JPS6162770A - Method of controlling refrigerating air conditioner - Google Patents

Method of controlling refrigerating air conditioner

Info

Publication number
JPS6162770A
JPS6162770A JP18457684A JP18457684A JPS6162770A JP S6162770 A JPS6162770 A JP S6162770A JP 18457684 A JP18457684 A JP 18457684A JP 18457684 A JP18457684 A JP 18457684A JP S6162770 A JPS6162770 A JP S6162770A
Authority
JP
Japan
Prior art keywords
temperature sensor
temperature
set value
control
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18457684A
Other languages
Japanese (ja)
Inventor
晃 渥美
研作 小国
浅井 節郎
五月女 要
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18457684A priority Critical patent/JPS6162770A/en
Publication of JPS6162770A publication Critical patent/JPS6162770A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は冷凍機、パッケージエアコン、チラユニット、
ルームエアコンなどに適用される冷凍空調装置の制御方
法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is applicable to refrigerators, package air conditioners, chiller units,
The present invention relates to a method of controlling a refrigeration air conditioner applied to a room air conditioner or the like.

〔発明の背景〕[Background of the invention]

従来、電気信号に応じて弁開度を変化させる電子制御膨
張弁を備えた冷凍空調装置では、蒸発器出口の冷媒過熱
度が一定となるように前記膨張弁を制御していた。とこ
ろが、このような冷凍空調装置において、負荷が上昇し
た場合1例えば室内外の空気温度が上昇した場合には、
圧縮機の吐出温度も著しく上昇するため、圧縮機モータ
巻線が焼損する恐れがあった。
BACKGROUND ART Conventionally, in a refrigeration and air conditioner equipped with an electronically controlled expansion valve that changes the degree of valve opening in response to an electrical signal, the expansion valve is controlled so that the degree of superheating of the refrigerant at the outlet of the evaporator remains constant. However, in such a refrigeration and air conditioning system, when the load increases (1) For example, when the indoor and outdoor air temperature increases,
Since the discharge temperature of the compressor also rose significantly, there was a risk that the compressor motor windings would burn out.

そこで、上記吐出温度が許容値Td1以上に上昇した場
合にこれを記憶し、その吐出温度が設定値Td2以下に
なるまで電子制御膨張弁の開度を大きくし、吐出温度が
前記設定値以下に低下した場合に、再び過熱度制御を行
うような制御方法が提案されている(実開昭56−16
3257号公報)。
Therefore, when the above-mentioned discharge temperature rises above the allowable value Td1, this is memorized, and the opening degree of the electronically controlled expansion valve is increased until the discharge temperature becomes below the set value Td2, and the discharge temperature becomes below the set value. A control method has been proposed in which the degree of superheat is controlled again when the degree of superheat has decreased (Utility Model Application No. 56-16).
Publication No. 3257).

しかし、この制御方法では、許容値Td1と設定値Td
、のディファレンシャルのために、常に電子制御膨張弁
の開度は変更され、一定の負荷条件でもその膨張弁の開
度が周期的に変動し、この変動に伴って圧縮機の吐出温
度および吸入温度も変動する。このため冷凍空調能力の
低下および電子制御膨張弁の信頼性の低減を招く恐れが
あった。
However, in this control method, the allowable value Td1 and the set value Td
Due to the differential of Also fluctuates. This may lead to a decrease in the refrigeration and air conditioning capacity and a decrease in the reliability of the electronically controlled expansion valve.

本発明は上記にかんがみ、圧縮機の吐出温度が上昇した
場合でも、その吐出温度を安定に制御し。
In view of the above, the present invention stably controls the discharge temperature of the compressor even when the discharge temperature rises.

かつ電子制御膨張弁の開度の変更を最小限にして、冷凍
空調能力の増大および前記膨張弁の信頼性の向上をはか
ることを目的とするものである。
Another object of the present invention is to minimize changes in the opening degree of the electronically controlled expansion valve, thereby increasing the refrigeration and air conditioning capacity and improving the reliability of the expansion valve.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、電子制御膨張弁を
備えた冷凍空調装置において、通常は圧縮機および蒸発
器の吸入側にそれぞれ設けた温度センサおよび電子制御
膨張弁により吸入冷媒の過熱度制御を行い、圧縮機の吐
出温度が設定値以上に上昇した場合には、前記両温度セ
ンサ、電子制御膨張弁および圧縮機の吐出側に設けた温
度センサにより吐出温度制御を行い、さらに吐出温度制
御時に、吐出温度が設定値以下で、かつ過熱度が設定値
以上の場合には、再び前記過熱度制御を行うようにした
ことを特徴とするものである。
In order to achieve the above object, the present invention provides a refrigeration and air conditioner equipped with an electronically controlled expansion valve, in which temperature sensors and electronically controlled expansion valves are normally provided on the suction sides of a compressor and an evaporator, respectively, to determine the degree of superheating of suction refrigerant. When the discharge temperature of the compressor rises above the set value, the discharge temperature is controlled by both temperature sensors, the electronically controlled expansion valve, and the temperature sensor installed on the discharge side of the compressor. At the time of control, if the discharge temperature is below the set value and the degree of superheat is above the set value, the superheat degree control is performed again.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の実施例を図面について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本実施例を適用する冷凍空調装置の冷凍サイク
ルの構成図で、この冷凍サイクルは圧縮機1.凝縮器2
.電子制御膨張弁3、蒸発器4を順次作動的に接続して
構成されている。前記圧縮機1の吸入側と吐出側には、
冷媒の吸入温度を検出する第1温度センサ5および吐出
温度を検出する第3温度センサ6が設けられ、また蒸発
器4の入口側には、蒸発温度を検出する第2温度センサ
6が設けられている。これらの温度センサ5〜7および
前記電子制御膨張弁3はコントローラ8に接続されてお
り、前記温度センサ5〜7で検出された温度に応じて、
コントローラ8が電子制御膨張弁3の弁開度を制御する
FIG. 1 is a block diagram of a refrigeration cycle of a refrigeration and air conditioner to which this embodiment is applied, and this refrigeration cycle consists of a compressor 1. Condenser 2
.. An electronically controlled expansion valve 3 and an evaporator 4 are sequentially connected in an operative manner. On the suction side and discharge side of the compressor 1,
A first temperature sensor 5 that detects the suction temperature of the refrigerant and a third temperature sensor 6 that detects the discharge temperature are provided, and a second temperature sensor 6 that detects the evaporation temperature is provided on the inlet side of the evaporator 4. ing. These temperature sensors 5 to 7 and the electronically controlled expansion valve 3 are connected to a controller 8, and depending on the temperature detected by the temperature sensors 5 to 7,
A controller 8 controls the valve opening degree of the electronically controlled expansion valve 3.

上記圧縮機1から吐出されたガス冷媒は、凝縮器2に流
入して凝縮・液化される。この凝縮器2から吐出された
液冷媒は、電子制御膨張弁3に流入して減圧された後、
蒸発器4に流入して蒸発しガス化される。このガス冷媒
は再び圧縮機1に吸入される。
The gas refrigerant discharged from the compressor 1 flows into the condenser 2 and is condensed and liquefied. The liquid refrigerant discharged from the condenser 2 flows into the electronically controlled expansion valve 3 and is depressurized.
It flows into the evaporator 4 and is evaporated and gasified. This gas refrigerant is sucked into the compressor 1 again.

次に電子制御膨張弁3の制御方法について説明する。Next, a method of controlling the electronically controlled expansion valve 3 will be explained.

通常の運転では、電子制御膨張弁3は第1温度センサ5
と第2温度センサ6でそれぞれ検出される温度の差、す
なわち吸入冷媒の過熱度が第1設定値SRよと等しくな
るように、弁開度が制御される。室内外の空気温度が上
昇し、第3温度センサ7で検出される温度、すなわち吐
出温度が第2設定値Td□以上で、かつ第1温度センサ
5と第2温度センサ6でそれぞれ検出される温度の差。
In normal operation, the electronically controlled expansion valve 3 is connected to the first temperature sensor 5.
The valve opening degree is controlled so that the difference between the temperatures detected by the second temperature sensor 6 and the second temperature sensor 6, that is, the degree of superheating of the suction refrigerant, becomes equal to the first set value SR. The indoor and outdoor air temperature increases, and the temperature detected by the third temperature sensor 7, that is, the discharge temperature, is equal to or higher than the second set value Td□, and is detected by the first temperature sensor 5 and the second temperature sensor 6, respectively. temperature difference.

すなわち過熱度が第3H定値SH2以下の場合には、電
子制御膨張弁3の弁開度は、圧縮機1の吐出温度(第3
温度センサ7の検出温度)が前記第2設定値Td、と等
しくなるように制御されて。
That is, when the degree of superheat is equal to or lower than the third H constant value SH2, the valve opening degree of the electronically controlled expansion valve 3 is set to the discharge temperature of the compressor 1 (the third H constant value SH2).
The temperature detected by the temperature sensor 7) is controlled to be equal to the second set value Td.

吐出温度制御が行われる。さらに、吐出温度制御時に、
室内外の空気温度が低下すると、吐出温度は第2設定値
Td□に制御されているために、過熱度が大きくなる。
Discharge temperature control is performed. Furthermore, when controlling the discharge temperature,
When the indoor and outdoor air temperature decreases, the degree of superheat increases because the discharge temperature is controlled to the second set value Td□.

そして、過熱度、すなわち第1温度センサ5と第2温度
センサ6の各検出度の差が第5設定値SH,以上で、か
つ第3′lA度センサ6の検出温度(吐出温度)が第4
設定値Td2以下の場合には、再び過熱度制御で行われ
る。
Then, the degree of superheating, that is, the difference between the detection degrees of the first temperature sensor 5 and the second temperature sensor 6 is greater than or equal to the fifth set value SH, and the detected temperature (discharge temperature) of the third temperature sensor 6 is the fifth set value SH. 4
If it is less than the set value Td2, superheat degree control is performed again.

第2図は吸入冷媒の過熱度SHと吐出温度Tdとの関係
を示す制御特性図で、上記各設定値および各制御範囲を
示している。
FIG. 2 is a control characteristic diagram showing the relationship between the superheat degree SH of the suction refrigerant and the discharge temperature Td, and shows each set value and each control range described above.

負荷が小さい場合には、過熱度制御範囲Y内のA点で過
熱度制御が行われる。負荷が増加して吐出温度制御範囲
X内のB点に達すると、吐出温度制御に移行する。さら
に、負荷が増加して吐出温度制御範囲X内の0点に至る
と、吸入冷媒は湿り状態になる。逆に負荷が0点からB
、D点に低下した場合、D点に達すると、再び過熱度制
御に移行してA点付近に戻る。
When the load is small, superheat control is performed at point A within superheat control range Y. When the load increases and reaches point B within the discharge temperature control range X, the process shifts to discharge temperature control. Further, when the load increases and reaches the 0 point within the discharge temperature control range X, the suction refrigerant becomes wet. Conversely, the load changes from 0 point to B
, when the temperature drops to point D, when the point D is reached, the superheat control is performed again and the temperature returns to around point A.

前記設定値SH,,SH,,SH,およびTd、。The set values SH,,SH,,SH,and Td,.

Td2がそれぞれ極めて近似する値であっても、過熱膚
制御時には吐出温度を、吐出温度制御時には過熱度をそ
れぞれ常に検出しながら制御するため、ハンチングのな
い安定した制御を行うことが可能である。
Even if the Td2 values are very similar to each other, stable control without hunting can be performed because the discharge temperature is constantly detected during overheated skin control, and the degree of superheat is constantly detected during discharge temperature control.

したがって、電子制御膨張弁の開度変化が小さく、また
過熱度がある設定値より小さく′#J御されるから、性
能的にも最適な制御を行うことができる。
Therefore, since the opening degree change of the electronically controlled expansion valve is small and the degree of superheat is controlled to be smaller than a certain set value, optimum control can be performed in terms of performance.

第3図は他の実施例の制御特性図で、この制御特性は前
記実施例の制御特性図(第2図)における設定値SR,
とSH3とを等しく設定すると共に。
FIG. 3 is a control characteristic diagram of another embodiment, and this control characteristic is the set value SR in the control characteristic diagram of the previous embodiment (FIG. 2),
and SH3 are set equal.

設定値Td1とTd、とを等しく設定した場合の各制御
範囲x’ 、y’ を示したものである1本実施例では
、各制御の切換における吐出温度の設定値が等しいため
、吐出温度を完全に設定値Td1に一致させることはで
きないが、その変動幅を非常に小さくすることは可能で
ある。また制御が著しく簡略化させているので、コスト
面で非常に有利である。
This figure shows the respective control ranges x' and y' when the set values Td1 and Td are set equal.1 In this embodiment, since the set values of the discharge temperature in each control switching are the same, the discharge temperature is Although it is not possible to completely match the set value Td1, it is possible to make the range of variation very small. Furthermore, since the control is significantly simplified, it is very advantageous in terms of cost.

以上の実施例では各制御法の制御アルゴリズムを特に限
定していないが、最も簡単な制御アルゴリズムとしては
式(1)で表わされるように検出値と設定値との差e、
(偏差)に応じて修正量ΔV(膨張弁開度)を決定する
方法がある。
In the above embodiments, the control algorithm for each control method is not particularly limited, but the simplest control algorithm is the difference e between the detected value and the set value, as expressed by equation (1),
There is a method of determining the correction amount ΔV (expansion valve opening degree) according to the deviation.

AV = K−a、             ・・・
(1)K:定数 このような簡単な制御法は、低コストではあるが、過熱
度を設定値に精度よく一致させることは難しい、このよ
うな場合、式(2)で表わされるような比例動作と積分
動作を組合せた速度形PI制御アルゴリズムを用いると
安定した制御が行える。
AV=K-a,...
(1) K: constant Although such a simple control method is low cost, it is difficult to accurately match the degree of superheating to the set value. Stable control can be achieved by using a speed type PI control algorithm that combines motion and integral motion.

JV=に、(e、−e、−t)+Kse、・τ、−(2
)式(2)において、eavemはそれぞれ時刻tel
t、−1における検出値と設定値との差(偏差)であり
、τ8はサンプリングの間隔である。したがってこの制
御法では、偏差の時間的変化と、サンプリング時間と偏
差の積に比例した修正量が与えられるようになっており
、精度良く安定した制御が行える。
JV=to, (e, -e, -t)+Kse, ·τ, -(2
) In equation (2), eavem is the time tel
It is the difference (deviation) between the detected value and the set value at t, -1, and τ8 is the sampling interval. Therefore, in this control method, a correction amount is given that is proportional to the temporal change in the deviation and the product of the sampling time and the deviation, and accurate and stable control can be performed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明によれば、過熱度制御およ
び吐出温度制御を安定的に行うことができ、かつ前記両
制御の切換えをスムーズに行えるので、冷凍空調能力の
増加および電子制御膨張弁、その他の機器の信頼性を向
上させることができる。
As explained above, according to the present invention, superheat degree control and discharge temperature control can be performed stably, and switching between the two controls can be performed smoothly, thereby increasing the refrigeration and air conditioning capacity and increasing the electronically controlled expansion valve. , the reliability of other equipment can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の制御方法を適用する冷凍空調装置の冷
凍サイクルの構成図、第2図および第3図は本発明の制
御方法の各実施例の制御特性図である。 1・・・圧縮機、2・・・凝縮器、3・・・電子制御膨
張弁、4・・・蒸発器、5〜7・・・温度センサ、8・
・・コントローラ。
FIG. 1 is a block diagram of a refrigeration cycle of a refrigeration and air conditioner to which the control method of the present invention is applied, and FIGS. 2 and 3 are control characteristic diagrams of each embodiment of the control method of the present invention. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Condenser, 3... Electronically controlled expansion valve, 4... Evaporator, 5-7... Temperature sensor, 8...
··controller.

Claims (3)

【特許請求の範囲】[Claims] 1.圧縮機、凝縮器、電子制御膨張弁および蒸発器を作
動的に連結して冷凍サイクルを構成し、圧縮機の吸入側
および吐出側に第1温度センサおよび第3温度センサを
それぞれ設けると共に、蒸発器の吸入側に第2温度セン
サを設け、前記電子制御膨張弁および前記第1温度セン
サないし第3温度センサをコントローラに接続した冷凍
空調装置において、通常は前記第1温度センサと第2温
度センサの各検出温度の差が、第1設定値と等しくなる
ように前記電子制御膨張弁を開閉制御する過熱度制御を
行い、前記第3温度センサの検出温度が第2設定値以上
で、かつ第1温度センサと第2温度センサの各検出温度
の差が第3設定値以下の場合には、第3温度センサの検
出温度が第2設定値と等しくなるように前記電子制御膨
張弁を制御する吐出温度制御を行い、さらに吐出温度制
御時に、第3温度センサの検出温度が第4設定値以上で
、かつ第1温度センサと第2温度センサの各検出温度の
差が第5設定値以上の場合には、前記過熱度制御を行う
ようにしたことを特徴とする冷凍空調装置の制御方法。
1. A refrigeration cycle is constructed by operatively connecting a compressor, a condenser, an electronically controlled expansion valve, and an evaporator, and a first temperature sensor and a third temperature sensor are provided on the suction side and discharge side of the compressor, respectively, and In a refrigeration and air conditioner in which a second temperature sensor is provided on the suction side of the device, and the electronically controlled expansion valve and the first to third temperature sensors are connected to a controller, the first temperature sensor and the second temperature sensor are usually connected to the controller. The degree of superheat control is performed by controlling the opening and closing of the electronically controlled expansion valve so that the difference between the respective detected temperatures becomes equal to the first set value, and the temperature detected by the third temperature sensor is equal to or higher than the second set value, and If the difference between the temperatures detected by the first temperature sensor and the second temperature sensor is less than or equal to a third set value, the electronically controlled expansion valve is controlled so that the temperature detected by the third temperature sensor becomes equal to the second set value. Discharge temperature control is performed, and when the discharge temperature is controlled, the detected temperature of the third temperature sensor is equal to or higher than the fourth set value, and the difference between the detected temperatures of the first temperature sensor and the second temperature sensor is equal to or higher than the fifth set value. A method for controlling a refrigerating and air conditioning apparatus, characterized in that the degree of superheating is controlled.
2.上記第3設定値と第5設定値を等しくすると共に、
第2設定値と第4設定値を等しくしたことを特徴とする
特許請求の範囲第1項記載の冷凍空調装置の制御方法。
2. While making the third setting value and the fifth setting value equal to each other,
2. The method of controlling a refrigerating and air conditioning system according to claim 1, wherein the second set value and the fourth set value are made equal.
3.上記過熱度制御および吐出温度制御をPI制御アル
ゴリズムで制御するようにしたことを特徴とする特許請
求の範囲第1項または第2項記載の冷凍空調装置の制御
方法。
3. 3. The method of controlling a refrigerating and air conditioner according to claim 1, wherein the superheat degree control and the discharge temperature control are controlled by a PI control algorithm.
JP18457684A 1984-09-05 1984-09-05 Method of controlling refrigerating air conditioner Pending JPS6162770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18457684A JPS6162770A (en) 1984-09-05 1984-09-05 Method of controlling refrigerating air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18457684A JPS6162770A (en) 1984-09-05 1984-09-05 Method of controlling refrigerating air conditioner

Publications (1)

Publication Number Publication Date
JPS6162770A true JPS6162770A (en) 1986-03-31

Family

ID=16155619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18457684A Pending JPS6162770A (en) 1984-09-05 1984-09-05 Method of controlling refrigerating air conditioner

Country Status (1)

Country Link
JP (1) JPS6162770A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198464U (en) * 1986-06-04 1987-12-17
JPS63127057A (en) * 1986-11-14 1988-05-30 松下電器産業株式会社 Heat pump hot-water supply machine
WO2015083399A1 (en) * 2013-12-06 2015-06-11 シャープ株式会社 Air conditioner
JP2016217614A (en) * 2015-05-20 2016-12-22 パナソニックIpマネジメント株式会社 Refrigeration cycle device
WO2019194082A1 (en) * 2018-04-05 2019-10-10 三菱重工サーマルシステムズ株式会社 Control device of freezer, freezer, method for controlling freezer, and program for controlling freezer
JP2019203688A (en) * 2019-09-06 2019-11-28 株式会社日立製作所 Refrigeration cycle device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198464U (en) * 1986-06-04 1987-12-17
JPH0526433Y2 (en) * 1986-06-04 1993-07-05
JPS63127057A (en) * 1986-11-14 1988-05-30 松下電器産業株式会社 Heat pump hot-water supply machine
WO2015083399A1 (en) * 2013-12-06 2015-06-11 シャープ株式会社 Air conditioner
JP2016217614A (en) * 2015-05-20 2016-12-22 パナソニックIpマネジメント株式会社 Refrigeration cycle device
WO2019194082A1 (en) * 2018-04-05 2019-10-10 三菱重工サーマルシステムズ株式会社 Control device of freezer, freezer, method for controlling freezer, and program for controlling freezer
JP2019184115A (en) * 2018-04-05 2019-10-24 三菱重工サーマルシステムズ株式会社 Refrigerating machine controller, refrigerating machine, control method of refrigerating machine, and control program of refrigerating machine
EP3760945A4 (en) * 2018-04-05 2021-05-19 Mitsubishi Heavy Industries Thermal Systems, Ltd. Control device of freezer, freezer, method for controlling freezer, and program for controlling freezer
JP2019203688A (en) * 2019-09-06 2019-11-28 株式会社日立製作所 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
US10760798B2 (en) HVAC unit with hot gas reheat
US4878355A (en) Method and apparatus for improving cooling of a compressor element in an air conditioning system
US5214918A (en) Refrigerator and method for indicating refrigerant amount
US5809794A (en) Feed forward control of expansion valve
JPH09295512A (en) Air conditioner for vehicle
JPS6162770A (en) Method of controlling refrigerating air conditioner
JP2001272149A (en) Show case cooling device
JP2000161830A (en) Refrigerator and its controlling method
JPH01222137A (en) Air conditioning device
JP3225738B2 (en) Air conditioner
JPH031055A (en) Cooling and heating apparatus
JP3511708B2 (en) Operation control unit for air conditioner
JP2904354B2 (en) Air conditioner
JP2755037B2 (en) Refrigeration equipment
JP3056554B2 (en) Air conditioner
JPS6189455A (en) Flow controller for refrigerant in refrigeration cycle
JPS62299660A (en) Air conditioner
JPH0225103Y2 (en)
JPH01312358A (en) Air conditioner
JPH049552A (en) Freezer device
JPH0464851A (en) Control device for multi-chamber type air conditioner
JPH04297757A (en) Refrigeration device
JPH0573981B2 (en)
JPS59109748A (en) Air conditioner
JPH0777361A (en) Electrical expansion valve control device