JPH0777361A - Electrical expansion valve control device - Google Patents

Electrical expansion valve control device

Info

Publication number
JPH0777361A
JPH0777361A JP5129304A JP12930493A JPH0777361A JP H0777361 A JPH0777361 A JP H0777361A JP 5129304 A JP5129304 A JP 5129304A JP 12930493 A JP12930493 A JP 12930493A JP H0777361 A JPH0777361 A JP H0777361A
Authority
JP
Japan
Prior art keywords
degree
expansion valve
superheating
opening
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5129304A
Other languages
Japanese (ja)
Inventor
Akihiro Noguchi
明裕 野口
Yasuhiro Arai
康弘 新井
Tetsuji Yamashita
哲司 山下
Takayoshi Iwanaga
隆喜 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5129304A priority Critical patent/JPH0777361A/en
Publication of JPH0777361A publication Critical patent/JPH0777361A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To carryout a safe operation by a method wherein an electrical expansion valve control device used as an adjusting mechanism in an air conditioner comprises a control means for changing an amount of varying degree of opening in response to the present degree of opening of the expansion valve so as to restrict a rapid variation of flow rate of refriger ant. CONSTITUTION:A rational degree of superheating (a set degree of superheating) is set, and an initial value of difference between a degree of superheating and a set degree of superheating is set to a proper value. Outputs of each of refrigerant temperature sensors 6 to 8 are read into a temperature measuring means 9 to measure a compressor suction refrigerant temperature and an evaporating temperature (during a cooling operation, a middle refrigerant temperature at an indoor side heat exchanger 3 and during a heating operation, a middle refrigerant temperature at an outdoor side heat exchanger 5). Then, a degree of superheating is calculated by a calculation means 10 in reference to a difference between the compressor sucking refrigerant temperature and the evaporating temperature, and at the same time, a difference between the degree of superheating and the set degree of superheating is calculated, and a difference between the calculated difference and the difference value stored in the last controlling operation is calculated. A fuzzy calculation is carried out with these data being applied as a previous condition so as to calculate a PMV degree of opening variation rate, the calculated value is multiplied by the present degree of opening of the electrical expansion valve 4 and then a controlling amount is determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ルームエアコン等の空
気調和装置に使用される電動膨張弁を制御する電動膨張
弁制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric expansion valve control device for controlling an electric expansion valve used in an air conditioner such as a room air conditioner.

【0002】[0002]

【従来の技術】絞り機構として電動膨張弁(以下、PM
Vとも云う)を使用した空気調和装置の冷凍サイクルと
しては、圧縮機、四方弁、室内側熱交換器、電動膨張
弁、室外側熱交換器を冷媒配管で接続し、四方弁によっ
て冷媒の流れの向きを変えることにより冷房、暖房の運
転状態を切り換えるようにしたものがある。このような
空気調和装置における従来の電動膨張弁制御は、現在開
度とは関係なしに過熱度あるいは圧縮機吐出温度等に応
じて開度変化量が決められていた。
2. Description of the Related Art An electric expansion valve (hereinafter, PM) is used as a throttle mechanism.
(Also referred to as V), a refrigeration cycle of an air conditioner includes a compressor, a four-way valve, an indoor heat exchanger, an electric expansion valve, and an outdoor heat exchanger connected by a refrigerant pipe, and a four-way valve is used to flow the refrigerant. There is a system in which the operating states of cooling and heating are switched by changing the direction of. In the conventional electric expansion valve control in such an air conditioner, the opening change amount is determined according to the degree of superheat, the compressor discharge temperature, etc., regardless of the current opening.

【0003】[0003]

【発明が解決しようとする課題】従来の電動膨張弁制御
は、現在開度に関係なしに過熱度あるいは圧縮機吐出温
度等に応じて開度変化量を決めていたので、PMV開度
が小さい領域では開度の大きい領域より同じ制御量に対
するPMV開度の変化の割合が大きくなるため、冷媒流
量変動が激しくなり冷凍サイクルが不安定になるという
問題があった。
In the conventional electric expansion valve control, the opening change amount is determined according to the degree of superheat, the compressor discharge temperature, etc. regardless of the current opening, so that the PMV opening is small. In the region, the rate of change of the PMV opening with respect to the same control amount is larger than in the region where the opening is large, so that there is a problem that the refrigerant flow rate fluctuates and the refrigeration cycle becomes unstable.

【0004】そこで、本発明は、冷凍サイクル温度の急
激な変化が起りにくくなって冷凍サイクルを安定運転さ
せることができる電動膨張弁制御装置を提供することを
目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an electric expansion valve control device capable of stably operating the refrigeration cycle by preventing the rapid change of the refrigeration cycle temperature.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するために、空気調和装置における絞り機構として用い
る電動膨張弁を制御する電動膨張弁制御装置であって、
前記電動膨張弁の現在開度に応じて開度変化量を変える
制御手段を有することを要旨とする。
To solve the above problems, the present invention provides an electric expansion valve control device for controlling an electric expansion valve used as a throttle mechanism in an air conditioner,
The gist of the present invention is to have a control unit that changes the opening change amount according to the current opening of the electric expansion valve.

【0006】[0006]

【作用】電動膨張弁の現在開度に応じて開度変化量を変
える制御を行うことにより、急激な冷媒流量変動が起り
にくくなり、冷凍サイクルを安定化させることが可能と
なる。
By controlling the opening change amount according to the current opening of the electric expansion valve, it is possible to prevent a sudden change in the refrigerant flow rate and stabilize the refrigeration cycle.

【0007】[0007]

【実施例】以下、本発明の実施例を図1乃至図3に基づ
いて説明する。本実施例はPMV開度変化量の決定にフ
ァジィ演算が適用されている。図1において、1は圧縮
機、2は四方弁、3は室内側熱交換器、4は電動膨張
弁、5は室外側熱交換器であり、これらが冷媒配管で接
続されて空気調和装置の冷凍サイクルが構成されてい
る。6は圧縮機吸い込み冷媒温度センサ、7は室内側熱
交換器中間冷媒温度センサ、8は室外側熱交換器中間冷
媒温度センサであり、これら各センサの出力が温度計測
手段9に送られて圧縮機吸い込み冷媒温度及び各熱交換
器の中間冷媒温度が計測されるようになっている。10
は制御手段としてのファジィ等演算手段、11はPMV
開閉手段、12は数値記憶手段、13は時間計測手段で
ある。図3は上記ファジィ等演算手段10で行われるフ
ァジィ演算のメンバーシップ関数とファジィルールを示
している。図3において、SHは目標とする設定過熱
度、ΔSHはPMV制御時間間隔における設定過熱度S
Hの変化量、ΔPLSはファジィ演算によって決定され
るPMV開度変化率である。
Embodiments of the present invention will be described below with reference to FIGS. In this embodiment, fuzzy calculation is applied to determine the PMV opening change amount. In FIG. 1, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is an electric expansion valve, 5 is an outdoor heat exchanger, and these are connected by a refrigerant pipe to connect an air conditioner. A refrigeration cycle is configured. 6 is a compressor suction refrigerant temperature sensor, 7 is an indoor heat exchanger intermediate refrigerant temperature sensor, 8 is an outdoor heat exchanger intermediate refrigerant temperature sensor, and the output of each of these sensors is sent to the temperature measuring means 9 for compression. The temperature of the refrigerant sucked into the machine and the temperature of the intermediate refrigerant of each heat exchanger are measured. 10
Is a calculation means such as fuzzy as a control means, 11 is a PMV
Opening / closing means, 12 is a numerical value storage means, and 13 is a time measuring means. FIG. 3 shows a membership function and a fuzzy rule of the fuzzy operation performed by the fuzzy or similar operation means 10. In FIG. 3, SH is a target set superheat degree, and ΔSH is a set superheat degree S in the PMV control time interval.
A change amount of H, ΔPLS, is a PMV opening change rate determined by fuzzy calculation.

【0008】いま、図1に示した冷凍サイクルにおい
て、全閉時のパルス数が0パルス、全開時のパルス数が
250パルスの電動膨張弁4が使用され、この電動膨張
弁4が圧縮機吸い込み冷媒温度と蒸発器となる熱交換器
の中間冷媒温度の差で表される過熱度に応じて開度制御
されるものとする。表1は、このときの電動膨張弁の制
御例を、従来の電動膨張弁制御と比較して示している。
Now, in the refrigeration cycle shown in FIG. 1, an electric expansion valve 4 having 0 pulses when fully closed and 250 pulses when fully opened is used. The electric expansion valve 4 sucks in the compressor. The opening degree is controlled according to the degree of superheat represented by the difference between the refrigerant temperature and the intermediate refrigerant temperature of the heat exchanger serving as the evaporator. Table 1 shows a control example of the electric expansion valve at this time in comparison with the conventional electric expansion valve control.

【0009】[0009]

【表1】 本実施例 現在のPMV開度 開度変化率 開度変化量 250パルス 5% → 13パルス 50パルス 5% → 3パルス 比較例 現在のPMV開度 開度変化量 開度変化率 250パルス 5パルス → 2% 50パルス 5パルス → 10% 比較例では、検知した過熱度に対して電動膨張弁を例え
ば5パルス閉動作させる場合、現在開度が全開時の25
0パルスである場合も、開度の小さい50パルスである
場合も、開度変化量は同じ5パルスとしている。このた
め、現在開度に対する開度変化量の割合である開度変化
率は、現在開度の小さい領域で大きくなり、電動膨張弁
内の冷媒流路面積が急激に変化するため、冷媒流量の変
動が激しくなって冷凍サイクルが安定しにくくなる。こ
れに対し、本実施例では、現在開度に対する開度変化率
を一定(例として5%)として開度変化量を決定するこ
とにより、急激な冷媒流量変動を起りにくくし、冷凍サ
イクルの安定化を可能としている。
[Table 1] Present Example PMV opening degree of opening change rate Opening degree of change 250 pulses 5% → 13 pulses 50 pulses 5% → 3 pulses Comparative example Current PMV opening degree of opening change rate of opening change rate 250 Pulse 5 pulse → 2% 50 pulse 5 pulse → 10% In the comparative example, when the electric expansion valve is closed by, for example, 5 pulses with respect to the detected degree of superheat, the current opening is 25 when fully opened.
Whether the number of pulses is 0 or the number of pulses is 50 with a small opening, the amount of change in opening is 5 pulses. Therefore, the opening change rate, which is the ratio of the opening change amount to the current opening, increases in the region where the current opening is small, and the refrigerant flow passage area in the electric expansion valve changes abruptly. Fluctuations become more intense, making it difficult to stabilize the refrigeration cycle. On the other hand, in the present embodiment, the opening change rate is determined with a constant opening change rate with respect to the current opening (5% as an example), so that a rapid refrigerant flow rate fluctuation is less likely to occur and the refrigeration cycle is stabilized. Is possible.

【0010】次に、電動膨張弁制御の手順を図2の制御
フローチャートを用いて説明する。まず理想的な過熱度
(設定過熱度)を設定し(ステップ21)、過熱度と設
定過熱度の差Tshの初期値を適当な値に設定する(ス
テップ22)。各冷媒温度センサ6,7,8の出力を温
度計測手段9に読み込んで圧縮機吸い込み冷媒温度、蒸
発温度(冷房時は室内側熱交換器、暖房時は室外側熱交
換器の中間冷媒温度)を計測する(ステップ23)。フ
ァジィ等演算手段10において圧縮機吸い込み冷媒温度
と蒸発温度の差により過熱度を求め、過熱度と設定過熱
度の差Tshを計算する(ステップ24,25)。この
時のTshの値を数値記憶手段12に記憶しておく(ス
テップ26)。計算によって求められたTshと、前回
制御時に数値記憶手段12に記憶されたTshとの差Δ
Tshを求める(ステップ27)。そして、Tsh,Δ
Tshを前件部としてファジィ演算を行い、PMV開度
変化率ΔPLSを求め、その値を電動膨張弁の現在開度
に乗じることにより制御量(PMV開度変化量)を決定
し、PMV開閉手段11に出力する(ステップ28〜3
0)。時間計測手段13により一定時間(制御間隔時
間)経過後、温度計測を始める(ステップ31)。そし
て以上の動作を繰り返し行う。
Next, the procedure of electric expansion valve control will be described with reference to the control flowchart of FIG. First, an ideal superheat degree (set superheat degree) is set (step 21), and an initial value of a difference Tsh between the superheat degree and the set superheat degree is set to an appropriate value (step 22). The outputs of the respective refrigerant temperature sensors 6, 7, 8 are read into the temperature measuring means 9 and the compressor suction refrigerant temperature and the evaporation temperature (intermediate refrigerant temperature of the indoor heat exchanger during cooling and the outdoor heat exchanger during heating). Is measured (step 23). The calculation means 10 such as fuzzy calculates the superheat degree from the difference between the compressor suction refrigerant temperature and the evaporator temperature, and calculates the difference Tsh between the superheat degree and the set superheat degree (steps 24 and 25). The value of Tsh at this time is stored in the numerical storage means 12 (step 26). Difference Δ between the calculated Tsh and the Tsh stored in the numerical value storage means 12 during the previous control.
Tsh is calculated (step 27). Then, Tsh, Δ
Fuzzy calculation is performed using Tsh as an antecedent, PMV opening change rate ΔPLS is calculated, and the control value (PMV opening change amount) is determined by multiplying the value by the current opening of the electric expansion valve, and PMV opening / closing means 11 (steps 28 to 3)
0). After a certain time (control interval time) has passed by the time measuring means 13, temperature measurement is started (step 31). Then, the above operation is repeated.

【0011】[0011]

【発明の効果】以上説明したように、本発明によれば、
電動膨張弁の現在開度に応じて開度変化量を変える制御
手段を具備させたため、通常の電動膨張弁制御において
現在開度が小さい範囲でも、急激な冷媒流量変動が起り
にくくなって冷凍サイクルを安定運転させることができ
る。
As described above, according to the present invention,
Since the control means for changing the opening degree according to the current opening degree of the electric expansion valve is provided, even in the range where the current opening degree is small in the usual electric expansion valve control, a rapid refrigerant flow rate fluctuation is less likely to occur and the refrigeration cycle is reduced. Can be operated stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電動膨張弁制御装置の実施例を示
すブロック図である。
FIG. 1 is a block diagram showing an embodiment of an electric expansion valve control device according to the present invention.

【図2】上記実施例の制御手順を説明するための制御フ
ローチャートである。
FIG. 2 is a control flowchart for explaining a control procedure of the above embodiment.

【図3】上記実施例におけるファジィ制御のメンバーシ
ップ関数とファジィルールを示す図である。
FIG. 3 is a diagram showing a fuzzy control membership function and a fuzzy rule in the embodiment.

【符号の説明】[Explanation of symbols]

4 電動膨張弁 10 ファジィ等演算手段(制御手段) 11 PMV開閉手段 4 Electric expansion valve 10 Fuzzy and other computing means (control means) 11 PMV opening / closing means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩永 隆喜 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayoshi Iwanaga 8 Shinsita-cho, Isogo-ku, Yokohama, Kanagawa Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 空気調和装置における絞り機構として用
いる電動膨張弁を制御する電動膨張弁制御装置であっ
て、前記電動膨張弁の現在開度に応じて開度変化量を変
える制御手段を有することを特徴とする電動膨張弁制御
装置。
1. An electric expansion valve control device for controlling an electric expansion valve used as a throttle mechanism in an air conditioner, comprising control means for changing an opening change amount according to a current opening amount of the electric expansion valve. An electric expansion valve control device characterized by:
JP5129304A 1993-05-31 1993-05-31 Electrical expansion valve control device Pending JPH0777361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5129304A JPH0777361A (en) 1993-05-31 1993-05-31 Electrical expansion valve control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5129304A JPH0777361A (en) 1993-05-31 1993-05-31 Electrical expansion valve control device

Publications (1)

Publication Number Publication Date
JPH0777361A true JPH0777361A (en) 1995-03-20

Family

ID=15006260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5129304A Pending JPH0777361A (en) 1993-05-31 1993-05-31 Electrical expansion valve control device

Country Status (1)

Country Link
JP (1) JPH0777361A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110410984A (en) * 2019-08-07 2019-11-05 宁波奥克斯电气股份有限公司 The multi-joint interior machine valve self-adaptation control method of one kind and multi-gang air-conditioner
CN114322383A (en) * 2021-12-29 2022-04-12 南京楷德悠云数据有限公司 Variable-period multi-interval fuzzy control method for electronic expansion valve of machine room air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110410984A (en) * 2019-08-07 2019-11-05 宁波奥克斯电气股份有限公司 The multi-joint interior machine valve self-adaptation control method of one kind and multi-gang air-conditioner
CN114322383A (en) * 2021-12-29 2022-04-12 南京楷德悠云数据有限公司 Variable-period multi-interval fuzzy control method for electronic expansion valve of machine room air conditioner

Similar Documents

Publication Publication Date Title
JPH09295512A (en) Air conditioner for vehicle
JPH0686960B2 (en) Refrigerant flow controller
KR100355826B1 (en) Method Of Expansion Valve Control Of Airconditioner
JP3218419B2 (en) Air conditioner
JP2954259B2 (en) Air conditioner
JPH0777361A (en) Electrical expansion valve control device
Jolly et al. Intelligent control to reduce superheat hunting and optimize evaporator performance in container refrigeration
JP3443433B2 (en) Air conditioner
JPH08200843A (en) Superheat controlling apparatus for refrigeration cycle
JPH0668410B2 (en) Air conditioner
JPH1038398A (en) Controller of electric expansion valve
JP2921254B2 (en) Refrigeration equipment
JPS6127665B2 (en)
JPH0828983A (en) Control device for multi-room type air conditioner
JPS6162770A (en) Method of controlling refrigerating air conditioner
JP2001201198A (en) Method for controlling air conditioner
JPH07234023A (en) Method and apparatus for controlling air conditioner
KR100301847B1 (en) device for controlling flow rate of refrigerant in air conditioner and method for controlling the same
JP2755037B2 (en) Refrigeration equipment
JPH03211346A (en) Control device for air conditioner
JP2001116372A (en) Refrigerating cycle controller
JPH0486457A (en) Freezer device
JPH087314Y2 (en) refrigerator
JPS6356465B2 (en)
JPH035681A (en) Method of sensing lack of refrigerant