JPH0510183Y2 - - Google Patents

Info

Publication number
JPH0510183Y2
JPH0510183Y2 JP16309587U JP16309587U JPH0510183Y2 JP H0510183 Y2 JPH0510183 Y2 JP H0510183Y2 JP 16309587 U JP16309587 U JP 16309587U JP 16309587 U JP16309587 U JP 16309587U JP H0510183 Y2 JPH0510183 Y2 JP H0510183Y2
Authority
JP
Japan
Prior art keywords
temperature
hot gas
degree
valve
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16309587U
Other languages
Japanese (ja)
Other versions
JPH0170061U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16309587U priority Critical patent/JPH0510183Y2/ja
Publication of JPH0170061U publication Critical patent/JPH0170061U/ja
Application granted granted Critical
Publication of JPH0510183Y2 publication Critical patent/JPH0510183Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は圧縮機からの吐出ガスを蒸発器に流入
させることによつて冷却能力を調整するようにし
た冷凍装置の制御装置に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a control device for a refrigeration system that adjusts cooling capacity by causing discharge gas from a compressor to flow into an evaporator.

(従来の技術) 従来の冷凍装置の系統図が第10図に示されて
いる。
(Prior Art) A system diagram of a conventional refrigeration system is shown in FIG.

第10図において、1は圧縮機、2は凝縮器、
3はバイパス回路、4は蒸発器、5はバイパス回
路3に介装されたホツトガス制御弁、8は蒸発器
4から吹き出される空気の温度、即ち、制御対象
温度を検出するセンサー、9は制御装置、10は
温度設定器、51a,51bは電磁開閉弁、52
は温度式膨張弁、53は感温筒、54は均圧管、
55はキヤピラリを示す。
In FIG. 10, 1 is a compressor, 2 is a condenser,
3 is a bypass circuit, 4 is an evaporator, 5 is a hot gas control valve installed in the bypass circuit 3, 8 is a sensor that detects the temperature of the air blown out from the evaporator 4, that is, the temperature to be controlled, and 9 is a control device, 10 is a temperature setting device, 51a, 51b are electromagnetic on-off valves, 52
is a temperature-type expansion valve, 53 is a temperature-sensitive cylinder, 54 is a pressure equalization pipe,
55 indicates a capillary.

プルダウン時等大きな冷却能力が必要な場合に
は制御装置9は圧縮機1に運転指令を出すととも
に電磁開閉弁51aに開指令、電磁開閉弁51b
に閉指令、ホツトガス制御弁5に閉指令を出し、
冷凍装置はフル能力運転を開始する。
When a large cooling capacity is required, such as during pull-down, the control device 9 issues an operating command to the compressor 1, and also commands the electromagnetic on-off valve 51a to open, and the electromagnetic on-off valve 51b.
A close command is issued to the hot gas control valve 5, and a close command is issued to the hot gas control valve 5.
The refrigeration equipment begins operating at full capacity.

フル能力運転時、圧縮機1から吐出された冷媒
ガスは凝縮器2で外気に放熱して凝縮液化した
後、電磁開閉弁51aを通つて温度式膨張弁52
に入る。この温度式膨張弁52は感温筒53で検
出された蒸発器4の出口の冷媒温度と均圧管54
を経て導入された蒸発器4の出口の冷媒圧力から
蒸発器4の出口の冷媒過熱度を検出し、この過熱
度が予め設定された値になるように温度式膨張弁
52を通る液冷媒を調節することによつて蒸発器
4の能力を最大限に発揮させる。この温度式膨張
弁52で減圧された冷媒は蒸発器4に入り、ここ
で空気を冷却することによつて蒸発気化し、この
状態で圧縮機1に戻る。
During full capacity operation, the refrigerant gas discharged from the compressor 1 releases heat to the outside air in the condenser 2, condenses and liquefies, and then passes through the electromagnetic on-off valve 51a to the thermostatic expansion valve 52.
to go into. This temperature-type expansion valve 52 is connected to the refrigerant temperature at the outlet of the evaporator 4 detected by a temperature-sensing tube 53 and a pressure-equalizing tube 54.
The degree of superheating of the refrigerant at the outlet of the evaporator 4 is detected from the pressure of the refrigerant at the outlet of the evaporator 4, which is introduced through The ability of the evaporator 4 is maximized by adjusting the amount. The refrigerant whose pressure is reduced by the thermostatic expansion valve 52 enters the evaporator 4, where it evaporates by cooling the air, and returns to the compressor 1 in this state.

フル能力運転の結果蒸発器4から吹き出される
空気の温度が温度設定器10に設定された設定温
度Tsの近傍まで下がると、制御装置9は能力制
御運転を指令する。制御装置9は吹出空気温度セ
ンサー8で検知された吹出空気温度が温度設定器
10に設定された設定温度Tsとなるようにホツ
トガス制御弁5の開度を調節する。すると、圧縮
機1から吐出された冷媒ガス(ホツトガス)の一
部はバイパス回路3、ホツトガス制御弁5を通つ
て蒸発器4に流入し、このホツトガスの流量をホ
ツトガス制御弁5によつて変化させることにより
冷凍装置の冷却能力を制御する。
When the temperature of the air blown out from the evaporator 4 drops to near the set temperature Ts set in the temperature setting device 10 as a result of full capacity operation, the control device 9 commands capacity control operation. The control device 9 adjusts the opening degree of the hot gas control valve 5 so that the temperature of the blown air detected by the blown air temperature sensor 8 becomes the set temperature Ts set in the temperature setting device 10. Then, a part of the refrigerant gas (hot gas) discharged from the compressor 1 flows into the evaporator 4 through the bypass circuit 3 and the hot gas control valve 5, and the flow rate of this hot gas is changed by the hot gas control valve 5. This controls the cooling capacity of the refrigeration system.

この能力制御運転時、通常の外気温では上記フ
ル能力運転時と同様に電磁開閉弁51aは開、電
磁開閉弁51bは閉となつている。しかし、外気
温度の低下等によつて冷却負荷が更に小さくなる
と、制御装置9は電磁開閉弁51aを閉、電磁開
閉弁51bを開とする。これによつて液冷媒がキ
ヤピラリ55で絞られるように切換えられる。こ
のキヤピラリ55の流通抵抗はこれを流過する液
冷媒の流量が膨張弁52を流過する液冷媒の最大
流量より相当小さくなるように選定されている。
During this capacity control operation, at normal outside temperature, the electromagnetic on-off valve 51a is open and the electromagnetic on-off valve 51b is closed, as in the full capacity operation. However, when the cooling load becomes smaller due to a drop in outside air temperature or the like, the control device 9 closes the electromagnetic on-off valve 51a and opens the electromagnetic on-off valve 51b. As a result, the liquid refrigerant is switched to be throttled by the capillary 55. The flow resistance of this capillary 55 is selected such that the flow rate of the liquid refrigerant flowing through it is considerably smaller than the maximum flow rate of the liquid refrigerant flowing past the expansion valve 52.

しかして、能力制御運転時の冷却能力制御範囲
は、第12図に示すように、液冷媒を膨張弁52
で絞つているときは、ホツトガス制御弁5の全閉
時の能力を示す実線イと全開時の能力を示す実線
ロとの間となり、キヤピラリ55で絞つていると
きは、ホツトガス制御弁5の全閉時の能力を示す
破線ハと全開時の能力を示す破線ニとの間とな
る。
Therefore, the cooling capacity control range during the capacity control operation is as shown in FIG.
When it is being throttled by the capillary 55, it is between the solid line A, which shows the capacity when the hot gas control valve 5 is fully closed, and the solid line B, which is showing the capacity when it is fully open. It is between the broken line C indicating the capacity when closed and the broken line D indicating the capacity when fully opened.

この冷凍装置における吹出空気温度の時間的変
化を第11図により説明する。
The temporal change in the temperature of the blown air in this refrigeration system will be explained with reference to FIG.

冷凍装置がフル能力運転されることにより吹出
空気温度が次第に低下して設定温度Tsより若干
高めに設定した温度Th上の点aに到達すると、
制御装置9は能力制御運転を指令し、ホツトガス
制御弁5の開度調節を開始する。この時、フル能
力運転時と同様に電磁開閉弁51aは開、電磁開
閉弁51bは閉となつている。
When the refrigeration system is operated at full capacity, the temperature of the blown air gradually decreases and reaches point a on the temperature Th, which is set slightly higher than the set temperature Ts.
The control device 9 commands capacity control operation and starts adjusting the opening degree of the hot gas control valve 5. At this time, the electromagnetic on-off valve 51a is open and the electromagnetic on-off valve 51b is closed, as in the case of full capacity operation.

この能力制御運転時冷却負荷が第12図のホの
点であれば、点ホは温度式膨張弁52による冷却
能力制御範囲イとロの間にあるため、冷凍装置の
冷却能力と冷却負荷をバランスさせて吹出空気温
度を第11図に実線bで示すように設定温度Ts
に次第に安定させることができる。
If the cooling load during this capacity control operation is point E in FIG. By balancing, the blowing air temperature is adjusted to the set temperature Ts as shown by the solid line b in Figure 11.
can be gradually stabilized.

しかし、外気温度が低い場合等冷却負荷が第1
2図のヘ点にあるような場合、そのままではホツ
トガス制御弁5が全開となつても冷凍装置の冷却
能力は点トに位置する。点トは冷却負荷の点ヘよ
り大きいため、吹出空気温度は第11図に点線
C′で示すように低下するので、これを設定温度
Tsに安定させることはできない。
However, when the outside temperature is low, the cooling load is the first
In the case of point F in FIG. 2, the cooling capacity of the refrigeration system remains at point G even if the hot gas control valve 5 is fully open. Since point 0 is larger than point 0 of the cooling load, the temperature of the outlet air is indicated by the dotted line in Figure 11.
The temperature decreases as shown by C′, so this is the set temperature.
It cannot be stabilized to Ts.

しかるに、吹出空気温度が設定温度Tsより若
干低い温度Tl上のe点に達したとき、制御装置
9が電磁開閉弁51aを閉、電磁開閉弁51bを
開とする指令を出し、液冷媒をキヤピラリ55で
絞るように切り換えれば、第12図に示すよう
に、冷凍装置の冷却能力制御範囲はハ〜ニの間と
なるため、冷凍装置の冷却能力と冷却負荷をバラ
ンスさせ、吹出空気温度を第11図に線cで示す
ように設定温度Tsに安定させることができる。
また、この運転状態で冷却負荷の増大によつて吹
出空気温度が上昇し、温度Th上のf点に到達し
た場合には再び電磁開閉弁51aを開、電磁開閉
弁51bを閉とし、液冷媒を温度式膨張弁52で
絞るようにすれば、吹出空気温度が第11図に線
d′で示すように上昇するのを防止して線dで示す
ように設定温度に安定させることができる。
However, when the blowing air temperature reaches a point e above a temperature Tl that is slightly lower than the set temperature Ts, the control device 9 issues a command to close the electromagnetic on-off valve 51a and open the electromagnetic on-off valve 51b, and causes the liquid refrigerant to flow into the capillary. 55, the cooling capacity control range of the refrigeration system will be between H and D, as shown in Fig. 12, so the cooling capacity of the refrigeration system and the cooling load are balanced, and the blowing air temperature is adjusted. As shown by line c in FIG. 11, the temperature can be stabilized at the set temperature Ts.
In addition, in this operating state, when the temperature of the blown air increases due to an increase in the cooling load and reaches point f above the temperature Th, the electromagnetic on-off valve 51a is opened again, the electromagnetic on-off valve 51b is closed, and the liquid refrigerant is If the temperature type expansion valve 52 is used to throttle the temperature, the temperature of the blown air will be reduced to the line shown in Figure 11.
It is possible to prevent the temperature from rising as indicated by d' and stabilize the temperature at the set temperature as indicated by line d.

(考案が解決しようとする問題点) 上記従来の冷凍装置においては温度式膨張弁5
2及びキヤピラリ55並びにこれらを切り換える
ための電磁開閉弁51aと51bを具えているた
め、これらのコストが嵩むのみならず冷媒回路が
複雑となり、組立費用及び組立スペースが増大す
るという問題があつた。
(Problem to be solved by the invention) In the above conventional refrigeration system, the temperature type expansion valve 5
2 and a capillary 55, as well as electromagnetic on-off valves 51a and 51b for switching these, there is a problem that not only these costs increase, but also the refrigerant circuit becomes complicated, which increases assembly costs and assembly space.

(問題点を解決するための手段) 本考案は上記問題点に対処するために提案され
たものであつて、その要旨とするところは、圧縮
機、凝縮器、電動膨張弁及び蒸発器により冷凍サ
イクルを構成するとともに圧縮機からの吐出ガス
を蒸発器に導くホツトガス制御弁を有するホツト
ガスバイパス回路を備えてなる冷凍装置におい
て、制御対象温度と設定温度との温度偏差が所定
値以上のとき前記ホツトガス制御弁を全閉とする
とともに前記電動膨張弁を前記蒸発器の出口にお
ける冷媒過熱度が一定値となるよう開度調節する
第1の制御系と、前記温度偏差が所定値以内のと
き同温度偏差に応じて前記ホツトガス制御弁の開
度調節を行う第2の制御系と、同第2の制御系に
より開度調節された前記ホツトガス制御弁の開度
が所定範囲を越えたとき、前記冷媒過熱度の制御
目標値を変更し、冷却能力を増減するよう前記電
動膨張弁の開度調節を行う第3の制御系からなる
ことを特徴とする冷凍装置の制御装置にある。
(Means for Solving the Problems) The present invention was proposed to solve the above problems, and its gist is to provide refrigeration using a compressor, a condenser, an electric expansion valve, and an evaporator. In a refrigeration system comprising a hot gas bypass circuit that constitutes a cycle and has a hot gas control valve that guides discharged gas from a compressor to an evaporator, when the temperature deviation between the temperature to be controlled and the set temperature is greater than or equal to a predetermined value, a first control system that fully closes the hot gas control valve and adjusts the opening of the electric expansion valve so that the degree of superheating of the refrigerant at the outlet of the evaporator becomes a constant value; a second control system that adjusts the opening of the hot gas control valve according to temperature deviation; and when the opening of the hot gas control valve adjusted by the second control system exceeds a predetermined range; A control device for a refrigeration system is characterized by comprising a third control system that adjusts the opening degree of the electric expansion valve so as to change the control target value of the degree of superheat of the refrigerant and increase or decrease the cooling capacity.

(作用) 本考案においては、上記構成を具えているた
め、制御対象温度と設定温度との温度偏差が所定
値以上のときは、ホツトガス制御弁を全閉とした
状態で蒸発器の出口における冷媒過熱度が一定値
になるように電動膨張弁の開度を調節することに
よつて冷凍装置をフル能力運転する。前記温度偏
差が所定値以内のときは、この温度偏差に応じて
ホツトガス制御弁の開度を調節することによつて
冷凍装置を能力制御運転する。そして、この能力
制御運転時ホツトガス制御弁の開度が所定範囲を
越えたときは、冷媒過熱度の制御目標を変更し、
かつ、電動膨張弁の開度を調節することによつて
冷凍装置の能力を制御する。
(Function) Since the present invention has the above configuration, when the temperature deviation between the temperature to be controlled and the set temperature is greater than a predetermined value, the refrigerant at the outlet of the evaporator is turned off with the hot gas control valve fully closed. The refrigeration system is operated at full capacity by adjusting the opening degree of the electric expansion valve so that the degree of superheat becomes a constant value. When the temperature deviation is within a predetermined value, the refrigeration system is operated under capacity control by adjusting the opening degree of the hot gas control valve according to the temperature deviation. When the opening degree of the hot gas control valve exceeds a predetermined range during this capacity control operation, the control target for the refrigerant superheat degree is changed,
In addition, the capacity of the refrigeration system is controlled by adjusting the opening degree of the electric expansion valve.

(実施例) 本考案による冷凍装置の系統図が第1図に示さ
れている。
(Example) A system diagram of a refrigeration system according to the present invention is shown in FIG.

凝縮器2と蒸発器4とを連結する冷媒配管中に
凝縮器2で凝縮した液冷媒を絞ることによつて減
圧し、この流量を制御するための電動膨張弁30
が介装され、この電動膨張弁30は制御装置31
からの指令により制御される。蒸発器4の出口に
おける冷媒の圧力は圧力センサー6により検出さ
れ、また、蒸発器4の出口における冷媒の温度は
温度センサー7により検出される。そして、これ
ら圧力センサー6及び温度センサー7の検出値は
制御装置31に入力される。他の構成は第10図
に示す従来のものと同様であり、対応する部材に
は同じ符号が付されている。
An electric expansion valve 30 for reducing the pressure by throttling the liquid refrigerant condensed in the condenser 2 in the refrigerant pipe connecting the condenser 2 and the evaporator 4 and controlling the flow rate thereof.
is interposed, and this electric expansion valve 30 is connected to a control device 31.
Controlled by instructions from. The pressure of the refrigerant at the outlet of the evaporator 4 is detected by a pressure sensor 6, and the temperature of the refrigerant at the outlet of the evaporator 4 is detected by a temperature sensor 7. The detected values of the pressure sensor 6 and temperature sensor 7 are input to the control device 31. The rest of the structure is the same as the conventional one shown in FIG. 10, and corresponding members are given the same reference numerals.

この冷凍装置の制御ブロツク図が第2図に、制
御フローチヤートが第3図に示されている。過熱
度検出手段11は温度センサー7と圧力センサー
6から検出信号に基づいて蒸発器4の出口の過熱
度を検出する。この過熱度検出手段11により検
出された過熱度(以下、検出SHという)は過熱
度比較手段に入力され、ここで目標過熱度決定手
段16から入力された目標過熱度(以下、目標
SHという)と比較され、両者の偏差が検出され
る。この偏差は膨張弁開度決定手段13に入力さ
れ、ここで偏差に基づき電動膨張弁30の開度を
決定し、この開度は制御手段18に入力される。
A control block diagram of this refrigeration system is shown in FIG. 2, and a control flowchart is shown in FIG. 3. The degree of superheat detection means 11 detects the degree of superheat at the outlet of the evaporator 4 based on detection signals from the temperature sensor 7 and the pressure sensor 6. The degree of superheat detected by this degree of superheat detection means 11 (hereinafter referred to as detection SH) is input to the degree of superheat comparison means, and here the degree of superheat detected by the degree of superheat determination means 16 (hereinafter referred to as target
(referred to as SH), and the deviation between the two is detected. This deviation is input to the expansion valve opening determining means 13, which determines the opening of the electric expansion valve 30 based on the deviation, and this opening is input to the control means 18.

温度設定器10で設定された設定温度Ts及び
吹出空気温度センサー8で検出された吹出空気温
度は温度偏差検出手段14に入力され、ここで温
度偏差ΔT(吹出空気温度−設定温度Ts)が検出
される。この温度偏差ΔTは目標過熱度決定手段
16に入力されるとともにホツトガス制御弁開度
決定手段15に入力され、ここで温度偏差ΔTに
基づきホツトガス制御弁5の開度を決定し、この
開度は制御手段18及び目標過熱度決定手段16
に入力される。目標過熱度決定手段16はホツト
ガス制御弁開度決定手段15で決定された開度及
び温度偏差検出手段14で検出された温度偏差
ΔTに応じて目標SHの変更要否を判断し、目標
SHを決定する。計時手段17は目標過熱度決定
手段16が目標SHを変更する時に前回の変更か
ら所定時間が経過したかどうかを知らせるための
ものであり、目標SHが変更される毎に目標過熱
度決定手段16からの指令によりセツトされる。
The set temperature Ts set by the temperature setting device 10 and the blowing air temperature detected by the blowing air temperature sensor 8 are input to the temperature deviation detection means 14, where the temperature deviation ΔT (blowing air temperature - set temperature Ts) is detected. be done. This temperature deviation ΔT is input to the target superheat degree determining means 16 and also to the hot gas control valve opening determining means 15, which determines the opening degree of the hot gas control valve 5 based on the temperature deviation ΔT. Control means 18 and target superheat degree determination means 16
is input. The target superheat degree determining means 16 determines whether or not to change the target SH according to the opening determined by the hot gas control valve opening determining means 15 and the temperature deviation ΔT detected by the temperature deviation detecting means 14, and determines whether or not to change the target SH.
Determine SH. The timer 17 is for informing whether a predetermined time has elapsed since the previous change when the target superheat degree determining means 16 changes the target SH, and the timer 17 informs the target superheat degree determining means 16 of whether a predetermined time has elapsed since the previous change. It is set by the command from.

目標過熱度決定手段16は第3図に示すよう
に、先ず、計時手段17からの出力によりタイマ
ーがタイムアツプしたか否かを判断する。タイム
アツプしていれば、ホツトガス制御弁開度決定手
段15で決定されたホツトガス制御弁5の開度が
所定の範囲以上、範囲内、範囲以下かを判断す
る。ホツトガス制御弁5の開度が所定範囲以上で
目標SHが上限SHに到達しておらず、かつ、温度
偏差ΔTが所定値より小さければ目標SHを所定
量だけ大きくし、かつ、計時手段17のタイマー
をセツトする。ホツトガス制御弁5の開度が所定
範囲内であれば目標SHはそのままとする。ホツ
トガス制御弁5の開度が所定範囲以下で目標SH
が下限SHに到達しておらず、かつ、温度偏差
ΔTが所定値より大きければ、目標SHを所定量
だけ小さくし、かつ、計時手段17のタイマーを
セツトする。なお、上限SHは冷媒循環量の過少
による圧縮機1の過熱を防止しうる値が選定さ
れ、下限SHは冷媒循環量の過大による圧縮機へ
の液戻りを防止しうる値が設定される。一方、目
標SHが上限SH又は下限SHに到達しておれば、
それ以上目標SHをそれぞれ大きく又は小さくす
ることはせず、目標SHはそれぞれ上限SH又は下
限SHに固定される。更に、上記各判断条件にあ
てはまらない場合には目標SHは変更されること
なく以前の目標SHが維持される。制御手段18
は膨張弁開度決定手段13、ホツトガス制御弁開
度決定手段15等の出力を受けて、電動膨張弁3
0の駆動手段20及びホツトガス制御弁5の駆動
手段21に開度指令、圧縮機1の運転指令手段1
9にON−OFF指令を出す。電動膨張弁駆動手段
20及びホツトガス制御弁駆動手段21はそれぞ
れ制御手段18の出力に基づいて電動膨張弁3
0、ホツトガス制御弁5を駆動して所期の開度と
する。圧縮機運転指令手段19は制御手段18の
出力に基づいて圧縮機1をON−OFFすることに
より冷凍能力を制御する。
As shown in FIG. 3, the target superheat degree determining means 16 first determines whether or not the timer has timed up based on the output from the timer means 17. If the time has elapsed, it is determined whether the opening degree of the hot gas control valve 5 determined by the hot gas control valve opening degree determining means 15 is above, within, or below a predetermined range. If the opening degree of the hot gas control valve 5 is above the predetermined range, the target SH has not reached the upper limit SH, and the temperature deviation ΔT is smaller than the predetermined value, the target SH is increased by a predetermined amount, and the timing means 17 is increased. Set the timer. If the opening degree of the hot gas control valve 5 is within a predetermined range, the target SH remains unchanged. When the opening degree of the hot gas control valve 5 is below the specified range, the target SH
has not reached the lower limit SH and the temperature deviation ΔT is larger than a predetermined value, the target SH is decreased by a predetermined amount and the timer of the timer 17 is set. Note that the upper limit SH is selected to be a value that can prevent overheating of the compressor 1 due to an insufficient amount of refrigerant circulation, and the lower limit SH is set to a value that can prevent liquid from returning to the compressor due to an excessive amount of refrigerant circulation. On the other hand, if the target SH has reached the upper limit SH or lower limit SH,
The target SH is not made larger or smaller, respectively, and the target SH is fixed at the upper limit SH or the lower limit SH, respectively. Further, if each of the above judgment conditions is not met, the target SH is not changed and the previous target SH is maintained. Control means 18
receives the outputs of the expansion valve opening determination means 13, the hot gas control valve opening determination means 15, etc., and operates the electric expansion valve 3.
0 and the drive means 21 of the hot gas control valve 5, and the operation command means 1 of the compressor 1.
Issue an ON-OFF command to 9. The electric expansion valve driving means 20 and the hot gas control valve driving means 21 each operate the electric expansion valve 3 based on the output of the control means 18.
0, the hot gas control valve 5 is driven to the desired opening degree. The compressor operation command means 19 controls the refrigerating capacity by turning the compressor 1 ON and OFF based on the output of the control means 18.

冷凍装置のフル能力運転時には制御装置31は
圧縮機1に運転指令を出すとともにホツトガス制
御弁5に全閉指令を出す。電動膨張弁30は蒸発
器4の出口における冷媒の過熱度が一定の目標
SHになるように開度調整される。この目標SHは
蒸発器4が最大の能力を発揮する値が選択され通
常の冷凍装置では5deg℃程度とされる。
When the refrigeration system is operating at full capacity, the control device 31 issues an operating command to the compressor 1 and also issues a fully close command to the hot gas control valve 5. The electric expansion valve 30 has a target that the degree of superheat of the refrigerant at the outlet of the evaporator 4 is constant.
The opening is adjusted so that it becomes SH. This target SH is selected to be a value that allows the evaporator 4 to exhibit its maximum capacity, and is set to about 5 degrees Celsius in a normal refrigeration system.

蒸発器4を通過した吹出空気の温度が温度設定
器10に設定された設定温度Tsの近傍まで下が
ることによつて冷却負荷が小さくなると、能力制
御運転が行われ、吹出空気温度センサー8で検出
した吹出空気温度が設定温度Tsとなるようにホ
ツトガス制御弁5の開度が調節される。
When the temperature of the blown air that has passed through the evaporator 4 falls to near the set temperature Ts set in the temperature setting device 10 and the cooling load becomes smaller, capacity control operation is performed and the blown air temperature sensor 8 detects the temperature. The opening degree of the hot gas control valve 5 is adjusted so that the temperature of the blown air becomes the set temperature Ts.

冷却能力の制御範囲を第4図について説明す
る。
The control range of the cooling capacity will be explained with reference to FIG.

ホツトガス制御弁5を全閉とした状態では、冷
却能力は過熱度の増加(即ち、電動膨張弁30の
開度減少)に従つてP線に示すように変化し、ホ
ツトガス制御弁5を全開とした状態では、冷却能
力は過熱度の増加に伴つてQ線に示すように変化
する。従つて、電動膨張弁30の開度を蒸発器4
の出口における検知SHが一定の適正な過熱度と
なるように制御すると、ホツトガスバイパス運転
中は電動膨張弁30は殆ど全開となつて、液冷媒
を最大限に流すので冷凍装置の冷却能力可変範囲
はホツトガス制御弁5の開度調整によつて制御さ
れる範囲Oとなる。しかし、電動膨張弁30の開
度を小さくすることによつて過熱度を大きくして
いくと冷却能力の可変範囲はホツトガス制御弁5
の全閉時の能力を示すP線と全開時能力を示すQ
線の間の範囲Rとなり、広範囲な冷却負荷に対応
することができる。つまり、第12図の線イ〜ニ
の間或いは電動膨張弁30の開度をより小さな開
度まで絞ることができるため、線ニよりも更に小
さな冷却能力まで連続的にしかもきめ細かく制御
できることとなる。
When the hot gas control valve 5 is fully closed, the cooling capacity changes as shown by line P as the degree of superheat increases (that is, the opening degree of the electric expansion valve 30 decreases), and when the hot gas control valve 5 is fully opened, the cooling capacity changes as shown by the P line. In this state, the cooling capacity changes as shown by the Q line as the degree of superheating increases. Therefore, the opening degree of the electric expansion valve 30 is adjusted to
When the detected SH at the outlet of the refrigeration system is controlled so that it is at a constant and appropriate degree of superheating, the electric expansion valve 30 is almost fully opened during hot gas bypass operation, allowing the liquid refrigerant to flow to the maximum extent, so that the cooling capacity of the refrigeration system can be varied. The range is a range O controlled by adjusting the opening of the hot gas control valve 5. However, if the degree of superheating is increased by decreasing the opening degree of the electric expansion valve 30, the variable range of the cooling capacity will be reduced by the hot gas control valve 5.
The P line indicates the capacity when fully closed, and the Q line indicates the capacity when fully open.
The range R is between the lines, and can accommodate a wide range of cooling loads. In other words, since it is possible to narrow down the opening of the electric expansion valve 30 to a smaller opening between lines A and D in FIG. 12, it is possible to continuously and finely control the cooling capacity even smaller than line D. .

第5図は能力制御運転時の電動膨張弁30の開
度制御により目標SHを変化させた場合、これに
伴うホツトガス制御弁5の開度及び吹出空気温度
の時間的変化を示す図である。目標SHを線Cに
示すように一定とした場合、冷却負荷が小さくな
るのに伴つてホツトガス制御弁5の開度が線Bで
示すように大きくなり、ホツトガス制御弁5が全
開となつてもなお冷却能力が大きい場合には冷凍
装置の冷却能力と冷却負荷がバランスせず吹出空
気温度は線Aで示すように下降してしまい設定温
度Tsに維持することができない。
FIG. 5 is a diagram showing temporal changes in the opening degree of the hot gas control valve 5 and the temperature of the blown air when the target SH is changed by controlling the opening degree of the electric expansion valve 30 during capacity control operation. When the target SH is kept constant as shown by line C, as the cooling load decreases, the opening degree of the hot gas control valve 5 increases as shown by line B, and even if the hot gas control valve 5 is fully opened, Note that when the cooling capacity is large, the cooling capacity of the refrigeration system and the cooling load are not balanced, and the temperature of the blown air decreases as shown by line A, making it impossible to maintain the set temperature Ts.

しかし、ホツトガス制御弁5の開度が所定開度
OHよりも大きくなり、吹出空気温度が設定温度
Tsよりも少しだけ低い点TL以下に下降した場合
に、目標SHを線C′に示すように徐々に適正過熱
度Cよりも大きく(即ち、電動膨張弁30の開度
を小さく)していくと、冷却能力は次第に減少
し、ホツトガス制御弁5の開度は線B′で示すよ
うに適当な開度で冷却負荷とバランスし、この結
果、吹出空気温度は線A′で示すように設定温度
Tsに維持することができる。
However, the opening degree of the hot gas control valve 5 is not the predetermined opening degree.
becomes larger than OH, and the blowing air temperature reaches the set temperature.
When the temperature drops below the point TL, which is slightly lower than Ts, the target SH is gradually made larger than the appropriate superheat degree C (that is, the opening degree of the electric expansion valve 30 is made smaller) as shown by line C'. Then, the cooling capacity gradually decreases, and the opening degree of the hot gas control valve 5 balances with the cooling load at an appropriate opening degree as shown by line B', and as a result, the blowing air temperature is set as shown by line A'. temperature
Ts can be maintained.

次に前述と逆に冷却負荷が大きい場合におい
て、ホツトガス制御弁5の開度が前記OHより少
し小さい開度OLよりも小さくなり、吹出空気温
度が設定温度Tsよりも少しだけ高い点TH以上に
上昇した場合には目標SHを線Fで示すように
徐々に(即ち、電動膨張弁30の開度を大きく)
していくと冷却能力は増加し、ホツトガス制御弁
5の開度はそれにつれて線Eで示すように小さく
なり、適当な開度で冷却負荷とバランスし、この
結果、吹出空気温度は線Dで示すように再び設定
温度Tsに維持することができる。
Next, contrary to the above, when the cooling load is large, the opening degree of the hot gas control valve 5 becomes smaller than the opening degree OL, which is slightly smaller than the above-mentioned OH, and the blowing air temperature reaches a point TH or higher, which is slightly higher than the set temperature Ts. If it rises, the target SH is gradually increased as shown by line F (that is, the opening degree of the electric expansion valve 30 is increased).
As the cooling capacity increases, the opening degree of the hot gas control valve 5 gradually decreases as shown by line E, and the cooling load is balanced at an appropriate opening degree, and as a result, the blowing air temperature becomes as shown by line D. The set temperature Ts can be maintained again as shown.

第6図及び第7図には本考案の第2の実施例が
示されている。
A second embodiment of the invention is shown in FIGS. 6 and 7.

第1の実施例においては、能力制御運転時の冷
却能力を増減するため目標SHを所定量だけ所定
時間経過毎に変更しているが、この代りに電動膨
張弁30の開度を現状の開度より所定量だけ所定
時間毎に変更することによつて同様な効果を得て
いる。
In the first embodiment, in order to increase or decrease the cooling capacity during capacity control operation, the target SH is changed by a predetermined amount every predetermined period of time, but instead of changing the opening degree of the electric expansion valve 30 to the current opening. A similar effect can be obtained by changing the amount by a predetermined amount at predetermined time intervals.

第6図において、22は過熱度比較決定手段、
23は電動膨張弁制御方法切換手段、24は電動
膨張弁開度決定手段、25は電動膨張弁開度増減
手段である。他は第2図に示すものと同様であ
り、対応する部材には同じ符号が付されている。
In FIG. 6, 22 is superheat degree comparison determining means;
23 is an electric expansion valve control method switching means, 24 is an electric expansion valve opening determining means, and 25 is an electric expansion valve opening increasing/decreasing means. The rest is the same as that shown in FIG. 2, and corresponding members are given the same reference numerals.

しかして、第7図に示すように、ホツトガス制
御弁5の開度が所定範囲以上で検知SHが上限SH
に到達しておらず、かつ、温度偏差ΔTが所定値
より小さいときは、電動膨張弁30の開度を所定
量だけ小さくし、かつ、計時手段17のタイマー
をセツトする。ホツトガス制御弁5の開度が所定
範囲内のときは、電動膨張弁30の開度は以前の
まま保持する。ホツトガス制御弁5の開度が所定
範囲以下で検知SHが下限SHに到達しておらず、
かつ、温度偏差ΔTが所定値より大きいときは、
電動膨張弁30の開度を所定量だけ大きくし、か
つ、計時手段17のタイマーをセツトする。ま
た、検知SHが上限SH又は下限SHに到達してお
れば、それ以上電動膨張弁30の開度を小さく又
は大きくすることはせず、目標SHを上限SH又は
下限SHにセツトして電動膨張弁30の制御を行
う。
As shown in FIG. 7, when the opening degree of the hot gas control valve 5 exceeds the predetermined range, the detected
has not been reached and the temperature deviation ΔT is smaller than a predetermined value, the opening degree of the electric expansion valve 30 is reduced by a predetermined amount, and the timer of the timer 17 is set. When the opening degree of the hot gas control valve 5 is within a predetermined range, the opening degree of the electric expansion valve 30 is maintained as before. If the opening degree of the hot gas control valve 5 is below the predetermined range, the detected SH has not reached the lower limit SH,
And when the temperature deviation ΔT is larger than the predetermined value,
The opening degree of the electric expansion valve 30 is increased by a predetermined amount, and the timer of the timing means 17 is set. Furthermore, if the detected SH has reached the upper limit SH or the lower limit SH, the opening degree of the electric expansion valve 30 is not made smaller or larger, but the target SH is set to the upper limit SH or the lower limit SH, and the electric expansion is performed. Controls the valve 30.

上記第1及び第2の実施例においては能力制御
運転時の冷却負荷を検出する手段としてホツトガ
ス制御弁5の開度及び吹出空気温度の両方を予め
設定された条件と比較しているが、いずれか一方
だけを比較することも可能である。更に、能力制
御運転中の電動膨張弁30の制御はフル能力運転
中の最適過熱度一定値制御から、冷却負荷に応じ
て目標SH或いは電動膨張弁30の開度を徐々に
変更しているが、簡単な方法として従来のシステ
ムのキヤピラリに相当する開度としうるように目
標SHを最適過熱度より相当大きくセツトした値
に切換えるか、或いは、電動膨張弁30の開度を
その過熱度に相当する開度に固定しても良い。こ
れにより能力制御範囲は最適過熱度一定値制御の
みの時よりも拡大することができる。
In the first and second embodiments described above, both the opening degree of the hot gas control valve 5 and the blowing air temperature are compared with preset conditions as a means of detecting the cooling load during capacity control operation. It is also possible to compare only one of them. Furthermore, the control of the electric expansion valve 30 during the capacity control operation gradually changes the target SH or the opening degree of the electric expansion valve 30 according to the cooling load, from the optimum superheat degree constant value control during the full capacity operation. As a simple method, the target SH can be set to a value considerably larger than the optimum degree of superheating so that the opening degree corresponds to the capillary of the conventional system, or the opening degree of the electric expansion valve 30 can be set to a value corresponding to the degree of superheating. It may be fixed at the opening degree. As a result, the capacity control range can be expanded compared to when only optimum superheat degree constant value control is performed.

本考案の第3の実施例が第8図及び第9図に示
されている。
A third embodiment of the invention is shown in FIGS. 8 and 9.

この第3の実施例においては、能力制御運転時
の冷却負荷を検出するため温度偏差ΔT′(外気温
度−設定温度)を予め設定した条件と比較してい
る。第8図に示すように冷却負荷判定手段29に
は外気温度センサー26で検出された外気温度と
温度設定器10で設定された設定温度が入力さ
れ、両者の温度偏差ΔT′が所定値より小さけれ
ば、冷却負荷が小さいとして、冷却能力を小さく
するため高過熱度制御への切換え信号を出す。過
熱度比較手段27は目標SH(通常はフル能力運転
時と同じ最適過熱度値、冷却負荷判定手段29か
ら高過熱度制御指令があれば高過熱度値)と過熱
度検出手段11により検出された検知SHとを比
較し、目標SHとの偏差を検出し、電動膨張弁開
度決定手段28に出力する。その他の機能につい
ては第2図に示すものと同様である。このように
すれば外気温度センサー26を設ける必要がある
が、外気温度と冷却負荷及び冷凍装置の冷却能力
制御範囲を予め知ることができるで、通常の能力
制御運転時には吹出空気温度を設定温度に早く収
束させることができる。また、この第3の実施例
においては、冷却負荷が小さいときに目標SHを
高過熱度に切換えているが、その過熱度に相当す
る導電膨張弁30の開度に切り換えても良い。更
に、外気温度条件にかかわらず高過熱度制御時の
冷却能力制御範囲内に冷却負荷のバランス点がな
く、吹出空気温度が上昇してしまう不具合に備え
て温度偏差ΔT(吹出空気温度−設定温度)が所
定値より大きくなるとフル能力運転時と同じ過熱
度(最適過熱度)に目標SHを戻すようにする機
能を追加しても良い。
In this third embodiment, in order to detect the cooling load during capacity control operation, the temperature deviation ΔT' (outside air temperature - set temperature) is compared with a preset condition. As shown in FIG. 8, the outside air temperature detected by the outside air temperature sensor 26 and the set temperature set by the temperature setting device 10 are input to the cooling load determination means 29, and if the temperature deviation ΔT' between the two is smaller than a predetermined value, For example, assuming that the cooling load is small, a switching signal to high superheat degree control is issued to reduce the cooling capacity. The superheat degree comparison means 27 detects the target SH (usually the same optimal superheat value as during full capacity operation, or a high superheat value if there is a high superheat degree control command from the cooling load determination means 29) and the superheat degree detection means 11. The deviation from the target SH is detected and outputted to the electric expansion valve opening determining means 28. Other functions are similar to those shown in FIG. 2. In this way, although it is necessary to provide the outside air temperature sensor 26, the outside air temperature, the cooling load, and the cooling capacity control range of the refrigeration system can be known in advance, and the blowing air temperature can be adjusted to the set temperature during normal capacity control operation. It can be converged quickly. Further, in this third embodiment, the target SH is switched to a high degree of superheat when the cooling load is small, but the opening degree of the conductive expansion valve 30 may be changed to correspond to the degree of superheat. Furthermore, in preparation for the problem that there is no cooling load balance point within the cooling capacity control range during high superheat control regardless of outside temperature conditions, and the outlet air temperature rises, the temperature deviation ΔT (outlet air temperature - set temperature) is calculated. ) becomes larger than a predetermined value, a function may be added that returns the target SH to the same degree of superheating (optimum degree of superheating) as during full capacity operation.

以上全ての説明において制御対象の空気温度と
して蒸発器4の出口側の吹出空気温度を検出して
いるが、これを蒸発器4の入口側の吸入空気温度
を検出してもよいことはいうまでもない。
In all of the above explanations, the temperature of the outlet air of the evaporator 4 is detected as the air temperature to be controlled, but it goes without saying that the intake air temperature of the inlet of the evaporator 4 may also be detected. Nor.

(考案の効果) 本考案の制御装置は、制御対象温度と設定温度
との温度偏差が所定値以上のとき前記ホツトガス
制御弁を全閉とするとともに前記電動膨張弁を前
記蒸発器の出口における冷媒過熱度が一定値とな
るよう開度調節する第1の制御系と、前記温度偏
差が所定値以内のとき同温度偏差に応じて前記ホ
ツトガス制御弁の開度調節を行う第2の制御系
と、同第2の制御系により開度調節された前記ホ
ツトガス制御弁の開度が所定範囲を越えたとき前
記冷媒過熱度の制御目標値を変更し、冷却能力を
増減するよう前記電動膨張弁の開度調節を行う第
3の制御系を具えているため、制御対象温度と設
定温度との温度偏差が所定値以上のときはホツト
ガス制御弁を全閉とした状態で電磁開閉弁の開度
を蒸発器の出口における冷媒過熱度が一定値にな
るように調節することによつて冷凍装置をフル能
力運転させる。前記温度偏差が所定値以内のとき
は、この温度偏差に応じてホツトガス制御弁の開
度を調節することによつて冷凍装置の能力を制御
する。そして、この能力制御運転時ホツトガス制
御弁の開度が所定範囲を越えたときは冷媒過熱度
の制御目標を変更し、かつ、電磁開閉弁の開度を
調節することによつて冷凍装置の能力を制御す
る。
(Effect of the invention) The control device of the invention fully closes the hot gas control valve when the temperature deviation between the temperature to be controlled and the set temperature is equal to or higher than a predetermined value, and also controls the electric expansion valve to control the refrigerant at the outlet of the evaporator. a first control system that adjusts the opening of the hot gas control valve so that the degree of superheating becomes a constant value; and a second control system that adjusts the opening of the hot gas control valve according to the temperature deviation when the temperature deviation is within a predetermined value. , when the opening degree of the hot gas control valve whose opening degree is adjusted by the second control system exceeds a predetermined range, the control target value of the refrigerant superheat degree is changed, and the electric expansion valve is controlled to increase or decrease the cooling capacity. Since it is equipped with a third control system that adjusts the opening, when the temperature deviation between the temperature to be controlled and the set temperature is greater than a predetermined value, the opening of the electromagnetic on-off valve is adjusted with the hot gas control valve fully closed. The refrigeration system is operated at full capacity by adjusting the degree of superheat of the refrigerant at the outlet of the evaporator to a constant value. When the temperature deviation is within a predetermined value, the capacity of the refrigeration system is controlled by adjusting the opening degree of the hot gas control valve according to the temperature deviation. When the opening degree of the hot gas control valve exceeds a predetermined range during this capacity control operation, the control target for the refrigerant superheat degree is changed and the opening degree of the electromagnetic on-off valve is adjusted to increase the capacity of the refrigeration system. control.

この結果、能力制御範囲が拡大し、特に、負荷
が小さい場合でも連続して能力を制御することが
でき、緻密な温度制御が可能となる。そして、能
力制御時に液冷媒の流量を必要最小限に抑えるこ
とができるので、圧縮機の入力を節減できる。ま
た、従来のもののように絞りを切り換える必要が
ないので冷媒回路が簡素化され、そのコストを低
減することができる。
As a result, the capacity control range is expanded, and in particular, the capacity can be continuously controlled even when the load is small, and precise temperature control becomes possible. In addition, since the flow rate of liquid refrigerant can be suppressed to the necessary minimum during capacity control, input to the compressor can be reduced. Furthermore, since there is no need to switch the aperture as in the conventional case, the refrigerant circuit can be simplified and its cost can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は本考案の1実施例を示
し、第1図は冷凍装置の系統図、第2図は制御ブ
ロツク図、第3図は制御フローチヤート、第4図
は過熱度と冷却能力との関係を示す線図、第5図
は能力制御運転時の目標過熱度、ホツトガス制御
弁開度、吹出空気温度の時間的変化を示す線図で
ある。第6図及び第7図は本考案の第2の実施例
を示し、第6図は制御ブロツク図、第7図は制御
フローチヤートである。第8図及び第9図は本考
案の第3の実施例を示し、第8図は制御ブロツク
図、第9図は制御フローチヤートである。第10
図ないし第12図は従来の冷凍装置の1例を示
し、第10図は系統図、第11図は吹出空気温度
の時間的変化を示す線図、第12図は外気温度に
対する冷却負荷と冷却能力の変化を示す線図であ
る。 圧縮機……1、凝縮器……2、電動膨張弁……
30、蒸発器……4、ホツトガスバイパス回路…
…3、ホツトガス制御弁……5、温度偏差検出手
段……14、過熱度比較手段……11、電動膨張
弁開度決定手段13,24,28。
Figures 1 to 5 show one embodiment of the present invention; Figure 1 is a system diagram of the refrigeration system, Figure 2 is a control block diagram, Figure 3 is a control flowchart, and Figure 4 is a diagram of the degree of superheating. FIG. 5 is a diagram showing the relationship with cooling capacity, and FIG. 5 is a diagram showing temporal changes in target superheat degree, hot gas control valve opening degree, and blowing air temperature during capacity control operation. 6 and 7 show a second embodiment of the present invention, with FIG. 6 being a control block diagram and FIG. 7 being a control flowchart. 8 and 9 show a third embodiment of the present invention, with FIG. 8 being a control block diagram and FIG. 9 being a control flowchart. 10th
Figures 1 to 12 show an example of a conventional refrigeration system, Figure 10 is a system diagram, Figure 11 is a diagram showing temporal changes in outlet air temperature, and Figure 12 is a diagram showing cooling load and cooling with respect to outside air temperature. It is a line diagram showing changes in ability. Compressor...1, Condenser...2, Electric expansion valve...
30. Evaporator...4. Hot gas bypass circuit...
...3. Hot gas control valve...5. Temperature deviation detection means...14. Superheat degree comparison means...11. Electric expansion valve opening degree determination means 13, 24, 28.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機、凝縮器、電動膨張弁及び蒸発器により
冷凍サイクルを構成するとともに圧縮機からの吐
出ガスを蒸発器に導くホツトガス制御弁を有する
ホツトガスバイパス回路を備えてなる冷凍装置に
おいて、制御対象温度と設定温度との温度偏差が
所定値以上のとき前記ホツトガス制御弁を全閉と
するとともに前記電動膨張弁を前記蒸発器の出口
における冷媒過熱度が一定値となるよう開度調節
する第1の制御系と、前記温度偏差が所定値以内
のとき同温度偏差に応じて前記ホツトガス制御弁
の開度調節を行う第2の制御系と、同第2の制御
系により開度調節された前記ホツトガス制御弁の
開度が所定範囲を越えたとき、前記冷媒過熱度の
制御目標値を変更し、冷却能力を増減するよう前
記電動膨張弁の開度調節を行う第3の制御系から
なることを特徴とする冷凍装置の制御装置。
In a refrigeration system comprising a refrigeration cycle including a compressor, a condenser, an electric expansion valve, and an evaporator, and a hot gas bypass circuit having a hot gas control valve that guides discharged gas from the compressor to the evaporator, the temperature to be controlled is and a set temperature, the hot gas control valve is fully closed, and the opening of the electric expansion valve is adjusted so that the degree of superheating of the refrigerant at the outlet of the evaporator becomes a constant value. a control system; a second control system that adjusts the opening of the hot gas control valve according to the temperature deviation when the temperature deviation is within a predetermined value; and the hot gas whose opening is adjusted by the second control system. A third control system that changes the control target value of the refrigerant superheat degree and adjusts the opening degree of the electric expansion valve to increase or decrease the cooling capacity when the opening degree of the control valve exceeds a predetermined range. Characteristic control device for refrigeration equipment.
JP16309587U 1987-10-27 1987-10-27 Expired - Lifetime JPH0510183Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16309587U JPH0510183Y2 (en) 1987-10-27 1987-10-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16309587U JPH0510183Y2 (en) 1987-10-27 1987-10-27

Publications (2)

Publication Number Publication Date
JPH0170061U JPH0170061U (en) 1989-05-10
JPH0510183Y2 true JPH0510183Y2 (en) 1993-03-12

Family

ID=31447511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16309587U Expired - Lifetime JPH0510183Y2 (en) 1987-10-27 1987-10-27

Country Status (1)

Country Link
JP (1) JPH0510183Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10900695B2 (en) 2015-11-20 2021-01-26 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10900695B2 (en) 2015-11-20 2021-01-26 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Also Published As

Publication number Publication date
JPH0170061U (en) 1989-05-10

Similar Documents

Publication Publication Date Title
KR900008514B1 (en) Air conditioner
CA1331700C (en) Refrigeration plant and a method of controlling a refrigeration plant
JP2634139B2 (en) Refrigeration apparatus and control method thereof
GB2143628A (en) Air conditioner
US5247989A (en) Modulated temperature control for environmental chamber
JPH0510183Y2 (en)
JP2504997Y2 (en) Air conditioner
JPH0239179Y2 (en)
JPH0534578B2 (en)
JPS58205057A (en) Air conditioner
JPH07332807A (en) Suprecooling control valve and refrigeration cycle
JPH0799287B2 (en) Air conditioner
JPS6212218Y2 (en)
KR19980083062A (en) Integrated refrigeration unit of air conditioner and refrigerator
JPH0243011Y2 (en)
JP4273547B2 (en) Operation control device for refrigerator
JPH0587742B2 (en)
JPS6256425B2 (en)
JP2679448B2 (en) Operation control device for air conditioner
JPS5823544B2 (en) Refrigerant control device
JPH08271016A (en) Air conditioner of multi-room type
JPS63259353A (en) Refrigerator
JPH06159822A (en) Device for controlling motor-operated expansion valve for air conditioner
JPH0665940B2 (en) Refrigerant control method for heat pump type air conditioner
JPS62158952A (en) Controller for refrigeration cycle