JP2504424B2 - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JP2504424B2
JP2504424B2 JP61228106A JP22810686A JP2504424B2 JP 2504424 B2 JP2504424 B2 JP 2504424B2 JP 61228106 A JP61228106 A JP 61228106A JP 22810686 A JP22810686 A JP 22810686A JP 2504424 B2 JP2504424 B2 JP 2504424B2
Authority
JP
Japan
Prior art keywords
refrigerant
outlet temperature
temperature sensor
outlet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61228106A
Other languages
Japanese (ja)
Other versions
JPS6383556A (en
Inventor
茂人 隅谷
敏隆 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP61228106A priority Critical patent/JP2504424B2/en
Publication of JPS6383556A publication Critical patent/JPS6383556A/en
Application granted granted Critical
Publication of JP2504424B2 publication Critical patent/JP2504424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は冷凍サイクルに係り、特に冷媒加熱器を用い
た冷凍サイクルに関する。
The present invention relates to a refrigeration cycle, and more particularly to a refrigeration cycle using a refrigerant heater.

(従来の技術) 従来、冷媒加熱方式の冷凍サイクルは第4図に示す如
く構成されていた。
(Prior Art) Conventionally, a refrigerant heating type refrigeration cycle has been configured as shown in FIG.

冷凍サイクル中の冷媒は熱の授受によって相変化しな
がらも圧縮機1の吐出側2と吸入側3との圧力差により
回路4内を循環する。
The refrigerant in the refrigeration cycle circulates in the circuit 4 due to the pressure difference between the discharge side 2 and the suction side 3 of the compressor 1 while changing the phase due to heat exchange.

暖房運転時にあっては、圧縮機1で圧縮された冷媒ガ
スは四方弁5(図中、実線で示した流通路を形成してい
る)を通過して室内熱交換器6へ導かれ、ここで凝縮す
ることによって潜熱を放出し、暖房が行なわれることに
なる。
During the heating operation, the refrigerant gas compressed by the compressor 1 passes through the four-way valve 5 (which forms the flow passage shown by the solid line in the figure) and is guided to the indoor heat exchanger 6, where By condensing at, latent heat is released and heating is performed.

室内熱交換器6で凝縮した冷媒は更に吸入側3へと回
路4内を流れ、膨張弁7を介して第1の分岐点8に達す
るが、一方の流路には第1の逆止弁9が設けられている
ためにそれ以上先へ流れることができず、従って他方の
流路へ流れて冷媒加熱用熱交換器10へ導かれる。ここで
冷媒はバーナ11により加熱され、蒸発してガス状に相変
化することによってその熱を潜熱として蓄熱することに
なる。
The refrigerant condensed in the indoor heat exchanger 6 further flows through the circuit 4 to the suction side 3 and reaches the first branch point 8 via the expansion valve 7, but the first check valve is provided in one of the flow paths. Since 9 is provided, it cannot flow any further, and therefore flows to the other flow path and is guided to the heat exchanger 10 for heating the refrigerant. Here, the refrigerant is heated by the burner 11 and evaporates and changes its phase into a gaseous state, thereby storing the heat as latent heat.

ガス状の冷媒は更に吸入側3へと回路4内を流れて第
2の分岐点12に達するが、これより四方弁5方向への流
路には第2の逆止弁13が設けられているためにそれ以上
先へ流れることができず、更に吸入側3へと流れアキュ
ームレータ14を介して圧縮機1に戻ることになる。
The gaseous refrigerant further flows through the circuit 4 to the suction side 3 and reaches the second branch point 12, from which a second check valve 13 is provided in the flow path toward the four-way valve 5. Therefore, it cannot flow any further, and further flows to the suction side 3 and returns to the compressor 1 via the accumulator 14.

尚、冷房運転については四方弁5を切換え、図中破線
で示す如く流路を形成すれば冷凍サイクルによる通常の
冷房運転がなされるようになる。図中、15は冷房回路の
凝縮器を形成する室外熱交換器である。
Regarding the cooling operation, if the four-way valve 5 is switched and the flow path is formed as shown by the broken line in the figure, the normal cooling operation by the refrigeration cycle will be performed. In the figure, 15 is an outdoor heat exchanger forming a condenser of the cooling circuit.

(発明が解決しようとする課題) ところで、暖房運転の立上り時即ち、暖房運転の起動
開始から安定運転に至るまでの過度時は、冷媒の温度
(又は圧力)が低く且つ回路を流れる冷媒循環量が極端
に少ない。その結果、冷媒加熱用熱交換器10内の冷媒が
過度に加熱されてしまう。特に、外気温が低い場合に
は、圧縮機1内の冷凍機油へ冷媒が多量に溶け込んでし
まうため、上述した冷媒過熱が顕著になる故、暖房の立
上り時等にはバーナ11の加熱を抑制する必要が生ずる。
(Problems to be Solved by the Invention) By the way, at the time of rising of heating operation, that is, during transient from start of heating operation to stable operation, the temperature (or pressure) of the refrigerant is low and the refrigerant circulation amount flowing through the circuit. Is extremely small. As a result, the refrigerant in the refrigerant heating heat exchanger 10 is excessively heated. In particular, when the outside air temperature is low, a large amount of the refrigerant melts into the refrigerating machine oil in the compressor 1, so that the above-mentioned refrigerant overheating becomes remarkable. Therefore, the heating of the burner 11 is suppressed when the heating is started. Need to do so.

そこで、従来は第4図に示す如く、バーナ11の燃料供
給系の途中に燃料の供給量を制御するための燃料供給制
御手段16を介設し、この燃料供給制御手段16を冷媒加熱
用熱交換器10の出口に設けた温度センサ17で検知した冷
媒温度に基づき制御装置18にて制御していた。
Therefore, conventionally, as shown in FIG. 4, a fuel supply control means 16 for controlling the fuel supply amount is provided in the middle of the fuel supply system of the burner 11, and this fuel supply control means 16 is used to heat the refrigerant heating heat. The control device 18 was controlled based on the refrigerant temperature detected by the temperature sensor 17 provided at the outlet of the exchanger 10.

ところが、冷媒加熱用熱交換器10の出口における冷媒
温度で、バーナ11の燃焼量を調整したのでは、室内側の
空調負荷に対応して過熱度が変化してしまう。例えば、
周囲温度の変化、圧縮機の吐出圧や室内熱交換器の凝縮
温度が変化した場合、冷凍サイクルの負荷に追従させて
適切な過熱度に制御することが困難であり、空調負荷に
見合った適切な過熱度に設定することができない問題が
ある。
However, if the combustion amount of the burner 11 is adjusted by the temperature of the refrigerant at the outlet of the heat exchanger 10 for heating the refrigerant, the degree of superheat changes corresponding to the air conditioning load on the indoor side. For example,
When the ambient temperature changes, the discharge pressure of the compressor or the condensing temperature of the indoor heat exchanger changes, it is difficult to control the superheat degree by following the load of the refrigeration cycle, and it is appropriate to match the air conditioning load. There is a problem that it cannot be set to a high degree of superheat.

また、暖房開始運転直後には冷媒循環量が少なく、こ
のためバーナの燃焼量も少なくなり、冷媒加熱用熱交換
器内に結露を生じてしまう問題がある。すなわち、燃焼
量が少なくなるとその燃焼ガスは、冷媒加熱用熱交換器
で、露点温度以下まで下がって冷媒加熱用熱交換器内に
結露を生じ、冷媒加熱用熱交換器を腐食させる問題が生
じる。
Further, there is a problem that the refrigerant circulation amount is small immediately after the heating start operation, so that the burner combustion amount is also small, and dew condensation occurs in the refrigerant heating heat exchanger. That is, when the amount of combustion decreases, the combustion gas is a heat exchanger for heating the refrigerant, and the temperature drops below the dew point temperature to cause dew condensation in the heat exchanger for heating the refrigerant, causing a problem of corroding the heat exchanger for heating the refrigerant. .

かくして、本発明の目的は従来技術の問題点を解消
し、冷媒加熱器出口における冷媒の過熱度を適正に制御
して安定した運転を行なうことができる冷凍サイクルを
提供することにある。
Thus, an object of the present invention is to solve the problems of the prior art, and to provide a refrigeration cycle capable of performing stable operation by appropriately controlling the degree of superheat of the refrigerant at the refrigerant heater outlet.

[発明の構成] (問題点を解決するための手段) 本発明の冷凍サイクルは上記目的を達成するために、
暖房運転時に循環冷媒を冷媒加熱器で加熱する冷凍サイ
クルにおいて、上記冷媒加熱器の入口側及び出口側にそ
れぞれ設けられると共に循環冷媒の温度を検出する入口
温度センサ及び出口温度センサと、該入口温度センサ及
び出口温度センサでそれぞれ検出された循環冷媒の入口
温度と出口温度との差分をとり、この差分が所定の範囲
内となるように冷媒循環量調整装置を変化させる制御部
とを備えたものである。
[Structure of the Invention] (Means for Solving Problems) In order to achieve the above object, the refrigerating cycle of the present invention comprises:
In a refrigerating cycle in which a circulating refrigerant is heated by a refrigerant heater during heating operation, an inlet temperature sensor and an outlet temperature sensor which are provided on the inlet side and the outlet side of the refrigerant heater and detect the temperature of the circulating refrigerant, and the inlet temperature A control unit that takes the difference between the inlet temperature and the outlet temperature of the circulating refrigerant detected by the sensor and the outlet temperature sensor, and changes the refrigerant circulation amount adjusting device so that this difference falls within a predetermined range. Is.

(作用) 冷媒の過熱度は冷媒加熱器の入口側と出口側とにおけ
る冷媒の温度差から求められる。従って、冷媒加熱器の
入口側及び出口側においてそれぞれ入口温度センサ及び
出口温度センサにより冷媒の入口温度及び出口温度を検
出し、これら両者の差分をとってこの差分が所定の範囲
内となるように膨張弁である冷媒循環量調整装置で循環
量を制御すれば、冷媒加熱器出口における過熱度を安定
化することができる。
(Operation) The degree of superheat of the refrigerant is obtained from the temperature difference of the refrigerant between the inlet side and the outlet side of the refrigerant heater. Therefore, the inlet temperature and the outlet temperature of the refrigerant heater are respectively detected by the inlet temperature sensor and the outlet temperature sensor to detect the refrigerant inlet temperature and the outlet temperature, and the difference between them is calculated so that the difference is within a predetermined range. If the circulation amount is controlled by the refrigerant circulation amount adjusting device, which is an expansion valve, the degree of superheat at the refrigerant heater outlet can be stabilized.

すなわち、この差分を検出することで、空調負荷に応
じた冷凍サイクルの冷媒循環量が適正どうかが判別で
き、この差分が所定の範囲内となるように冷媒循環量を
制御することで、冷媒の過熱度を安定化させることがで
きると共に、空調負荷に見合った冷媒循環量で運転が行
える。
That is, by detecting this difference, it is possible to determine whether the refrigerant circulation amount of the refrigeration cycle according to the air conditioning load is appropriate, and by controlling the refrigerant circulation amount so that this difference falls within a predetermined range, The superheat degree can be stabilized, and the operation can be performed with the refrigerant circulation amount commensurate with the air conditioning load.

しかも、この差分が常に所定の範囲内にあることで、
冷媒と熱交換されて温度が低下する燃焼ガスの温度を露
点以下に下がることを未然に防止し、燃焼ガス中の水蒸
気分が冷媒加熱用熱交換器内に結露して起こる腐食を防
止できる。
Moreover, since this difference is always within the predetermined range,
It is possible to prevent the temperature of the combustion gas, which is heat-exchanged with the refrigerant and decreases in temperature, from dropping below the dew point, and to prevent corrosion caused by condensation of water vapor in the combustion gas in the refrigerant heating heat exchanger.

さらに、出口温度センサで検出された出口温度が所定
値を越えた場合に、制御部が冷媒加熱器への燃料供給量
を低減させるかあるいは圧縮機の回転数を増加させるか
あるいはこれらを同時に行なうように構成すれば、冷媒
加熱器出口において冷媒が異常な温度となることを防止
することができる。
Further, when the outlet temperature detected by the outlet temperature sensor exceeds a predetermined value, the control unit reduces the fuel supply amount to the refrigerant heater, increases the rotation speed of the compressor, or simultaneously performs these operations. According to this structure, it is possible to prevent the refrigerant from reaching an abnormal temperature at the refrigerant heater outlet.

(実施例) 以下、本発明の実施例を添付図面に従って説明する。(Examples) Examples of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の第1の実施例に係る冷凍サイクルの
構成図である。圧縮機1,四方弁5,室内熱交換器6,冷媒循
環量調整装置としての膨張弁7,第1の分岐点8,冷媒加熱
用熱交換器10,第2の分岐点12及びアキュームレータ14
が順次環状に接続されて暖房回路が形成されている。ま
た、冷媒回路用として四方弁5と第1の分岐点8との間
に室外熱交換器15と逆止弁9とが直列に設けられると共
に四方弁5と第2の分岐点12との間に逆止弁13が設けら
れている。さらに、冷媒加熱用熱交換器10にはバーナ11
が設けられている。
FIG. 1 is a configuration diagram of a refrigeration cycle according to a first embodiment of the present invention. Compressor 1, four-way valve 5, indoor heat exchanger 6, expansion valve 7 as a refrigerant circulation amount adjusting device, first branch point 8, refrigerant heating heat exchanger 10, second branch point 12 and accumulator 14
Are sequentially connected in a loop to form a heating circuit. In addition, an outdoor heat exchanger 15 and a check valve 9 are provided in series between the four-way valve 5 and the first branch point 8 for the refrigerant circuit, and between the four-way valve 5 and the second branch point 12. Is provided with a check valve 13. Further, the heat exchanger 10 for heating the refrigerant has a burner 11
Is provided.

また、冷媒加熱用熱交換器10の入口側及び出口側には
それぞれ冷媒の入口温度及び出口温度を検出する入口温
度センサ19及び出口温度センサ17が設けられており、こ
れらのセンサ19及び17からの検出信号を入力する制御部
20が膨張弁7に接続されている。
Further, an inlet temperature sensor 19 and an outlet temperature sensor 17 for detecting the inlet temperature and the outlet temperature of the refrigerant are provided on the inlet side and the outlet side of the refrigerant heating heat exchanger 10, respectively, and these sensors 19 and 17 are provided. Control unit that inputs the detection signal of
20 is connected to the expansion valve 7.

すなわち、本実施例は第4図に示した従来例において
冷媒加熱用熱交換器10の入口側に入口温度センサ19を設
けると共に制御装置18の代わりに制御部20を設けたもの
である。
That is, in the present embodiment, the inlet temperature sensor 19 is provided on the inlet side of the heat exchanger 10 for heating the refrigerant in the conventional example shown in FIG. 4, and the control unit 20 is provided instead of the control device 18.

次に、本実施例の作用を述べる。 Next, the operation of this embodiment will be described.

まず、暖房運転時にあっては、圧縮機1で圧縮された
冷媒ガスは吐出側2から四方弁5を通過して被空調室
(図示せず)内側に設けられた室内熱交換器6へ導か
れ、ここで凝縮することによって潜熱を放出し、被空調
室が暖房されることになる。
First, during the heating operation, the refrigerant gas compressed by the compressor 1 passes from the discharge side 2 through the four-way valve 5 to the indoor heat exchanger 6 provided inside the air-conditioned room (not shown). Then, by condensing here, latent heat is released and the air-conditioned room is heated.

室内熱交換器6で凝縮した冷媒は更に冷媒循環量調整
装置である膨張弁7を介して吸入側3へと回路4内を流
れ、冷媒加熱用熱交換器10へ導かれる。ここで冷媒はバ
ーナ11により加熱され、蒸発してガス状に相変化するこ
とによってその熱を潜熱として蓄熱することになる。
The refrigerant condensed in the indoor heat exchanger 6 further flows in the circuit 4 to the suction side 3 through the expansion valve 7 which is a refrigerant circulation amount adjusting device, and is guided to the refrigerant heating heat exchanger 10. Here, the refrigerant is heated by the burner 11 and evaporates and changes its phase into a gaseous state, thereby storing the heat as latent heat.

またこのとき、冷媒加熱用熱交換器10の入口側と出口
側とにおいてそれぞれ入口温度センサ19及び出口温度セ
ンサ17により冷媒の入口温度T1及び出口温度T2が検出
され、これらの検出値が制御部20に入力される。入口温
度T1及び出口温度T2を入力した制御部20ではこれら温
度の差分ΔT=T2−T1を算出すると共にこの差分ΔT
と予め設定されている基準値ΔTsとを比較し、ΔT=Δ
Tsの場合にはそのまま待機するが、ΔT>ΔTsの場合に
は弁開度を開く旨の制御信号S1を、ΔT<ΔTsの場合
には弁開度を閉じる旨の制御信号S1をそれぞれ膨張弁
7に出力する。制御部20から制御信号S1を入力した膨
張弁7は制御信号Sに基づいてその弁開度を調節する。
このようにして、冷媒加熱用熱交換器10の入口側と出口
側との冷媒温度の差分ΔTが一定に保たれる。
Further, at this time, the inlet temperature sensor 19 and the outlet temperature sensor 17 respectively detect the inlet temperature T 1 and the outlet temperature T 2 of the refrigerant on the inlet side and the outlet side of the refrigerant heating heat exchanger 10, and the detected values are It is input to the control unit 20. The control unit 20 which has input the inlet temperature T 1 and the outlet temperature T 2 calculates a difference ΔT = T 2 −T 1 between these temperatures and the difference ΔT.
Is compared with a preset reference value ΔTs, and ΔT = Δ
In the case of Ts, it stands by as it is, but in the case of ΔT> ΔTs, the control signal S 1 for opening the valve opening, and in the case of ΔT <ΔTs, the control signal S 1 for closing the valve opening, respectively. Output to the expansion valve 7. The expansion valve 7, which receives the control signal S 1 from the control unit 20, adjusts the valve opening thereof based on the control signal S.
In this way, the difference ΔT in the refrigerant temperature between the inlet side and the outlet side of the heat exchanger 10 for heating the refrigerant is kept constant.

その後、ガス状となった冷媒はさらに吸入側3へと回
路4内を流れ、アキュームレータ14を経て圧縮機1に戻
る。
After that, the gaseous refrigerant further flows into the suction side 3 in the circuit 4, and returns to the compressor 1 via the accumulator 14.

なお、バーナ11の燃焼量は室温センサ(図示せず)及
び室内設定温度によって決定され、室内温度が低く十分
な暖房能力を必要とする場合には燃焼量が増加される。
この場合、冷媒温度の差分ΔTは大きくなるので制御部
20によって膨張弁7の開度が大きくされ、これにより冷
媒循環量が増加する。また、室内温度が十分に上昇して
バーナ11の燃焼量が減少されると、冷媒温度の差分ΔT
は小さくなる。この場合、制御部20によって膨張弁7の
開度が小さくされ、これにより冷媒循環量が低下する。
このようにして、冷媒加熱用熱交換器10の出口の過熱度
は、空調負荷の変化に係わらず一定に保持される。
It should be noted that the combustion amount of the burner 11 is determined by a room temperature sensor (not shown) and the indoor set temperature, and the combustion amount is increased when the indoor temperature is low and sufficient heating capacity is required.
In this case, the difference ΔT in the refrigerant temperature becomes large, so the control unit
The opening degree of the expansion valve 7 is increased by 20 so that the refrigerant circulation amount is increased. Further, when the indoor temperature rises sufficiently and the combustion amount of the burner 11 decreases, the difference ΔT in refrigerant temperature
Becomes smaller. In this case, the control unit 20 reduces the opening degree of the expansion valve 7, which reduces the refrigerant circulation amount.
In this way, the superheat degree at the outlet of the refrigerant heating heat exchanger 10 is kept constant regardless of changes in the air conditioning load.

すなわち、冷媒加熱用熱交換器10の入口側と出口側温
度の差分を求めることで、適正な冷媒循環量が検出で
き、その差分が所定の範囲内となるようにすることで、
空調負荷に応じた過熱度で暖房運転を行うことができ
る。
That is, by obtaining the difference between the inlet side temperature and the outlet side temperature of the heat exchanger 10 for heating the refrigerant, an appropriate refrigerant circulation amount can be detected, and by making the difference within a predetermined range,
The heating operation can be performed at a superheat degree according to the air conditioning load.

また、このように差分が所定の範囲内になるように冷
媒循環量を調整することで、バーナ11の燃焼ガス出口側
温度も熱交換量が最適な範囲に保持されるため、燃焼ガ
スに含まれる水蒸気の露点温度以下に低下することな
く、燃焼室内での結露の発生を抑えることができる。
Further, by adjusting the refrigerant circulation amount so that the difference is within the predetermined range in this way, the combustion gas outlet side temperature of the burner 11 is also included in the combustion gas because the heat exchange amount is maintained in the optimum range. The generation of dew condensation in the combustion chamber can be suppressed without lowering the temperature below the dew point temperature of the generated steam.

さらに、冷房運転については四方弁5を切換え、図中
の破線で示す如く流路を形成すれば冷凍サイクルによる
通常の冷房運転がなされる。
Further, regarding the cooling operation, if the four-way valve 5 is switched and the flow path is formed as shown by the broken line in the figure, the normal cooling operation by the refrigeration cycle is performed.

なお、制御部20が出口温度センサ17からの検出信号の
みを入力して出口温度T2が一定の値を示す如く膨張弁
7の開度を制御するように構成しても効果が得られる。
It is also possible to obtain the effect by controlling the opening of the expansion valve 7 so that the control unit 20 inputs only the detection signal from the outlet temperature sensor 17 and the outlet temperature T 2 shows a constant value.

第2図は第2の実施例を示す構成図である。この実施
例は第1の実施例において、制御部20により圧縮機1の
回転数及びバーナ11への燃料供給量をも制御するように
構成したものである。すなわち、圧縮機1に電力を供給
するインバータ21とバーナ11に燃料を供給する燃料供給
系に設けられた比例制御弁22とが制御部20に接続されて
いる。
FIG. 2 is a block diagram showing the second embodiment. In this embodiment, in the first embodiment, the control unit 20 also controls the rotation speed of the compressor 1 and the fuel supply amount to the burner 11. That is, an inverter 21 that supplies electric power to the compressor 1 and a proportional control valve 22 that is provided in a fuel supply system that supplies fuel to the burner 11 are connected to the control unit 20.

ここで、制御部20の動作を第3図のフローチャートを
参照して説明する。
Here, the operation of the control unit 20 will be described with reference to the flowchart of FIG.

まず、入口温度センサ19及び出口温度センサ17でそれ
ぞれ検出された入口温度T1及び出口温度T2を入力し
(処理31)、出口温度T2と予め設定されている所定値
0との比較を行なう(処理32)。比較の結果、T2>T
0の場合には制御信号S2及びS3をそれぞれインバータ2
1及び比例制御弁22に出力して圧縮機1の回転数を増加
させると共にバーナ11への燃料供給量を低減させた後
(処理33)、再び処理32を繰返す。
First, the inlet temperature T 1 and the outlet temperature T 2 detected by the inlet temperature sensor 19 and the outlet temperature sensor 17 are input (process 31), and the outlet temperature T 2 is compared with a preset predetermined value T 0. Is performed (process 32). As a result of comparison, T 2 > T
In the case of 0, the control signals S 2 and S 3 are sent to the inverter 2 respectively.
1 and the proportional control valve 22 to increase the rotational speed of the compressor 1 and reduce the fuel supply amount to the burner 11 (process 33), and then process 32 is repeated.

このようにしてT2≦T0となると、次に冷媒温度の差
分ΔT=T2−T1を算出し(処理34)、さらにこの差分
ΔTと予め設定されている基準値ΔTsとを比較する(処
理35)。その結果、ΔT>ΔTsの場合には弁開度を開く
旨の制御信号S1を、ΔT<ΔTsの場合には弁開度を閉
じる旨の制御信号S1をそれぞれ膨張弁7に出力し(処
理36)、再び処理32に戻る。
When T 2 ≦ T 0 in this way, the difference ΔT = T 2 −T 1 of the refrigerant temperature is then calculated (process 34), and this difference ΔT is compared with the preset reference value ΔTs. (Process 35). As a result, [Delta] T> in the case of .DELTA.Ts control signals S 1 to the effect that opening the valve opening degree in the case of [Delta] T <.DELTA.Ts outputs control signals S 1 to the effect that closing the valve opening to the expansion valve 7, respectively ( The process 36) returns to the process 32 again.

以上の処理を繰返すことにより、差分ΔTが一定に保
持されると共に出口温度T2が所定値を越えることが防
止される。
By repeating the above process, the difference ΔT is kept constant and the outlet temperature T 2 is prevented from exceeding the predetermined value.

このような構成とすれば、冷媒循環量の不足やバーナ
への燃料供給量過大等による冷媒の異常な温度上昇が防
止され、快適度が向上する。
With such a configuration, an abnormal temperature rise of the refrigerant due to a shortage of the refrigerant circulation amount, an excessive fuel supply amount to the burner, or the like is prevented, and comfort is improved.

なお、上記した第2の実施例では出口温度T2が所定
値T0を越えた場合に制御部20から制御信号S2及びS3
を出力して圧縮機1の回転数の増加とバーナ11への燃料
供給量の低減とを同時に行なったが、いずれか一方のみ
を行なうように構成することも可能である。
In the second embodiment described above, when the outlet temperature T 2 exceeds the predetermined value T 0 , the control signals S 2 and S 3 are output from the control unit 20.
Is output to simultaneously increase the number of revolutions of the compressor 1 and decrease the amount of fuel supplied to the burner 11, but it is also possible to configure to perform only one of them.

[発明の効果] 以上説明したように本発明によれば、次の如き優れた
効果が発揮される。
[Effects of the Invention] As described above, according to the present invention, the following excellent effects are exhibited.

(1) 冷媒循環量を調節して冷媒加熱器出口の冷媒の
過熱度を室内側の負荷に拘らず一定に制御することがで
きる。従って、暖房能力が大きいときには冷媒循環量を
増加させて過熱度の上昇を抑え、これにより冷媒の熱分
解が防止されるのでシステムの信頼性が向上する。一
方、暖房能力が小さいときには冷媒循環量を減少させて
液バック等による圧縮機の損傷を防止することができ
る。
(1) The superheat degree of the refrigerant at the refrigerant heater outlet can be controlled to be constant regardless of the load on the indoor side by adjusting the refrigerant circulation amount. Therefore, when the heating capacity is large, the refrigerant circulation amount is increased to suppress the increase in the degree of superheat, which prevents the thermal decomposition of the refrigerant, thereby improving the reliability of the system. On the other hand, when the heating capacity is small, the circulation amount of the refrigerant can be reduced to prevent the compressor from being damaged by the liquid bag or the like.

(2) 冷媒の過熱度が常に適正に制御されるので効率
の優れた運転が行なわれる。
(2) Since the degree of superheat of the refrigerant is always properly controlled, highly efficient operation is performed.

(3) 冷媒加熱器出口の冷媒温度が異常に上昇するこ
とが防止され、快適度が向上する。
(3) The refrigerant temperature at the outlet of the refrigerant heater is prevented from rising abnormally, and comfort is improved.

(4) 燃焼ガスとの熱交換量も燃焼量に応じた適正量
を維持できるため、燃焼ガスの出口温度が、ガスに含ま
れる水蒸気の露点温度以下に下がることを防止でき、冷
媒加熱器の燃焼室への結露発生を抑えることができる。
(4) Since the amount of heat exchange with the combustion gas can be maintained at an appropriate amount according to the amount of combustion, the outlet temperature of the combustion gas can be prevented from falling below the dew point temperature of the water vapor contained in the gas, and the refrigerant heater It is possible to suppress dew condensation on the combustion chamber.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例に係る冷凍サイクルの構
成図、第2図は第2の実施例の構成図、第3図は第2の
実施例の動作を示すフローチャート、第4図は従来例の
構成図である。 図中、1は圧縮機、7は冷媒循環量調整装置としての膨
張弁、10は冷媒加熱用熱交換器、17は出口温度センサ、
19は入口温度センサ、20は制御部である。
FIG. 1 is a block diagram of a refrigeration cycle according to the first embodiment of the present invention, FIG. 2 is a block diagram of the second embodiment, FIG. 3 is a flow chart showing the operation of the second embodiment, and a fourth embodiment. The figure is a block diagram of a conventional example. In the figure, 1 is a compressor, 7 is an expansion valve as a refrigerant circulation amount adjusting device, 10 is a heat exchanger for heating the refrigerant, 17 is an outlet temperature sensor,
Reference numeral 19 is an inlet temperature sensor, and 20 is a control unit.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】暖房運転時に循環冷媒を冷媒加熱器で加熱
する冷凍サイクルにおいて、上記冷媒加熱器の入口側及
び出口側にそれぞれ設けられると共に循環冷媒の温度を
検出する入口温度センサ及び出口温度センサと、該入口
温度センサ及び出口温度センサでそれぞれ検出された循
環冷媒の入口温度と出口温度との差分をとり、この差分
が所定の範囲内になるように冷媒循環量調整装置を変化
させる制御部とを備えたことを特徴とする冷凍サイク
ル。
1. A refrigerating cycle in which a circulating refrigerant is heated by a refrigerant heater during a heating operation, an inlet temperature sensor and an outlet temperature sensor which are respectively provided at an inlet side and an outlet side of the refrigerant heater and which detect the temperature of the circulating refrigerant. And a control unit that takes the difference between the inlet temperature and the outlet temperature of the circulating refrigerant detected by the inlet temperature sensor and the outlet temperature sensor, and changes the refrigerant circulation amount adjusting device so that this difference falls within a predetermined range. And a refrigeration cycle characterized by having.
【請求項2】上記制御部が、上記出口温度センサで検出
された出口温度が所定値を越えた場合には上記冷媒加熱
器への燃料供給量を低減させることを特徴とする特許請
求の範囲第1項記載の冷凍サイクル。
2. The control unit reduces the amount of fuel supplied to the refrigerant heater when the outlet temperature detected by the outlet temperature sensor exceeds a predetermined value. The refrigeration cycle according to item 1.
【請求項3】上記制御部が、上記出口温度センサで検出
された出口温度が所定値を越えた場合には圧縮機の回転
数を増加させることを特徴とする特許請求の範囲第1項
記載の冷凍サイクル。
3. The controller according to claim 1, wherein the controller increases the rotation speed of the compressor when the outlet temperature detected by the outlet temperature sensor exceeds a predetermined value. Refrigeration cycle.
【請求項4】上記制御部が、出口温度センサで検出され
た出口温度が所定値を越えた場合には上記冷媒加熱器へ
の燃料供給量を低減させると共に上記圧縮機の回転数を
増加させることを特徴とする特許請求の範囲第1項記載
の冷凍サイクル。
4. The control unit reduces the fuel supply amount to the refrigerant heater and increases the rotational speed of the compressor when the outlet temperature detected by the outlet temperature sensor exceeds a predetermined value. The refrigeration cycle according to claim 1, characterized in that
JP61228106A 1986-09-29 1986-09-29 Refrigeration cycle Expired - Fee Related JP2504424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61228106A JP2504424B2 (en) 1986-09-29 1986-09-29 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61228106A JP2504424B2 (en) 1986-09-29 1986-09-29 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS6383556A JPS6383556A (en) 1988-04-14
JP2504424B2 true JP2504424B2 (en) 1996-06-05

Family

ID=16871294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61228106A Expired - Fee Related JP2504424B2 (en) 1986-09-29 1986-09-29 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JP2504424B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150672A (en) * 1988-11-30 1990-06-08 Toshiba Corp Air-conditioner
JP4100432B2 (en) * 2006-02-08 2008-06-11 ダイキン工業株式会社 Refrigerant heating device
CN104457070B (en) * 2014-05-21 2017-06-06 林志辉 Heat pump with multiple heat interchange increasing enthalpy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966667A (en) * 1982-10-06 1984-04-16 株式会社東芝 Refrigerant heating air conditioner
JPS59185575U (en) * 1983-05-27 1984-12-10 株式会社東芝 Refrigeration cycle equipment

Also Published As

Publication number Publication date
JPS6383556A (en) 1988-04-14

Similar Documents

Publication Publication Date Title
JP4134069B2 (en) Multi air conditioner system and valve opening control method of multi air conditioner system
CN112283903B (en) Air conditioner and control method of expansion valve
KR101445992B1 (en) Device for estimating flowrate of heating medium, heat source device, and method for estimating flowrate of heating medium
JPH11108485A (en) Method for controlling air conditioner and outlet temperature of refrigerant heater
WO2012000501A2 (en) A method for operating a vapour compression system using a subcooling value
JP2983269B2 (en) Air conditioner
JP4290480B2 (en) Temperature control method
JP3668750B2 (en) Air conditioner
JP2504424B2 (en) Refrigeration cycle
KR100502234B1 (en) Air conditioning system
JP2002071192A (en) Air conditioning apparatus
JP3194652B2 (en) Air conditioner
KR100565995B1 (en) Method for Operating of Multi Type Air-conditioner by Install Position of Indoor-unit
JPH04190062A (en) Freezing-cycle control device for air-conditioner
JP2002039598A (en) Air conditioner
JP2001208434A (en) Heat pump hot water supplier
JPH08189740A (en) Refrigerating device for automatic vending machine
US5924480A (en) Air conditioning system
JPH06317360A (en) Multi-chamber type air conditioner
JP2955278B2 (en) Multi-room air conditioning system
JP2912811B2 (en) Air conditioner
JP2002286301A (en) Refrigerating cycle
KR101153420B1 (en) Method for controlling air-conditioner
JP2003166762A (en) Air conditioner
JP2867792B2 (en) Heating and cooling machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees