JPS60202276A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS60202276A
JPS60202276A JP59058696A JP5869684A JPS60202276A JP S60202276 A JPS60202276 A JP S60202276A JP 59058696 A JP59058696 A JP 59058696A JP 5869684 A JP5869684 A JP 5869684A JP S60202276 A JPS60202276 A JP S60202276A
Authority
JP
Japan
Prior art keywords
temperature
evaporator
compressor
evaporation pressure
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59058696A
Other languages
Japanese (ja)
Inventor
直樹 豊田
井上 和成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Construction Co Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Construction Co Ltd
Priority to JP59058696A priority Critical patent/JPS60202276A/en
Publication of JPS60202276A publication Critical patent/JPS60202276A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は、酊凍機の蒸発器により直接、空気を冷却・
除湿する空調装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is directed to cooling and cooling air directly by an evaporator of a chiller.
The present invention relates to an air conditioner that dehumidifies.

〔発明の背景〕[Background of the invention]

一般に、冷凍機による空調装置は、蒸発器へ送る冷媒流
量を、自動膨張弁によって蒸発器出口の過熱度に応・じ
て調整する・と共に、蒸発器と圧縮機とを接続する管路
中に自動蒸発圧力調節弁を設けて1、この弁を調整する
ことによって蒸発器の蒸発圧力を制御し、蒸発器の温度
制御を行っている。
In general, an air conditioner using a refrigerator uses an automatic expansion valve to adjust the flow rate of refrigerant sent to the evaporator according to the degree of superheat at the outlet of the evaporator. An automatic evaporation pressure control valve is provided.1 By adjusting this valve, the evaporation pressure of the evaporator is controlled and the temperature of the evaporator is controlled.

この空調装置の効率を高めるには、冷房負荷に見合った
運転をする必要がある。いま蒸発器入口空気温度と設定
温度(出口空気温度)との間に温度差へ” (0C)が
あると、冷房負荷Qzは次式によって与えられる。
In order to increase the efficiency of this air conditioner, it is necessary to operate it in accordance with the cooling load. If there is a temperature difference (0C) between the evaporator inlet air temperature and the set temperature (outlet air temperature), the cooling load Qz is given by the following equation.

Qt= G X Cp X △f (Kod / A 
)ここで、CP:空気の比熱(K、、g 、/ h−C
)G:拘置(K9 / 、A ) 一方、冷却能力Qcは次式で与えられる。
Qt= G X Cp X △f (Kod / A
) Here, CP: Specific heat of air (K,,g,/h-C
) G: Detention (K9/, A) On the other hand, the cooling capacity Qc is given by the following formula.

Qc = Cx V (Ka< /ん)ここで、■:圧
縮量(Kp/h) C:定 絨 したがって、冷房弁泊’Q、と冷却能力Qcとを一致さ
せるように運転′乙ことが省エネルギの上で有利である
ことが判る。
Qc = Cx V (Ka< /n) where ■: Compression amount (Kp/h) C: Constant Therefore, it is possible to save the operation so that the cooling valve stay 'Q' and the cooling capacity Qc match. It turns out that it is advantageous in terms of energy.

従来の空調装置の一例として、第1図に示されたものが
ある。冷凍機は冷凍サイクルを構成するように冷媒配管
6を介して接続された圧縮機1、凝縮器−2および蒸発
器4からなり、前記凝縮器2と蒸発器4とを接続する管
路中に設けられた目動膨張弁3によって冷媒流量を制御
する一方、蒸発器4と圧縮機1とを接続する管路中に設
けられた蒸発圧力調節弁5によって蒸発器の蒸発圧力を
調整し、蒸発器の温度制御が行なわれている。前記自動
膨張弁3は、蒸発器4から流出される冷媒ガスの温度を
温度センサ20で検出し、この冷媒ガス温度に応じて開
度11整がなされ1.一方蒸発圧力調節弁5は蒸発器か
ら流出される冷媒ガスの圧力によってその開度が調整さ
れる。なお、11は送風機である。
An example of a conventional air conditioner is shown in FIG. The refrigerator consists of a compressor 1, a condenser 2, and an evaporator 4 connected through a refrigerant pipe 6 to form a refrigeration cycle. The refrigerant flow rate is controlled by the provided variable expansion valve 3, while the evaporation pressure of the evaporator is adjusted by the evaporation pressure control valve 5 provided in the pipe connecting the evaporator 4 and the compressor 1. The temperature of the container is controlled. The automatic expansion valve 3 detects the temperature of the refrigerant gas flowing out from the evaporator 4 with a temperature sensor 20, and adjusts the opening degree according to the refrigerant gas temperature. On the other hand, the opening degree of the evaporation pressure control valve 5 is adjusted according to the pressure of the refrigerant gas flowing out from the evaporator. Note that 11 is a blower.

しかしながら、上記の構成によると、自動膨張弁3は定
格負荷時に比較的良好な制御が可能であるが、負荷が1
/2程度に軽くなると液体冷媒の蒸発に必要な熱が外部
から与えられ難°くなシ、蒸発器から流出する冷媒ガス
温度の変化が小さくなる。通常、膨、張弁は温度差が小
さくなると、スプリングやダイヤフラムが弾性域を越え
るので制御性が低下する。そのため、膨張弁を外気温に
対応させて制御すること、すなわち蒸発器の温度を精度
よく制御することが困難になり、空気は過冷却される。
However, according to the above configuration, the automatic expansion valve 3 can be controlled relatively well at the rated load, but when the load is 1.
When the weight is reduced to about 1/2, the heat necessary for evaporating the liquid refrigerant is not easily applied from the outside, and the change in the temperature of the refrigerant gas flowing out from the evaporator becomes small. Normally, when the temperature difference in an expansion valve becomes small, the spring or diaphragm exceeds the elastic range, resulting in a decrease in controllability. Therefore, it becomes difficult to control the expansion valve in accordance with the outside temperature, that is, to control the temperature of the evaporator with high precision, and the air is supercooled.

この対策の一例として、第1図に示す如く蒸発器の前に
ヒータ7を配置し、出口側に設けられた温度センサ8で
出口温度を測定し、この出口温度を一定とするように温
度調節計9及びサイリスタ10を介して前記ヒータを通
電制御している。このような方式は、所望の空気温度と
するのに、冷却された9気を再びヒータで加熱昇温する
という極めて無駄なエネルギーを消費することになシ、
不経済である。
As an example of this measure, as shown in Fig. 1, a heater 7 is placed in front of the evaporator, the outlet temperature is measured with a temperature sensor 8 provided on the outlet side, and the temperature is adjusted to keep this outlet temperature constant. The heater is controlled to be energized via a total of 9 and a thyristor 10. This method does not consume extremely wasteful energy of heating the cooled air again with a heater to reach the desired air temperature.
It is uneconomical.

また、ヒータを用いず、蒸発器の温度で蒸発圧力調節弁
を調整する冷却装置”が提案されている。
Furthermore, a cooling device has been proposed in which the evaporation pressure control valve is adjusted based on the temperature of the evaporator without using a heater.

(特開昭52−618581号公報)このものは、温度
センサで蒸発器の温度を検出し、この蒸発器の温度を比
較器で設定温度と比較し、このときの偏差信号に基づい
て蒸発圧力調節弁を調整するものである。
(Japanese Unexamined Patent Publication No. 52-618581) This device detects the temperature of the evaporator with a temperature sensor, compares the temperature of the evaporator with a set temperature using a comparator, and then calculates the evaporation pressure based on the deviation signal at this time. This is to adjust the control valve.

しかしながら、この冷却装置に使用されている圧縮機は
、負荷に関係なく運転されるので、回転、部分の機械的
摩耗が激しく、寿命を縮めるという問題があった。
However, since the compressor used in this cooling device is operated regardless of the load, there is a problem in that the mechanical wear of the rotation and parts is severe and the life of the compressor is shortened.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、冷房負荷に見合って圧縮機及び蒸発
器を制御し、無駄なエネルギー消費を無くシ、且つ設定
温度の変更を容易にする空調装置を提供することである
An object of the present invention is to provide an air conditioner that controls a compressor and an evaporator according to the cooling load, eliminates wasteful energy consumption, and makes it easy to change the set temperature.

〔発明の概要〕[Summary of the invention]

この発明の空調装置は、圧縮機の回転数を室温によって
制御する制御器と、蒸発器の蒸発圧力を制御する蒸発圧
力調節弁とを具備したもので、冷房負荷が低くなった際
に圧縮機の回転数を下げて圧縮機の能力を減少させると
共に1蒸発圧力調整弁を絞って蒸発器の温度を上昇せし
め、結果として蒸発器の出口側の空気温度が高められる
ように制御され、冷房負荷に見合った冷凍機の制御がな
される。
The air conditioner of the present invention is equipped with a controller that controls the rotation speed of the compressor based on the room temperature, and an evaporation pressure control valve that controls the evaporation pressure of the evaporator. The rotation speed of the evaporator is lowered to reduce the capacity of the compressor, and the evaporator pressure regulating valve 1 is throttled to increase the temperature of the evaporator.As a result, the air temperature on the outlet side of the evaporator is controlled to be increased, and the cooling load is increased. The refrigerator is controlled accordingly.

〔発明の実施例〕[Embodiments of the invention]

以下、゛この発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

なお、第2図において、第1図と同一の部品及び装置に
は同一符号を付してその説明を省略する。
In FIG. 2, parts and devices that are the same as those in FIG. 1 are designated by the same reference numerals and their explanations will be omitted.

冷凍サイクルを構成するように圧縮機1、凝縮器2およ
び蒸発器4が冷媒配管6を介して接続されておシ、前記
凝縮器2と蒸発器4とを接続する管路には冷媒液を低圧
・低温圧するキャピラリチューブ12が設けられ、一方
圧縮機1と蒸発器4とを接続する管路には蒸発器4の蒸
発圧力を一定にする自動蒸発圧力調節弁13が介設され
ている。
A compressor 1, a condenser 2, and an evaporator 4 are connected via a refrigerant pipe 6 to form a refrigeration cycle, and a refrigerant liquid is supplied to the pipe connecting the condenser 2 and the evaporator 4. A capillary tube 12 for low pressure/low temperature pressure is provided, and an automatic evaporation pressure control valve 13 for keeping the evaporation pressure of the evaporator 4 constant is interposed in a conduit connecting the compressor 1 and the evaporator 4.

前記蒸発器4は風胴18内に設置され、この風胴の入口
には室温を測定する入口空気温度センサ14’と、その
出口には蒸発器4で冷えた空気の温度を測定する出口空
気温度センサ58が配置されている。
The evaporator 4 is installed in a wind barrel 18, and at the inlet of the wind barrel there is an inlet air temperature sensor 14' for measuring the room temperature, and at its outlet there is an outlet air temperature sensor 14' for measuring the temperature of the air cooled by the evaporator 4. A temperature sensor 58 is arranged.

各温度センサ8.14は温度調節計9.15に接続され
ておシ、この温度調節計は、設定温度との差に基づく被
制御対象の操作量を出力する。ザイリスク10は自動蒸
発圧力調節弁13が前記操作量に見合った開度となるよ
うに制御し、また回転数制御器16は、第3図の実線で
示すように、室温度と設定温度との温度差(冷房負荷)
に応じて圧縮機の回転数を段階的に制御するものである
Each temperature sensor 8.14 is connected to a temperature controller 9.15, which outputs the manipulated variable of the controlled object based on the difference from the set temperature. The xyrisk 10 controls the automatic evaporation pressure control valve 13 to an opening degree commensurate with the operation amount, and the rotation speed controller 16 controls the difference between the room temperature and the set temperature, as shown by the solid line in FIG. Temperature difference (cooling load)
The rotation speed of the compressor is controlled in stages according to the

つぎに、本発明の実施例の動作を説明する。Next, the operation of the embodiment of the present invention will be explained.

室温を入口空気温度センサ14により検出し、この入口
空気温度は第1温度調節計15で設定温度と比較される
。このときの温度差は冷房負荷に比例する。したがって
、第1温度調節計15では冷房負荷に見合った圧縮機の
回転数を得るだめの電気的操作量が作られ、この操作量
は回転数制御器16において圧縮機1の駆動に必要な電
気的出力に変換される。そして、前記出力によって圧縮
機は冷房負荷に対応した最適な回転数に制御される。な
お、操作量には冷却能力比に対して圧縮機の回転数を段
階的に増減させるだめの制御情報が含まれている。続い
て、温度センサ8により検出された出口空気温度は、第
2温度調節計9に入力され、ここで設定温度と比較され
る。この第2温度調節計9では前記温度差から蒸発器の
蒸発圧力が一定となるように蒸発圧力調節弁13の開度
を得るための弁操作量が作られ、この弁操作量はサイリ
スタにおいて前記弁の駆動に必要な電気的出力に変換さ
れる。このように出口空気温度により蒸発器の蒸発圧力
を制御し、この蒸発圧力に基づく蒸発器内温度変化を出
口空気温度のi化としてとらえると共に、変化した出口
空気温度と設定温度との温度差が零となるまで、蒸発圧
力調節弁13の開度はフィードバック制御される。
Room temperature is detected by an inlet air temperature sensor 14, and this inlet air temperature is compared with a set temperature by a first temperature controller 15. The temperature difference at this time is proportional to the cooling load. Therefore, in the first temperature controller 15, an electrical operation amount is created to obtain the rotation speed of the compressor commensurate with the cooling load, and this operation amount is used in the rotation speed controller 16 to generate the electric power necessary to drive the compressor 1. output. Then, the compressor is controlled to the optimum rotation speed corresponding to the cooling load based on the output. Note that the manipulated variable includes control information for increasing or decreasing the rotation speed of the compressor in stages with respect to the cooling capacity ratio. Subsequently, the outlet air temperature detected by the temperature sensor 8 is input to the second temperature controller 9, where it is compared with the set temperature. In this second temperature controller 9, a valve operation amount is created from the temperature difference to obtain the opening degree of the evaporation pressure control valve 13 so that the evaporation pressure of the evaporator becomes constant, and this valve operation amount is applied to the thyristor. It is converted into the electrical output necessary to drive the valve. In this way, the evaporation pressure of the evaporator is controlled by the outlet air temperature, and the temperature change inside the evaporator based on this evaporation pressure is regarded as an i change in the outlet air temperature, and the temperature difference between the changed outlet air temperature and the set temperature is The opening degree of the evaporation pressure regulating valve 13 is feedback-controlled until it becomes zero.

上記実施例では、圧縮機の回転数を調整して冷却能力を
ある巾に制御し、その範囲で蒸発圧力調節弁をリニア調
整しているので、制御系にノ・ンチングの生ずる恐れが
なくナシ、制御対象の出口空気温度を安定して制御する
ことができる。
In the above embodiment, the rotation speed of the compressor is adjusted to control the cooling capacity within a certain range, and the evaporation pressure control valve is linearly adjusted within that range, so there is no risk of knocking in the control system. , the outlet air temperature to be controlled can be stably controlled.

なお、上記問題がなければ、圧縮機と蒸発圧力調節弁を
同時にリニア制御(第3図の鎖線で示す)することがで
きる。
In addition, if the above-mentioned problem does not exist, the compressor and the evaporation pressure control valve can be linearly controlled at the same time (indicated by the chain line in FIG. 3).

又、所望の出口空気温度、すなわち最適な室温は温度調
節計の設定−値を変更してやれば、蒸発器の入口及び出
口側の温度差に基づいて圧縮機及び自動蒸発圧力調節弁
をフィードバック制御することによって得られ、しかも
圧縮機は、そのときの冷却負荷に見合った最適な運転が
行なわれる。
In addition, by changing the setting value of the temperature controller to obtain the desired outlet air temperature, that is, the optimum room temperature, the compressor and automatic evaporation pressure control valve can be feedback-controlled based on the temperature difference between the inlet and outlet sides of the evaporator. Moreover, the compressor can be operated optimally according to the cooling load at that time.

なお、前記実施例では温度に関する制御について説明し
たが、湿度についても同様な制御が可能である。
Note that although the above embodiments have described control related to temperature, similar control is possible for humidity as well.

更に、蒸発圧力?J4m弁は入力信号によりバイメタル
を加熱制御して弁体を上下動させて開口面積を副審する
バイメタル式調節弁、あるいは電動弁、空気作動弁など
が用いられる。
Furthermore, evaporation pressure? The J4m valve uses a bimetallic control valve, an electric valve, an air-operated valve, etc. that controls the heating of the bimetal according to an input signal and moves the valve body up and down to adjust the opening area.

〔発明の効果〕〔Effect of the invention〕

上述のとおり、本発明によれば、冷房負荷が少なくなっ
たとき、蒸発器へ供給される冷媒流量を減少させ且つ圧
縮機の回転数を下げるように制御するので、空気の過少
却が防止でき、エネルギーの無駄な消費を無くして効率
のよい空調運転を行なうことができる。また温度調節計
の温度設定を変えるだけで、簡単に所望の室温が得られ
る。
As described above, according to the present invention, when the cooling load is reduced, the flow rate of refrigerant supplied to the evaporator is reduced and the rotational speed of the compressor is controlled to be lowered, so that it is possible to prevent insufficient air. , it is possible to eliminate wasteful consumption of energy and perform efficient air conditioning operation. In addition, you can easily obtain the desired room temperature by simply changing the temperature setting on the temperature controller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のを調装置の概略構成図、第2図は本発明
に係る空調装置の概略構成図、第3図は本発明に適用し
た圧縮機回転数と冷却能力比との関係図、第4図は同じ
く蒸発圧力調整弁の開度と蒸発器内温度との関係図であ
る。 1・・・圧縮機、2・・・凝縮器、4・・・蒸発器、1
3・・・蒸発圧力調節弁、16・・・回転数制御器。 代理人 鵜 沼 辰 之 (ほか1名) 第1図 第2図
Fig. 1 is a schematic diagram of a conventional air conditioner, Fig. 2 is a schematic diagram of an air conditioner according to the present invention, and Fig. 3 is a diagram of the relationship between compressor rotation speed and cooling capacity ratio applied to the present invention. , FIG. 4 is a diagram showing the relationship between the opening degree of the evaporation pressure regulating valve and the temperature inside the evaporator. 1... Compressor, 2... Condenser, 4... Evaporator, 1
3... Evaporation pressure control valve, 16... Rotation speed controller. Agent Tatsuyuki Unuma (and 1 other person) Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機、凝縮器および蒸発器を冷媒配管によって
ノ置次接続して冷凍サイクルをなす冷凍機による空調装
置において、前記蒸発器と圧縮機とを接続する冷媒配管
に蒸発圧力調節弁を設けると共に、前記圧縮機の回転数
を室温によって制御する制御器を備え、冷房負荷に応じ
て蒸発器の蒸発圧力と圧縮機の回転数を制御するように
した空調装置。
(1) In an air conditioner using a refrigerator, in which a compressor, a condenser, and an evaporator are sequentially connected through refrigerant piping to form a refrigeration cycle, an evaporation pressure regulating valve is installed in the refrigerant piping connecting the evaporator and compressor. An air conditioner further comprising a controller for controlling the rotation speed of the compressor according to room temperature, and controlling the evaporation pressure of the evaporator and the rotation speed of the compressor according to the cooling load.
(2) 前記蒸発圧力調節弁を蒸発器の出口側の空気温
度によって制御するようにした特許請求の範囲第1項記
載の空調装置。
(2) The air conditioner according to claim 1, wherein the evaporation pressure regulating valve is controlled by the air temperature on the outlet side of the evaporator.
JP59058696A 1984-03-26 1984-03-26 Air conditioner Pending JPS60202276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59058696A JPS60202276A (en) 1984-03-26 1984-03-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59058696A JPS60202276A (en) 1984-03-26 1984-03-26 Air conditioner

Publications (1)

Publication Number Publication Date
JPS60202276A true JPS60202276A (en) 1985-10-12

Family

ID=13091696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59058696A Pending JPS60202276A (en) 1984-03-26 1984-03-26 Air conditioner

Country Status (1)

Country Link
JP (1) JPS60202276A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196555A (en) * 1986-02-24 1987-08-29 三洋電機株式会社 Refrigerator
JPS63243674A (en) * 1987-03-30 1988-10-11 三洋電機株式会社 Cooling system
JPH01181042A (en) * 1988-01-14 1989-07-19 Ryohei Iwatani Control system of freezer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196555A (en) * 1986-02-24 1987-08-29 三洋電機株式会社 Refrigerator
JPS63243674A (en) * 1987-03-30 1988-10-11 三洋電機株式会社 Cooling system
JPH01181042A (en) * 1988-01-14 1989-07-19 Ryohei Iwatani Control system of freezer

Similar Documents

Publication Publication Date Title
EP0604417B1 (en) Control of high-side pressure in transcritical vapor compression cycle
US5062276A (en) Humidity control for variable speed air conditioner
US9939185B2 (en) Indoor and outdoor ambient condition driven system
US4498310A (en) Heat pump system
JPH0355736B2 (en)
JPH0340295B2 (en)
US4446704A (en) Air conditioning apparatus with temperature regulated cooling
JPS6045336B2 (en) Control device and method of operation for chilled water set point temperature
JPS60202276A (en) Air conditioner
JPH04363554A (en) Controlling method for blower of air-cool type refrigerator
CN1020302C (en) Capillary thermal regulating valve and its foxing method
JPH0534578B2 (en)
JPS5974447A (en) Air conditioner
JPS60114669A (en) Air conditioner
JPS6150220B2 (en)
JP2922925B2 (en) Refrigeration equipment
JP3286967B2 (en) Constant temperature and humidity device
JPH0573981B2 (en)
JPH0114864Y2 (en)
JPS6045772B2 (en) Heating/cooling device and method for controlling the device to satisfy heating and cooling demands
JPS62116861A (en) Air conditioner
JPS62158952A (en) Controller for refrigeration cycle
JPS63259353A (en) Refrigerator
JP2600713B2 (en) Expansion valve control device for air conditioner
JPS6241170Y2 (en)