JPS62196555A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS62196555A
JPS62196555A JP3886286A JP3886286A JPS62196555A JP S62196555 A JPS62196555 A JP S62196555A JP 3886286 A JP3886286 A JP 3886286A JP 3886286 A JP3886286 A JP 3886286A JP S62196555 A JPS62196555 A JP S62196555A
Authority
JP
Japan
Prior art keywords
frequency
temperature
compressor
evaporator
lower limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3886286A
Other languages
Japanese (ja)
Inventor
須永 曠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3886286A priority Critical patent/JPS62196555A/en
Publication of JPS62196555A publication Critical patent/JPS62196555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はスーパーショーケースや大型冷蔵庫等に使用さ
れしかも圧縮機の回転数制御等匠より庫内の負荷に応じ
て能力が変更できる冷凍装置に係り、特許、厚内温度の
制御に高い精度が要求される冷凍装置に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention is a refrigerator that is used in super showcases, large refrigerators, etc., and whose capacity can be changed according to the load inside the refrigerator, such as by controlling the rotation speed of the compressor. This patent relates to a refrigeration system that requires high precision in controlling the internal temperature.

(ロ)従来の技術 従来、この種の冷凍装置は、特公昭60−23261号
公報または特開昭58−205057号公報等に記載さ
れ第9図に示すように、インバータ等の周波数可変装置
27により能力制御される圧縮機28、凝縮器29、蒸
発器30、この蒸発器の入口側に設けられた温度式の膨
張弁31とから構成されている。そして、圧縮機28の
低圧圧力を検知する圧力センサー32の信号を、制御器
33を介して入力し負荷に見合った周波数指令を圧縮機
28へ出力する前記周波数可変装置27により冷凍装置
の能力制御を行う一方、庫内温度を検出する温度センサ
ー34によって検知された温度が予め設定された上限温
度より高いときは継続して運転させると共に予め設定さ
れた下限温度より低いときは圧縮機28を停止させると
いう温度制御を併用することにより庫内温度を一定に保
てるようにしている。
(B) Conventional technology Conventionally, this type of refrigeration equipment has been described in Japanese Patent Publication No. 60-23261 or Japanese Patent Application Laid-open No. 58-205057, and as shown in FIG. 9, a frequency variable device 27 such as an inverter, It consists of a compressor 28 whose capacity is controlled by a compressor 28, a condenser 29, an evaporator 30, and a temperature-type expansion valve 31 provided on the inlet side of the evaporator. The capacity of the refrigeration system is controlled by the frequency variable device 27 which inputs a signal from the pressure sensor 32 that detects the low pressure of the compressor 28 via the controller 33 and outputs a frequency command suitable for the load to the compressor 28. On the other hand, when the temperature detected by the temperature sensor 34 that detects the internal temperature is higher than the preset upper limit temperature, the compressor 28 is allowed to continue operating, and when it is lower than the preset lower limit temperature, the compressor 28 is stopped. The internal temperature of the refrigerator can be kept constant by using temperature control.

(ハ) 発明が解決しようとする問題点しかしながら上
記の構成によると、庫内の負荷が小さくなって周波数可
変装置270周波数指令が下限周波数になった状態で更
に負荷が減少すると圧縮機28は停止してしまうこと、
庫内温度が予め設定された上限温度や下限温度を越える
と圧縮機は起動または停止を繰り返すことから、庫内温
度が急激に上昇したり下降したりして太き(変動すると
いう問題がある。また、庫内温度の変動を少く押えるた
めには周波数可変装置27の下限周波数をOHzまで連
続して制御できるようにしたり、前述した上限温度と下
限温度とのディファレンシャルを小さく設定すれば良い
が、前者の場合には周波数可変装置27の制御できる周
波数範囲に限界があり実際にはOHzまで連続した制御
は行ないに(いこと、後者の場合には圧縮機の起動、停
止が頻繁となり圧縮機の制御部品が損傷し易(なったり
消費電力が増加したりするという問題がある。このよう
なことから、斯る構成の冷凍装置では庫内温度を例えば
±0,5〜1℃の範囲で制御するといった高い精度の温
度制御を簡単な構造で達成するのは困難であった。
(C) Problems to be Solved by the Invention However, according to the above configuration, when the load inside the refrigerator becomes small and the frequency command of the frequency variable device 270 reaches the lower limit frequency, if the load decreases further, the compressor 28 stops. what you end up doing,
When the temperature inside the refrigerator exceeds the preset upper and lower temperature limits, the compressor repeatedly starts and stops, which causes the problem that the temperature inside the refrigerator suddenly rises or falls, resulting in fluctuations. In addition, in order to suppress fluctuations in the temperature inside the refrigerator, the lower limit frequency of the frequency variable device 27 can be continuously controlled down to OHZ, or the differential between the upper limit temperature and the lower limit temperature described above may be set small. In the former case, there is a limit to the frequency range that the frequency variable device 27 can control, and in reality, continuous control up to OHz cannot be performed (in the latter case, the compressor starts and stops frequently and the compressor There is a problem that the control parts of the refrigerator are easily damaged (or the power consumption increases).For these reasons, in a refrigeration system with such a configuration, the internal temperature must be kept within the range of ±0.5 to 1℃, for example. It has been difficult to achieve highly accurate temperature control with a simple structure.

本発明は斯る点i/i:鑑みなされたもので、冷凍装置
の軽負荷時における圧縮機の停止ヒな防ぎ、蒸発器の周
囲温度の変化を少く押えて庫内温度を変動の少い高い精
度で制御することを目的とする。
The present invention has been made in view of the above points, and is designed to prevent the compressor from stopping when the refrigeration equipment is under a light load, and to suppress changes in the ambient temperature of the evaporator to reduce fluctuations in the temperature inside the refrigerator. The purpose is to control with high precision.

に)問題点を解決するための手段 本発明は、インバータ等の周波数可変装置により能力変
化する圧縮機、凝縮器、減圧装置、蒸発器等から構成さ
れており、前記圧縮機の低圧側に設けた圧力センサーか
らの信号に基づいて前記周波数可変装置の周波数を変化
させている冷凍装置において、前記蒸発器の出口側に該
蒸発器の周囲温度を検知する温度センサーからの信号に
基づいて作動する電動弁を設ける電力、圧縮機の低圧側
と高圧側を連通ずるバイパス管を設け、周波数可変装置
が下限周波数に達したときはこの下限周波数を保持する
と共に前記バイパス管を開路させるよう構成したもので
ある。
B) Means for Solving the Problems The present invention is composed of a compressor, a condenser, a pressure reducing device, an evaporator, etc. whose capacity can be changed by a variable frequency device such as an inverter, and is provided on the low pressure side of the compressor. In the refrigeration system, the frequency of the frequency variable device is changed based on a signal from a pressure sensor that operates based on a signal from a temperature sensor that detects the ambient temperature of the evaporator on the outlet side of the evaporator. A motorized valve is provided with electric power, a bypass pipe is provided that communicates the low pressure side and the high pressure side of the compressor, and when the frequency variable device reaches the lower limit frequency, this lower limit frequency is maintained and the bypass pipe is opened. It is.

(ホ)作用 本発明の冷凍装置は上記の構成により、温度センサーに
よって庫内温度に最も近い蒸発器の周囲温度を検知し、
この検知した温度と予め設定された温度との差に応じて
電動弁の絞り具合いを調整して冷媒循環量を制御できる
一方、庫内の負荷が軽くなり圧縮機の低圧圧力が下がっ
て周波数可変装置の周波数が下限周波数以下となっても
この下限周波数を保持して圧縮機が停止するのを防止す
ることができ、斯る軽負荷時にも前記温度センサーと電
動弁で庫内の温度制御を連続して行なえ、しかも予め設
定される温度とのディファレンシャルを小さく押えるこ
とを可能として、庫内温度を変動の少−・高い精度で制
御できるようにしている。
(e) Effect The refrigeration system of the present invention has the above-described configuration, and the temperature sensor detects the ambient temperature of the evaporator that is closest to the temperature inside the refrigerator.
The amount of refrigerant circulation can be controlled by adjusting the throttle of the electric valve according to the difference between the detected temperature and the preset temperature, while the load inside the refrigerator is lightened and the low pressure of the compressor is lowered, making the frequency variable. Even if the frequency of the device falls below the lower limit frequency, this lower limit frequency can be maintained to prevent the compressor from stopping, and the temperature inside the refrigerator can be controlled using the temperature sensor and electric valve even during such light loads. It is possible to perform this continuously and to keep the differential with the preset temperature small, making it possible to control the temperature inside the refrigerator with little fluctuation and with high precision.

更に、周波数可変装置が下限周波数に達したときには、
バイパス管を開路して高圧ガスを低圧gJJJK導き低
圧圧力を高めているため、低圧圧力が所定値、例えば圧
縮機の起動、停止用の圧力スイッチの設定値以下となら
ないように−jることができ、斯る低圧圧力の低下時に
も圧縮機が停止しないよ5&1.ている。
Furthermore, when the frequency variable device reaches the lower limit frequency,
Since the bypass pipe is opened and the high pressure gas is guided to low pressure gJJJK to increase the low pressure, it is possible to prevent the low pressure from falling below a predetermined value, such as the set value of the pressure switch for starting and stopping the compressor. 5&1. ing.

(へ)実施例 以下本発明の実施例を図面に基づいて説明する。(f) Example Embodiments of the present invention will be described below based on the drawings.

1は、インバータ等の周波数可変装置2により能力可変
する圧縮機3、凝縮器4、蒸発器5、この蒸発器の出口
冷媒温度を感知する感温筒6により開度調整される温度
式の膨張弁7から構成される装置 設けた圧力センサーである。9は前記圧力センサー8で
検知された圧力値を予め設定された圧力値(カットイン
値、カットアウト値からなる)と比較して周波数可変装
置2に信号を出力する制御器である。この制御器は圧力
センサー8で検知された圧力値が予め設定されたカット
アウト値以下になると周波数を低下させるように周波数
可変装置2に信号を送り、検知された圧力値がカットイ
ン値以上になると周波数を上昇させるように周波数可変
装置2に信号を送り、検知された圧力値がカットアウト
値とカットイン値の間にあるときは周波数可変装置の周
波数を現状のままに保持させている。そして、周波数回
変装W2は制御器9からの信号に基づいて圧縮機3を該
装置の上限周波数から下限周波数の範囲で回転数制御し
ている。また、この周波数可変装置2には、制御器9か
ら周波数低下の信号が出ても、該装置の下限周波数に達
したときには、この下限周波数を保持する機能が備えら
れている。10は圧縮機3の低圧側と高圧側とを連通し
常閉型の電磁弁11と容量調整弁12を有するバイパス
管である。このバイパス管は、周波数可変装置20周波
数が下限周波数に達したときに、該装置から出される信
号で電磁弁11が開となることにより開路されると共に
図示しない圧縮機発停用の圧力スイッチの下限値(低圧
圧力がこれ乞下回ると圧縮機を停止させるように設定さ
れた値)よりも高い動作設定とされた前記容量調整弁1
2により開度調整されている。13は蒸発器5の出口側
に設けられた電動弁である。14は蒸発器の周囲温度(
吹出し温度或いは吸込み温度)を検知する温度センサー
である。15は前記温度センサー14で検知された温度
を予め設定された温度と比較してその差に応じた大きさ
の信号を電動弁13に出力する弁制御器である。この弁
制御器は温度センサー14で検知された温度が予め設定
された温度を下回るとその下回った度合いに応じて開度
な小さくするように電動弁13に信号を送り、検知され
た温度が設定温度を上回るとその上回った度合いに応じ
て開度な大きくするように電動弁13に信号を送ってい
る。
1 is a compressor 3 whose capacity is varied by a variable frequency device 2 such as an inverter, a condenser 4, an evaporator 5, and a temperature-type expansion whose opening degree is adjusted by a temperature-sensing tube 6 that senses the refrigerant temperature at the outlet of this evaporator. This is a pressure sensor equipped with a device consisting of a valve 7. A controller 9 compares the pressure value detected by the pressure sensor 8 with a preset pressure value (consisting of a cut-in value and a cut-out value) and outputs a signal to the frequency variable device 2. This controller sends a signal to the frequency variable device 2 to reduce the frequency when the pressure value detected by the pressure sensor 8 becomes less than a preset cut-out value, and when the detected pressure value becomes equal to or greater than the cut-in value. Then, a signal is sent to the frequency variable device 2 to increase the frequency, and when the detected pressure value is between the cut-out value and the cut-in value, the frequency of the frequency variable device is maintained as it is. The frequency converter W2 controls the rotation speed of the compressor 3 in the range from the upper limit frequency to the lower limit frequency of the device based on the signal from the controller 9. The frequency variable device 2 also has a function of maintaining the lower limit frequency when the lower limit frequency of the device is reached, even if a frequency reduction signal is output from the controller 9. A bypass pipe 10 communicates the low pressure side and the high pressure side of the compressor 3 and has a normally closed solenoid valve 11 and a capacity adjustment valve 12. When the frequency of the frequency variable device 20 reaches the lower limit frequency, the solenoid valve 11 is opened by a signal issued from the device, and the bypass pipe is opened. The capacity adjustment valve 1 has an operation setting higher than a lower limit value (a value set to stop the compressor when the low pressure falls below this level).
The opening degree is adjusted by 2. Reference numeral 13 denotes an electric valve provided on the outlet side of the evaporator 5. 14 is the ambient temperature of the evaporator (
This is a temperature sensor that detects the air outlet temperature or suction temperature. Reference numeral 15 denotes a valve controller that compares the temperature detected by the temperature sensor 14 with a preset temperature and outputs a signal of a magnitude corresponding to the difference to the electric valve 13. When the temperature detected by the temperature sensor 14 falls below a preset temperature, this valve controller sends a signal to the motor-operated valve 13 to reduce the opening degree according to the degree to which the temperature detected by the temperature sensor 14 falls below a preset temperature. When the temperature exceeds the temperature, a signal is sent to the electric valve 13 to increase the opening degree according to the degree of the temperature exceeded.

このように構成された冷凍装置において、その動作を第
2図乃至第7図に基づいて説明する。まず、庫内の負荷
が比較的大きく周波数可変装置2の制御範囲(第5図中
f1〜fz)内にある場合において、圧力センサー8で
検知した圧力値が制御器9に予め設定されたカットアウ
ト値を下回ると(例えば第4図中C4点)該制御器から
周波数可変装置2に周波数を下げるように信号が出され
圧縮機3は回転数を減少する一方、圧力センサー8で検
知した圧力値がカットイン値を上回ると(例えば第2図
中02点)該制御器から周波数可変装置2に周波数を上
げるよう信号が出され圧縮機3は回転数を増加するとい
う負荷に応じた能力制御運転が行なわれる。このとき、
電動弁13は弁制御器15により蒸発器5の周囲温度に
応じた絞り量に自動的匠調整されており、この電動弁の
開度調整で冷凍サイクルの冷媒循環量が制御されること
によって蒸発器5の周囲温度は第2図に示すように一定
の制御範囲内に保たれている。例えば、温度センサー1
4の検出温度が弁制御器15の設定温度を下回った場合
(第2図中C6点)Kは、電動弁13の開度な小さくす
るように(第3図中C3点)弁制御器15から信号が出
され、検出温度が設定温度を上回った場合(第2図中0
2点)VCは、電動弁13の開度を大きくするように(
第3図中す8点)弁制御器15から信号が出される。こ
れにより、冷凍ザイクルの冷媒循環量を蒸発器5の周囲
温度に応じて制御することができ、蒸発器の周囲温度を
目標とする設定温度に近すけておくことができる。
The operation of the refrigeration system configured as described above will be explained based on FIGS. 2 to 7. First, when the load in the refrigerator is relatively large and within the control range of the variable frequency device 2 (f1 to fz in FIG. When the output value falls below the out value (for example, at point C4 in FIG. 4), a signal is sent from the controller to the frequency variable device 2 to lower the frequency, and the compressor 3 decreases its rotation speed, while the pressure detected by the pressure sensor 8 decreases. When the value exceeds the cut-in value (for example, point 02 in Fig. 2), the controller issues a signal to the variable frequency device 2 to increase the frequency, and the compressor 3 increases its rotation speed, which is the capacity control according to the load. Driving takes place. At this time,
The motor-operated valve 13 is automatically adjusted to the throttle amount according to the ambient temperature of the evaporator 5 by the valve controller 15, and the amount of refrigerant circulated in the refrigeration cycle is controlled by adjusting the opening of this motor-operated valve. The ambient temperature of the vessel 5 is maintained within a certain control range as shown in FIG. For example, temperature sensor 1
When the detected temperature of 4 is lower than the set temperature of the valve controller 15 (point C6 in FIG. 2), the valve controller 15 decreases the opening degree of the electric valve 13 (point C3 in FIG. 3). If the detected temperature exceeds the set temperature (0 in Figure 2), a signal is output from
2 points) VC should be set so as to increase the opening degree of the electric valve 13 (
(8 points in FIG. 3) A signal is output from the valve controller 15. Thereby, the amount of refrigerant circulated in the freezing cycle can be controlled according to the ambient temperature of the evaporator 5, and the ambient temperature of the evaporator can be kept close to the target set temperature.

次に、庫内の負荷が小さくなり周波数可変装置20周波
数が下限周波数f、 K達した後、更に負荷が減少した
場合は、第7図のフローチャートに示すように周波数可
変装置2により下限周波数f。
Next, when the load in the refrigerator becomes smaller and the frequency of the frequency variable device 20 reaches the lower limit frequency f, K, if the load decreases further, the frequency variable device 2 changes the frequency to the lower limit frequency f, as shown in the flowchart of FIG. .

がそのまま維持される。そして、この状態で温度センサ
ー14と電動弁IHCよる蒸発器5の温度制御が行なわ
れる。例えば、斯る軽負荷状態で周波数可変装置2が下
限周波数f、 K維持されると(第5図中C6点)、圧
縮機3の低圧圧力や蒸発器5の周囲温度が低下しだす(
第4図中04点、第2図中02点)が、電動弁13の開
度が蒸発器5の温度低下に応じて自動的に小さくなる(
第3図中C8点)ことから、冷凍サイクルの冷媒循環量
が減り蒸発器5の周囲温度は第2図に示すように一定の
範囲内に保たれる。一方、周波数可変装置2が下限周波
数で維持されると、該装置から電磁弁11へ信号が送ら
れ電磁弁11が開くと共に、圧縮機30発停用の圧力ス
イッチ(図示せず)の設定値より高い動作設定とされた
容量調整弁12が作動する。これにより、バイパス管1
0が低圧圧力の低下分に応じた開度で開路され、圧縮機
3から吐出されるホットガスの適量が低圧側へ供給され
て低圧圧力の低下、これによる圧縮機3の停止な防止し
ている。例えば、低圧圧力は第4図中d4点以降で示す
ように上昇しはじめ、圧力スイッチが作動して圧縮機3
を停止させたりしないよ5にしている。
will be maintained as is. In this state, the temperature of the evaporator 5 is controlled by the temperature sensor 14 and the electric valve IHC. For example, when the frequency variable device 2 maintains the lower limit frequency f, K in such a light load state (point C6 in Fig. 5), the low pressure of the compressor 3 and the ambient temperature of the evaporator 5 start to decrease (
04 point in FIG. 4, 02 point in FIG.
(Point C8 in FIG. 3) Therefore, the amount of refrigerant circulated in the refrigeration cycle is reduced and the ambient temperature of the evaporator 5 is maintained within a certain range as shown in FIG. On the other hand, when the frequency variable device 2 is maintained at the lower limit frequency, a signal is sent from the device to the solenoid valve 11, which opens and sets the pressure switch (not shown) for starting and stopping the compressor 30. The capacity regulating valve 12 with the higher operating setting is activated. As a result, bypass pipe 1
0 is opened with an opening degree corresponding to the drop in the low pressure pressure, and an appropriate amount of hot gas discharged from the compressor 3 is supplied to the low pressure side to prevent the low pressure pressure from dropping and the compressor 3 from stopping due to this. There is. For example, the low pressure starts to rise as shown from point d4 in Figure 4, and the pressure switch is activated, causing the compressor
I'm setting it to 5 so I won't stop it.

このように本実施例の冷凍装置は、庫内負荷の変動の影
響を即座に受は易い蒸発器5の周囲温度が一定の制御範
囲内になるように制御していること、庫内の負荷が周波
数可変装置2の下限周波数以下に軽くなっても該装置を
下限周波数で維持して圧縮機3を継続して運転できると
共に引き続き蒸発器5の温度制御を行なうことができる
ことから、第6図に示すように負荷の大小に拘す、庫内
温度を制御範囲内に精度よ(集束させてお(ことができ
る。また、周波数回変装[2が下限周波数に達したとき
に開路するバイパス管10により、軽負荷時の低圧圧力
の低下を防止することかでき、圧縮機の起動、停止用の
圧力スイッチが動作しないようにして圧縮機3の停止を
防止できる。更に、電動弁13は蒸発器5の出口側に設
けられているため、ガス状態の冷媒を流量制御すること
ができ、例えば蒸発器の入口側VCt動弁を設ける場合
すなわち液状態の冷媒を流量制御する場合匠比べて電動
弁自体の絞り機構にそれ程精度を要することはなく安価
な電動弁が使用できる。
In this way, the refrigeration system of this embodiment controls the ambient temperature of the evaporator 5, which is easily affected by changes in the internal load, to be within a certain control range; Even if the frequency becomes lower than the lower limit frequency of the frequency variable device 2, the device can be maintained at the lower limit frequency and the compressor 3 can be continuously operated, and the temperature of the evaporator 5 can be continuously controlled. As shown in Figure 2, it is possible to accurately (focus) the temperature inside the refrigerator within a control range regardless of the magnitude of the load. 10, it is possible to prevent a drop in the low pressure during light loads, and it is possible to prevent the compressor 3 from stopping by preventing the pressure switch for starting and stopping the compressor from operating. Since it is installed on the outlet side of the container 5, it is possible to control the flow rate of the refrigerant in the gas state.For example, when installing a VCt valve on the inlet side of the evaporator, that is, when controlling the flow rate of the refrigerant in the liquid state, it is possible to control the flow rate of the refrigerant in the gas state. The throttling mechanism of the valve itself does not require much precision, and an inexpensive electric valve can be used.

また、第8図は他の実施例を示し、第1図の冷媒回路に
ホットガスによる除霜回路を付加した例である。この場
合、通常の冷却運転時には第1図の実施例と同様な蒸発
器の温度制御が行なわれるが、除霜運転時には上述した
温度制御は中止される。すなわち、三方弁16の切換り
により圧縮機17から吐出されたガスがホットガスバイ
パス管18を介して蒸発器19へ流れ除霜運転が行なわ
れるが、このとき、周波数回変装[20は負荷の大小に
拘ず制御器21により強制的に上限周波数に設定され、
圧縮機17を最大能力で運転させる。
Further, FIG. 8 shows another embodiment, in which a defrosting circuit using hot gas is added to the refrigerant circuit of FIG. 1. In this case, during normal cooling operation, the temperature control of the evaporator is performed in the same manner as in the embodiment shown in FIG. 1, but during defrosting operation, the above-mentioned temperature control is discontinued. That is, by switching the three-way valve 16, the gas discharged from the compressor 17 flows to the evaporator 19 via the hot gas bypass pipe 18, and defrosting operation is performed. Regardless of the size, the upper limit frequency is forcibly set by the controller 21,
The compressor 17 is operated at maximum capacity.

また、このとき、電動弁22は温度センサー23かもの
信号に拘ず弁制御器240指令により全開となり、更に
、バイパス管25も電磁弁26の開放によって開路され
、除霜開始直後の低圧圧力の低下、これによる圧縮機1
7発停用の圧力スイッチの作動も防止される。すなわち
、斯る除霜時には上述のようにして蒸発器19の温度制
御を中断し除霜が円滑に行なえるようにしている。
At this time, the electric valve 22 is fully opened by the valve controller 240 command regardless of the signal from the temperature sensor 23, and the bypass pipe 25 is also opened by opening the solenoid valve 26, so that the low pressure immediately after the start of defrosting is opened. drop, which causes the compressor 1
Activation of the 7-start/stop pressure switch is also prevented. That is, at the time of defrosting, the temperature control of the evaporator 19 is interrupted as described above so that defrosting can be carried out smoothly.

(ト)  発明の効果 以上のよ5に本発明は、インバータ等の周波数可変装置
vcより能力変化する圧縮機、凝縮器、減圧装置、蒸発
器等から構成されており、前記圧縮機の低圧側に設けた
圧力センサーからの信号に基づいて前記周波数可変装置
の周波数を変化させ【いる冷凍装置tにおいて、前記蒸
発器の出口側に該蒸発器の周囲温度を検知する温度セン
サーからの信号に基づいて作動する電動弁を設ける一方
、圧縮機の低圧側と高圧側を連通するバイパス管を設け
、周波数可変装置が下限周波数に達したときはこの下限
周波数を保持すると共に前記バイパス管を開路させるよ
う構成したものであるから、前記電動弁を負荷の変動の
影響を即座に受は易い蒸発器の周囲温度に応じて制御で
きると共に庫内の負荷が周波数可変装置の下限周波数以
下に軽(なっても該装置を下限周波数で維持して圧縮機
が停止するのを防ぐことができ、斯る軽負荷時にも温度
センサーと電動弁で庫内の温度制御を連続して行なえ、
庫内温度を変動の少い高い精度で制御することが可能と
なる。また、周波数可変装置が下限周波数に達したとき
に開路するバイパス管により、軽負荷時の低圧圧力の低
下を防止することができ、圧縮機の起動、停止用の圧力
スイッチが動作しないようにして圧縮機の停止を防止で
きる。更に、電動弁を蒸発器の出口側に設けたことによ
り、該電動弁はガス状態の冷媒を流量制御すれば良く、
液状態の冷媒を流量制御する場合に比して該電動弁自体
の絞り機構にそれ程精度を要すこともな(、安価な電動
弁を使用できる。
(G) Effects of the Invention As described above, the present invention is composed of a compressor, a condenser, a pressure reducing device, an evaporator, etc. whose capacity is changed by a variable frequency device VC such as an inverter, and the low pressure side of the compressor is In the refrigeration system t, the frequency of the frequency variable device is changed based on a signal from a pressure sensor provided at A bypass pipe is provided that communicates the low pressure side and the high pressure side of the compressor, and when the frequency variable device reaches the lower limit frequency, this lower limit frequency is maintained and the bypass pipe is opened. With this configuration, the electric valve can be controlled according to the ambient temperature of the evaporator, which is easily affected by load fluctuations, and the load inside the refrigerator can be reduced to below the lower limit frequency of the frequency variable device. It is also possible to maintain the device at the lower limit frequency to prevent the compressor from stopping, and even during such light loads, the temperature inside the refrigerator can be continuously controlled using the temperature sensor and electric valve.
It becomes possible to control the temperature inside the refrigerator with high precision and little fluctuation. In addition, a bypass pipe that opens when the frequency variable device reaches the lower limit frequency prevents a drop in low pressure during light loads, and prevents the pressure switch for starting and stopping the compressor from operating. Compressor stoppage can be prevented. Furthermore, by providing the motorized valve on the outlet side of the evaporator, the motorized valve only needs to control the flow rate of the gaseous refrigerant.
Compared to the case of controlling the flow rate of liquid refrigerant, the throttle mechanism of the electric valve itself does not require much precision (and an inexpensive electric valve can be used).

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第7図は本発明の実施例を示し、第1図は冷
凍装置の冷媒回路図、第2図は蒸発器の吸込み温度変化
を示すタイムチャート、第3図は電動弁の作動を示すタ
イムチャート、第4図は低圧圧力の変化を示すタイムチ
ャート、第5図は周波数可変装置の周波数の変化を示す
タイムチャート、第6図は庫内温度の変化を示すタイム
チャート(実線・・・本実施例、破線・・・従来例)、
第7図は周波数可変装置の制御例を示すフローチャート
、第8図は他の実施例を示す冷凍装置の冷媒回路図、第
9図は従来例を示す冷凍装置の冷媒回路図である。 1・・・冷凍装置、 2・・・周波数可変装置、 3・
・・圧縮機、 4・・・凝縮器、 5・・・蒸発器、 
7・・・膨張弁、 8・・・圧力センサー、10・・・
バイパス管、13・・・電動弁、 14・・・温度セン
サー。 出願人 三洋電機株式会社 外1名 代理人 弁理士  佐 野 靜 夫 第8図
Figures 1 to 7 show embodiments of the present invention, Figure 1 is a refrigerant circuit diagram of a refrigeration system, Figure 2 is a time chart showing changes in evaporator suction temperature, and Figure 3 is the operation of an electric valve. Fig. 4 is a time chart showing changes in low pressure, Fig. 5 is a time chart showing changes in the frequency of the variable frequency device, and Fig. 6 is a time chart showing changes in internal temperature (solid line, ...This embodiment, broken line...Conventional example),
FIG. 7 is a flowchart showing an example of control of the frequency variable device, FIG. 8 is a refrigerant circuit diagram of a refrigeration system showing another embodiment, and FIG. 9 is a refrigerant circuit diagram of a refrigeration system showing a conventional example. 1... Refrigeration device, 2... Frequency variable device, 3.
... Compressor, 4... Condenser, 5... Evaporator,
7... Expansion valve, 8... Pressure sensor, 10...
Bypass pipe, 13...Electric valve, 14...Temperature sensor. Applicant Sanyo Electric Co., Ltd. and one other agent Patent attorney Shizuo Sano Figure 8

Claims (1)

【特許請求の範囲】[Claims] (1)インバータ等の周波数可変装置により能力変化す
る圧縮機、凝縮器、減圧装置、蒸発器等から構成されて
おり、前記圧縮機の低圧側に設けた圧力センサーからの
信号に基づいて前記周波数可変装置の周波数を変化させ
ている冷凍装置において、前記蒸発器の出口側に該蒸発
器の周囲温度を検知する温度センサーからの信号に基づ
いて作動する電動弁を設ける一方、圧縮機の低圧側と高
圧側を連通するバイパス管を設け、周波数可変装置が下
限周波数に達したときはこの下限周波数を保持すると共
に前記バイパス管を開路させるよう構成したことを特徴
とする冷凍装置。
(1) It is composed of a compressor, a condenser, a pressure reducing device, an evaporator, etc. whose capacity is changed by a variable frequency device such as an inverter, and the frequency is determined based on a signal from a pressure sensor installed on the low pressure side of the compressor. In a refrigeration system that changes the frequency of a variable device, an electric valve that operates based on a signal from a temperature sensor that detects the ambient temperature of the evaporator is provided on the outlet side of the evaporator, and an electric valve is provided on the low pressure side of the compressor. A refrigeration system comprising: a bypass pipe that communicates with a high-pressure side; and when a variable frequency device reaches a lower limit frequency, the lower limit frequency is maintained and the bypass pipe is opened.
JP3886286A 1986-02-24 1986-02-24 Refrigerator Pending JPS62196555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3886286A JPS62196555A (en) 1986-02-24 1986-02-24 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3886286A JPS62196555A (en) 1986-02-24 1986-02-24 Refrigerator

Publications (1)

Publication Number Publication Date
JPS62196555A true JPS62196555A (en) 1987-08-29

Family

ID=12537012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3886286A Pending JPS62196555A (en) 1986-02-24 1986-02-24 Refrigerator

Country Status (1)

Country Link
JP (1) JPS62196555A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154945A (en) * 1988-12-07 1990-06-14 Daikin Ind Ltd Operation controller for air conditioning apparatus
JPH02140244U (en) * 1989-04-27 1990-11-22
JPH03181750A (en) * 1989-12-11 1991-08-07 Kubota Corp Refrigerating machine and heater
WO2004099684A2 (en) * 2003-05-05 2004-11-18 Carrier Corporation Vapor compression system
JP2006153418A (en) * 2004-10-29 2006-06-15 Daikin Ind Ltd Refrigeration system
JP2012229838A (en) * 2011-04-25 2012-11-22 Taikisha Ltd Fluid cooling means and fluid cooling device
JP2016017644A (en) * 2014-07-04 2016-02-01 ホシザキ電機株式会社 Refrigeration circuit of freezer
JP2016205742A (en) * 2015-04-27 2016-12-08 ヤマト科学株式会社 Cooling system
JP2019066068A (en) * 2017-09-29 2019-04-25 パナソニックIpマネジメント株式会社 Refrigeration system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165467A (en) * 1984-02-09 1985-08-28 松下精工株式会社 Air conditioner
JPS60202276A (en) * 1984-03-26 1985-10-12 日立プラント建設株式会社 Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165467A (en) * 1984-02-09 1985-08-28 松下精工株式会社 Air conditioner
JPS60202276A (en) * 1984-03-26 1985-10-12 日立プラント建設株式会社 Air conditioner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154945A (en) * 1988-12-07 1990-06-14 Daikin Ind Ltd Operation controller for air conditioning apparatus
JPH02140244U (en) * 1989-04-27 1990-11-22
JPH03181750A (en) * 1989-12-11 1991-08-07 Kubota Corp Refrigerating machine and heater
WO2004099684A2 (en) * 2003-05-05 2004-11-18 Carrier Corporation Vapor compression system
WO2004099684A3 (en) * 2003-05-05 2005-02-03 Carrier Corp Vapor compression system
US7201008B2 (en) 2003-05-05 2007-04-10 Carrier Corporation Vapor compression system performance enhancement and discharge temperature reduction in the unloaded mode of operation
JP2006153418A (en) * 2004-10-29 2006-06-15 Daikin Ind Ltd Refrigeration system
JP2012229838A (en) * 2011-04-25 2012-11-22 Taikisha Ltd Fluid cooling means and fluid cooling device
JP2016017644A (en) * 2014-07-04 2016-02-01 ホシザキ電機株式会社 Refrigeration circuit of freezer
JP2016205742A (en) * 2015-04-27 2016-12-08 ヤマト科学株式会社 Cooling system
JP2019066068A (en) * 2017-09-29 2019-04-25 パナソニックIpマネジメント株式会社 Refrigeration system

Similar Documents

Publication Publication Date Title
US4549404A (en) Dual pump down cycle for protecting a compressor in a refrigeration system
US6138467A (en) Steady state operation of a refrigeration system to achieve optimum capacity
US4535607A (en) Method and control system for limiting the load placed on a refrigeration system upon a recycle start
US4538422A (en) Method and control system for limiting compressor capacity in a refrigeration system upon a recycle start
JPS62196555A (en) Refrigerator
JPH04240355A (en) Controlling method for electronic expansion valve of air conditioner
JPH04363554A (en) Controlling method for blower of air-cool type refrigerator
JPH0239710B2 (en)
JPH01314840A (en) Water-cooling type air conditioner
JP3021987B2 (en) Refrigeration equipment
JPS62106261A (en) Refrigerator
JPH0534578B2 (en)
JPH09196477A (en) Compression type refrigerator and method for controlling the operation thereof
JPS63201470A (en) Refrigerator
JPS62116880A (en) Refrigerator
JPS61291868A (en) Control system of operation of refrigerator
JPS62116879A (en) Refrigerator
JPH04124560A (en) Capacity control refrigerating machine
JPS62108965A (en) Refrigerator
JPH0587742B2 (en)
JPH0349026B2 (en)
JPS63259353A (en) Refrigerator
JPH03181750A (en) Refrigerating machine and heater
JPS63220046A (en) Refrigerator
JPH02247460A (en) Operation control device for refrigerator