JPS62158952A - Controller for refrigeration cycle - Google Patents

Controller for refrigeration cycle

Info

Publication number
JPS62158952A
JPS62158952A JP91286A JP91286A JPS62158952A JP S62158952 A JPS62158952 A JP S62158952A JP 91286 A JP91286 A JP 91286A JP 91286 A JP91286 A JP 91286A JP S62158952 A JPS62158952 A JP S62158952A
Authority
JP
Japan
Prior art keywords
compressor
temperature
refrigeration cycle
expansion valve
opening degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP91286A
Other languages
Japanese (ja)
Inventor
秀明 永友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP91286A priority Critical patent/JPS62158952A/en
Publication of JPS62158952A publication Critical patent/JPS62158952A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、特に空気調和機において冷凍サイクルの効
率を高めた冷凍サイクル制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigeration cycle control device that increases the efficiency of the refrigeration cycle, particularly in an air conditioner.

〔従来の技術〕[Conventional technology]

第7図は例えば特開昭56−44566号公報に示され
ている従来の冷凍サイクル制御装置を示す構成図である
0図において、1は容量可変の圧縮機で、例えば供給電
力の周波数を変えることによってその容量を変えること
ができる02は凝縮器、8は開度調整可能な電動式膨張
弁、4II′i蒸発器で、これらの各冷凍サイクルを構
成する部品は冷媒配管によって環状に接続されているo
5atl′i蒸発器4の入口部に取付けられた第1の温
度センサ、5bは圧縮機1の吸入部に取付けられた第2
の温度センサ、5Cは凝縮器2の中間部に取付けられた
第3の温度センサ、6はこれらの各温度センサ5a、5
b、5cからの検出値に応じて膨張弁3の開度などを制
御する制御回路である。
Fig. 7 is a block diagram showing a conventional refrigeration cycle control device as disclosed in, for example, Japanese Patent Application Laid-Open No. 56-44566. 02 is a condenser whose capacity can be changed by changing the capacity, 8 is an electrically operated expansion valve whose opening can be adjusted, and 4II'i is an evaporator.The parts that make up each of these refrigeration cycles are connected in a ring by refrigerant piping. o
5atl'i is a first temperature sensor attached to the inlet of the evaporator 4; 5b is a second temperature sensor attached to the suction of the compressor 1;
5C is a third temperature sensor attached to the middle part of the condenser 2, 6 is each of these temperature sensors 5a, 5
This is a control circuit that controls the opening degree of the expansion valve 3 according to the detected values from b and 5c.

次に動作を説明する。圧縮機1が駆動すると冷媒配管内
を冷媒が流れ、冷凍サイクルが稼働する。
Next, the operation will be explained. When the compressor 1 is driven, refrigerant flows through the refrigerant piping, and the refrigeration cycle is operated.

ここで、第1の温度センサ5aにより検出された蒸発器
40入口部の冷媒温度Taと第2の温度セ/す5bによ
って検出された圧縮機1の吸入部の冷媒温度Tbの温度
差△5H=Tb−Taは、冷凍サイクルの実際の過熱度
8Hに対して、蒸発器4及びその周辺の冷媒配管での圧
力損失がはホ一定と見なせる範囲内においてはム5H=
SH+△Tの関係を有しているものと見なせる(△Tは
定数)0そして、通常運転時は制御回路6から上記温度
差△SHが設定値8Hoとなるように膨張弁3の開度を
調整する制御信号が出力される0又、圧縮機1の始動時
には、制御回路6から第3の温度センサ5Cにより検出
きれた凝縮器2の冷媒温度Tcが所定の温度TCOに達
する捷で膨張弁8を全開状態にする制御信号が出力され
、冷媒温度TCがTc≧TCOを満足するようになると
、その後は上記温度差△8Hに応じた冷凍サイクルの制
御が行われる。
Here, the temperature difference Δ5H between the refrigerant temperature Ta at the inlet of the evaporator 40 detected by the first temperature sensor 5a and the refrigerant temperature Tb at the suction part of the compressor 1 detected by the second temperature sensor 5b =Tb-Ta is M5H= within the range where the pressure loss in the evaporator 4 and the refrigerant piping around it can be considered constant with respect to the actual superheat degree of 8H of the refrigeration cycle.
It can be considered that there is a relationship of SH + △T (△T is a constant) 0. Then, during normal operation, the opening degree of the expansion valve 3 is controlled by the control circuit 6 so that the temperature difference △SH becomes the set value 8Ho. Also, when the compressor 1 is started, the expansion valve is activated when the refrigerant temperature Tc of the condenser 2, which has been detected by the third temperature sensor 5C from the control circuit 6, reaches a predetermined temperature TCO. When a control signal is output to fully open the refrigerant temperature TC and the refrigerant temperature TC satisfies Tc≧TCO, the refrigeration cycle is then controlled in accordance with the temperature difference Δ8H.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の冷凍サイクル制御装置は以上のように構成されて
おり、蒸発器4の人口部の温度と圧縮機1の吸入部の温
度との差△S Hを△S H二8H十△1゛と見なして
膨張弁3の開度を調整しているため、例えば蒸発器4の
入口部から圧縮機lの吸入部までの冷媒配管が長い場合
、圧力損失が増大して定数△Tが非常に大きな値となり
、しかも負荷変動に対して定数と見なせない値のばらつ
きが生じ、効率よく冷凍サイクルの制@1を行うことが
できないという間踊点があった0又、蒸発器4と凝縮器
2がそれぞれ別のユニットに設置きれている空気調和機
などにおいては、ユニット相互間で検出温度のデータを
送受信する必要があり、そのための回路が複雑になると
いう問題点があった。
The conventional refrigeration cycle control device is configured as described above, and the difference ΔSH between the temperature of the artificial part of the evaporator 4 and the temperature of the suction part of the compressor 1 is calculated as ΔSH28H10△1゛. Therefore, if the refrigerant pipe is long from the inlet of the evaporator 4 to the suction of the compressor 1, the pressure loss will increase and the constant ΔT will be very large. In addition, there was a point where the refrigeration cycle could not be efficiently controlled due to variations in the value that could not be regarded as a constant due to load fluctuations. In air conditioners and the like, where each unit is installed in a separate unit, it is necessary to send and receive detected temperature data between the units, which poses a problem in that the circuitry required to do so becomes complex.

この発明は、このような問題点を解消するためになされ
たもので、簡単な構成で高効率の冷凍サイクルの運転制
御を行うことができる冷凍サイクル制御装置を提供する
ことを目的としている〇〔問題点を解決するための手段
〕 この発明の冷凍サイクル制御装置には、圧縮機の運転容
量と外気温度あるいはその変化量とに基づいて膨張弁の
開度を調整する制御回路が備えられている。
This invention was made to solve these problems, and an object of the present invention is to provide a refrigeration cycle control device that can perform highly efficient operation control of a refrigeration cycle with a simple configuration. Means for Solving the Problems] The refrigeration cycle control device of the present invention is equipped with a control circuit that adjusts the opening degree of the expansion valve based on the operating capacity of the compressor and the outside temperature or the amount of change thereof. .

〔作用〕[Effect]

制御回路は、圧縮機の運転容量だけでなく、外気温度に
よって本膨張弁の開度を調整する。このため、効率の良
い冷凍サイクルの運転が簡易な構成で行うことができる
The control circuit adjusts the opening degree of the expansion valve based not only on the operating capacity of the compressor but also on the outside air temperature. Therefore, efficient operation of the refrigeration cycle can be performed with a simple configuration.

〔実施例〕〔Example〕

以下、この発明の実施例について説明する。 Examples of the present invention will be described below.

第1図はこの発明の一実施例を示す図であり、図におい
て、lFi、容量可変の圧縮機、2は凝縮器、3#i開
度調整可能な電動式膨張弁、4Fi蒸発器で、これらは
冷媒配管によって環状に接続され、冷凍サイクルを構成
している01は圧縮機lの運転容量を可変制御する容量
制御回路、8は外気温度を検出する温度センサ、9ij
:圧縮機冒の運転容量と外気温度あるいはその変化量と
に基づいて膨張弁3の開度を調整する制御回路で、この
制御回路9は又圧縮機lの始動後所定時間、予め設定さ
れた圧縮機lの運転容量の予測値と外気温度とに基づい
て決定される膨張弁30開度を固定して保持するO 通常、空気調和機の冷凍サイクルを高効率で運転しよう
とする場合、冷房運転、暖房運転の各々についである適
当な過熱度を維持する制御を行えば良い事が知られてい
る0第2図は暖房時においてその最適表過熱度を与える
膨張弁3の弁開度を、圧縮機1の運転容量と外気温度を
変えて測定した場合の結果の一例を示すものである。図
示のように最適な膨張弁3の弁開度L#i圧縮機1の運
転容量fに対して、L=a11f+b(a、bは定数)
にて表すことができる。更に、この定数すの値は外気温
度Tou tにより b =O・T out (Ofi
定数)にて表せることから、L=a m f +c a
 Toutで示される関数を用いて、上記容量fと外気
温度Toutから最適な弁開度りの予測が可能である。
FIG. 1 is a diagram showing an embodiment of the present invention. In the figure, 1Fi is a variable capacity compressor, 2 is a condenser, 3#i is an electric expansion valve with adjustable opening, and 4Fi is an evaporator. These are connected in a ring by refrigerant piping, and constitute a refrigeration cycle. 01 is a capacity control circuit that variably controls the operating capacity of the compressor l, 8 is a temperature sensor that detects the outside air temperature, and 9ij
: A control circuit that adjusts the opening degree of the expansion valve 3 based on the operating capacity of the compressor and the outside air temperature or the amount of change thereof. The opening degree of the expansion valve 30, which is determined based on the predicted operating capacity of the compressor l and the outside air temperature, is kept fixed. Normally, when trying to operate the refrigeration cycle of an air conditioner with high efficiency, It is known that it is sufficient to perform control to maintain an appropriate degree of superheating during each operation and heating operation. Figure 2 shows the optimum table for the valve opening of the expansion valve 3 that provides the degree of superheating during heating. , which shows an example of the results when measurements were taken while changing the operating capacity of the compressor 1 and the outside air temperature. As shown in the figure, for the optimum valve opening L#i of the expansion valve 3 and the operating capacity f of the compressor 1, L=a11f+b (a and b are constants)
It can be expressed as Furthermore, the value of this constant S depends on the outside air temperature Tout t, b = O・T out (Ofi
Since it can be expressed as a constant), L = a m f + c a
Using the function represented by Tout, it is possible to predict the optimum valve opening degree from the capacity f and the outside air temperature Tout.

なお、定数a、cは空気調和機のもつ固有値である0そ
こで、制御回路9は圧縮機lの容量制御回路7から運転
容量fを検出すると共に、温度センサ8を用いて外気温
度Tou tを検出し、一定時間毎、もしくは運転容i
fか外気温度Toutに変化が生じる毎に上記両横出値
によって決定される弁開度りに膨張弁3の絶対開度を合
わせるか、あるいは毎回の検出時に算出した弁開ji 
L o と今回算出した弁開度りの相対差△L = L
 −L o分だけ弁開度を変えるかのいずれかの指令を
膨張弁3に出力する0 又、この関係は圧縮機lの始動時にも成立する。
The constants a and c are eigenvalues of the air conditioner (0) Therefore, the control circuit 9 detects the operating capacity f from the capacity control circuit 7 of the compressor l, and also uses the temperature sensor 8 to determine the outside air temperature Tout. Detected at regular intervals or according to operating conditions
Either adjust the absolute opening of the expansion valve 3 to the valve opening determined by the above two values each time there is a change in the outside air temperature Tout, or adjust the valve opening ji calculated at each detection.
Relative difference between L o and the valve opening degree calculated this time △L = L
- Outputs any command to the expansion valve 3 to change the valve opening by an amount of 0. This relationship also holds true when the compressor 1 is started.

即ち圧縮機lがどの程度の運転容量fで安定運転するか
が始動前から判っていれば、外気温度Toutざえ検出
すれば両式より膨張弁3の最適弁開度があらかじめ設定
できる。第3図は膨張弁3の初期設定開度の違いによる
冷凍サイクルの過熱度の経時変化をしたものである。一
般に、可変容量の圧縮機1を搭載した冷凍サイクルでは
、始動時に設定された安定運転時の容量に対して徐々に
運転容量を上げる制御を行う〇一方、始動直後は冷媒が
ほとんど圧縮機1に戻っていて、膨張弁3を通過する冷
媒量が極端に少ないため、蒸発器4の熱交換能力に余裕
が生じ、過熱度はつきやすい。そこで、始動時に設定す
る膨張弁3の弁開度が小さすぎると、そのために生じる
過熱度のピーク値は大きく′なり、又絞りすぎのため安
定時の過熱度も大きくなる0このような状態では、冷媒
循環量は不足気味で、能力は満足に発揮されない。逆に
設定弁開度が大きすぎると圧縮機1への液戻りが問題と
なる。結局、両者ともに最適弁一度を探すための補正制
御に軍みがかかつてしまう0そとで安定運転時の運転容
量の設定値或いは予測値をもって前記関係より決定され
た弁開度にある一定時曲固定しておくと、過熱度にある
程度のピークは生じるがその後最適値にて安定し、補正
制御も手間がかからない。
That is, if the operating capacity f of the compressor 1 is known before the engine is started, the optimal valve opening degree of the expansion valve 3 can be set in advance from both equations by detecting the outside air temperature Tout. FIG. 3 shows the change over time in the degree of superheating of the refrigeration cycle due to differences in the initial setting opening degree of the expansion valve 3. Generally, in a refrigeration cycle equipped with a variable capacity compressor 1, control is performed to gradually increase the operating capacity from the stable operation capacity set at startup.On the other hand, immediately after startup, most of the refrigerant is in the compressor 1. Since the amount of refrigerant passing through the expansion valve 3 is extremely small, there is a margin in the heat exchange capacity of the evaporator 4, and the degree of superheating is likely to increase. Therefore, if the opening degree of the expansion valve 3 that is set at the time of startup is too small, the peak value of the degree of superheat that occurs will become large, and the degree of superheat when the engine is stable will also become large because the throttle is too narrow. , the amount of refrigerant circulating seems to be insufficient, and the capacity is not fully demonstrated. On the other hand, if the set valve opening degree is too large, liquid return to the compressor 1 becomes a problem. In the end, in both cases, the correction control to search for the optimal valve position is forced.In the case of zero operation, the valve opening is fixed for a certain period of time at the valve opening determined from the above relationship using the set value or predicted value of the operating capacity during stable operation. If this is done, the degree of superheat will peak to some extent, but then it will stabilize at the optimum value, and correction control will not take much effort.

第4図はこの発明の他の実施例を示す構成図である。図
中、10は圧縮機1の吐出部に取付けられた温度センサ
で、その検出値は制御回路9に入力きれる0又、第5図
は上記構成の空気調和機において冷房時に最適な過熱度
を得る時の冷媒の吐出温度の値を、圧縮機lの運転容量
と外気温度を変えて測定した場合の結果の一例を示すも
のである0萌述の最適弁開fLと同様、最適吐出温度T
αは圧縮機1の運転容i1fに対して Td=α・f+
eにて表すことができ、この式の第2項eの値は外気温
にて変わる関数値であることがわかる0又、第6図は同
じく冷房時に運転容量を固定して外気温度と変化させた
時の最適吐出温度の変化を示したものである0図示の如
く、外気温度Toutに対して関数値eは、−6=g 
aToutと見なすことができ、関数式Tα=dsf+
geToutを用いて運転容量fと外気温度Toutか
ら最適吐出温度を決定し、この温度を中心としたある温
度領域内に実際の吐出温度が安定するように制御、つま
り吐出温度が上がれば適当な弁開度に開き・、下がれば
閉じるという制御を行うものである。
FIG. 4 is a block diagram showing another embodiment of the present invention. In the figure, 10 is a temperature sensor attached to the discharge part of the compressor 1, and the detected value can be inputted to the control circuit 9. In addition, FIG. This shows an example of the results when the value of the refrigerant discharge temperature at the time of obtaining the temperature is measured by changing the operating capacity of the compressor l and the outside air temperature.
α is for the operating capacity i1f of compressor 1 Td=α・f+
It can be expressed as e, and it can be seen that the value of the second term e in this equation is a function value that changes depending on the outside temperature.Also, in Figure 6, the operating capacity is fixed during cooling and changes with the outside temperature. As shown in the figure, the function value e for the outside air temperature Tout is -6=g
It can be considered as aTout, and the functional formula Tα=dsf+
The optimum discharge temperature is determined from the operating capacity f and the outside air temperature Tout using geTout, and the actual discharge temperature is controlled so as to be stabilized within a certain temperature range centered around this temperature.In other words, if the discharge temperature rises, an appropriate valve is activated. Control is performed such that it opens at the opening level and closes when the opening level decreases.

このように、圧縮機1の運転容量だけでなく外気温度を
検出し、その検出データから関数式によって膨張弁3の
適切な開度を調整しているので、冷凍サイクルを効率良
く運転することが可能となる。又、圧縮機1の始動直後
においても、圧縮機lから吐出される冷媒温度を検出す
ることにより、膨張弁3の開度を適切なものとすること
ができるものであり、しかも負荷変動などに関係なく簡
単に高効率の冷媒サイクルの制御を行うことが可能とな
る。
In this way, not only the operating capacity of the compressor 1 but also the outside air temperature is detected, and the appropriate opening degree of the expansion valve 3 is adjusted based on the detected data using a functional formula, so that the refrigeration cycle can be operated efficiently. It becomes possible. Further, even immediately after the compressor 1 is started, by detecting the temperature of the refrigerant discharged from the compressor 1, the opening degree of the expansion valve 3 can be set to an appropriate value, and moreover, it is possible to adjust the opening degree of the expansion valve 3 to an appropriate value even when the compressor 1 is started. It becomes possible to easily control the refrigerant cycle with high efficiency regardless of the situation.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、圧縮機の運転
容量と外気温度あるいはその変化量とに基づいて膨張弁
の開度を調整するようにしたため、冷媒配管での圧力損
失・負荷変動に関係なく高効率で冷凍サイクルの制御を
行うことができ、又ユニット別に構成された冷凍サイク
ルであっても冷媒温度の検出信号を送受信するための回
路が複雑に々らず、簡単に高効率運転を行うことができ
るという効果がある。
As explained above, according to the present invention, since the opening degree of the expansion valve is adjusted based on the operating capacity of the compressor and the outside temperature or the amount of change thereof, pressure loss and load fluctuations in the refrigerant piping can be prevented. The refrigeration cycle can be controlled with high efficiency regardless of the temperature, and even if the refrigeration cycle is configured by unit, the circuit for transmitting and receiving the refrigerant temperature detection signal is not complicated and can be easily operated with high efficiency. It has the effect of being able to do the following.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す構成図、第2図は圧
縮機の運転容量と外気温度によって決定イス\ される膨張弁の最適な開度を示す図、第3図は圧縮機の
運転容量と過熱度の関係を示す図、第4図はこの発明の
他の実施例を示す構成図、第5図は圧縮機の運転容量と
吐出冷媒の温度との関係を示す図、第6図は外気温度に
対する吐出冷媒の温度の変化を示す図、第7図は従来の
冷凍サイクル制御装置を示す構成図である。 1・・・・・・・・・圧縮機 3・・・・・・・・・電動式膨張弁 8・・・・・・・・・温度センサ 9・・・・・・・・・制御回路 なお、図中同一符号は同−又は相当部分を示す。
Figure 1 is a configuration diagram showing an embodiment of the present invention, Figure 2 is a diagram showing the optimum opening degree of the expansion valve determined by the compressor operating capacity and outside temperature, and Figure 3 is a diagram showing the compressor. FIG. 4 is a diagram showing the relationship between the operating capacity of the compressor and the degree of superheat, FIG. 4 is a configuration diagram showing another embodiment of the present invention, FIG. FIG. 6 is a diagram showing changes in temperature of discharged refrigerant with respect to outside air temperature, and FIG. 7 is a configuration diagram showing a conventional refrigeration cycle control device. 1...Compressor 3...Electric expansion valve 8...Temperature sensor 9...Control circuit Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1) 容量可変の圧縮機と開度調整可能な膨張弁を有
した冷凍サイクルの制御装置において、前記圧縮機の運
転容量と外気温度あるいはその変化量とに基づいて前記
膨張弁の開度を調整する制御回路を備えたことを特徴と
する冷凍サイクル制御装置。
(1) In a control device for a refrigeration cycle having a variable capacity compressor and an expansion valve whose opening degree can be adjusted, the opening degree of the expansion valve is controlled based on the operating capacity of the compressor and the outside temperature or the amount of change thereof. A refrigeration cycle control device comprising a control circuit for adjustment.
(2) 制御回路は、圧縮機の始動後所定時間は予め設
定された運転容量の予測値と外気温度とに基づいて決定
される膨張弁の開度を保持するようにしたことを特徴と
する特許請求の範囲第1項記載の冷凍サイクル制御装置
(2) The control circuit is characterized in that the opening degree of the expansion valve is maintained for a predetermined period of time after the start of the compressor, the degree of opening of the expansion valve being determined based on a preset predicted value of operating capacity and outside temperature. A refrigeration cycle control device according to claim 1.
(3) 制御回路は、圧縮機から吐出される冷媒温度が
圧縮機の運転容量と外気温度とに基づいて決定される所
定範囲内の温度になるように膨張弁の開度を制御するよ
うにしたことを特徴とする特許請求の範囲第1項又は第
2項記載の冷凍サイクル制御装置。
(3) The control circuit controls the opening degree of the expansion valve so that the temperature of the refrigerant discharged from the compressor falls within a predetermined range determined based on the operating capacity of the compressor and the outside air temperature. A refrigeration cycle control device according to claim 1 or 2, characterized in that:
JP91286A 1986-01-07 1986-01-07 Controller for refrigeration cycle Pending JPS62158952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP91286A JPS62158952A (en) 1986-01-07 1986-01-07 Controller for refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP91286A JPS62158952A (en) 1986-01-07 1986-01-07 Controller for refrigeration cycle

Publications (1)

Publication Number Publication Date
JPS62158952A true JPS62158952A (en) 1987-07-14

Family

ID=11486886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP91286A Pending JPS62158952A (en) 1986-01-07 1986-01-07 Controller for refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS62158952A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378860U (en) * 1986-11-10 1988-05-25
JP2014119138A (en) * 2012-12-13 2014-06-30 Fuji Electric Co Ltd Cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378860U (en) * 1986-11-10 1988-05-25
JP2014119138A (en) * 2012-12-13 2014-06-30 Fuji Electric Co Ltd Cooling device

Similar Documents

Publication Publication Date Title
JPH11501114A (en) Feedforward control of expansion valve
GB2143628A (en) Air conditioner
KR890013430A (en) Air conditioner and control method
EP2438369A1 (en) Energy saving device and method for cooling and heating apparatus
JP3086813B2 (en) Control method of electronic expansion valve in air conditioner
JP2557909B2 (en) Refrigerant heating type air conditioner
JPH06101910A (en) Temperature regulator of refrigerator
JPS62158952A (en) Controller for refrigeration cycle
JP3253104B2 (en) Refrigeration cycle device
JP2504997Y2 (en) Air conditioner
JPH0239179Y2 (en)
JPH02192536A (en) Heater device
JPH03221760A (en) Method and apparatus for controlling refrigerant flow in heat pump air conditioner
JP2504424B2 (en) Refrigeration cycle
JP2757685B2 (en) Operation control device for air conditioner
JP2506377B2 (en) Air conditioner and its control method
JP2646917B2 (en) Refrigeration equipment
JP2785546B2 (en) Refrigeration equipment
JPH0510183Y2 (en)
JPH04268155A (en) Annual cooling operation control device for air conditioner
JP2600713B2 (en) Expansion valve control device for air conditioner
JPH087314Y2 (en) refrigerator
JPS63259353A (en) Refrigerator
JPS5823544B2 (en) Refrigerant control device
JPS60202276A (en) Air conditioner