JPS602578B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPS602578B2
JPS602578B2 JP11647177A JP11647177A JPS602578B2 JP S602578 B2 JPS602578 B2 JP S602578B2 JP 11647177 A JP11647177 A JP 11647177A JP 11647177 A JP11647177 A JP 11647177A JP S602578 B2 JPS602578 B2 JP S602578B2
Authority
JP
Japan
Prior art keywords
temperature
evaporator
compressor
dryness
electric heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11647177A
Other languages
Japanese (ja)
Other versions
JPS5449661A (en
Inventor
能章 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP11647177A priority Critical patent/JPS602578B2/en
Publication of JPS5449661A publication Critical patent/JPS5449661A/en
Publication of JPS602578B2 publication Critical patent/JPS602578B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 本発明は蒸発器出口の冷媒ガス湿り度を一定かつ高精度
に制御し、蒸発器の能力を最大限に発揮し、冷凍能力の
効率向上を果すことが可能な冷凍装置の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a refrigeration system that can control the humidity of refrigerant gas at the outlet of an evaporator with constant and high precision, maximize the performance of the evaporator, and improve the efficiency of the refrigerating capacity. Regarding the configuration of the device.

従来の圧縮式冷凍装置は能力調整、異常運転防止のため
の保護などの制御を行なうに当っては、冷媒流量制御は
温度式目動膨脹弁(以下膨脹弁と称す)で、異常圧力保
護は圧力スイッチで、そして吐出ガス異常高温保護は吐
出管用サーモスタットで夫々分担し、各現象に対処させ
ていた。このうち膨脹弁による冷煤流量制御は、蒸発器
出口の冷媒の過熱度を検知して冷媒流量を変化させる方
式であり、これによると膨脹弁の機構上、蒸発器出口則
ち感温筒取付位置において過熱度が通常5℃以上でなけ
れば温度変化を捕えることができない。一方、現用され
ている圧縮機の大半はモータ内蔵の密閉形であって、し
かも冷媒がシリンダー入口に至るまでにモータを冷却さ
せる低圧ドーム式であるので、圧縮機の吸込口ではさら
に過熱度が上昇して、吐出ガス温度が異常に高くなるの
を防止し得ない問題が存している。
Conventional compression refrigeration equipment uses a temperature-controlled variable expansion valve (hereinafter referred to as an expansion valve) to control refrigerant flow rate and to protect against abnormal pressure. The pressure switch was used to protect the discharge gas from abnormally high temperatures, and the discharge pipe thermostat was used to handle each phenomenon. Among these, cold soot flow control using an expansion valve is a method that changes the refrigerant flow rate by detecting the degree of superheating of the refrigerant at the evaporator outlet. Temperature changes cannot be detected unless the degree of superheating at the location is usually 5° C. or higher. On the other hand, most of the compressors currently in use are of the closed type with a built-in motor and low-pressure dome type that cools the motor before the refrigerant reaches the cylinder inlet, so the degree of superheating at the compressor suction port is even higher. There is a problem in that it is impossible to prevent the discharge gas temperature from becoming abnormally high.

従って蒸発器出口においては飽和或は少し湿りであって
も圧縮機にとっては悪影響を及ぼさず、又、蒸発器にと
っても全体湿り運転である方が熱効率が良いことは言う
迄もないが、現状では負荷の変動に不拘、湿り運転にな
るように制御する制御機構の適当なものが提供されてい
ないので、無駄とは知りながら膨脹弁により過熱度制御
を行っているのが実状であった。
Therefore, it goes without saying that even if the evaporator outlet is saturated or slightly humid, it will not have a negative effect on the compressor, and that it is more thermally efficient for the evaporator to run entirely wet. Since no suitable control mechanism has been provided to control wet operation regardless of load fluctuations, the actual situation is that the degree of superheating is controlled using an expansion valve, even though we know it is wasteful.

本発明はか)る事実に対処して汎用の過熱度制御用膨脹
弁を使用しながら蒸発器出口の冷媒ガス状態を一定の湿
り度になるよう冷媒流量を制御することができ、従来懸
案とされていた湿り運転を容易に実現し圧縮機の効率を
向上し得る冷凍装置を提供すべく成されたものであって
、特に凝縮温度、蒸発温度および吐出ガス温度を検出し
て蒸発器出口ガスの乾き度を算出し、かっこの乾き度に
対応する出力を発する制御回路と「前記出力によって加
熱量が調整される感温筒加熱用の電気ヒータとを要素と
なして感温筒が擬似的に所定の過熱度を検出することに
より膨脹弁の開度を前記過熱度に適合するよう調整し、
蒸発器出口のガス状態を一定の湿り度になるよう冷媒流
量を調節する如くした構成を特徴とする。
The present invention deals with this fact, uses a general-purpose expansion valve for superheat degree control, and can control the refrigerant flow rate so that the refrigerant gas condition at the evaporator outlet has a constant humidity level, which solves the conventional problem. The purpose of this invention is to provide a refrigeration system that can easily realize humid operation and improve the efficiency of the compressor. The temperature-sensing cylinder is made up of a control circuit that calculates the degree of dryness of the bracket and emits an output corresponding to the dryness of the bracket, and an electric heater for heating the temperature-sensing cylinder whose heating amount is adjusted according to the output. by detecting a predetermined degree of superheat, the opening degree of the expansion valve is adjusted to match the degree of superheat,
It is characterized by a configuration in which the refrigerant flow rate is adjusted so that the gas condition at the evaporator outlet has a constant humidity level.

本発明をさらに添付図面の具体的実施装置によって以下
詳述すれば、第亀図において1は例えば圧縮機構とモー
夕とを軸結させてケーシング内に収納し、該ケーシング
内を低圧城に形成した低圧ドーム形圧縮機で、吐出口は
凝縮器2の入口に、吸入口はケーシング内を経て蒸発器
3の出口に夫々連絡し、そして凝縮器2出口と蒸発器3
入口とを連絡する液管中にガス封入式膨脹弁4を介設す
ることによって公知の冷凍回路を形成している。
The present invention will be further described in detail below with reference to a specific implementation device shown in the accompanying drawings. It is a low-pressure dome-shaped compressor with a discharge port connected to the inlet of the condenser 2, an inlet port connected to the outlet of the evaporator 3 through the inside of the casing, and a connection between the condenser 2 outlet and the evaporator 3.
A known refrigeration circuit is formed by interposing a gas-filled expansion valve 4 in a liquid pipe communicating with the inlet.

前記膨脹弁4は制御要素として有する汎用の感温筒5を
蒸発器3出口から圧縮機1吸入口に至るガス配管6の適
当個所に添着させて、所定の過熱度例えば5℃にセット
することによって従来多用されている過熱度制御膨脹弁
と同様の形態をとっている。
The expansion valve 4 is set to a predetermined degree of superheat, for example, 5° C., by attaching a general-purpose temperature-sensitive cylinder 5 as a control element to an appropriate location of the gas pipe 6 from the outlet of the evaporator 3 to the inlet of the compressor 1. It has a similar form to the superheat degree control expansion valve that has been widely used in the past.

前記感温筒5は第2図イリ ロ乃至第4図イ,口に示す
如く、発熱量を自在に調節し得る電気ヒータ7が熱伝導
的に付設されており、ガス配管6内冷媒の温度だけでな
く、電気ヒータ7の温度の影響を受けて封入ガスが圧力
変化を行なうようになつている。
As shown in FIG. 2 to FIG. In addition, the pressure of the sealed gas changes under the influence of the temperature of the electric heater 7.

この電気ヒータ7の配設手段は種々の形態が考えられる
が、第2図々示例のものは棒状のシーズヒータを感温筒
5の表面部でガス配管6と懐触していない位置に添設し
、バンドB締め等の手段により固定して、その発熱量が
感温筒5のみに影響を与えるよう形成した1例である。
Various configurations can be considered for the arrangement of the electric heater 7, but in the example shown in FIG. This is an example in which the thermosensor tube 5 is provided and fixed by means such as tightening the band B so that the amount of heat generated affects only the thermosensor tube 5.

また、第3図々示例は可操性電気ヒータ7を感温筒5と
ガス配管6とを一括して巻着し電気ヒータ7の発熱が両
者5,6同時に影響を与えるようにしたものであり、さ
らに第4図々示例は感温筒5とガス配管とを一括して巻
着し電気ヒータ7の発熱が両者5,6に同時に影響を与
えるようにしたものであり、さらに第4図々示例は感温
筒5とガス配管6との間に電気ヒータ7を介在させてバ
ンドBにより締着してなり、第3図々示例同機感温筒5
とガス配管とに同時に熱影響を与えるようにしたもので
ある。以上の各例に示した如き形態をとることにより、
電気ヒータ7は主として感温筒5を加熱して、その内部
に封入したガス圧力がガス配管6内冷媒温度に相当する
圧力に比し実質的に上昇するようにしている。
In addition, the example shown in Figure 3 is one in which a movable electric heater 7 is wrapped around a temperature sensing cylinder 5 and a gas pipe 6 so that the heat generated by the electric heater 7 affects both 5 and 6 at the same time. Furthermore, the example shown in Figure 4 is one in which the temperature sensing cylinder 5 and the gas pipe are wrapped together so that the heat generated by the electric heater 7 affects both 5 and 6 at the same time. In the example shown in FIG.
It is designed to simultaneously exert a thermal influence on the gas pipe and the gas pipe. By taking the form shown in each of the above examples,
The electric heater 7 mainly heats the temperature sensing cylinder 5 so that the pressure of the gas sealed therein is substantially increased compared to the pressure corresponding to the refrigerant temperature in the gas pipe 6.

上記電気ヒータ7の発熱量を調節するために、前記冷凍
装置の運転を司る電気系統には制御回路8が設けられて
いるが、該制御回路8は、入力端に連絡する演算部と、
該演算部の信号に対応した出力例えば電圧を発生する出
力部とを要素となしていてトこの出力電圧を冷凍装置の
運転条件に適合した値で電気ヒータ川こ印加するように
なっている。
In order to adjust the calorific value of the electric heater 7, a control circuit 8 is provided in the electrical system that controls the operation of the refrigeration system, and the control circuit 8 includes a calculation section connected to an input terminal,
An output section that generates an output, such as a voltage, corresponding to the signal from the calculation section is an element, and the output voltage is applied to the electric heater at a value that is suitable for the operating conditions of the refrigeration system.

制御回路8の演算部にインプットされる入力信号として
は「次の3つの冷嬢条件に対応する電気信号則ち蒸発器
3の蒸発温度TEと「凝縮器2の凝縮温度T。
The input signals input to the calculation section of the control circuit 8 are electrical signals corresponding to the following three cooling conditions, namely the evaporation temperature TE of the evaporator 3 and the condensation temperature T of the condenser 2.

とt圧縮機1の吐出ガス温度THとの3種の温度を夫々
検出する各温度検出器の出力信号を要素としている。し
かして前記演算部はメモリ−と読み出し部とを具備して
いて、メモリーには冷凍装置の各運転条件に対応する各
情報を夫々番地に予め記憶させている。
The elements are the output signals of each temperature detector that detects three types of temperatures: and the discharge gas temperature TH of the compressor 1. The arithmetic unit is equipped with a memory and a readout unit, and the memory stores in advance each piece of information corresponding to each operating condition of the refrigeration system at respective addresses.

一般に冷凍装置においては、蒸発温度TE、凝縮温度T
Generally, in refrigeration equipment, the evaporation temperature TE, the condensation temperature T
.

および圧縮機吐出ガス温度THがわかれば、第5図にお
けるモリェル線図上で各部における冷煤状態イ〜ハが決
定され、ざらに冷媒状態イが求まると等エントロピー線
によって蒸発器3の出口ガス冷煤状態二がさまる。そし
て前記袷煤状態二が決定されると、蒸発器3出口におけ
る冷媒ガスの乾き度Xも簡単に求められる。
Once the compressor discharge gas temperature TH is known, the cold soot states A to C at each part can be determined on the Mollier diagram in FIG. Cold soot condition 2 subsides. Once the soot state 2 is determined, the degree of dryness X of the refrigerant gas at the outlet of the evaporator 3 can also be easily determined.

以上の解析手段が容易に行なえることから、前記メモリ
ーには、各運転状態における前記3要素T8,TC,T
Hと、蒸発器3の出口における冷煤ガスの乾き度×との
4つの値を1グループとした各情報を所定番地に夫々記
憶させておく。
Since the above analysis means can be easily performed, the above three elements T8, TC, T in each operating state are stored in the memory.
Each piece of information is stored in a predetermined location, with each group consisting of four values: H and the degree of dryness of the cold soot gas at the outlet of the evaporator 3.

このようにして各運転状態に応じた情報が記憶されてな
る前記メモリーは、冷凍運転中の冷凍装層から蒸発温度
T8、凝縮温度TCおよび吐出ガス温度THに応じた信
号が送られてくると、この3信号に対して同条件又は最
も近似する条件が記憶されている番地を選定して、当該
番地から所定の冷煤ガスの乾き度×に応じた情報を読み
出して該情報を後段の出力部に送る。
The memory, in which information corresponding to each operating state is stored in this way, receives signals corresponding to the evaporation temperature T8, condensation temperature TC, and discharge gas temperature TH from the refrigeration layer during refrigeration operation. , select the address where the same condition or the most similar condition is stored for these three signals, read out the information corresponding to the dryness x of the predetermined cold soot gas from the address, and output this information to the subsequent stage. Send to the department.

該出力部はメモリーからの情報を受けると、この乾き度
Xに応じた値と所定乾き度に応じた値とを比較して、そ
の差に対応した出力電圧を発生する如き演算増幅回路に
形成している。
The output section is formed into an operational amplifier circuit that, upon receiving information from the memory, compares a value corresponding to the dryness level X with a value corresponding to a predetermined dryness level and generates an output voltage corresponding to the difference. are doing.

上述の構成になる冷凍装置の運転態様について第6図を
参照しつつ次に説明する。
The operating mode of the refrigeration system configured as described above will be explained next with reference to FIG. 6.

冷凍装置の運転中において、前記制御回路8を作動させ
ず、電気ヒータ了‘こ通電しないとき‘ま公知の冷凍装
置と同様所定の過熱度で冷凍運転を行わせることができ
る。
During operation of the refrigeration system, when the control circuit 8 is not activated and the electric heater is not energized, the refrigeration system can be operated at a predetermined degree of superheat, similar to known refrigeration systems.

一方制御回路8を作動してL電気ヒータ7に通電すれば
、感温筒5は加熱され「従って膨脹弁4は弁開度が増し
て冷凍通過量が増大し、その結果蒸発器3のコイル全域
が湿り冷媒の状態となる所謂湿り運転が行われる。
On the other hand, when the control circuit 8 is actuated to energize the L electric heater 7, the temperature-sensitive tube 5 is heated, and the expansion valve 4 opens more, increasing the amount of frozen water passing through the coil of the evaporator 3. A so-called wet operation is performed in which the entire area is in a wet refrigerant state.

こ)で電気ヒータ7への通電電流を適当値に選定すれば
、乾き度Xが0.85〜0.9の範囲内の適正な湿り運
転を安定して維持することができる。
If the current applied to the electric heater 7 is selected to an appropriate value in this step, it is possible to stably maintain proper wet operation with the dryness X within the range of 0.85 to 0.9.

即ち第6図に示すように、3つの検出要素TE,TC,
THから蒸発器3の出口ガス乾き度×を算定して、該乾
き度Xが所定値内に存するときは電気ヒータ7への通竜
々流を変えず、一方、所定値以上であれば、電気ヒータ
7への通露々流を増大させて、感温筒5に対し擬似的に
過熱度が増大したことを感知させることにより、膨脹弁
4の開度を大きくして乾き度を低下させ所定乾き度Xに
保持する。さらに、乾き度Xが所定値以下であれば、霜
ヒータ7への通露々流を減少させて感温筒5に交し擬似
的に過熱度が低下したことを感知させ、脹弁4の開度を
小さくして乾き度×を高め、所定乾き度×に保持し得る
That is, as shown in FIG. 6, three detection elements TE, TC,
Calculate the outlet gas dryness x of the evaporator 3 from TH, and if the dryness x is within a predetermined value, the flow to the electric heater 7 will not be changed; By increasing the flow of water to the heater 7 and causing the temperature-sensing tube 5 to sense that the degree of superheat has increased, the degree of opening of the expansion valve 4 is increased to reduce the degree of dryness to a predetermined level. Maintain dryness level X. Furthermore, if the degree of dryness It is possible to increase the degree of dryness x by decreasing the opening degree and maintain it at a predetermined degree of dryness x.

以上の如き制御を行うことにより、負荷の変動に拘りな
く過熱度制御用膨脹弁を用いながら、安定した湿り運転
制御が可能である。
By performing the above control, stable wet operation control is possible while using the superheat control expansion valve regardless of load fluctuations.

本発明は叙上の如く、温度式目動膨脹弁4の制御要素と
して蒸発器3出口から圧縮機1に至る冷嬢配管に添着し
た感温筒5に電気ヒータTを熱伝導可能に配設して、こ
の電気ヒータ7の加熱量を冷凍装置の運転状態に対応し
て自動調節することにより、擬似的な吸入冷嬢ガスの過
熱度変化として感知するようにしたから、顕熱変化、蒸
気圧力変化が存しない領域の湿り吸入ガス袷煤であって
も、これを一定の湿り度に保持する制御が可能となり、
冷凍装置を負荷の大小にかかわらず湿り運転を行なわせ
ることができ、圧縮機に液圧縮などの悪影響を与えるこ
となく蒸発器3を最大能力で有効に利用し冷凍装置を効
率良く運転させることができる。
As described above, in the present invention, as a control element of the temperature-type variable expansion valve 4, an electric heater T is disposed in a temperature-sensitive tube 5 attached to a cooling pipe extending from the outlet of the evaporator 3 to the compressor 1 so as to be able to conduct heat. By automatically adjusting the heating amount of the electric heater 7 in accordance with the operating state of the refrigeration system, it is sensed as a pseudo change in the degree of superheating of the intake cooling gas. Even if there is a humid inhaled gas soot in an area where there is no pressure change, it is possible to control it to maintain a constant humidity level.
The refrigeration system can be operated in a wet state regardless of the size of the load, and the evaporator 3 can be effectively used at its maximum capacity without having any negative effects such as liquid compression on the compressor, and the refrigeration system can be operated efficiently. can.

しかもこの制御が汎用のガス封入式目動膨脹弁4を使用
しながら可能であるので、既存の装置にも容易こ適用で
きる利点があり、冷煤系統の改造も殆んど施すことなく
実施し得るものであって、実用価値の頗る大なる冷凍装
置である。
Moreover, since this control is possible using a general-purpose gas-filled variable expansion valve 4, it has the advantage of being easily applicable to existing equipment, and can be implemented with almost no modification to the cold soot system. This is a great refrigeration device with great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

各図は本発明装置の例の態様を示し第1図は装置回路図
、第2図乃至第4図は感温筒添着部分の構造図で、各図
におけるイは外観図、口は縦断面図を示す。 第5図は本発明装置に係るモリェル線図、第6図は同じ
く制御回路の作動手順図である。1・・…・圧縮機、2
・・・・・・凝縮器、3・・…・蒸発器、4……温度式
目動膨脹弁、5…・・・感温筒、6・・・・・・冷媒酌
管、7…・・・電気ヒータ、8・・・・・・制御回路、
TE・・叫・蒸発温度、TC・・…・凝縮温度、TH・
・・・・・吐出ガス温度、X・・・・・・蒸発器出口ガ
ス乾き度。 多′図多一2図 多‐テ図 鍬帆 多J図 第3図
Each figure shows the aspect of an example of the device of the present invention. Figure 1 is a circuit diagram of the device, Figures 2 to 4 are structural diagrams of the part attached to the thermosensor tube, and in each figure, A is an external view, and the opening is a vertical cross section. Show the diagram. FIG. 5 is a Mollier diagram relating to the device of the present invention, and FIG. 6 is a diagram showing the operating procedure of the control circuit. 1...Compressor, 2
...Condenser, 3 ... Evaporator, 4 ... Temperature-type variable expansion valve, 5 ... Temperature-sensing cylinder, 6 ... Refrigerant cup tube, 7 ... ...Electric heater, 8...Control circuit,
TE...Evaporation temperature, TC...Condensation temperature, TH...
...Discharge gas temperature, X... Evaporator outlet gas dryness. Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 温度式自動膨脹弁4の感温筒5を蒸発器3の出口か
ら圧縮機1に至る冷媒配管に添着すると共に、発熱量調
節可能な電気ヒータ7を前記感温筒5に対し熱伝導的に
配設する一方、蒸発器3の蒸発温度T_Eと、凝縮器2
の凝縮温度T_Cと、圧縮機1の吐出ガス温度T_Hに
対応する3つの電気信号を入力要素とする制御回路8を
有し、該制御回路8は蒸発温度T_E、凝縮温度T_C
および吐出ガス温度T_Hをパラメータとしてモリエル
線図から得られる蒸発器3出口ガスの乾き度Xを算出す
る演算部と、前記乾き度Xが所定値からはずれて大きく
なると出力を増大し、小さくなると出力を低減する出力
部とを有していて、前記制御回路からの出力で電気ヒー
タ7を発熱し、感温筒5を加熱することにより蒸発器3
の出口ガス状態が湿りであるにもかゝわらず、所定過熱
度に適合した温度を前記感温筒5が感応して、前記膨脹
弁4の開度調節を行わせ、蒸発器3を実質的に湿り運転
に維持する如くしたことを特徴とする冷凍装置。
1. Attach the temperature-sensitive tube 5 of the temperature-type automatic expansion valve 4 to the refrigerant pipe from the outlet of the evaporator 3 to the compressor 1, and attach an electric heater 7 with adjustable calorific value to the temperature-sensitive tube 5 in a thermally conductive manner. On the other hand, the evaporation temperature T_E of the evaporator 3 and the condenser 2
The control circuit 8 has three electric signals as input elements corresponding to the condensing temperature T_C of the compressor 1 and the discharge gas temperature T_H of the compressor 1.
and a calculation unit that calculates the dryness X of the evaporator 3 outlet gas obtained from the Mollier diagram using the discharge gas temperature T_H as a parameter, and increases the output when the dryness X deviates from a predetermined value and increases, and output when it decreases. The electric heater 7 generates heat using the output from the control circuit, and the temperature-sensitive tube 5 is heated, thereby increasing the evaporator 3.
Even though the outlet gas state of the evaporator 3 is humid, the thermosensor cylinder 5 senses a temperature that matches the predetermined degree of superheat, and adjusts the opening of the expansion valve 4, so that the evaporator 3 is substantially closed. A refrigeration system characterized in that it maintains a wet operation.
JP11647177A 1977-09-27 1977-09-27 Refrigeration equipment Expired JPS602578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11647177A JPS602578B2 (en) 1977-09-27 1977-09-27 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11647177A JPS602578B2 (en) 1977-09-27 1977-09-27 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS5449661A JPS5449661A (en) 1979-04-19
JPS602578B2 true JPS602578B2 (en) 1985-01-22

Family

ID=14687917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11647177A Expired JPS602578B2 (en) 1977-09-27 1977-09-27 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS602578B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3139044C1 (en) * 1981-10-01 1983-04-21 Danfoss A/S, 6430 Nordborg Cold or heat pump cycle
JP5401857B2 (en) * 2008-07-28 2014-01-29 株式会社デンソー Vapor compression refrigeration cycle
JP5776746B2 (en) * 2013-01-29 2015-09-09 ダイキン工業株式会社 Air conditioner

Also Published As

Publication number Publication date
JPS5449661A (en) 1979-04-19

Similar Documents

Publication Publication Date Title
KR100352103B1 (en) Refrigerant flow control according to evaporator dryness
US4745765A (en) Low refrigerant charge detecting device
US4706469A (en) Refrigerant flow control system for use with refrigerator
JPH0226155B2 (en)
GB2314915A (en) Defrost control system
CA1233212A (en) Measuring device for detecting a liquid component in refrigerant
JPS602578B2 (en) Refrigeration equipment
JP3413047B2 (en) Refrigeration cycle
JPS5912942B2 (en) Refrigeration equipment
JP2572648B2 (en) Overheating prevention device for ice machine compressor
KR880000935B1 (en) Control device for refrigeration cycle
JPH0349016B2 (en)
JPS5823544B2 (en) Refrigerant control device
JP2840405B2 (en) Refrigeration equipment
JPS6356465B2 (en)
JP2600713B2 (en) Expansion valve control device for air conditioner
KR100224932B1 (en) Expansion device of Air-conditioner
JPS5849880A (en) Refrigerator
JPH0579894B2 (en)
JPH0571831A (en) Freezing device
JPS6345030B2 (en)
JPS6383556A (en) Refrigeration cycle
KR930000082Y1 (en) Efficiency testing system of freezers condensing unit
JPS6255598B2 (en)
JPH0545868B2 (en)