pipe 11 and is controlled by the electric expansion valve 6. The refrigerant decompressed by the electric expansion valve 6 evaporates in the indoor heat exchanger 9 of the indoor unit 7 and then is sucked into the compressor 2 again through the refrigerant gas pipe 12 and the four-way valve 5.

この電動膨張弁6は室内の負荷に見合った開度となるようにステッピングモータ等によりパルス制御されるため、冷媒は室内負荷に応じた流量に調整される。   Since this electric expansion valve 6 is pulse-controlled by a stepping motor or the like so as to have an opening corresponding to the load in the room, the refrigerant is adjusted to a flow rate corresponding to the room load.

一方、暖房運転時は、圧縮機2から吐出された冷媒は、四方弁5を介して室内熱交換器9へと流れ、室内送風機8の駆動により室内熱交換器9で室内空気と熱交換して凝縮液化
する。その後、冷媒は、電動膨張弁6で流量制御される。電動膨張弁6で減圧された冷媒は、室外熱交換器3で蒸発した後に、四方弁5を介して再び圧縮機2に吸入される。
On the other hand, during the heating operation, the refrigerant discharged from the compressor 2 flows to the indoor heat exchanger 9 through the four-way valve 5, and exchanges heat with indoor air in the indoor heat exchanger 9 by driving the indoor blower 8. To condense. Thereafter, the flow rate of the refrigerant is controlled by the electric expansion valve 6. The refrigerant decompressed by the electric expansion valve 6 evaporates in the outdoor heat exchanger 3 and then is sucked into the compressor 2 again through the four-way valve 5.

図2は、本実施の形態の制御ブロック図である。電動膨張弁6は、制御装置に接続されている。制御装置は、ステッピングモータ等を制御する出力リレー回路と、出力リレー回路に信号を出力する判定装置を備えている。判定装置は、圧縮機吐出温度検知装置15、圧縮機吸入温度検知装置16、室外熱交換器温度検知装置17、室内熱交換器温度検知装置18、吸入過熱度検知装置19に接続されている。吸入過熱度検知装置(吸入過熱度演算部)19は、圧縮機吸入温度検知装置16、室外熱交換器温度検知装置17、室内熱交換器温度検知装置18の検知値から、圧縮機2の吸入過熱度を演算するものである。   FIG. 2 is a control block diagram of the present embodiment. The electric expansion valve 6 is connected to the control device. The control device includes an output relay circuit that controls a stepping motor and the like, and a determination device that outputs a signal to the output relay circuit. The determination device is connected to the compressor discharge temperature detection device 15, the compressor suction temperature detection device 16, the outdoor heat exchanger temperature detection device 17, the indoor heat exchanger temperature detection device 18, and the suction superheat degree detection device 19. The suction superheat degree detection device (suction superheat degree calculation unit) 19 is configured to suck the compressor 2 from the detected values of the compressor suction temperature detection device 16, the outdoor heat exchanger temperature detection device 17, and the indoor heat exchanger temperature detection device 18. The degree of superheat is calculated.

判定装置は、これらの検知装置の出力と、これらの出力から演算された目標吐出温度設定値、吸入過熱度設定値、吐出温度設定値と、あらかじめ定められた吐出温度判定値とから、判定・演算した開度に、電動膨張弁6を調整する。   The determination device determines, based on the outputs of these detection devices, the target discharge temperature set value, the suction superheat degree set value, the discharge temperature set value calculated from these outputs, and the predetermined discharge temperature determination value. The electric expansion valve 6 is adjusted to the calculated opening.

次に、本実施の形態の制御について、図3のフローチャートを用いて説明する。   Next, the control of the present embodiment will be described using the flowchart of FIG.

居住者が運転設定装置10で例えば暖房を選択し、運転開始を指示する。圧縮機2が運転を開始すると(S000)、圧縮機吐出温度検知装置15が圧縮機吐出温度(以下、単に吐出温度と称する)(Td1)を検出する(S001)。   The resident selects, for example, heating with the operation setting device 10 and instructs the start of operation. When the compressor 2 starts operation (S000), the compressor discharge temperature detector 15 detects the compressor discharge temperature (hereinafter simply referred to as discharge temperature) (Td1) (S001).

吐出温度(Td1)を所定の吐出温度判定値(TdA)と比較する(S002)。吐出温度(Td1)が吐出温度判定値(TdA)以下の場合(S002のYes)には、圧縮機2の吸入過熱度(SH)を検出する(S003)。   The discharge temperature (Td1) is compared with a predetermined discharge temperature determination value (TdA) (S002). When the discharge temperature (Td1) is equal to or lower than the discharge temperature determination value (TdA) (Yes in S002), the suction superheat degree (SH) of the compressor 2 is detected (S003).

吸入過熱度(SH)を所定の吸入過熱度設定値(SHA)と比較する(S004)。吸入過熱度(SH)が吸入過熱度設定値(SHA)より高い場合(S004のYes)には、電動膨張弁6を開方向にA(PLS)開く(S005)。吸入過熱度(SH)が吸入過熱度設定値(SHA)より低い場合(S004のNo)には、吸入過熱度(SH)を「吸入過熱度設定値(SHA)−1℃」と比較する(S006)。吸入過熱度(SH)が「吸入過熱度設定値(SHA)−1℃」以上でかつ吸入過熱度設定値(SHA)以下の場合(S006のNo)には、電動膨張弁6の開閉をしない(S007)。吸入過熱度(SH)が「吸入過熱度設定値(SHA)−1℃」より小さい場合(S006のYes)には、電動膨張弁6を閉方向にB(PLS)閉じる(S008)。これにより、吸入過熱度(SH)をある適切な値(SHA)に保つように制御する。   The suction superheat degree (SH) is compared with a predetermined suction superheat degree set value (SHA) (S004). When the intake superheat degree (SH) is higher than the intake superheat degree set value (SHA) (Yes in S004), the electric expansion valve 6 is opened A (PLS) in the opening direction (S005). When the suction superheat degree (SH) is lower than the suction superheat degree set value (SHA) (No in S004), the suction superheat degree (SH) is compared with “suction superheat degree set value (SHA) -1 ° C.” ( S006). When the suction superheat degree (SH) is not less than “suction superheat degree set value (SHA) -1 ° C.” and not more than the suction superheat degree set value (SHA) (No in S006), the electric expansion valve 6 is not opened / closed. (S007). If the suction superheat degree (SH) is smaller than “suction superheat degree set value (SHA) −1 ° C.” (Yes in S006), the electric expansion valve 6 is closed B (PLS) in the closing direction (S008). Thus, the control is performed so as to keep the suction superheat degree (SH) at a certain appropriate value (SHA).

つまり、吐出温度(Td)が吐出温度判定値(TdA)より小さい場合には、電動膨張弁6の開閉を吸入過熱度制御で調整する。   That is, when the discharge temperature (Td) is smaller than the discharge temperature determination value (TdA), the opening / closing of the electric expansion valve 6 is adjusted by suction superheat degree control.

電動膨張弁6の開方向A(PLS)、閉方向B(PLS)のパルス数は、吸入過熱度(SH)と吸入過熱度設定値(SHA)の差によって決められており、差が大きな場合は大きなパルス数になるように設定されている。   The number of pulses in the opening direction A (PLS) and the closing direction B (PLS) of the electric expansion valve 6 is determined by the difference between the suction superheat degree (SH) and the suction superheat degree setting value (SHA). Is set to a large number of pulses.

また、吸入過熱度は、暖房の場合には、圧縮機吸入温度検知装置16から検出された圧縮機吸入温度から室外熱交換器温度検知装置17から検出された室外熱交換器温度(暖房時は蒸発温度)を減じたものである。この差が大きいと、圧縮機2に吸入される過熱度が大きくなるので、圧縮機2の効率の低下や、圧縮機2から吐出される冷媒の温度が高くなることによる圧縮機2の冷凍機油の劣化や圧縮機モータの劣化を引き起こす。また、この差が小さいと、圧縮機2に液リッチな冷媒が吸い込まれることになり、圧縮機2の効率の低下や、液量が多いことによるメカ破損につながる。このため、吸入過熱度を適切な値で
制御することが必要である。
Further, in the case of heating, the intake superheat degree is determined based on the outdoor heat exchanger temperature detected from the outdoor heat exchanger temperature detection device 17 based on the compressor intake temperature detected from the compressor intake temperature detection device 16 (during heating). (Evaporation temperature) is reduced. If this difference is large, the degree of superheat sucked into the compressor 2 increases, so that the refrigerating machine oil of the compressor 2 due to a decrease in efficiency of the compressor 2 or an increase in the temperature of refrigerant discharged from the compressor 2. Cause deterioration of compressors and compressor motors. If this difference is small, liquid-rich refrigerant is sucked into the compressor 2, leading to a reduction in efficiency of the compressor 2 and mechanical damage due to a large amount of liquid. For this reason, it is necessary to control the suction superheat degree with an appropriate value.

なお、吸入過熱度は、冷房の場合には、圧縮機吸入温度検知装置16から検出された圧縮機吸入温度から室内熱交換器温度検知装置18から検出された室内熱交換器温度(冷房時は蒸発温度)を減じたものである。   Note that, in the case of cooling, the intake superheat degree is determined based on the indoor heat exchanger temperature detected from the indoor heat exchanger temperature detection device 18 from the compressor intake temperature detected from the compressor intake temperature detection device 16 (during cooling). (Evaporation temperature) is reduced.

一方、吐出温度(Td1)が吐出温度判値(TdA)より高くなると(S002のNo)、圧縮機の吸入過熱度(SH)を検出し(S009)、吸入過熱度(SH)を所定の吸入過熱度設定値(SHA)と比較する(S010)。吸入過熱度(SH)が吸入過熱度設定値(SHA)より高い場合(S010のNo)には、電動膨張弁6を開方向にC(PLS)開く(S011)。   On the other hand, when the discharge temperature (Td1) becomes higher than the discharge temperature value (TdA) (No in S002), the suction superheat degree (SH) of the compressor is detected (S009), and the suction superheat degree (SH) is set to the predetermined suction. Comparison is made with the superheat setting value (SHA) (S010). When the intake superheat degree (SH) is higher than the intake superheat degree set value (SHA) (No in S010), the electric expansion valve 6 is opened C (PLS) in the opening direction (S011).

吸入過熱度(SH)が吸入過熱度設定値(SHA)より低い場合(S010のYes)には、吐出温度の変化が所定の値より大きいか否かを判断する。具体的には、現在の吐出温度(Td1)と前回検出した吐出温度(Td0)と差が第1の所定値(例えば、0.4℃)より小さいか否かを判断する(S012)。なお、前回検出した吐出温度(Td0)とは、例えば、1つ前の制御周期にS001で検出した吐出温度である。   When the suction superheat degree (SH) is lower than the suction superheat degree set value (SHA) (Yes in S010), it is determined whether or not the change in the discharge temperature is larger than a predetermined value. Specifically, it is determined whether or not the difference between the current discharge temperature (Td1) and the previously detected discharge temperature (Td0) is smaller than a first predetermined value (for example, 0.4 ° C.) (S012). The discharge temperature (Td0) detected last time is, for example, the discharge temperature detected in S001 in the immediately preceding control cycle.

吸入過熱度(SH)が吸入過熱度設定値(SHA)より低く、前回検出した吐出温度(Td0)より今回検出した吐出温度(Td1)が0.4℃以上上昇している場合(S012のNo)には、電動膨張弁6の開閉をしない(S013)。つまり、現在の膨張弁の開度のまま、吐出温度が安定するのを待つ。   When the suction superheat degree (SH) is lower than the suction superheat degree set value (SHA) and the discharge temperature (Td1) detected this time is higher than the discharge temperature (Td0) detected last time by 0.4 ° C. or more (No in S012) ) Does not open or close the electric expansion valve 6 (S013). That is, it waits for the discharge temperature to stabilize with the current opening of the expansion valve.

前回検出した吐出温度(Td0)と今回検出した吐出温度(Td1)の差が0.4℃を下回る場合(S012)には、吐出温度の変化が所定の値より大きいか否かを判断する。具体的には、現在の吐出温度(Td1)と前回検出した吐出温度(Td0)と差が第2の所定値(例えば、0℃)より大きいか否かを判断する(S014)。   When the difference between the discharge temperature (Td0) detected last time and the discharge temperature (Td1) detected this time is less than 0.4 ° C. (S012), it is determined whether or not the change in the discharge temperature is larger than a predetermined value. Specifically, it is determined whether or not the difference between the current discharge temperature (Td1) and the previously detected discharge temperature (Td0) is greater than a second predetermined value (eg, 0 ° C.) (S014).

吐出温度の変化が0℃より大きい場合(S014のYes)には、電動膨張弁6を閉方向にD(PLS)閉じる(S015)。吐出温度の変化が0℃より小さい場合(S014のNo)には、電動膨張弁6を閉方向にE(PLS)閉じる(S016)。なお、Eは、Dより大きいパルス数である。   If the change in the discharge temperature is greater than 0 ° C. (Yes in S014), the electric expansion valve 6 is closed D (PLS) in the closing direction (S015). When the change in the discharge temperature is smaller than 0 ° C. (No in S014), the electric expansion valve 6 is closed E (PLS) in the closing direction (S016). E is the number of pulses larger than D.

つまり、電動膨張弁6の開度を固定した状態(S013の状態)で、吐出温度の変化が小さくなり(安定状態に近づき)、前回検出した吐出温度(Td0)と今回検出した吐出温度(Td1)の差が0.4℃を下回り(S012のYes)、かつ吐出温度の変化が0℃以上あれば(S014のYes)、電動膨張弁6をD(PLS)絞る(S015)ことで、電動膨張弁6の開度をゆっくりと変更する。   That is, in the state where the opening degree of the electric expansion valve 6 is fixed (state of S013), the change in the discharge temperature becomes small (approaching the stable state), the discharge temperature (Td0) detected last time and the discharge temperature (Td1) detected this time. ) Is less than 0.4 ° C. (Yes in S012) and the change in the discharge temperature is 0 ° C. or more (Yes in S014), the electric expansion valve 6 is throttled by D (PLS) (S015). The opening degree of the expansion valve 6 is changed slowly.

一方、吐出温度の変化量が小さくなった場合(S014のNo)には、吐出温度が低下している状態のため、絞り量が不足していると判断し、更に絞り量を増やすため、E(PLS)絞る(S016)。   On the other hand, when the change amount of the discharge temperature becomes small (No in S014), it is determined that the throttle amount is insufficient because the discharge temperature is low. (PLS) is narrowed down (S016).

上述のように、吐出温度(Td1)が吐出温度判定値(TdA)より大きい場合には、電動膨張弁6の開閉を、吐出温度の変化量に応じて調整する。   As described above, when the discharge temperature (Td1) is higher than the discharge temperature determination value (TdA), the opening / closing of the electric expansion valve 6 is adjusted according to the amount of change in the discharge temperature.

以上の操作をある所定の制御間隔で行うことで、吸入過熱度(SH)は、目標の過熱度設定値(SHA)に近づけるように継続的に制御される。このように制御することで、吐出温度が急上昇し易い場合に、絞り装置の操作量を抑制し、絞り過ぎや開きすぎを防止し、吐出温度の大きな変化を抑えることができ、圧縮機吸入過熱度制御(吸入過熱度制御)
を安定して行うことができる。
By performing the above operation at a predetermined control interval, the suction superheat degree (SH) is continuously controlled so as to approach the target superheat degree set value (SHA). By controlling in this way, when the discharge temperature is likely to rise rapidly, the amount of operation of the expansion device can be suppressed, over-throttle and over-opening can be prevented, and a large change in the discharge temperature can be suppressed. Degree control (intake superheat degree control)
Can be performed stably.

(実施の形態2)
図4は実施の形態2における制御のフローチャートである。冷凍サイクルの構成や制御ブロック構成は、実施の形態1と同一なので説明を省略する。
(Embodiment 2)
FIG. 4 is a flowchart of control in the second embodiment. Since the configuration of the refrigeration cycle and the control block configuration are the same as those in the first embodiment, the description thereof is omitted.

居住者が運転設定装置10で例えば暖房を選択し、運転開始を指示する。圧縮機2が運転を開始すると(S100)、圧縮機吐出温度検知装置15が現在の圧縮機吐出温度(Td1)を検出する(S101)。   The resident selects, for example, heating with the operation setting device 10 and instructs the start of operation. When the compressor 2 starts operation (S100), the compressor discharge temperature detection device 15 detects the current compressor discharge temperature (Td1) (S101).

吐出温度(Td1)を所定の吐出温度判定値(TdB)と比較する(S002)。吐出温度(Td1)が吐出温度判定値(TdB)以下の場合(S102のYes)には、圧縮機2の吸入過熱度(SH)を検出する(S103)。   The discharge temperature (Td1) is compared with a predetermined discharge temperature determination value (TdB) (S002). When the discharge temperature (Td1) is equal to or lower than the discharge temperature determination value (TdB) (Yes in S102), the suction superheat degree (SH) of the compressor 2 is detected (S103).

吸入過熱度(SH)を所定の吸入過熱度設定値(SHA)と比較する(S104)。吸入過熱度(SH)が吸入過熱度設定値(SHA)より高い場合(S104のYes)には、電動膨張弁6を開方向にA(PLS)開く(S105)。   The suction superheat degree (SH) is compared with a predetermined suction superheat degree setting value (SHA) (S104). When the suction superheat degree (SH) is higher than the suction superheat degree set value (SHA) (Yes in S104), the electric expansion valve 6 is opened A (PLS) in the opening direction (S105).

吸入過熱度(SH)が「吸入過熱度設定値(SHA)−1℃」以上(S106)でかつ吸入過熱度設定値(SHA)以下の場合(S104のYes)には、電動膨張弁6の開閉をしない(S107)。   When the suction superheat degree (SH) is not less than “suction superheat degree set value (SHA) -1 ° C.” (S106) and not more than the suction superheat degree set value (SHA) (Yes in S104), the electric expansion valve 6 Opening and closing is not performed (S107).

吸入過熱度(SH)が「吸入過熱度設定値(SHA)−1℃」より小さい場合(S106のYes)には、電動膨張弁6を閉方向にB(PLS)閉じる(S108)。これにより、吸入過熱度(SH)をある適切な値(SHA)に保つように制御する。   If the suction superheat degree (SH) is smaller than “suction superheat degree set value (SHA) −1 ° C.” (Yes in S106), the electric expansion valve 6 is closed B (PLS) in the closing direction (S108). Thus, the control is performed so as to keep the suction superheat degree (SH) at a certain appropriate value (SHA).

なお、電動膨張弁6の開方向A(PLS)、閉方向B(PLS)のパルス数は、吸入過熱度(SH)と吸入過熱度設定値(SHA)の差によって決められており、差が大きな場合は大きなパルス数になるように設定されている。   The number of pulses in the opening direction A (PLS) and the closing direction B (PLS) of the electric expansion valve 6 is determined by the difference between the suction superheat degree (SH) and the suction superheat degree set value (SHA). When it is large, the number of pulses is set to be large.

また、吸入過熱度(SH)は、暖房の場合には、圧縮機吸入温度検知装置16から検出された圧縮機吸入温度から室外熱交換器温度検知装置17から検出された室外熱交換器温度(暖房時は蒸発温度)を減じたものである。この差が大きいと、圧縮機2の吸入過熱度(SH)が大きくなり、圧縮機2の効率の低下や、圧縮機2から吐出される冷媒の温度が高くなることによる圧縮機2の冷凍機油の劣化や圧縮機モータの劣化を引き起こす。また、この差が小さいと、圧縮機2に液リッチな冷媒が吸い込まれることになり、圧縮機2の効率の低下や、液量が多いことによるメカ破損につながる。このため、吸入過熱度を適切な値で制御することが必要である。   In the case of heating, the intake superheat degree (SH) is determined based on the outdoor heat exchanger temperature (detected from the outdoor heat exchanger temperature detection device 17 from the compressor intake temperature detected from the compressor intake temperature detection device 16). The evaporation temperature during heating is reduced. When this difference is large, the suction superheat degree (SH) of the compressor 2 is increased, the efficiency of the compressor 2 is reduced, and the temperature of the refrigerant discharged from the compressor 2 is increased. Cause deterioration of compressors and compressor motors. If this difference is small, liquid-rich refrigerant is sucked into the compressor 2, leading to a reduction in efficiency of the compressor 2 and mechanical damage due to a large amount of liquid. For this reason, it is necessary to control the suction superheat degree with an appropriate value.

一方、吐出温度(Td1)が吐出温度判値(TdB)より高くなると(S102のYes)、吸入過熱度制御から吐出温度制御に移行する。つまり、制御目標を吐出温度の目標値にし、これに近づくように絞り装置を制御する。   On the other hand, when the discharge temperature (Td1) becomes higher than the discharge temperature value (TdB) (Yes in S102), the control shifts from the suction superheat degree control to the discharge temperature control. That is, the control target is set to the target value of the discharge temperature, and the expansion device is controlled so as to approach this target value.

この制御方法への切り替り時に、その時点での吐出温度(Td1)を初期の吐出温度設定値(TdX)とする(S109)。次に、吸入過熱度(SH)を検出する(S110)。   At the time of switching to this control method, the discharge temperature (Td1) at that time is set as the initial discharge temperature setting value (TdX) (S109). Next, the suction superheat degree (SH) is detected (S110).

吸入過熱度(SH)が吸入過熱度設定値(SHA)より所定の値以上大きいか否かを判断する。具体的には、吸入過熱度(SH)を「吸入過熱度設定値(SHA)+0.5℃」と比較する(S111)。   It is determined whether or not the suction superheat degree (SH) is larger than the suction superheat degree set value (SHA) by a predetermined value or more. Specifically, the suction superheat degree (SH) is compared with “suction superheat degree set value (SHA) + 0.5 ° C.” (S111).

吸入過熱度(SH)が吸入過熱度設定値(SHA)より0.5℃以上高い場合(S111のYes)には、吐出温度(Td1)が吐出温度設定値(TdX)の所定の値を加えた値より小さいか否かを判断する。具体的には、吐出温度(Td1)を「吐出温度設定値(TdX)+1℃」と比較する(S112)。   When the suction superheat degree (SH) is higher than the suction superheat degree setting value (SHA) by 0.5 ° C. or more (Yes in S111), the discharge temperature (Td1) adds a predetermined value of the discharge temperature set value (TdX). It is determined whether or not the value is smaller. Specifically, the discharge temperature (Td1) is compared with “discharge temperature set value (TdX) + 1 ° C.” (S112).

吸入過熱度(SH)が吸入過熱度設定値(SHA)より0.5℃以上高く(S111のYes)、かつ吐出温度(Td1)が吐出温度設定値(TdX)+1(℃)より低ければ(S112のYes)、十分な吸入過熱度が既にとれており、これ以上、吐出温度を上げる必要はないため、吐出温度設定値(TdX)を所定の値(例えば、1℃)下げる(S113)。   If the suction superheat degree (SH) is higher than the suction superheat degree set value (SHA) by 0.5 ° C. or more (Yes in S111) and the discharge temperature (Td1) is lower than the discharge temperature set value (TdX) +1 (° C.) ( Since the sufficient degree of suction superheat has already been taken and there is no need to raise the discharge temperature any more, the discharge temperature set value (TdX) is lowered by a predetermined value (for example, 1 ° C.) (S113).

その他の場合には、吐出温度設定値(TdX)を変更しない(S114)。具体的には、吸入過熱度(SH)と吸入過熱度設定値(SHA)との差が0.5℃より小さい場合(S111のNo)には、吸入過熱度(SH)が設定値に近づいており収束しそうな場合か、吸入過熱度が目標に対して明らかに低く電動膨張弁6をさらに絞る必要がある場合であるため、吐出温度設定値(TdX)を変更しない(S114)。また、吐出温度(Td1)が吐出温度設定値(TdX)より1℃以上高い場合(S112のNo)には、吸入過熱度(SH)がとれおり吐出温度(Td1)が吐出温度設定値に到達している場合であるため、吐出温度設定値(TdX)を変更しない(S114)。   In other cases, the discharge temperature set value (TdX) is not changed (S114). Specifically, when the difference between the suction superheat degree (SH) and the suction superheat degree setting value (SHA) is smaller than 0.5 ° C. (No in S111), the suction superheat degree (SH) approaches the set value. Since the suction superheat degree is clearly lower than the target and the electric expansion valve 6 needs to be further throttled, the discharge temperature set value (TdX) is not changed (S114). When the discharge temperature (Td1) is 1 ° C. or more higher than the discharge temperature set value (TdX) (No in S112), the suction superheat degree (SH) is taken and the discharge temperature (Td1) reaches the discharge temperature set value. In this case, the discharge temperature set value (TdX) is not changed (S114).

次に、現在の吐出温度(Td1)が前述のようにして決定した吐出温度設定値(TdX)に対して、所定の値(例えば、1℃)以上高いか否かを判断する。具体的には、吐出温度(Td1)を「吐出温度設定値(TdX)+1℃」と比較する(S115)。現在の吐出温度(Td1)が吐出温度設定値(TdX)より1℃以上高ければ(S115のYes)、吐出温度を下げるために電動膨張弁6をC(PLS)開く(S116)。   Next, it is determined whether or not the current discharge temperature (Td1) is higher than a predetermined value (for example, 1 ° C.) by a predetermined value (for example, 1 ° C.) with respect to the discharge temperature setting value (TdX) determined as described above. Specifically, the discharge temperature (Td1) is compared with “discharge temperature set value (TdX) + 1 ° C.” (S115). If the current discharge temperature (Td1) is higher than the discharge temperature set value (TdX) by 1 ° C. or more (Yes in S115), the electric expansion valve 6 is opened C (PLS) to lower the discharge temperature (S116).

吐出温度(Td1)が吐出温度設定値(TdX)に1℃加えた値より小さい場合(S115のNo)には、現在の吐出温度(Td1)が吐出温度設定値(TdX)から所定の値を減じた値より小さいか否かを判断する。具体的には、吐出温度(Td1)を「吐出温度設定値(TdX)−1℃」と比較する(S117)。   When the discharge temperature (Td1) is smaller than the value obtained by adding 1 ° C. to the discharge temperature set value (TdX) (No in S115), the current discharge temperature (Td1) is set to a predetermined value from the discharge temperature set value (TdX). It is judged whether it is smaller than the subtracted value. Specifically, the discharge temperature (Td1) is compared with “discharge temperature set value (TdX) −1 ° C.” (S117).

吐出温度(Td1)が「吐出温度設定値(TdX)+1℃」より小さく(S115のNo)、「吐出温度設定値(TdX)−1℃」より大きい場合(S117のNo)には、吐出温度(Td1)が目標の吐出温度設定値(TdX)に対して1℃以内の温度に近づいている場合であるため、電動膨張弁6は開閉しない(S118)。   When the discharge temperature (Td1) is smaller than “discharge temperature set value (TdX) + 1 ° C.” (No in S115) and larger than “discharge temperature set value (TdX) −1 ° C.” (No in S117), the discharge temperature Since (Td1) is approaching a temperature within 1 ° C. with respect to the target discharge temperature setting value (TdX), the electric expansion valve 6 is not opened or closed (S118).

吐出温度(Td1)が「吐出温度設定値(TdX)−1℃」より低ければ(S117のYes)、吐出温度を上昇させるため、電動膨張弁6を閉方向にD(PLS)閉じる(S119)。このように、適切な吐出温度となるように継続的に電動膨張弁6を制御する。   If the discharge temperature (Td1) is lower than “discharge temperature set value (TdX) −1 ° C.” (Yes in S117), the electric expansion valve 6 is closed D (PLS) in the closing direction to increase the discharge temperature (S119). . In this way, the electric expansion valve 6 is continuously controlled so as to obtain an appropriate discharge temperature.

本実施の形態では、吸入過熱度制御から吐出温度制御に切り替え時、吐出温度設定値(TdX)を吸入過熱度(SH)と吐出温度(Td1)に応じて変更することにより、吐出温度(Td)と吐出温度設定値(TdX)の差を常に小さくできるので、電動膨張弁6の開閉も小さくなり、吐出温度(Td)の変動が抑えられる。   In the present embodiment, when switching from the suction superheat degree control to the discharge temperature control, the discharge temperature set value (TdX) is changed according to the suction superheat degree (SH) and the discharge temperature (Td1), whereby the discharge temperature (Td ) And the discharge temperature set value (TdX) can always be reduced, so that the opening and closing of the electric expansion valve 6 is also reduced, and fluctuations in the discharge temperature (Td) can be suppressed.

このため、冷媒循環量が大きく変動し、機器の能力の変化(吹き出し温度の変動)による快適性の低下、効率の低下、信頼性の低下(吐出温度の過上昇による冷凍機油の劣化や圧縮機モータの劣化等)を防止できる。 (実施の形態3)
図5は実施の形態3における制御のフローチャートである。冷凍サイクルの構成や制御
ブロック構成は、実施の形態1と同一なので説明を省略する。
For this reason, the refrigerant circulation amount fluctuates greatly, resulting in a decrease in comfort, efficiency, and reliability due to changes in equipment capacity (fluctuation in blowing temperature) (refrigerating machine oil deterioration due to excessive increase in discharge temperature and compressor) Motor deterioration). (Embodiment 3)
FIG. 5 is a flowchart of control in the third embodiment. Since the configuration of the refrigeration cycle and the control block configuration are the same as those in the first embodiment, the description thereof is omitted.

居住者が運転設定装置10で例えば暖房を選択し、運転開始を指示する。圧縮機2が運転を開始すると(S200)、圧縮機吐出温度検知装置15が現在の圧縮機吐出温度(Td1)を検出する(S201)。   The resident selects, for example, heating with the operation setting device 10 and instructs the start of operation. When the compressor 2 starts operation (S200), the compressor discharge temperature detection device 15 detects the current compressor discharge temperature (Td1) (S201).

吐出温度(Td1)が吐出温度判定値(TdB)以下の場合(S202のNo)には、圧縮機の吸入過熱度(SH)を検出し(S203)、吸入過熱度(SH)が吸入過熱度設定値(SHA)より高い場合(S204のYes)には、電動膨張弁6を開方向にA(PLS)開く(S205)。   When the discharge temperature (Td1) is equal to or lower than the discharge temperature determination value (TdB) (No in S202), the suction superheat degree (SH) of the compressor is detected (S203), and the suction superheat degree (SH) is the suction superheat degree. When it is higher than the set value (SHA) (Yes in S204), the electric expansion valve 6 is opened A (PLS) in the opening direction (S205).

吸入過熱度(SH)が吸入過熱度設定値(SHA)以下(S204のNo)でかつ「吸入過熱度設定値(SHA)−1℃」以上(S206のNo)の場合には、電動膨張弁6を開閉しない(S207)。   When the suction superheat degree (SH) is equal to or lower than the suction superheat degree set value (SHA) (No in S204) and is equal to or higher than “suction superheat degree set value (SHA) -1 ° C.” (No in S206), the electric expansion valve 6 is not opened or closed (S207).

吸入過熱度(SH)が吸入過熱度設定値(SHA)以下(S204のNo)でかつ「吸入過熱度設定値(SHA)より1℃」以上低い場合(S206のYes)には、電動膨張弁6を閉方向にB(PLS)閉じる(S208)。これにより、吸入過熱度(SH)をある適切な値(SHA)に保つように制御する。   When the intake superheat degree (SH) is equal to or lower than the intake superheat degree set value (SHA) (No in S204) and is lower by “1 ° C. than the intake superheat degree set value (SHA)” (Yes in S206), the electric expansion valve 6 is closed in the closing direction by B (PLS) (S208). Thus, the control is performed so as to keep the suction superheat degree (SH) at a certain appropriate value (SHA).

なお、電動膨張弁6の開方向A(PLS)、閉方向B(PLS)のパルス数は、吸入過熱度(SH)と吸入過熱度設定値(SHA)の差によって決められており、差が大きな場合は大きなパルス数になるように設定されている。   The number of pulses in the opening direction A (PLS) and the closing direction B (PLS) of the electric expansion valve 6 is determined by the difference between the suction superheat degree (SH) and the suction superheat degree set value (SHA). When it is large, the number of pulses is set to be large.

また、吸入過熱度は、暖房の場合には、圧縮機吸入温度検知装置16から検出された圧縮機吸入温度から室外熱交換器温度検知装置17から検出された室外熱交換器温度(暖房時は蒸発温度)を減じたものである。この差が大きいと、圧縮機2の吸入過熱度が大きくなり、圧縮機2の効率の低下や、圧縮機2から吐出される冷媒の温度が大きくなることによる圧縮機2の冷凍機油の劣化や圧縮機モータの劣化を引き起こす。また、この差が小さいと、圧縮機2に液リッチな冷媒が吸い込まれることになり、圧縮機2の効率の低下や、液量が多いことによるメカ破損につながる。このため、吸入過熱度を適切な値で制御することが必要である。   Further, in the case of heating, the intake superheat degree is determined based on the outdoor heat exchanger temperature detected from the outdoor heat exchanger temperature detection device 17 based on the compressor intake temperature detected from the compressor intake temperature detection device 16 (during heating). (Evaporation temperature) is reduced. When this difference is large, the suction superheat degree of the compressor 2 is increased, the efficiency of the compressor 2 is decreased, the deterioration of the refrigerating machine oil of the compressor 2 due to the temperature of the refrigerant discharged from the compressor 2 is increased, It causes deterioration of the compressor motor. If this difference is small, liquid-rich refrigerant is sucked into the compressor 2, leading to a reduction in efficiency of the compressor 2 and mechanical damage due to a large amount of liquid. For this reason, it is necessary to control the suction superheat degree with an appropriate value.

一方、吐出温度(Td1)が吐出温度判値(TdB)より高くなると(S202のYes)、その時点での吐出温度(Td1)を初期の吐出温度設定値(TdX)とする(S209)。次に、吸入過熱度(SH)を検出する(S210)。   On the other hand, when the discharge temperature (Td1) becomes higher than the discharge temperature value (TdB) (Yes in S202), the discharge temperature (Td1) at that time is set as the initial discharge temperature setting value (TdX) (S209). Next, the suction superheat degree (SH) is detected (S210).

吸入過熱度(SH)が吸入過熱度設定値(SHA)より所定の値以上大きいか否かを判断する。具体的には、吸入過熱度(SH)を「吸入過熱度設定値(SHA)+0.5℃」と比較する(S211)。   It is determined whether or not the suction superheat degree (SH) is larger than the suction superheat degree set value (SHA) by a predetermined value or more. Specifically, the suction superheat degree (SH) is compared with “suction superheat degree set value (SHA) + 0.5 ° C.” (S211).

吸入過熱度(SH)が「吸入過熱度設定値(SHA)+0.5℃」より高い場合(S211のYes)には、これ以上吐出温度を上昇させなくとも、機器を高効よく運転できる状態になっているため、吐出温度設定値(TdX)は変更しない(S212)。   When the suction superheat degree (SH) is higher than “suction superheat degree set value (SHA) + 0.5 ° C.” (Yes in S211), the apparatus can be operated efficiently without further increasing the discharge temperature. Therefore, the discharge temperature set value (TdX) is not changed (S212).

吸入過熱度(SH)が十分とれていないと判定する場合、例えば、吸入過熱度設定値(SHA)+0.5℃より小さい場合(S211のNo)には、現在の吐出温度(Td1)が、吐出温度設定値(TdX)に近づいて所定の値を超えると、予め制御範囲の上限値として定めた吐出温度設定値(TdC)より低いか否かを判断する。   When it is determined that the suction superheat degree (SH) is not sufficient, for example, when the suction superheat degree value (SHA) is smaller than 0.5 ° C. (No in S211), the current discharge temperature (Td1) is When it approaches the discharge temperature set value (TdX) and exceeds a predetermined value, it is determined whether or not it is lower than the discharge temperature set value (TdC) set in advance as the upper limit value of the control range.

具体的には、吐出温度(Td1)を「吐出温度設定値(TdX)−1℃」と比較する(S213)。   Specifically, the discharge temperature (Td1) is compared with “discharge temperature set value (TdX) −1 ° C.” (S213).

吐出温度制御の条件下でしばらく電動膨張弁6の開閉を制御したときに、吸入過熱度(SH)がとれず、吐出温度(Td1)が低下傾向で、「吐出温度設定値(TdX)−1℃」以下になると(S213のNo)、吐出温度設定値(TdX)に近づけようと電動膨張弁6は閉方向に動作し続けるので、吐出温度が吐出温度設定値に近づくまで吐出温度設定値(TdX)は変更しない(S212)。   When the opening / closing of the electric expansion valve 6 is controlled for a while under the condition of the discharge temperature control, the suction superheat degree (SH) cannot be obtained, and the discharge temperature (Td1) tends to decrease, “discharge temperature set value (TdX) −1”. When the temperature is equal to or lower than “° C.” (No in S213), the electric expansion valve 6 continues to operate in the closing direction so as to approach the discharge temperature set value (TdX), and thus the discharge temperature set value (until the discharge temperature approaches the discharge temperature set value). TdX) is not changed (S212).

吸入過熱度(SH)がとれておらず、さらに吐出温度(td1)が「吐出温度設定(TdX)−1℃」以上まで近づいた場合(S213のYes)には、吸入過熱度(SH)が不十分な状態で安定することを避けるために、吐出温度(Td1)が上限値の吐出温度設定値(TdC)以下であることを前提として、吸入過熱度(SH)が吸入過熱度設定値(SHA)に近づくように吐出温度設定値(TdX)を徐々に上昇させる。(例えば、吐出温度設定値(TdX)を1℃上昇させる)(S214)
なお、吐出温度設定値(TdC)は高吐出温度の保護動作が開始される吐出温度の上限値に対して少し余裕をもたせた数値であり、圧縮機保護動作判定温度より小さい数値である。吐出温度設定値(TdC)以上の吐出温度になった場合は、吐出温度設定値(TdX)に近づけるように、電動膨張弁6は必ず開方向に動作し、保護動作開始時のような急激な電動膨張弁6の開度変更にはならないので、安定した電動膨張弁6の開度制御が可能となる。
If the suction superheat degree (SH) is not obtained and the discharge temperature (td1) approaches “discharge temperature setting (TdX) −1 ° C.” or more (Yes in S213), the suction superheat degree (SH) is In order to avoid stabilization in an insufficient state, assuming that the discharge temperature (Td1) is equal to or lower than the upper limit discharge temperature set value (TdC), the suction superheat degree (SH) is set to the suction superheat degree set value ( The discharge temperature set value (TdX) is gradually increased so as to approach SHA). (For example, increase the discharge temperature set value (TdX) by 1 ° C.) (S214)
The discharge temperature set value (TdC) is a numerical value with a little margin with respect to the upper limit value of the discharge temperature at which the high discharge temperature protection operation is started, and is smaller than the compressor protection operation determination temperature. When the discharge temperature is equal to or higher than the discharge temperature set value (TdC), the electric expansion valve 6 always operates in the opening direction so as to approach the discharge temperature set value (TdX). Since the opening degree of the electric expansion valve 6 is not changed, the opening degree of the electric expansion valve 6 can be controlled stably.

次に、現在の吐出温度(Td1)が前述のように変更する吐出温度設定値(TdX)に対して、所定の値(例えば、1℃)以上高いか否かを判断する。具体的には、吐出温度(Td1)を「吐出温度設定値(TdX)+1℃」と比較する(S215)。吐出温度設定値(TdX)よりも現在の吐出温度(Td1)が1℃以上高ければ(S215のYes)、吐出温度を下げるために電動膨張弁6をC(PLS)開く(S216)。   Next, it is determined whether or not the current discharge temperature (Td1) is higher by a predetermined value (for example, 1 ° C.) than the discharge temperature set value (TdX) to be changed as described above. Specifically, the discharge temperature (Td1) is compared with “discharge temperature set value (TdX) + 1 ° C.” (S215). If the current discharge temperature (Td1) is higher than the discharge temperature set value (TdX) by 1 ° C. or more (Yes in S215), the electric expansion valve 6 is opened C (PLS) to lower the discharge temperature (S216).

吐出温度(Td1)が吐出温度設定値(TdX)に1℃加えた値より小さい場合(S215のNo)には、現在の吐出温度(Td1)が吐出温度設定値(TdX)から所定の値を減じた値より小さいか否かを判断する。具体的には、吐出温度(Td1)を「吐出温度設定値(TdX)−1℃」と比較する(S217)。   When the discharge temperature (Td1) is smaller than the value obtained by adding 1 ° C. to the discharge temperature set value (TdX) (No in S215), the current discharge temperature (Td1) is set to a predetermined value from the discharge temperature set value (TdX). It is judged whether it is smaller than the subtracted value. Specifically, the discharge temperature (Td1) is compared with “discharge temperature set value (TdX) −1 ° C.” (S217).

吐出温度(Td1)が「吐出温度設定値(TdX)+1℃」より小さく(S215のNo)、「吐出温度設定値(TdX)−1℃」より大きい場合(S217のNo)には、吐出温度(Td1)が目標の吐出温度設定値(TdX)に近づいている状態であるため、電動膨張弁6は開閉しない(S218)。   When the discharge temperature (Td1) is smaller than “discharge temperature set value (TdX) + 1 ° C.” (No in S215) and larger than “discharge temperature set value (TdX) −1 ° C.” (No in S217), the discharge temperature Since (Td1) is close to the target discharge temperature setting value (TdX), the electric expansion valve 6 is not opened or closed (S218).

吐出温度(Td1)が「吐出温度設定値(TdX)−1℃」以下の場合(S217のYes)には、電動膨張弁6を閉方向にD(PLS)絞る(S219)。このように、適切な吸入過熱度(SH)がとれる最適な吐出温度に近づけるように継続的に電動膨張弁6を制御する。   When the discharge temperature (Td1) is equal to or lower than “discharge temperature set value (TdX) −1 ° C.” (Yes in S217), the electric expansion valve 6 is closed by D (PLS) in the closing direction (S219). Thus, the electric expansion valve 6 is continuously controlled so as to approach the optimum discharge temperature at which an appropriate suction superheat degree (SH) can be obtained.

このように制御することで、吸入過熱度(SH)がとれない状況においても、吐出温度の過上昇を招くことなく、吸入過熱度(SH)がとれた状態に最も近い吐出温度で継続して運転することが可能となる。   By controlling in this way, even in a situation where the suction superheat degree (SH) cannot be obtained, the discharge temperature is not increased excessively and continuously at the discharge temperature closest to the state where the suction superheat degree (SH) is taken. It becomes possible to drive.

すなわち吸入過熱度制御では吸入過熱度(SH)が不足している場合は、吐出温度を上昇させ続け最終的には高吐出温度保護の動作に陥るが、この場合は、吸入過熱度(SH)を目標の吸入過熱度設定値(SHA)に近づけるように膨張弁を動作させるが、吐出温度
が上限に近づくとそれ以上の温度上昇を抑えることができ、快適性を損なうことなく、安定した運転が実現できる。
That is, when the suction superheat degree (SH) is insufficient in the suction superheat degree control, the discharge temperature is continuously raised, and eventually the operation of high discharge temperature protection is performed. In this case, however, the suction superheat degree (SH) The expansion valve is operated so as to approach the target intake superheat degree setting value (SHA), but when the discharge temperature approaches the upper limit, further temperature rise can be suppressed, and stable operation is performed without impairing comfort. Can be realized.

なお、以上の実施の形態において、「吸入過熱度設定値(SHA)−1℃」や「吐出温度設定値(Td1)−1℃」の1℃は、1℃でなくてもよく、例えば、数℃であってもよい。   In the above embodiment, 1 ° C. of “suction superheat setting value (SHA) −1 ° C.” and “discharge temperature setting value (Td1) −1 ° C.” may not be 1 ° C., for example, It may be several degrees Celsius.

また、実施の形態1に、実施の形態2または実施の形態3のいずれかを組み合わせて実施することもできる。この場合には、吐出温度設定値(TdB)は吐出温度設定値(TdA)より大きい数値とすることが望ましい。   Further, the first embodiment can be implemented by combining any of the second embodiment and the third embodiment. In this case, it is desirable that the discharge temperature set value (TdB) is a value larger than the discharge temperature set value (TdA).

以上説明したように、本実施の形態は、可変容量圧縮機、室外熱交換器、送風機、四方弁、絞り装置とを有する室外機と熱交換器、送風機を有する室内機を接続し、室内機に室内熱交換器温度を検知する室内熱交換器温度検知装置を設け、室外機に圧縮機から吐出される冷媒の温度を検知する圧縮機吐出温度検知装置と室外熱交換器温度を検知する室外熱交換器温度検知装置と前記圧縮機に吸入される冷媒の温度を検知する圧縮機吸入温度検知装置とを設け、圧縮機の吸入側の過熱度を検知する吸入過熱度検知装置から検知される吸入過熱温度の値がある所定の温度になるように絞り装置を制御するが、圧縮機吐出温度検知装置から検知される吐出温度がある所定の温度を超えると、現在の吐出温度と前回検出された吐出温度との差からこのあと吐出温度が急上昇する変化点を予測し、絞り装置の開閉量を減じて過剰に操作しない様に絞り装置を制御する空気調和装置において、吐出温度が所定の温度を超えて絞り装置の操作量を減じる制御に切り替わった場合、吐出温度の変化量が大きいと絞り装置の動作はしばらく停止し、吐出温度の変化量がある程度収束するまで待機状態とする。   As described above, this embodiment connects an outdoor unit having a variable capacity compressor, an outdoor heat exchanger, a blower, a four-way valve, and a throttle device, a heat exchanger, and an indoor unit having a blower. Provided with an indoor heat exchanger temperature detecting device for detecting the temperature of the indoor heat exchanger, and an outdoor unit for detecting the temperature of the refrigerant discharged from the compressor and the outdoor heat exchanger for detecting the temperature of the refrigerant discharged from the compressor in the outdoor unit. A heat exchanger temperature detecting device and a compressor suction temperature detecting device for detecting the temperature of refrigerant sucked into the compressor are provided, and detected from a suction superheat degree detecting device for detecting the degree of superheat on the suction side of the compressor. The throttle device is controlled so that the value of the suction superheat temperature becomes a predetermined temperature. If the discharge temperature detected by the compressor discharge temperature detection device exceeds a predetermined temperature, the current discharge temperature and the previous detection are detected. The difference from the discharge temperature In an air conditioner that controls the throttle device so that it does not operate excessively by reducing the opening / closing amount of the throttle device and predicting the change point where the discharge temperature suddenly rises, the amount of operation of the throttle device when the discharge temperature exceeds the predetermined temperature When the control is switched to the control for reducing the discharge temperature, if the change amount of the discharge temperature is large, the operation of the throttle device is stopped for a while, and the standby state is kept until the change amount of the discharge temperature converges to some extent.

絞り装置の操作を停止しても、しばらく吐出温度は変化し続けるが、変化量が徐々に治まると次の段階の制御へと移行し、絞り装置はゆっくりと操作を再開し、目標の吸入過熱度設定値に近づける様に制御される。   Even if the operation of the expansion device is stopped, the discharge temperature continues to change for a while, but when the amount of change gradually subsides, the control moves to the next stage, and the expansion device slowly resumes operation, and the target suction overheat It is controlled to approach the set value.

空調機の負荷が軽い場合は、この吸入過熱度設定値で絞り装置を操作する制御で十分だが、空調機への負荷が高くなると、吸入過熱度を取るために絞り装置を閉方向に絞り続け、吐出温度が機器で制御できる上限値を超える場合がある。   When the load on the air conditioner is light, it is sufficient to control the throttle device with this suction superheat setting value. However, when the load on the air conditioner increases, the throttle device continues to be throttled in the closing direction to take the suction superheat. In some cases, the discharge temperature exceeds the upper limit that can be controlled by the device.

このような場合には、吸入過熱度を制御対象にすることができないため、吐出温度を制御対象とした吐出温度制御へ切り替える必要があるが、吐出温度制御に切り替えた後も、吸入過熱度の状態から吐出温度の設定値を補正し、適切な吐出温度設定値を目指して絞り装置はゆっくりと制御される。   In such a case, since the suction superheat degree cannot be controlled, it is necessary to switch to the discharge temperature control with the discharge temperature as the control target. The setting device of the discharge temperature is corrected from the state, and the expansion device is controlled slowly with the aim of an appropriate discharge temperature setting value.

制御方法として、まず、吸入過熱度制御から吐出温度制御に切り替えた時の吐出温度を初期吐出温度設定値として、予め決定した上限の吐出温度設定値までの間で、吸入過熱度の状態をみながら吐出温度設定値を増減し、制御目標の値を決定する。吸入過熱度検知装置の値がある所定の温度を超えている場合は吐出温度設定値を少し下げ、吸入過熱度検知装置の値がある所定の温度以下の場合にのみ吐出温度設定値を少し上げる。   As a control method, first, the state of the suction superheat degree is observed from the discharge temperature when switching from the suction superheat degree control to the discharge temperature control as the initial discharge temperature set value up to a predetermined upper limit discharge temperature set value. While increasing or decreasing the discharge temperature set value, the control target value is determined. When the value of the suction superheat detection device exceeds a certain temperature, the discharge temperature setting value is slightly decreased, and only when the value of the suction superheat detection device is less than the predetermined temperature, the discharge temperature setting value is slightly increased. .

ただし、吐出温度が吐出温度設定値の温度に対しある所定温度以下の場合、すなわち吐出温度が吐出温度設定値の温度に対し、かなり低く温度に開きがある場合は、吐出温度設定値の値を上げない。   However, if the discharge temperature is below a certain temperature with respect to the discharge temperature set value, that is, if the discharge temperature is considerably lower than the discharge temperature set value, the temperature of the discharge temperature set value is Do not raise.

吐出温度と吐出温度設定値の温度差がある所定温度以下の場合、すなわち吐出温度が吐出温度設定値の温度の値に近づいた場合にのみ、吐出温度設定値の値を少し上げる。   Only when the temperature difference between the discharge temperature and the discharge temperature set value is equal to or lower than a predetermined temperature, that is, when the discharge temperature approaches the value of the discharge temperature set value, the value of the discharge temperature set value is slightly increased.

このように吐出温度制御をしながらも現在の吸入過熱度を最適な値に保とうとする動作を取り入れることで、絞り装置の流量の急激な変動による快適性や効率の低下、吐出温度の過上昇による冷凍機油の劣化や圧縮機モータの劣化等の機器の信頼性低下が回避でき、快適で信頼性の高い機器の供給が可能となる。   By incorporating the action to keep the current suction superheat level at the optimum value while controlling the discharge temperature in this way, comfort and efficiency decrease due to sudden fluctuations in the flow rate of the expansion device, and discharge temperature is excessively increased. Therefore, it is possible to avoid the deterioration of the reliability of the equipment such as the deterioration of the refrigeration oil and the deterioration of the compressor motor, which makes it possible to supply comfortable and reliable equipment.

特に、吐出温度の制御を行うにあたり、熱容量が大きい圧縮機頂部表面に圧縮機吐出温度検知装置を設けた場合のように、制御対象の応答性が悪い場合は、制御対象の温度が実際に上昇するのにある程度の時間が必要である。   In particular, when controlling the discharge temperature, the temperature of the control target actually increases when the control target response is poor, such as when a compressor discharge temperature detector is installed on the top surface of the compressor with a large heat capacity. It takes some time to do.

例えば、冷媒の吐出温度がこれから上昇する状態であっても現在の温度が低いために絞り装置を温度上昇側に操作し、必要以上の絞り状態となることがあるが、微小な吐出温度の変化が現れたときに、そのあとの吐出温度が上昇または低下することを予測し、絞り装置の変化量と操作間隔を変化させることで、実際の温度の変化点を見極めて目標の温度に近づけることが可能となる。   For example, even if the refrigerant discharge temperature is going to rise from now on, the current temperature is low, so the throttle device may be operated to the temperature rise side, resulting in an excessive throttle state. When this occurs, predict that the subsequent discharge temperature will rise or fall, and change the amount of change in the expansion device and the operation interval to find the actual temperature change point and bring it closer to the target temperature. Is possible.

このように制御することで絞り装置の過剰な操作による吐出温度の急上昇または急低下が抑えられ、冷凍機油の劣化や圧縮機モータの焼損等の機器の信頼性低下が回避でき、快適で信頼性の高い機器の供給が可能となる。さらに、吐出温度が所定の値に到達したときに、吸入過熱度制御から吐出温度制御に切り替えて吐出温度設定値を目指して絞り装置をゆっくりと制御することで、吸入過熱度制御では吐出温度の限界値を超えるような高負荷条件においても快適で安定した信頼性の高い機器の供給が可能となる。   By controlling in this way, the sudden rise or fall of the discharge temperature due to excessive operation of the throttle device can be suppressed, and deterioration in the reliability of the equipment such as deterioration of refrigeration oil and burnout of the compressor motor can be avoided, making it comfortable and reliable High-quality equipment can be supplied. Further, when the discharge temperature reaches a predetermined value, switching from the suction superheat control to the discharge temperature control and slowly controlling the expansion device aiming at the discharge temperature set value, the suction superheat control controls the discharge temperature. Even under high load conditions exceeding the limit value, it is possible to provide a comfortable, stable and reliable device.

以上のように本発明にかかる冷凍サイクル装置は、吐出温度の大きな変動を回避し、膨張弁を適切に制御し快適性と信頼性の向上を図ることが可能となるので、家庭用のエアコンや、ビル用マルチエアコン等の用途にも適用できる。   As described above, the refrigeration cycle apparatus according to the present invention can avoid large fluctuations in the discharge temperature, appropriately control the expansion valve, and improve comfort and reliability. It can also be applied to multi-air conditioners for buildings.

1 室外機
2 圧縮機
3 室外熱交換器
4 室外送風機
5 四方弁
6 電動膨張弁
7 室内機
8 室内送風機
9 室内熱交換器
10 運転設定装置
11 冷媒液管
12 冷媒ガス管
13 液側接続部
14 ガス側接続部
15 圧縮機吐出温度検知装置
16 圧縮機吸入温度検知装置
17 室外熱交換器温度検知装置
18 室内熱交換器温度検知装置
19 吸入過熱度検知装置
20 制御装置
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Compressor 3 Outdoor heat exchanger 4 Outdoor fan 5 Four way valve 6 Electric expansion valve 7 Indoor unit 8 Indoor fan 9 Indoor heat exchanger 10 Operation setting apparatus 11 Refrigerant liquid pipe 12 Refrigerant gas pipe 13 Liquid side connection part 14 Gas side connection 15 Compressor discharge temperature detection device 16 Compressor suction temperature detection device 17 Outdoor heat exchanger temperature detection device 18 Indoor heat exchanger temperature detection device 19 Suction superheat degree detection device 20 Control device

Claims (3)

圧縮機、凝縮器、絞り装置、蒸発器と、前記圧縮機から吐出される冷媒の温度を検知する吐出温度検知部と、前記圧縮機に吸入される冷媒の過熱度を演算する吸入過熱度演算部とを備え、前記吐出温度検知部が検知する吐出温度が所定の吐出温度判定値より小さい場合には、前記吸入過熱度演算部が演算する吸入過熱度が所定の値より大きい場合に前記絞り装置を通過する冷媒流量を増大し、前記吸入過熱度演算部が演算する吸入過熱度が所定の値以下の場合には、さらに吸入過熱度の前記所定の値より1度低い値と比較し、該値未満の場合には前記絞り装置を通過する冷媒流量を減少し、該値以上の場合には前記絞り装置を通過する冷媒流量を変化させないものとし、前記吐出温度が所定の吐出温度判定値以上の場合には、前記吸入過熱度が所定の値より小さい場合に吐出温度の変化量が所定値未満の場合には前記絞り装置を通過する冷媒流量を減少し、吐出温度の変化量が所定値以上の場合には前記絞り装置を通過する冷媒流量を変化させないものとし、前記吸入過熱度が所定の値以上の場合には前記絞り装置を通過する冷媒流量を増大させることを特徴とする冷凍サイクル装置。 Compressor, condenser, expansion device, evaporator, discharge temperature detection unit for detecting the temperature of refrigerant discharged from the compressor, and suction superheat degree calculation for calculating the degree of superheat of refrigerant sucked into the compressor And when the discharge temperature detected by the discharge temperature detection unit is smaller than a predetermined discharge temperature determination value , the throttle is reduced when the suction superheat degree calculated by the suction superheat degree calculation unit is larger than a predetermined value. When the flow rate of refrigerant passing through the apparatus is increased and the suction superheat degree calculated by the suction superheat degree calculation unit is equal to or less than a predetermined value, the suction superheat degree is compared with a value that is one degree lower than the predetermined value, If it is less than this value, the flow rate of refrigerant passing through the throttle device is decreased, and if it is greater than this value, the flow rate of refrigerant passing through the throttle device is not changed, and the discharge temperature is a predetermined discharge temperature judgment value. in the case of above, the suction superheat When the change amount of the discharge temperature is less than the predetermined value when the discharge temperature is less than the predetermined value, the refrigerant flow rate passing through the throttle device is decreased, and when the change amount of the discharge temperature is the predetermined value or more, the refrigerant flow is passed. The refrigeration cycle apparatus is characterized in that the refrigerant flow rate is not changed, and the refrigerant flow rate passing through the expansion device is increased when the suction superheat degree is not less than a predetermined value . 圧縮機、凝縮器、絞り装置、蒸発器と、前記圧縮機から吐出される冷媒の温度を検知する吐出温度検知部と、前記圧縮機に吸入される冷媒の過熱度を演算する吸入過熱度演算部とを備え、前記吐出温度検知部が検知する吐出温度が所定の吐出温度判定値より大きい場合には、前記吐出温度が吐出温度設定値となるように、前記絞り装置を通過する冷媒流量を調整するもので、前記吐出温度設定値は、前記所定の吐出温度を超えたときの前記吐出温度を基準とし、前記吸入過熱度が前記吸入過熱度設定値より大きく、前記吐出温度が前記吐出温度設定値より小さい場合には、前記吐出温度設定値を下げることを特徴とする冷凍サイクル装置。 Compressor, condenser, expansion device, evaporator, discharge temperature detection unit for detecting the temperature of refrigerant discharged from the compressor, and suction superheat degree calculation for calculating the degree of superheat of refrigerant sucked into the compressor A discharge flow rate detected by the discharge temperature detection unit is greater than a predetermined discharge temperature determination value, the flow rate of the refrigerant passing through the expansion device is adjusted so that the discharge temperature becomes a discharge temperature set value. The discharge temperature setting value is adjusted based on the discharge temperature when the predetermined discharge temperature is exceeded, the suction superheat degree is larger than the suction superheat degree set value, and the discharge temperature is the discharge temperature. The refrigeration cycle apparatus characterized by lowering the discharge temperature set value when it is smaller than the set value. 前記吸入過熱度が前記吸入過熱度設定値より小さく、前記吐出温度が前記吐出温度設定値より大きい場合には、前記吐出温度設定値を上げることを特徴とする請求項2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 2, wherein when the suction superheat degree is smaller than the suction superheat degree set value and the discharge temperature is larger than the discharge temperature set value, the discharge temperature set value is increased. .
JP2015102338A 2015-05-20 2015-05-20 Refrigeration cycle equipment Active JP6557855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015102338A JP6557855B2 (en) 2015-05-20 2015-05-20 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015102338A JP6557855B2 (en) 2015-05-20 2015-05-20 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2016217615A JP2016217615A (en) 2016-12-22
JP6557855B2 true JP6557855B2 (en) 2019-08-14

Family

ID=57580778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015102338A Active JP6557855B2 (en) 2015-05-20 2015-05-20 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP6557855B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111076349A (en) * 2019-12-24 2020-04-28 珠海格力电器股份有限公司 Operation control method and device, storage medium and air conditioner

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6836421B2 (en) * 2017-03-02 2021-03-03 シャープ株式会社 Air conditioner
CN107036256B (en) * 2017-05-31 2019-06-11 广东美的制冷设备有限公司 The control method of delivery temperature, the control device of delivery temperature and air conditioner
CN107621102B (en) * 2017-09-14 2019-09-24 南京天加环境科技有限公司 A method of electric expansion valve is controlled based on double degrees of superheat
CN111043737A (en) * 2019-12-23 2020-04-21 青岛海尔空调器有限总公司 Method and device for controlling expansion valve and air conditioner
CN111623569A (en) * 2020-06-02 2020-09-04 江苏拓米洛环境试验设备有限公司 Temperature control device and method of temperature control equipment
CN113639485B (en) * 2021-07-23 2023-03-28 青岛海尔空调电子有限公司 Method and device for adjusting exhaust superheat degree of heat pump equipment and heat pump equipment
CN114264052B (en) * 2021-12-24 2023-03-17 珠海格力电器股份有限公司 Refrigeration control method and air conditioner

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954061U (en) * 1982-10-01 1984-04-09 株式会社東芝 Refrigeration cycle equipment
JP3086813B2 (en) * 1991-01-22 2000-09-11 東芝キヤリア株式会社 Control method of electronic expansion valve in air conditioner
JPH05141789A (en) * 1991-11-21 1993-06-08 Hitachi Ltd Refrigerating device
JP2889791B2 (en) * 1993-07-22 1999-05-10 三洋電機株式会社 Vapor compression refrigerator
JP3651536B2 (en) * 1997-05-19 2005-05-25 株式会社富士通ゼネラル Control method of air conditioner
JP3178453B2 (en) * 1999-02-26 2001-06-18 ダイキン工業株式会社 Refrigeration equipment
CN100453922C (en) * 2004-04-09 2009-01-21 松下电器产业株式会社 Drying equipment
JP2006242506A (en) * 2005-03-04 2006-09-14 Chubu Electric Power Co Inc Thermal storage type air conditioner
JP4845605B2 (en) * 2006-06-20 2011-12-28 三洋電機株式会社 Refrigeration cycle apparatus and heat pump water heater
JP4905018B2 (en) * 2006-09-25 2012-03-28 ダイキン工業株式会社 Refrigeration equipment
JP5386141B2 (en) * 2008-10-23 2014-01-15 三菱重工業株式会社 Heat pump device control method, heat pump device outdoor unit and heat pump device
JP5278451B2 (en) * 2011-01-27 2013-09-04 パナソニック株式会社 Refrigeration cycle apparatus and hot water heater using the same
JP5856042B2 (en) * 2012-12-11 2016-02-09 日立アプライアンス株式会社 Heat pump water heater
JP5956326B2 (en) * 2012-12-17 2016-07-27 三菱電機株式会社 Refrigeration apparatus and refrigeration cycle apparatus
CN104884876B (en) * 2012-12-26 2017-03-08 三菱电机株式会社 Refrigerating circulatory device and the control method of refrigerating circulatory device
JP6321363B2 (en) * 2013-12-06 2018-05-09 シャープ株式会社 Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111076349A (en) * 2019-12-24 2020-04-28 珠海格力电器股份有限公司 Operation control method and device, storage medium and air conditioner
CN111076349B (en) * 2019-12-24 2021-01-26 珠海格力电器股份有限公司 Operation control method and device, storage medium and air conditioner

Also Published As

Publication number Publication date
JP2016217615A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6557855B2 (en) Refrigeration cycle equipment
JP6225819B2 (en) Air conditioner
US10371407B2 (en) Air conditioning apparatus
WO2015083399A1 (en) Air conditioner
KR100690683B1 (en) Air conditioner and heating operation control method therof
JP2007303731A (en) Air conditioner
JP4445246B2 (en) Air conditioner
JP2016166710A (en) Air-conditioning system
JP4830632B2 (en) Air conditioner
JP2006170528A (en) Air conditioner
JP6918221B2 (en) Air conditioner
JP6229170B2 (en) Refrigeration cycle equipment
JP2005147541A (en) Multi-chamber type air conditioner
JP6191490B2 (en) Air conditioner
JP5195543B2 (en) Control method of air conditioner
JP2020029990A (en) Air conditioner
JP6456548B2 (en) Air conditioner
WO2020003490A1 (en) Air conditioning device
JP6256280B2 (en) Air conditioner
KR20190073870A (en) Air conditioner and control method of air conditioner
JP2012237482A (en) Air conditioner
JP6573507B2 (en) Air conditioner
JP4859483B2 (en) Air conditioner
JP4151523B2 (en) Multi-type air conditioner
JP2005055053A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180307

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R151 Written notification of patent or utility model registration

Ref document number: 6557855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151