JPS6356465B2 - - Google Patents

Info

Publication number
JPS6356465B2
JPS6356465B2 JP5914382A JP5914382A JPS6356465B2 JP S6356465 B2 JPS6356465 B2 JP S6356465B2 JP 5914382 A JP5914382 A JP 5914382A JP 5914382 A JP5914382 A JP 5914382A JP S6356465 B2 JPS6356465 B2 JP S6356465B2
Authority
JP
Japan
Prior art keywords
expansion valve
temperature
refrigerant
evaporator
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5914382A
Other languages
Japanese (ja)
Other versions
JPS58178153A (en
Inventor
Koji Watanabe
Shinichiro Ueno
Naoki Toyoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP5914382A priority Critical patent/JPS58178153A/en
Publication of JPS58178153A publication Critical patent/JPS58178153A/en
Publication of JPS6356465B2 publication Critical patent/JPS6356465B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Description

【発明の詳細な説明】 本発明は、冷凍装置の制御方法に係り、特に過
熱度の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling a refrigeration system, and particularly to a method of controlling the degree of superheat.

従来より、冷凍装置としては第1図の系統図に
示されたものが一般的なものとして知られてい
る。
Conventionally, the system shown in the system diagram of FIG. 1 has been known as a general refrigeration system.

第1図に示されたように、圧縮機1によつて圧
縮された冷媒は凝縮器2によつて凝縮液化される
ようになつている。この凝縮器2から送出される
冷媒は膨張弁3を介して蒸発器4に供給されるよ
うになつている。この蒸発器4により気化された
冷媒は再び前記圧縮機1に戻されるようになつて
いる。この冷媒の戻りラインには蒸発器4の出口
冷媒温度を検出する感温筒5が設けられており、
この感温筒5は前記膨張弁3の開度制御駆動部に
関連されている。通常、上記した膨張弁3及び蒸
発器4、感温筒5は蒸発器4の熱負荷である冷凍
庫6内などに設置されている。
As shown in FIG. 1, the refrigerant compressed by the compressor 1 is condensed and liquefied by the condenser 2. As shown in FIG. The refrigerant sent out from the condenser 2 is supplied to an evaporator 4 via an expansion valve 3. The refrigerant vaporized by the evaporator 4 is returned to the compressor 1 again. This refrigerant return line is provided with a temperature sensing cylinder 5 for detecting the refrigerant temperature at the outlet of the evaporator 4.
The temperature sensing tube 5 is associated with the opening control drive section of the expansion valve 3. Normally, the above-mentioned expansion valve 3, evaporator 4, and temperature-sensitive tube 5 are installed in a freezer 6, which is a heat load of the evaporator 4.

このように構成される冷凍装置では、蒸発器4
に供給される冷媒が気化されるときの気化熱によ
つて、冷凍庫6内の冷却媒体である空気などを冷
却させる。蒸発器4の熱負荷量の変動に対しては
膨張弁3によつて冷媒流量を制御して蒸発器4に
おける蒸発量を制御することによつて行われてい
る。冷媒流量の制御は感温筒5によつて蒸発器4
出口冷媒の温度を検出し、過熱度が一定値になる
ように膨張弁3の開度制御駆動部を作動させるこ
とにより行われている。このようにして冷凍庫6
内を所望とする温度に制御しているのである。
In the refrigeration system configured in this way, the evaporator 4
When the refrigerant supplied to the freezer 6 is vaporized, the heat of vaporization cools the air, which is the cooling medium inside the freezer 6. Fluctuations in the amount of heat load on the evaporator 4 are handled by controlling the refrigerant flow rate using the expansion valve 3 to control the amount of evaporation in the evaporator 4. The refrigerant flow rate is controlled by the temperature sensor 5 in the evaporator 4.
This is done by detecting the temperature of the outlet refrigerant and operating the opening degree control drive section of the expansion valve 3 so that the degree of superheating becomes a constant value. In this way, the freezer 6
The internal temperature is controlled to the desired temperature.

前記過熱度は冷凍効果の主要なパラメータであ
り、蒸発器4や膨張弁3の機器特性又は熱負荷や
蒸発温度などの負荷条件によつて効率を最大にす
る最適過熱度が変化することが知られており、そ
の実測例が第2図に示されている。第2図の横軸
には過熱度SHが、縦軸には熱負荷Qが示されて
いる。図中線,は一定の蒸発温度における最
適過熱度の特性を示すものであり、線は蒸発温
度が高いもの、線は蒸発温度が低いものの例を
示している。線又はを境に過熱度が低い領域
を不安定領域(A)、高い領域を安定領域(B)と称して
いる。不安定領域(A)において運転されると冷媒の
液戻り現象や、膨張弁のハンチング現象が発生
し、いずれも冷凍装置にとつては好ましくないも
のである。また、安定領域(B)における運転では上
述の現象は生じないが、過熱度が高すぎるので蒸
発器4の有効伝熱面積が減少したり、圧縮機1か
ら吐出される冷媒量が減少して、冷凍装置の効率
低下につながり冷凍能力が不足してしまうという
ことがある。
The degree of superheat is a main parameter of the refrigeration effect, and it is known that the optimum degree of superheat that maximizes efficiency changes depending on the equipment characteristics of the evaporator 4 and the expansion valve 3, or load conditions such as heat load and evaporation temperature. An actual measurement example is shown in FIG. In FIG. 2, the horizontal axis shows the degree of superheating SH, and the vertical axis shows the heat load Q. The lines in the figure indicate the characteristics of the optimum degree of superheating at a constant evaporation temperature, where the line shows an example where the evaporation temperature is high and the line shows an example where the evaporation temperature is low. The region with a low degree of superheating bordering on the line is called the unstable region (A), and the region with a high degree of superheating is called the stable region (B). When operated in the unstable region (A), a liquid return phenomenon of the refrigerant and a hunting phenomenon of the expansion valve occur, both of which are undesirable for the refrigeration system. In addition, although the above-mentioned phenomenon does not occur when operating in the stable region (B), the degree of superheating is too high, so the effective heat transfer area of the evaporator 4 decreases, and the amount of refrigerant discharged from the compressor 1 decreases. This may lead to a decrease in the efficiency of the refrigeration equipment, resulting in a lack of refrigeration capacity.

しかしながら、第1図に示された従来例の過熱
度SHは、第2図に示されたように熱負荷などの
変動に応じて変えるということができず、例えば
膨張弁3に設けられている過熱度調節ネジを調節
することによつて一定値に設定されてしまうもの
であつた。従つて、過熱度SHをあまり最適過熱
度特性近くに設定すると、熱負荷などの負荷条件
の変動によつては不安定領域(A)に入つてしまうの
で、負荷条件が変動しても安定領域(B)内で運転さ
れるように、通常は十分な安全率を加味した過熱
度SHに設定しなければならず、効率の悪い運転
を余儀なくされていた。
However, the degree of superheating SH in the conventional example shown in FIG. 1 cannot be changed in response to changes in heat load, etc., as shown in FIG. The superheat degree was set to a constant value by adjusting the superheat degree adjusting screw. Therefore, if the superheat degree SH is set too close to the optimum superheat characteristic, it will enter the unstable region (A) depending on changes in load conditions such as heat load, so even if the load conditions change, it will not be in the stable region. In order to operate within (B), the superheat degree must normally be set to SH with a sufficient safety factor, resulting in inefficient operation.

また、従来、蒸発器の入口と出口の冷媒温度を
温度センサで検出し、それらの温度差が一定とな
るように制御する熱電式膨張弁のものも提案され
ているが、これにあつても、過熱度は予め一定値
に設定しなければならないので、前述と同様の欠
点を有するものであつた。
Additionally, a thermoelectric expansion valve has been proposed that detects the refrigerant temperature at the inlet and outlet of the evaporator using a temperature sensor and controls the temperature difference between them to be constant. However, since the degree of superheating must be set to a constant value in advance, it has the same drawbacks as mentioned above.

本発明の目的は、機器特性及び負荷条件に応じ
て過熱度を最適値に制御することができる冷凍装
置過熱度の制御方法を提供することにある。
An object of the present invention is to provide a method for controlling the degree of superheat of a refrigeration apparatus, which can control the degree of superheat to an optimal value according to equipment characteristics and load conditions.

本発明は、蒸発温度又は熱負荷量の負荷条件の
変化を検知したとき、もしくは与えられる指令に
より膨張弁を所定開度に絞る第1行程と、所定周
期毎に前記蒸発器の出口冷媒温度の変化率を検出
する第2行程と、該変化率が所定の変化率以上に
達した回数を計数する第3工程と、一定周期数に
おける前記計数値が所定値以上に達したか否かを
判断する第4行程と、該判断が否定のときは前記
膨張弁の開度を一定量開いた後前記第2乃至第4
行程を繰返し行なう第5行程と、前記第4行程の
判断が肯定のときは前記膨張弁の開度を一定量絞
つた後前記出口冷媒温度と蒸発器内の冷媒蒸発温
度との温度差を検出し、該温度差を最適過熱度と
して設定する第6行程とを含み、該最適過熱度に
基づいて膨張弁を制御することにより、機器特性
及び負荷条件に応じた最適な過熱度に補正制御す
るものとし、安定で且つ高効率の運転を行わせよ
うとするものである。
The present invention includes a first stroke in which the expansion valve is throttled to a predetermined opening degree when a change in the load condition of the evaporation temperature or heat load amount is detected or a given command, and a refrigerant temperature at the outlet of the evaporator is adjusted at predetermined intervals. A second step of detecting the rate of change, a third step of counting the number of times the rate of change has reached a predetermined rate of change or more, and determining whether the counted value in a certain number of cycles has reached a predetermined value or more. and when the judgment is negative, the expansion valve is opened by a certain amount, and then the second to fourth steps are performed.
A fifth step in which the steps are repeated, and when the judgment in the fourth step is affirmative, the opening degree of the expansion valve is reduced by a certain amount, and then the temperature difference between the outlet refrigerant temperature and the refrigerant evaporation temperature in the evaporator is detected. and a sixth step of setting the temperature difference as the optimum degree of superheat, and by controlling the expansion valve based on the optimum degree of superheat, correction control is performed to the optimum degree of superheat according to the equipment characteristics and load conditions. The aim is to achieve stable and highly efficient operation.

まず、本発明の原理について第3図を用いて説
明する。
First, the principle of the present invention will be explained using FIG. 3.

第3図には過熱度を低減させていつたときの蒸
発器出口冷媒温度TBと、そのときの蒸発器内冷
媒の蒸発温度TAとの時間変化の一例が示されて
いる。図示された区間t1では、熱負荷量に対して
冷媒流量が少なく冷媒が全て蒸発し、しかも過熱
されて出口冷媒温度TBは冷凍庫内温度にまで達
している状態にある。次に、冷媒流量を増大する
につれて区間t2では、TBが安定に低下し、しばら
くの間TBとTAとの差、即ち過熱度SHは安定に減
少されている。さらに冷媒流量を増大すると、区
間t3に示されたようにTBは不安定に変動し、つい
には、区間t4に示されるように比較的規則的な周
期のハンチング現象が発生し、液戻り状態になつ
て不安定領域に入つてしまうことが判る。
FIG. 3 shows an example of the temporal change in the evaporator outlet refrigerant temperature T B and the evaporation temperature T A of the refrigerant in the evaporator at that time as the degree of superheating is reduced. In the illustrated section t 1 , the refrigerant flow rate is small relative to the heat load and all of the refrigerant evaporates, and the refrigerant is superheated and the outlet refrigerant temperature T B reaches the temperature inside the freezer. Next, as the refrigerant flow rate is increased, T B stably decreases in section t2 , and the difference between T B and T A , that is, the degree of superheat SH, is stably reduced for a while. When the refrigerant flow rate is further increased, T B fluctuates unstably as shown in section t 3 , and finally a relatively regular periodic hunting phenomenon occurs as shown in section t 4 , and the liquid It can be seen that the state returns and enters the unstable region.

本発明は、第3図に示されたように、冷媒流量
を増大させていつたとき、液戻り状態になる前
に、TBが不安定に変動する現象が発生すること
に着目してなされたものである。つまり、一定時
間毎あるいは熱負荷量、蒸発温度などの変動を検
知したときに与えられる過熱度補正指令により、
膨張弁開度を一旦閉めぎみの状態にした後、徐々
に開度を増大して冷媒流量を増大させるととも
に、出口冷媒温度TBの変化状態を検出して、所
定の不安定な変化状態になる直前のTBとTAとの
差を最適過熱度SH0と定め、以後はこの最適過熱
度SH0に基いて膨張弁を制御することを特徴とす
るものである。
The present invention was made by focusing on the fact that when the refrigerant flow rate is increased, a phenomenon occurs in which T B fluctuates unstablely before the liquid returns, as shown in FIG. It is something. In other words, the superheat degree correction command is given at regular intervals or when changes in heat load, evaporation temperature, etc. are detected.
Once the expansion valve opening is brought to a close state, the opening is gradually increased to increase the refrigerant flow rate, and at the same time, the change state of the outlet refrigerant temperature T B is detected and a predetermined unstable change state is established. The difference between T B and TA just before the difference is determined as the optimum degree of superheat SH 0 , and the expansion valve is thereafter controlled based on this optimum degree of superheat SH 0 .

本発明を図示実施例に基いて説明する。 The present invention will be explained based on illustrated embodiments.

第4図に本発明方法の適用された冷凍装置の系
統構成図が示されている。図中、第1図図示従来
例と同一符号の付されたものは同一部品、同一機
能を有するものである。
FIG. 4 shows a system configuration diagram of a refrigeration system to which the method of the present invention is applied. In the figure, the same reference numerals as in the conventional example shown in FIG. 1 indicate the same parts and the same functions.

第4図に示されたように、蒸発器4の内部に冷
媒の蒸発温度を検出する蒸発温度センサ7が設け
られている。蒸発器4の出口配管には出口冷媒温
度を検出する出口温度センサ8が設けられてい
る。これらの温度センサ7,8の温度信号は膨張
弁制御装置9に入力されている。膨張弁制御装置
9は入力部9a、演算部9b、出力部9cとから
形成されている。また、感温筒5には電気ヒータ
10が取付けられている。この電気ヒータ10の
発熱量は前記出力部9cにより制御可能となつて
おり、この発熱量を制御することによつて、膨張
弁3の開度を制御するようになつている。
As shown in FIG. 4, an evaporation temperature sensor 7 is provided inside the evaporator 4 to detect the evaporation temperature of the refrigerant. An outlet temperature sensor 8 is provided on the outlet pipe of the evaporator 4 to detect the outlet refrigerant temperature. Temperature signals from these temperature sensors 7 and 8 are input to an expansion valve control device 9. The expansion valve control device 9 includes an input section 9a, a calculation section 9b, and an output section 9c. Further, an electric heater 10 is attached to the temperature sensing cylinder 5. The amount of heat generated by the electric heater 10 can be controlled by the output section 9c, and by controlling this amount of heat, the degree of opening of the expansion valve 3 is controlled.

なお、前記蒸発温度センサ7は冷媒の蒸発温度
を正しく検出できる位置であれば、蒸発器4内部
に限らず膨張弁3と蒸発器4との接続配管に取付
けてもよいが、蒸発器4が大容量の場合には蒸発
器4での圧力損失が大きいので、蒸発器内でも飽
和蒸気温度が位置によつて異なつてくる。したが
つて、冷媒圧力に対応する蒸発温度を正しく検出
できる位置として、蒸発温度センサ7は蒸発器4
の中間位置に設けることが望ましい。また、出口
冷媒温度センサ8は蒸発器4出口から圧縮機1に
至る冷媒配管であれば、どの位置に取付けてもよ
い。
Note that the evaporation temperature sensor 7 may be installed not only inside the evaporator 4 but also on the connecting pipe between the expansion valve 3 and the evaporator 4 as long as the evaporation temperature sensor 7 can accurately detect the evaporation temperature of the refrigerant. In the case of a large capacity, the pressure loss in the evaporator 4 is large, so that the saturated steam temperature also varies depending on the position within the evaporator. Therefore, the evaporation temperature sensor 7 is located at the evaporator 4 as a position where the evaporation temperature corresponding to the refrigerant pressure can be correctly detected.
It is desirable to provide it at an intermediate position. Furthermore, the outlet refrigerant temperature sensor 8 may be installed at any position as long as it is a refrigerant pipe extending from the evaporator 4 outlet to the compressor 1.

このように構成される実施例の動作について第
5図を参照しながら以下に説明する。
The operation of the embodiment configured as described above will be explained below with reference to FIG.

第5図には、過熱度制御動作の手順が示されて
おり、一定時間毎あるいは熱負荷や蒸発温度など
の変動を検知したときに与えられる過熱度補正指
令により、図示一連の動作が行われる。なお、本
実施例の膨張弁3の過熱度調節ねじは、膨張弁閉
方向に設定されており、電気ヒータ10の発熱量
が少ない場合には感温筒5の温度が低下されて膨
張弁3は閉方向になるように設定されている。
Figure 5 shows the procedure for controlling the degree of superheating, and the series of operations shown in the diagram are performed in response to a degree of superheating correction command given at fixed intervals or when changes in heat load, evaporation temperature, etc. are detected. . Note that the superheat degree adjusting screw of the expansion valve 3 in this embodiment is set in the expansion valve closing direction, and when the amount of heat generated by the electric heater 10 is small, the temperature of the temperature sensing tube 5 is lowered and the expansion valve 3 is closed. is set to be in the closing direction.

第5図に示されたように、過熱度補正指令が入
力されることにより開始され(行程101)、また図
示されてないが膨張弁3は所定開度に絞られる。
次に、電気ヒータ10の出力をP1に制御して、
膨張弁3の開度を増大させる(行程102)。行程
104において出口冷媒温度TBNを取り込み、行程
105にて前回測定の出口冷媒温度TBN-1とから変
化率△T=TBN−TBN-1を演算し、行程106におい
て所定の変化率△Ts(例えば2.5℃)との大小を
判別している。△T>△Tsであればカウント値
Mに1を加算し(行程107)、△T≦△Tsであれ
ばカウント値Mは変えない(行程108)。このよう
な演算が終了した後、所定周期Θ1(例えば1分)
経過を待つて(行程109)、次回のTBN+1を取り込
み上記した演算がくり返し実行される。このよう
にしてi回(例えば10回)くりかえされた後、行
程110において、前記カウント値Mと所定カウン
ト値L(例えば4回)との大小判別を行なう。こ
こでカウント値MがM<Lであれば冷凍装置がハ
ンチング現象になつていないと判断し、さらに冷
媒流量を増大させるために電気ヒータ10の出力
を所定量Po増大させたP2に制御し(行程112)、
所定時間Θ2の経過(行程113)を待つて行程103
に移行させカウント値Mをリセツトして、前述の
演算制御動作がくり返される。
As shown in FIG. 5, the process starts when a superheat degree correction command is input (step 101), and although not shown, the expansion valve 3 is throttled to a predetermined opening degree.
Next, the output of the electric heater 10 is controlled to P 1 ,
The opening degree of the expansion valve 3 is increased (stroke 102). itinerary
At 104, take in the outlet refrigerant temperature T BN and
In step 105, the rate of change △T = T BN - T BN-1 is calculated from the previously measured outlet refrigerant temperature T BN-1 , and in step 106, the magnitude is determined from the predetermined rate of change △Ts (for example, 2.5°C). are doing. If ΔT>ΔTs, 1 is added to the count value M (step 107), and if ΔT≦ΔTs, the count value M is not changed (step 108). After such calculation is completed, a predetermined period Θ 1 (for example, 1 minute)
After waiting for the elapsed time (step 109), the next T BN+1 is fetched and the above calculation is repeated. After repeating i times (for example, 10 times) in this manner, in step 110, the magnitude of the count value M and a predetermined count value L (for example, 4 times) is determined. Here, if the count value M is M<L, it is determined that the refrigeration system is not experiencing the hunting phenomenon, and in order to further increase the refrigerant flow rate, the output of the electric heater 10 is controlled to P2, which is increased by a predetermined amount Po. (Step 112),
Step 103 of waiting for the predetermined time Θ 2 to elapse (step 113)
The count value M is reset, and the arithmetic and control operations described above are repeated.

このようにして、カウント値がM≧Lになつた
とき(行程110)、ハンチング現象が発生したと判
断し(行程114)、冷媒流量を一段階減少させるた
め電気ヒータ10の出力を所定量Po低減制御し
(行程115)、所定時間Θ2の経過(行程116)を待
つて行程117に移行される。行程117においては、
そのときの蒸発温度TAOと出口冷媒温度TBOとを
取り込み、行程118にてTBOからTAOを減算してこ
の温度差を最適過熱度SHoとして出力する。こ
のようにして1回の過熱度の補正制御動作が完了
する。
In this way, when the count value becomes M≧L (step 110), it is determined that a hunting phenomenon has occurred (step 114), and the output of the electric heater 10 is reduced by a predetermined amount Po in order to reduce the refrigerant flow rate by one step. The process proceeds to step 117, in which the reduction control is performed (step 115), and the process waits for the elapse of a predetermined time Θ 2 (step 116). In step 117,
The evaporation temperature T AO and outlet refrigerant temperature T BO at that time are taken in, T AO is subtracted from T BO in step 118, and this temperature difference is output as the optimum degree of superheat SHo. In this way, one superheat degree correction control operation is completed.

以上の動作によつて得られる最適過熱度SHo
に基いて前記手順には示されていないが演算部9
bでは蒸発温度TAと前記SHoを加算し、出力部
9cでは出口冷媒温度TBを(TA+SHo)に一致
させるように電気ヒータ10の出力を制御するこ
とによつて、冷媒流量を制御しているのである。
Optimal superheat degree SHo obtained by the above operation
Although not shown in the above procedure, the calculation unit 9
In b, the evaporation temperature T A and the above-mentioned SHo are added, and in the output section 9 c, the output of the electric heater 10 is controlled so that the outlet refrigerant temperature T B matches ( TA + SHo), thereby controlling the refrigerant flow rate. That's what I'm doing.

従つて、本実施例によれば、機器特性及び負荷
条件に応じて過熱度を最適値に制御させることが
できる。
Therefore, according to this embodiment, the degree of superheating can be controlled to an optimal value according to the device characteristics and load conditions.

また、本実施例によれば、最適過熱度制御を行
わせることができることから、冷凍装置の運転が
安定化されるとともに、効率を著しく向上させる
ことができる。
Further, according to the present embodiment, optimal superheat degree control can be performed, so that the operation of the refrigeration system can be stabilized and the efficiency can be significantly improved.

なお、上述した実施例では感温筒5を蒸発器出
口に取付けたものについて説明したが、電気ヒー
タ10の出力を減少させたとき感温筒5が冷却さ
れて膨張弁が閉方向に作動される位置であればよ
く、例えば蒸発器内部であつてもよい。
In the above-described embodiment, the temperature-sensing tube 5 is attached to the evaporator outlet, but when the output of the electric heater 10 is reduced, the temperature-sensing tube 5 is cooled and the expansion valve is operated in the closing direction. For example, it may be inside the evaporator.

また、上述した実施例では、膨張弁3として温
度式自動膨張弁を適用し、感温筒温度を電気ヒー
タにより制御して冷媒流量を制御するものについ
て説明したが、これに限られるものではない。例
えば、周知の熱電式膨張弁を用いたときは、熱電
式膨張弁のヒータを直接制御するように形成する
こともできる。
Furthermore, in the above-described embodiment, a temperature-type automatic expansion valve is applied as the expansion valve 3, and the refrigerant flow rate is controlled by controlling the temperature-sensing tube temperature with an electric heater. However, the present invention is not limited to this. . For example, when a well-known thermoelectric expansion valve is used, the heater of the thermoelectric expansion valve can be directly controlled.

さらにまた、上述した実施例では、冷凍装置の
不安定現象を検出する方法として、一定時間Θ1
毎の出口冷媒温度の変化により判定するものにつ
いて説明したが、これに代えて、一定の温度変化
に要する時間間隔を検出し、その時間間隔によつ
て安定、不安定の判定を行わせることも可能であ
る。
Furthermore, in the above-described embodiment, as a method for detecting an unstable phenomenon in the refrigeration equipment,
Although we have explained how the determination is made based on the change in the outlet refrigerant temperature every time, instead of this, it is also possible to detect the time interval required for a constant temperature change and determine whether it is stable or unstable based on that time interval. It is possible.

以上説明したように、本発明によれば、機器特
性及び負荷条件に応じて最適な過熱度に補正制御
させることができ、安定で且つ高効率の運転を行
わせることができる。
As described above, according to the present invention, it is possible to carry out correction control to the optimum degree of superheat according to the device characteristics and load conditions, and to perform stable and highly efficient operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の系統構成図、第2図は最適過
熱度を説明するための線図、第3図は本発明の原
理を説明するための線図、第4図は本発明の適用
された一実施例の系統構成図、第5図は第4図図
示実施例の主要動作手順を示すフローチヤートで
ある。 3……膨張弁、4……蒸発器、5……感温筒、
6……冷凍庫、7……蒸発温度センサ、8……出
口冷媒温度センサ、9……膨張弁制御装置、10
……電気ヒータ。
Fig. 1 is a system configuration diagram of a conventional example, Fig. 2 is a diagram for explaining the optimum degree of superheating, Fig. 3 is a diagram for explaining the principle of the present invention, and Fig. 4 is an application of the present invention. FIG. 5 is a flowchart showing the main operating procedure of the embodiment shown in FIG. 3... Expansion valve, 4... Evaporator, 5... Temperature sensing cylinder,
6... Freezer, 7... Evaporation temperature sensor, 8... Outlet refrigerant temperature sensor, 9... Expansion valve control device, 10
...Electric heater.

Claims (1)

【特許請求の範囲】[Claims] 1 流入された冷媒の気化熱により被冷却媒体を
冷却させる蒸発器と、該蒸発器に流入させる冷媒
流量を制御する膨張弁とを備えて成る冷凍装置の
制御方法において、与えられる過熱度補正指令に
より前記膨張弁を所定開度に絞る第1行程と、所
定周期毎に前記蒸発器の出口冷媒温度の変化率を
検出する第2行程と、該変化率が所定の変化率以
上に達した回数を計数する第3行程と、一定周期
数における前記計数値が所定値以上に達したか否
かを判断する第4行程と、該判断が否定のときは
前記膨張弁の開度を一定量開いた後前記第2乃至
第4行程を繰返し行なう第5行程と、前記第4行
程の判断が肯定のときは前記膨張弁の開度を一定
量絞つた後前記出口冷媒温度と蒸発器内の冷媒蒸
発温度との温度差を検出し、該温度差を最適過熱
度として設定する第6行程とを含み、該最適過熱
度に基づいて前記膨張弁を制御することを特徴と
する冷凍装置の制御方法。
1. In a method for controlling a refrigeration system comprising an evaporator that cools a medium to be cooled by heat of vaporization of an inflowing refrigerant and an expansion valve that controls the flow rate of refrigerant flowing into the evaporator, a superheat degree correction command given a first step in which the expansion valve is throttled to a predetermined opening degree, a second step in which the rate of change in the refrigerant temperature at the outlet of the evaporator is detected at every predetermined period, and the number of times the rate of change reaches a predetermined rate of change or more. a third step in which the count value is counted, a fourth step in which it is determined whether the count value in a certain number of cycles has reached a predetermined value or more, and when the judgment is negative, the opening degree of the expansion valve is opened by a certain amount. After that, a fifth step repeats the second to fourth steps, and if the judgment in the fourth step is affirmative, the opening degree of the expansion valve is reduced by a certain amount, and then the outlet refrigerant temperature and the refrigerant in the evaporator are adjusted. A method for controlling a refrigeration system, comprising: a sixth step of detecting a temperature difference from an evaporation temperature and setting the temperature difference as an optimum degree of superheat, and controlling the expansion valve based on the optimum degree of superheat. .
JP5914382A 1982-04-09 1982-04-09 Method of controlling refrigerator Granted JPS58178153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5914382A JPS58178153A (en) 1982-04-09 1982-04-09 Method of controlling refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5914382A JPS58178153A (en) 1982-04-09 1982-04-09 Method of controlling refrigerator

Publications (2)

Publication Number Publication Date
JPS58178153A JPS58178153A (en) 1983-10-19
JPS6356465B2 true JPS6356465B2 (en) 1988-11-08

Family

ID=13104807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5914382A Granted JPS58178153A (en) 1982-04-09 1982-04-09 Method of controlling refrigerator

Country Status (1)

Country Link
JP (1) JPS58178153A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251270A (en) * 1988-03-31 1989-10-06 Toshiba Corp Evaluating device for design and manufacture cost of product
JPH045766A (en) * 1990-04-24 1992-01-09 Matsushita Electric Works Ltd Parts table automatic preparing processing system
JPH04149780A (en) * 1990-10-13 1992-05-22 Okaya Electric Ind Co Ltd Device for forming parts list

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251270A (en) * 1988-03-31 1989-10-06 Toshiba Corp Evaluating device for design and manufacture cost of product
JPH045766A (en) * 1990-04-24 1992-01-09 Matsushita Electric Works Ltd Parts table automatic preparing processing system
JPH04149780A (en) * 1990-10-13 1992-05-22 Okaya Electric Ind Co Ltd Device for forming parts list

Also Published As

Publication number Publication date
JPS58178153A (en) 1983-10-19

Similar Documents

Publication Publication Date Title
US5809794A (en) Feed forward control of expansion valve
US4617804A (en) Refrigerant flow control device
US5241833A (en) Air conditioning apparatus
US5214918A (en) Refrigerator and method for indicating refrigerant amount
US7290402B1 (en) Expansion valve control system and method and refrigeration unit employing the same
JP3218419B2 (en) Air conditioner
JPS6356465B2 (en)
JPH0575938B2 (en)
JP3036227B2 (en) Vending machine cooling method
JPH0575937B2 (en)
JP2504997Y2 (en) Air conditioner
JP2909941B2 (en) Defrosting operation control device for refrigeration equipment
JPH0443173B2 (en)
JPS5912942B2 (en) Refrigeration equipment
JP2646917B2 (en) Refrigeration equipment
JP2755037B2 (en) Refrigeration equipment
JP2785546B2 (en) Refrigeration equipment
JPS59180264A (en) Refrigeration cycle device
JPH0684832B2 (en) Defroster for air conditioner
JPH0550666B2 (en)
JPS602578B2 (en) Refrigeration equipment
JPH06213515A (en) Refrigerant controller of screw type refrigerating machine
JPS60251349A (en) Refrigerator
JPS62158952A (en) Controller for refrigeration cycle
JPH035681A (en) Method of sensing lack of refrigerant