JP2001208434A - Heat pump hot water supplier - Google Patents

Heat pump hot water supplier

Info

Publication number
JP2001208434A
JP2001208434A JP2000021619A JP2000021619A JP2001208434A JP 2001208434 A JP2001208434 A JP 2001208434A JP 2000021619 A JP2000021619 A JP 2000021619A JP 2000021619 A JP2000021619 A JP 2000021619A JP 2001208434 A JP2001208434 A JP 2001208434A
Authority
JP
Japan
Prior art keywords
temperature
heat pump
water heater
valve opening
pump water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000021619A
Other languages
Japanese (ja)
Other versions
JP3690229B2 (en
JP2001208434A5 (en
Inventor
Masahiro Ohama
昌宏 尾浜
Takeji Watanabe
竹司 渡辺
Yoshitsugu Nishiyama
吉継 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000021619A priority Critical patent/JP3690229B2/en
Publication of JP2001208434A publication Critical patent/JP2001208434A/en
Publication of JP2001208434A5 publication Critical patent/JP2001208434A5/ja
Application granted granted Critical
Publication of JP3690229B2 publication Critical patent/JP3690229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump hot water supplier which improves the operation efficiency and the durability. SOLUTION: This hot water supplier is equipped with a refrigerant circulating circuit where a compressor 1, a refrigerant-to-water heat exchanger 2, a depressurizer 3, and an evaporator 4 are connected in order, a hot water supply circuit where a hot water reservoir 5, a circulating pump 6, and a refrigerant-to- water heat exchanger 2 are connected in order, a discharge temperature detection means 12 which detects the discharge temperature of the compressor 1, and a control means 11 which controls the aperture of the depressurizer 3 so that it may be the preset objective discharge temperature, and further the aperture of the above depressurizer is minimized, so this hot water supplier can perform stable efficient hot water supply heating operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は貯湯式のヒートポン
プ給湯機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot water supply type heat pump water heater.

【0002】[0002]

【従来の技術】従来のこの種のヒートポンプ給湯機は特
開昭60−164157号公報に示すようなものがあ
る。図44は従来のヒートポンプ給湯機の構成図であ
る。図44において、圧縮機1、冷媒対水熱交換器2、
減圧装置(キャピラリーチューブ)3、蒸発器4からな
る冷媒循環回路と、貯湯槽5、循環ポンプ6、前記冷媒
対水熱交換器2、補助加熱器7を接続した給湯回路から
なり前記圧縮機1より吐出された高温高圧の過熱ガス冷
媒は前記冷媒対水熱交換器2に流入し、ここで前記循環
ポンプ6から送られてきた水を加熱する。そして、凝縮
液化したした冷媒は前記減圧装置3で減圧され、前記蒸
発器4に流入し、ここで大気熱を吸熱して蒸発ガス化
し、前記圧縮機1に戻る。一方、貯湯槽5の下部の水
は、冷媒対水熱交換器2の水側出口に設けられた沸き上
げ温度検出手段8で得られる沸き上げ温度がほぼ一定に
なるように回転数制御手段9で制御された循環ポンプ6
によって、前記貯湯槽5の上部に送られ、上から次第に
貯湯されていく。そして、前記冷媒対水熱交換器2の入
口水温が設定値に達すると入口水温検出手段10が検知
し、前記圧縮機1によるヒートポンプ運転を停止して、
前記補助加熱器7の単独運転に切り換えるものである。
2. Description of the Related Art A conventional heat pump water heater of this kind is disclosed in Japanese Patent Application Laid-Open No. 60-164157. FIG. 44 is a configuration diagram of a conventional heat pump water heater. In FIG. 44, a compressor 1, a refrigerant-to-water heat exchanger 2,
The compressor 1 comprises a refrigerant circulation circuit including a pressure reducing device (capillary tube) 3 and an evaporator 4, and a hot water supply circuit connecting a hot water storage tank 5, a circulation pump 6, the refrigerant-to-water heat exchanger 2, and an auxiliary heater 7. The discharged high-temperature and high-pressure superheated gas refrigerant flows into the refrigerant-to-water heat exchanger 2, where it heats the water sent from the circulation pump 6. The condensed and liquefied refrigerant is decompressed by the decompression device 3 and flows into the evaporator 4, where it absorbs atmospheric heat to evaporate and return to the compressor 1. On the other hand, the water in the lower part of the hot water storage tank 5 is rotated by the rotation speed control means 9 so that the boiling temperature obtained by the boiling temperature detection means 8 provided at the water-side outlet of the refrigerant-to-water heat exchanger 2 becomes substantially constant. Circulating pump 6 controlled by
Thus, the hot water is sent to the upper portion of the hot water storage tank 5 and gradually stored from above. Then, when the inlet water temperature of the refrigerant-to-water heat exchanger 2 reaches a set value, the inlet water temperature detecting means 10 detects, and stops the heat pump operation by the compressor 1,
The operation is switched to the independent operation of the auxiliary heater 7.

【0003】なお、上記図44に示す従来例のヒートポ
ンプ給湯機は、減圧装置3としてキャピラリーチューブ
を用いたものである。
The conventional heat pump water heater shown in FIG. 44 uses a capillary tube as the pressure reducing device 3.

【0004】また、従来例のヒートポンプ給湯機の減圧
装置3として温度自動膨張弁を用いていたものもある。
この第二の従来例を図45に示す。同図に置いて、3a
は温度自動膨張弁の本体であり、3bは温度自動膨張弁
の感温筒である。なお、図44で示す第一の実施例と同
一符号のものは同一構造を有し、説明は省略する。
There is also a conventional heat pump water heater in which an automatic temperature expansion valve is used as the pressure reducing device 3.
FIG. 45 shows this second conventional example. In the same figure, 3a
Is a main body of the temperature automatic expansion valve, and 3b is a temperature sensing cylinder of the temperature automatic expansion valve. Note that components having the same reference numerals as those in the first embodiment shown in FIG. 44 have the same structure, and description thereof will be omitted.

【0005】[0005]

【発明が解決しようとする課題】前述したように、貯湯
槽5の下部の水は、沸き上げ温度がほぼ一定になるよう
に回転数制御手段9で制御された循環ポンプ6によっ
て、前記貯湯槽5の上部に送られ、上から次第に貯湯さ
れていく。しかし、給湯運転を開始した後のしばらくの
時間は冷媒回路全体の温度(特に圧縮機1の吐出温度)
が低いので、所定の沸き上げ温度よりも低い温度の湯が
貯湯槽5の上部に送られ、貯湯されていく。
As described above, the water in the lower part of the hot water storage tank 5 is supplied to the hot water storage tank 5 by the circulation pump 6 controlled by the rotation speed control means 9 so that the boiling temperature is substantially constant. It is sent to the upper part of 5 and is gradually stored from the top. However, for a while after starting the hot water supply operation, the temperature of the entire refrigerant circuit (particularly the discharge temperature of the compressor 1)
Is low, hot water having a temperature lower than a predetermined boiling temperature is sent to the upper part of the hot water storage tank 5 and stored.

【0006】ところで、減圧装置としてキャピラリーチ
ューブ3を用いる場合、一般的に、冷媒循環量の多い夏
季の温度条件を基準にキャピラリーチューブ3の仕様を
設計する。このため夏季以外の特に外気温度の低い冬季
には冷媒回路に必要以上の冷媒が循環するため、給湯運
転を開始した後、なかなか圧縮機1の吐出温度が上昇し
ないので、所定の沸き上げ温度よりもかなり低い温度の
湯が貯湯槽5に貯湯されていくことがある。このため、
貯湯槽5に貯められていた高温の湯とこの低い温度の湯
が混合し、貯湯槽5に貯湯されていた湯の温度をかなり
低下させることがあり、冬の給湯負荷の大きい日には湯
切れが起きるという課題があった。また、冷媒の循環量
が多すぎるため、運転効率が低下するという課題もあっ
た。
When the capillary tube 3 is used as a decompression device, the specifications of the capillary tube 3 are generally designed on the basis of summer temperature conditions where a large amount of refrigerant circulates. For this reason, in the winter, when the outside air temperature is low, especially in the winter, the excess refrigerant is circulated in the refrigerant circuit. Therefore, after starting the hot water supply operation, the discharge temperature of the compressor 1 does not easily rise. However, hot water having a considerably low temperature may be stored in the hot water storage tank 5. For this reason,
The high-temperature hot water stored in the hot-water storage tank 5 and the low-temperature hot water may be mixed, and the temperature of the hot water stored in the hot-water storage tank 5 may be considerably reduced. There was a problem that cutting occurred. In addition, there is also a problem that the operating efficiency is reduced because the circulation amount of the refrigerant is too large.

【0007】また、冬季に給湯運転をした場合、蒸発器
4に着霜することがある。キャピラリーチューブ3の場
合、冷媒循環量の調節ができないため、吐出温度が着霜
とともに急激に低下する。そのため、所定の沸き上げ温
度が得られず、低い温度の湯が貯湯槽5に貯湯されてい
くことがある。このため、冬の給湯負荷の大きい日には
湯切れが生じるという課題があった。
When the hot water supply operation is performed in winter, frost may be formed on the evaporator 4. In the case of the capillary tube 3, since the amount of circulating refrigerant cannot be adjusted, the discharge temperature sharply drops with frost. For this reason, a predetermined boiling temperature cannot be obtained, and hot water having a low temperature may be stored in the hot water storage tank 5. For this reason, there is a problem that hot water runs out on a day when the hot water supply load is large in winter.

【0008】他方、図45に示す第二の従来例で、減圧
装置として温度自動膨張弁3を用いる場合、一般的に、
蒸発器4の出口の冷媒は過熱度がとれた過熱ガス状態と
なるように、減圧装置としての温度自動膨張弁3の仕様
を設計する。ところで給湯運転を開始した後、しばらく
は圧縮機1の吸入圧力が低いので蒸発圧力も低い。しか
し、温度自動膨張弁3の感温筒3b付近の温度は蒸発圧
力の飽和温度に比べて高い(圧力低下の変動に対して温
度は応答が遅れる)ので見かけ上の蒸発器4出口の冷媒
の過熱度は大きくなるため、温度自動膨張弁3の開度を
開くように動作する。その結果、冷媒回路に必要以上の
冷媒が循環するため、給湯運転を開始した後、なかなか
圧縮機1の吐出温度が上昇しないので、前述したキャピ
ラリーチューブの場合と同様、湯切れと運転効率の低下
という課題があった。
On the other hand, in the second conventional example shown in FIG. 45, when an automatic temperature expansion valve 3 is used as a pressure reducing device, generally,
The specifications of the automatic temperature expansion valve 3 as a pressure reducing device are designed so that the refrigerant at the outlet of the evaporator 4 is in a superheated gas state with a superheat degree. By the way, after starting the hot water supply operation, the evaporation pressure is low for a while because the suction pressure of the compressor 1 is low. However, the temperature near the temperature-sensitive cylinder 3b of the automatic temperature expansion valve 3 is higher than the saturation temperature of the evaporating pressure (the temperature is delayed in response to the fluctuation of the pressure drop). Since the degree of superheat increases, the operation is performed to open the opening of the automatic temperature expansion valve 3. As a result, since more refrigerant than necessary is circulated in the refrigerant circuit, the discharge temperature of the compressor 1 does not readily rise after the hot water supply operation is started. There was a problem that.

【0009】又、温度自動膨張弁3の本体3aの部分の
圧力変化と感温筒3bの温度変化のと間に応答遅れがあ
るため、変化の大きい給湯運転開始時には冷媒回路の圧
力と温度とが大きくハンチングすることがある。そのた
め、圧力や温度が常用圧力や常用温度の上限値を超える
ことがあり、圧縮機1の耐久性が悪くなるという課題を
有していた。
Further, since there is a response delay between the pressure change of the main body 3a of the temperature automatic expansion valve 3 and the temperature change of the temperature sensing cylinder 3b, the pressure and the temperature of the refrigerant circuit are reduced when the hot water supply operation is started. May hunt greatly. For this reason, the pressure and the temperature may exceed the upper limits of the normal pressure and the normal temperature, and the durability of the compressor 1 is deteriorated.

【0010】また、冬季に給湯運転をした場合、蒸発器
4に着霜することがある。この場合、温度自動膨張弁3
は、蒸発器4の出口の冷媒を過熱度がとれた過熱ガスと
するために、着霜の進行に伴いどんどん冷媒循環量を絞
るように弁開度を絞る。そのため、必要な冷媒循環量が
得られず、運転効率が低下するという課題もあった。
When the hot water supply operation is performed in winter, frost may be formed on the evaporator 4. In this case, the temperature automatic expansion valve 3
In order to make the refrigerant at the outlet of the evaporator 4 a superheated gas with a superheat degree, the opening degree of the valve is reduced so that the refrigerant circulation amount is reduced as the frost progresses. For this reason, there is also a problem that a required amount of the circulating refrigerant cannot be obtained and the operating efficiency is reduced.

【0011】本発明の目的は、給湯運転時の低温の湯の
混合による貯湯槽5の温度低下を少なくし、かつ、給湯
運転時の効率を良くすることである。
An object of the present invention is to reduce the temperature drop of hot water storage tank 5 due to the mixing of low-temperature hot water during hot water supply operation and to improve the efficiency during hot water supply operation.

【0012】[0012]

【課題を解決するための手段】本発明は上記課題を解決
するため、圧縮機、冷媒対水熱交換器、開度調節が可能
な減圧装置、蒸発器を順次接続した冷媒循環回路と、貯
湯槽、循環ポンプ、前記冷媒対水熱交換器を順次接続し
た給湯回路と、前記圧縮機の吐出温度を検出する吐出温
度検出手段と、予め設定された目標吐出温度になるよう
に前記減圧装置の開度を制御する制御手段とを備え、前
記減圧装置の開度に最小弁開度を設けたものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention solves the above-mentioned problems by providing a refrigerant circulation circuit in which a compressor, a refrigerant-to-water heat exchanger, a depressurizing device capable of adjusting an opening degree, and an evaporator are sequentially connected. A tank, a circulating pump, a hot water supply circuit in which the refrigerant-to-water heat exchanger is sequentially connected, a discharge temperature detecting means for detecting a discharge temperature of the compressor, and the pressure reducing device of the decompression device so as to reach a preset target discharge temperature. Control means for controlling the opening degree, wherein a minimum valve opening degree is provided for the opening degree of the pressure reducing device.

【0013】上記発明において、減圧装置の開度に最小
弁開度を設けて吐出温度制御を行うため、必要以上に減
圧装置の開度が小さくならないので、冷媒回路の圧力と
温度とのハンチングを小さくすることができる。その結
果、運転起動後すぐに所定の沸き上げ温度の湯が得ら
れ、その湯が貯湯槽5に貯湯されていくので、貯湯槽5
に貯湯されていた湯の温度を低下させることがなく、冬
の給湯負荷の大きい日にも湯切れが起きないという効果
がある。
In the above invention, since the discharge valve is controlled by providing the minimum valve opening to the opening of the pressure reducing device, the opening of the pressure reducing device does not become smaller than necessary. Can be smaller. As a result, hot water having a predetermined boiling temperature is obtained immediately after the start of operation, and the hot water is stored in the hot water storage tank 5.
There is an effect that the temperature of the hot water stored in the hot water is not lowered and the hot water does not run out even on a day when the hot water supply load is large in winter.

【0014】また、冷媒循環量を制御するので、冷媒循
環量に極端な過不足がなく運転効率が向上するという効
果もある。
In addition, since the amount of circulating refrigerant is controlled, there is an effect that the amount of circulating refrigerant is not excessively large or small and the operating efficiency is improved.

【0015】さらに、運転起動時の圧力や温度のハンチ
ングが小さいので、圧力や温度が常用圧力や常用温度の
上限値を超えることもなく、圧縮機の耐久性が良くなる
という効果もある。
Furthermore, since the hunting of pressure and temperature at the time of starting operation is small, the pressure and temperature do not exceed the upper limits of the normal pressure and the normal temperature, and the durability of the compressor is improved.

【0016】[0016]

【発明の実施の形態】本発明は各請求項に記載の形態で
実施できるものであり、請求項1記載のように、圧縮
機、冷媒対水熱交換器、開度調節が可能な減圧装置、蒸
発器を順次接続した冷媒循環回路と、貯湯槽、循環ポン
プ、前記冷媒対水熱交換器を順次接続した給湯回路と、
前記圧縮機の吐出温度を検出する吐出温度検出手段と、
予め設定された目標吐出温度になるように前記減圧装置
の開度を制御する制御手段とを備え、前記減圧装置の開
度に最小弁開度を設けたことにより、吐出温度の上昇が
早くなり、また、冷媒回路の圧力と温度とのハンチング
を小さくすることができるので、運転起動後すぐに所定
の沸き上げ温度の湯が得られ、また、必要な循環冷媒量
が得られるので、給湯運転時の効率を良くするという効
果という効果がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention can be embodied in the form described in each claim. As described in claim 1, a compressor, a refrigerant-to-water heat exchanger, a decompression device capable of adjusting the opening degree. A refrigerant circuit in which evaporators are sequentially connected, a hot water tank, a circulation pump, and a hot water supply circuit in which the refrigerant-to-water heat exchanger is sequentially connected,
Discharge temperature detecting means for detecting a discharge temperature of the compressor,
Control means for controlling the degree of opening of the pressure reducing device so as to reach a preset target discharge temperature, and by providing the minimum valve opening to the degree of opening of the pressure reducing device, the discharge temperature rises quickly. Also, since the hunting between the pressure and the temperature of the refrigerant circuit can be reduced, hot water having a predetermined boiling temperature can be obtained immediately after the start of operation, and a required amount of circulating refrigerant can be obtained. This has the effect of improving the efficiency of time.

【0017】また、請求項2記載のように、前記減圧装
置の最小弁開度を外気温度に応じて変化させることによ
って、必要な循環冷媒量が得られるので、給湯運転時の
効率を良くするという効果があり、また、運転起動後す
ぐに所定の沸き上げ温度の湯が得られるという効果があ
る。
Further, the required amount of circulating refrigerant can be obtained by changing the minimum valve opening of the pressure reducing device in accordance with the outside air temperature, so that the efficiency in hot water supply operation is improved. In addition, there is an effect that hot water having a predetermined boiling temperature can be obtained immediately after the start of operation.

【0018】また、請求項3記載のように、前記減圧装
置の最小弁開度を給水温度に応じて変化させることによ
って、必要な循環冷媒量が得られるので、給湯運転時の
効率を良くするという効果があり、また、運転起動後す
ぐに所定の沸き上げ温度の湯が得られるという効果があ
る。
Further, the required amount of circulating refrigerant can be obtained by changing the minimum valve opening of the pressure reducing device in accordance with the feed water temperature, thereby improving the efficiency of the hot water supply operation. In addition, there is an effect that hot water having a predetermined boiling temperature can be obtained immediately after the start of operation.

【0019】また、請求項4記載のように、出湯検出手
段が出湯を検出した後、給水温度検出手段が給水温度を
検出するものである。
Further, as described in claim 4, after the hot water detecting means detects hot water, the water supply temperature detecting means detects the water supply temperature.

【0020】また、請求項5記載のように、前記減圧装
置の最小弁開度を運転起動時と定常時とで変えることに
より、条件に応じた必要な循環冷媒量が確保できるの
で、運転起動の場合や着霜時の場合にも給湯運転効率が
良くなるという効果がある。
Further, by changing the minimum valve opening of the pressure reducing device between the start of operation and the steady state, the required amount of circulating refrigerant according to the conditions can be ensured. Also, there is an effect that the hot water supply operation efficiency is improved also in the case of frost formation or frost formation.

【0021】また、請求項6記載のように、前記減圧装
置の最小弁開度は電源周波数によって異なることによ
り、電源周波数に応じた必要冷媒循環量が確保できるの
で、運転起動の場合や着霜時の場合にも給湯運転効率が
良くなるという効果がある。
Further, since the minimum valve opening of the pressure reducing device differs depending on the power supply frequency, a required amount of refrigerant circulating according to the power supply frequency can be ensured. Also in the case of time, there is an effect that the hot water supply operation efficiency is improved.

【0022】また、請求項7記載のように、圧縮機が温
まっているか否かを判定する熱時判定手段が熱時を検出
した時の運転起動の場合には、前記減圧装置の起動最小
弁開度を大きくすることにより、必要な循環冷媒量が確
保できるので、給湯運転起動時の効率を良くするという
効果がある。
In the case where the hot start determining means for judging whether the compressor is warm or not detects the hot start, the start-up minimum valve of the pressure reducing device is provided. By increasing the opening degree, a required amount of circulating refrigerant can be secured, so that there is an effect that the efficiency at the time of starting hot water supply operation is improved.

【0023】また、請求項8記載のように、熱時判定手
段として圧縮機温度検出手段を用いたものである。
According to the present invention, a compressor temperature detecting means is used as the hot-time judging means.

【0024】また、請求項9記載のように、熱時判定手
段として前回の運転停止からの経過時間を積算する第一
の時間積算手段を用いたものである。
According to a ninth aspect of the present invention, a first time integrating means for integrating the elapsed time from the previous operation stop is used as the hot time determining means.

【0025】また、請求項10記載のように、熱時判定
手段として運転起動後の経過時間を積算する第二の時間
積算手段と吐出温度検出手段とを用いたものであるま
た、請求項11記載のように、熱時の運転起動時に前記
減圧装置の起動最小弁開度を外気温度に応じて変化させ
ることによって、必要な循環冷媒量が得られるので、運
転起動後すぐに所定の沸き上げ温度の湯が得られるとい
う効果がある。
According to a tenth aspect of the present invention, a second time integrating means for integrating the elapsed time after the start of the operation and a discharge temperature detecting means are used as the hot-time determining means. As described, the required circulating refrigerant amount can be obtained by changing the startup minimum valve opening of the pressure reducing device according to the outside air temperature at the time of hot operation startup, so that the predetermined boiling immediately after the operation startup. There is an effect that hot water at a temperature can be obtained.

【0026】また、請求項12記載のように、熱時の運
転起動時に前記減圧装置の起動最小弁開度を給水温度に
応じて変化させることによって、必要な循環冷媒量が得
られるので、運転起動後すぐに所定の沸き上げ温度の湯
が得られるという効果がある。
Further, the required circulating refrigerant amount can be obtained by changing the minimum valve opening of the pressure reducing device at the start of operation in a hot state according to the feed water temperature. There is an effect that hot water having a predetermined boiling temperature can be obtained immediately after the start.

【0027】また、請求項13記載のように、運転起動
時に減圧装置の開度を、最小弁開度以上の開度である起
動初期弁開度に固定する不感帯時間を設けたことによっ
て、冷媒回路の圧力と温度のハンチングを小さくするこ
とができるので、圧力や温度が常用圧力や常用温度の上
限値を超えることもなく、圧縮機の耐久性が良くなると
いう効果がある。
According to a thirteenth aspect of the present invention, there is provided a dead zone time for fixing the opening of the pressure reducing device at the start-up initial valve opening which is equal to or greater than the minimum valve opening at the time of starting operation. Since the hunting between the pressure and the temperature of the circuit can be reduced, the pressure and the temperature do not exceed the upper limits of the normal pressure and the normal temperature, and the durability of the compressor is improved.

【0028】また、請求項14記載のように、起動初期
弁開度を外気温度に応じて変化させることによって、必
要な循環冷媒量が得られるので、運転起動後すぐに所定
の沸き上げ温度の湯が得られるという効果がある。
Further, by changing the opening degree of the starting valve in accordance with the outside air temperature, a required amount of the circulating refrigerant can be obtained. There is an effect that hot water can be obtained.

【0029】また、請求項15記載のように、不感帯時
間を外気温度に応じて変化させることによって必要な吐
出温度が得られるため、冷媒回路の圧力と温度のハンチ
ングを小さくすることができるので、圧力や温度が常用
圧力や常用温度の上限値を超えることもなく、圧縮機の
耐久性が良くなるという効果がある。
Further, since the required discharge temperature can be obtained by changing the dead zone time according to the outside air temperature, the hunting between the pressure and the temperature of the refrigerant circuit can be reduced. The pressure and the temperature do not exceed the upper limits of the normal pressure and the normal temperature, and the durability of the compressor is improved.

【0030】また、請求項16記載のように、熱時には
起動初期弁開度大きくすることによって必要な冷媒循環
量が確保できるので、給湯運転起動時の効率が良くなる
という効果がある。
Further, as described in claim 16, the required amount of refrigerant circulating can be secured by increasing the opening of the initial valve at the time of heating when the temperature is hot, so that there is an effect that the efficiency at the time of starting the hot water supply operation is improved.

【0031】また、請求項17記載のように、熱時の起
動初期弁開度は外気温度検出手段からの信号によって得
た外気温度に応じて変化させることによって、必要な冷
媒循環量が得られるので、運転起動後すぐに所定の沸き
上げ温度の湯が得られるという効果がある。
Further, the required amount of refrigerant circulating can be obtained by changing the opening degree of the initial valve in a hot state in accordance with the outside air temperature obtained by a signal from the outside air temperature detecting means. Therefore, there is an effect that hot water having a predetermined boiling temperature can be obtained immediately after the start of operation.

【0032】また、請求項18記載のように、起動定常
判定手段として、運転起動からの経過時間を計測する起
動経過時間計測手段を用いたものである。
Further, as described in claim 18, as the start steady state determining means, a start elapsed time measuring means for measuring an elapsed time from the start of operation is used.

【0033】また、請求項19記載のように、起動定常
判定手段として、吐出温度検出手段と吐出温度変化検出
手段とを用いたものである。
According to a nineteenth aspect of the present invention, a discharge temperature detecting means and a discharge temperature change detecting means are used as the starting steady state determining means.

【0034】また、請求項20記載のように、起動定常
判定手段として、沸き上げ温度検出手段と沸き上げ温度
変化検出手段とを用いたものである。
According to a twentieth aspect of the present invention, the starting steady-state determining means uses a boiling temperature detecting means and a boiling temperature change detecting means.

【0035】[0035]

【実施例】以下、本発明の実施例について図面を用いて
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0036】(実施例1)図1は本発明の実施例1のヒ
ートポンプ給湯機の構成図、図2は同ヒートポンプ給湯
機の弁開度に制限を設けない場合の運転起動後の時間に
対する吐出温度と弁開度の関係を示す説明図、図3は同
ヒートポンプ給湯機の弁開度に下限値(起動最小弁開
度)を設けた場合の運転起動後の時間に対する吐出温度
と弁開度の関係を示す説明図、図4は同ヒートポンプ給
湯機の運転起動後の時間に対する沸き上げ温度の変化を
示す説明図、図5は同ヒートポンプ給湯機の着霜後の時
間に対する弁開度と吐出温度と給湯加熱能力の変化を示
す説明図である。なお、第一の従来例で説明した図44
と同じ構成部材には同一符号を用い説明を省略する。
(Embodiment 1) FIG. 1 is a block diagram of a heat pump water heater according to Embodiment 1 of the present invention, and FIG. 2 is a discharge diagram of the heat pump water heater with respect to a time after the start of operation when there is no restriction on the valve opening. FIG. 3 is an explanatory diagram showing the relationship between the temperature and the valve opening. FIG. 3 shows the discharge temperature and the valve opening with respect to the time after the start of operation when the lower limit (starting minimum valve opening) is provided for the valve opening of the heat pump water heater. FIG. 4 is an explanatory diagram showing a change in boiling temperature with respect to a time after the start of operation of the heat pump water heater, and FIG. 5 is a valve opening and discharge with respect to a time after frost formation of the heat pump water heater. It is explanatory drawing which shows the change of temperature and hot-water supply heating capacity. FIG. 44 described in the first conventional example.
The same reference numerals are used for the same components as described above, and the description is omitted.

【0037】図1において、冷媒対水熱交換器2の水側
出口に設けられた沸き上げ温度検出手段8からの信号で
回転数制御手段9は循環ポンプ6の回転数を制御して、
冷媒対水熱交換器2の出口水温(沸き上げ温度)をほぼ
一定になるように沸き上げる。また、制御手段11は圧
縮機1の吐出温度を検出する吐出温度検出手段12から
の信号で減圧装置3の弁開度を制御する。さらに、13
は所定の目標吐出温度を記憶している第一の記憶手段で
あり、また、14は減圧装置3の開度の下限値(最小弁
開度)を記憶している第二の記憶手段である。また、出
湯口15から出湯されると給水口16から貯湯槽5に給
水される。なお、減圧装置3として電動膨張弁(図示せ
ず)等がある。
In FIG. 1, the rotation speed control means 9 controls the rotation speed of the circulating pump 6 by a signal from the boiling temperature detecting means 8 provided at the water side outlet of the refrigerant-to-water heat exchanger 2.
The outlet water temperature (boiling temperature) of the refrigerant-to-water heat exchanger 2 is raised to be substantially constant. The control means 11 controls the valve opening of the pressure reducing device 3 based on a signal from the discharge temperature detecting means 12 for detecting the discharge temperature of the compressor 1. In addition, 13
Is a first storage unit that stores a predetermined target discharge temperature, and 14 is a second storage unit that stores a lower limit value (minimum valve opening) of the opening of the pressure reducing device 3. . When hot water is supplied from hot water outlet 15, water is supplied to hot water storage tank 5 from water supply port 16. The pressure reducing device 3 includes an electric expansion valve (not shown) and the like.

【0038】次に動作、作用について説明する。Next, the operation and operation will be described.

【0039】高温の沸き上げ温度を得るための一つとし
て、圧縮機1から吐出された高温の過熱蒸気を利用する
方法がある。この高温の過熱蒸気の温度を有効に利用す
れば、圧縮機1の吐出圧力を低くすることが可能であ
る。そこで本発明の実施例1のヒートポンプ給湯機で
は、吐出温度を高温に保つために減圧装置3の弁開度を
調節し、冷媒の循環量の制御を行う。
One way to obtain a high boiling temperature is to use high-temperature superheated steam discharged from the compressor 1. If the temperature of the high-temperature superheated steam is effectively used, the discharge pressure of the compressor 1 can be reduced. Therefore, in the heat pump water heater according to the first embodiment of the present invention, the valve opening of the pressure reducing device 3 is adjusted to control the refrigerant circulation amount in order to keep the discharge temperature at a high temperature.

【0040】吐出温度を高くするには減圧装置3の開度
を絞り(小さくし)、低くするには減圧装置3の開度を
開く(大きく)ようにすればよい。例えば、減圧装置3
として、ステッピングモータ駆動の電動膨張弁(図示せ
ず)がある。この種の電動膨張弁は入力パルス数に比例
して弁開度が大きくなる。いま、吐出温度を高温に保つ
ために減圧装置3としての電動膨張弁の弁開度を調節す
る方法として、次の様な方法がある。
To increase the discharge temperature, the opening of the pressure reducing device 3 may be narrowed (decreased), and to be lowered, the opening of the pressure reducing device 3 may be opened (increased). For example, the decompression device 3
There is an electric expansion valve (not shown) driven by a stepping motor. In this type of electric expansion valve, the valve opening increases in proportion to the number of input pulses. Now, as a method for adjusting the valve opening of the electric expansion valve as the pressure reducing device 3 in order to maintain the discharge temperature at a high temperature, there is the following method.

【0041】目標吐出温度をTs、現在の吐出温度を
T、現在の電動膨張弁の弁開度(全閉から電動膨張弁に
入力された総パルス数)をKとすると、次に示す値だけ
現在の電動膨張弁の弁開度Kから修正してやればよい。
すなわち、 A×(T−Ts)・・・・・(1) ただし、Aは定数 ただし、式(1)の値が正の場合は弁を開く方向にな
り、負の場合は弁を閉じる方向になる。だから修正後の
電動膨張弁の弁開度は次のようになる。
Assuming that the target discharge temperature is Ts, the current discharge temperature is T, and the current valve opening of the electric expansion valve (the total number of pulses input to the electric expansion valve from fully closed) is K, only the following values are obtained. What is necessary is just to correct from the present valve opening degree K of the electric expansion valve.
A × (T−Ts) (1) where A is a constant. However, if the value of equation (1) is positive, the direction is to open the valve, and if negative, the direction is to close the valve. become. Therefore, the valve opening of the electric expansion valve after the correction is as follows.

【0042】K+A×(T−Ts)・・・(2) ところが、運転起動時には、冷媒回路すべての温度が低
いため、冷媒回路の圧力の上昇に比べて、温度の上がり
方はかなり遅いものになる。特に圧縮機1の吐出温度の
上がり方は遅い。いま、運転起動時に、式(1)で示す
ような減圧装置3としての電動膨張弁の弁開度Kの修正
を行ったとすれば、図2のようになる。
K + A × (T−Ts) (2) However, when the operation is started, the temperature of the entire refrigerant circuit is low, so that the temperature rise is much slower than the increase in the pressure of the refrigerant circuit. Become. In particular, the discharge temperature of the compressor 1 rises slowly. Now, assuming that the valve opening K of the electric expansion valve as the pressure reducing device 3 is corrected at the start of the operation as shown in the equation (1), the result is as shown in FIG.

【0043】図2において、横軸に運転起動後の時間を
とり、縦軸にその時の減圧装置3としての電動膨張弁の
弁開度と吐出温度とをとり、運転起動後の時間に対する
電動膨張弁の弁開度と吐出温度との関係を示したもので
ある。すなわち、運転起動後測定時間間隔△T毎に、制
御手段11が吐出温度検出手段12からの信号で圧縮機
1の吐出温度を検出し、式(1)で求まる制御量だけ減
圧装置3の弁開度修正を行う場合の、吐出温度と減圧装
置の弁開度の変化を示す。同図からわかるように、運転
起動直後は圧縮機1の吐出温度が低いため、減圧装置3
の弁開度を急激に小さくし続けるので、吐出温度が目標
吐出温度に達しても吐出温度はさらに上昇する。そのた
め、吐出温度を下げるために減圧装置3の弁開度を急激
に大きくし続けるので、今度は、目標吐出温度よりもか
なり低くなる。このように吐出温度は大きく上下にハン
チングする。圧力も、吐出温度と同様、大きく上下にハ
ンチングする。
In FIG. 2, the horizontal axis indicates the time after the start of operation, and the vertical axis indicates the valve opening and discharge temperature of the electric expansion valve as the pressure reducing device 3 at that time. 4 shows a relationship between a valve opening degree of a valve and a discharge temperature. That is, the control unit 11 detects the discharge temperature of the compressor 1 based on the signal from the discharge temperature detection unit 12 at every measurement time interval ΔT after the operation is started, and the valve of the pressure reducing device 3 is controlled by the control amount determined by the equation (1). 7 shows changes in the discharge temperature and the valve opening of the pressure reducing device when the opening is corrected. As can be seen from the figure, since the discharge temperature of the compressor 1 is low immediately after the start of operation, the pressure reducing device 3
Since the valve opening degree of the valve continues to be rapidly reduced, the discharge temperature further increases even if the discharge temperature reaches the target discharge temperature. Therefore, the valve opening of the pressure reducing device 3 is kept sharply increased in order to lower the discharge temperature, so that the temperature becomes considerably lower than the target discharge temperature. As described above, the discharge temperature largely hunts up and down. The pressure also largely hunts up and down similarly to the discharge temperature.

【0044】そこで、図3に示すように、減圧装置3の
弁開度に最小弁開度を設ける。すなわち、運転起動後測
定時間間隔△T毎に、制御手段11が吐出温度検出手段
12からの信号で圧縮機1の吐出温度を検出し、式
(1)から減圧装置3の弁開度の修正量を求める。この
とき、式(2)で求まる減圧装置3の修正後の弁開度
が、最小弁開度より大きければ減圧装置3の弁開度は式
(2)で求まる弁開度とする。逆に、最小弁開度より小
さければ、減圧装置3の弁開度は最小弁開度とする。こ
のようにすれば、起動時の最低限の冷媒循環量が確保で
きるので、運転起動時の吐出温度のハンチングを最小限
にすることができる。
Therefore, as shown in FIG. 3, the valve opening of the pressure reducing device 3 is provided with a minimum valve opening. That is, the control unit 11 detects the discharge temperature of the compressor 1 based on the signal from the discharge temperature detection unit 12 at every measurement time interval ΔT after the start of operation, and corrects the valve opening of the pressure reducing device 3 according to the equation (1). Find the quantity. At this time, if the corrected valve opening of the pressure reducing device 3 obtained by Expression (2) is larger than the minimum valve opening, the valve opening of the pressure reducing device 3 is set to the valve opening obtained by Expression (2). Conversely, if it is smaller than the minimum valve opening, the valve opening of the pressure reducing device 3 is set to the minimum valve opening. With this configuration, a minimum refrigerant circulation amount at the time of startup can be ensured, so that hunting of the discharge temperature at the time of startup of the operation can be minimized.

【0045】同図に示す吐出温度において、実線は本実
施例の場合であり、一点鎖線と点線は第一と第二の従来
例で示したキャピラリーチューブと温度自動膨張弁の場
合である。同図における比較からわかるように、本実施
例の場合の方が、温度自動膨張弁よりも吐出温度のハン
チングが少なく、温度自動膨張弁とキャピラリーチュー
ブとよりも吐出温度の上昇が速い。その結果、図4に示
すように、沸き上げ温度の立ち上げも速くなる。図4は
横軸に運転起動後の時間をとり、縦軸に沸き上げ温度を
取って、運転起動後の時間に対する沸き上げ温度の変化
を示したものである。同図においても、実線は本実施例
の場合であり、一点鎖線と点線は第一と第二の従来例で
示したキャピラリーチューブと温度自動膨張弁の場合で
ある。
At the discharge temperature shown in the figure, the solid line is the case of this embodiment, and the one-dot chain line and the dotted line are the case of the capillary tube and the automatic temperature expansion valve shown in the first and second conventional examples. As can be seen from the comparison in the figure, in the case of the present embodiment, hunting of the discharge temperature is smaller than in the automatic temperature expansion valve, and the discharge temperature rises faster than in the automatic temperature expansion valve and the capillary tube. As a result, as shown in FIG. 4, the rise of the boiling temperature is also accelerated. FIG. 4 shows the change of the boiling temperature with respect to the time after the start of operation, with the horizontal axis indicating the time after the start of operation and the vertical axis indicating the boiling temperature. Also in this figure, the solid line is the case of this embodiment, and the one-dot chain line and the dotted line are the case of the capillary tube and the automatic temperature expansion valve shown in the first and second conventional examples.

【0046】図5は、冬季の外気温度が低い時、蒸発器
4に霜が着く場合の特性を示している。すなわち、横軸
に着霜後の時間をとり、縦軸に減圧装置3の弁開度と吐
出温度と給湯加熱能力とを取って、着霜後の時間に対す
る弁開度と吐出温度と給湯加熱能力の変化を示したもの
である。外気温度が低い時に、蒸発器4に霜が着き、そ
の霜が成長していく場合がある。この場合、蒸発器4が
大気から吸熱する熱量が時間とともに減少するので、吐
出温度が低下しようとする。それを目標吐出温度になる
ようにするには、同図に示すように、減圧装置3の弁開
度を小さくしていく。ところが、この弁開度を小さくし
ていくと冷媒循環量が減少し給湯加熱能力も減少する。
そして、さらに着霜量が増えるに従って弁開度を小さく
していくと冷媒循環量が急激に減少するので、給湯加熱
能力も急激に減少する。そこで、減圧装置3の弁開度
が、最低の必要冷媒循環量になる最小弁開度になった
ら、減圧装置3の弁開度をそれ以上絞らないことにすれ
ば、着霜による給湯加熱能力の低下は、弁開度を最小弁
開度よりも絞った場合に比べて、少なくなる。同図にお
いても、実線は本実施例の場合であり、一点鎖線と点線
は第一と第二の従来例で示したキャピラリーチューブと
温度自動膨張弁の場合である。本実施例の場合の方が、
第一と第二の従来例で示したキャピラリーチューブや温
度自動膨張弁の場合よりも、給湯加熱能力の低下が少な
くなることがわかる。
FIG. 5 shows the characteristics when frost forms on the evaporator 4 when the outside air temperature in winter is low. That is, the horizontal axis indicates the time after frosting, and the vertical axis indicates the valve opening degree, discharge temperature, and hot water heating capacity of the pressure reducing device 3, and the valve opening degree, discharge temperature, and hot water supply heating time with respect to the time after frosting. It shows a change in ability. When the outside air temperature is low, frost may form on the evaporator 4 and the frost may grow. In this case, since the amount of heat absorbed by the evaporator 4 from the atmosphere decreases with time, the discharge temperature tends to decrease. In order to make it reach the target discharge temperature, the valve opening of the pressure reducing device 3 is reduced as shown in FIG. However, as the valve opening degree is reduced, the amount of circulating refrigerant decreases, and the hot water supply heating capacity also decreases.
When the valve opening degree is further reduced as the frost amount increases, the refrigerant circulation amount sharply decreases, and the hot water supply heating capacity also sharply decreases. Therefore, if the valve opening of the pressure reducing device 3 becomes the minimum valve opening that becomes the minimum required refrigerant circulation amount, the valve opening of the pressure reducing device 3 is not further reduced, and the hot water supply heating capability by frost formation is provided. Is smaller than when the valve opening is narrowed below the minimum valve opening. Also in this figure, the solid line is the case of this embodiment, and the one-dot chain line and the dotted line are the case of the capillary tube and the automatic temperature expansion valve shown in the first and second conventional examples. In the case of this embodiment,
It can be seen that the decrease in the hot water supply heating capacity is smaller than in the case of the capillary tube or the automatic temperature expansion valve shown in the first and second conventional examples.

【0047】上記のように、運転起動時に前記減圧装置
の開度が最小弁開度より小さくならないように吐出温度
制御を行うため、吐出温度の上昇が早くなり、また、冷
媒回路の圧力と温度とのハンチングを小さくすることが
できるので、運転起動後すぐに所定の沸き上げ温度の湯
が得られる、また、圧縮機の耐久性も良くなる。
As described above, since the discharge temperature is controlled so that the opening of the pressure reducing device does not become smaller than the minimum valve opening at the time of starting operation, the discharge temperature rises quickly, and the pressure and temperature of the refrigerant circuit are increased. Hunting can be reduced, so that hot water having a predetermined boiling temperature can be obtained immediately after the start of operation, and the durability of the compressor is improved.

【0048】また、運転起動時以外の例えば冬季の着霜
運転時にも、減圧装置3の開度が最小弁開度より小さく
ならないように制御を行うため、最低の必要冷媒循環量
が得られるので、給湯運転時の効率が向上する。
In addition, even during the frosting operation in winter, for example, other than when the operation is started, control is performed so that the opening of the pressure reducing device 3 does not become smaller than the minimum valve opening, so that the minimum necessary refrigerant circulation amount can be obtained. Thus, the efficiency of the hot water supply operation is improved.

【0049】(実施例2)図6は本発明の実施例2のヒ
ートポンプ給湯機の構成図、図7は同ヒートポンプ給湯
機の外気温度に対する減圧装置の最小弁開度を示す説明
図である。
(Embodiment 2) FIG. 6 is a configuration diagram of a heat pump water heater according to Embodiment 2 of the present invention, and FIG. 7 is an explanatory diagram showing a minimum valve opening of a pressure reducing device with respect to an outside air temperature of the heat pump water heater.

【0050】本実施例において、実施例1と異なる点
は、外気温度を検出する外気温度検出手段17を設けた
ことであり、また、吐出温度検出手段12と所定の目標
吐出温度を記憶している第一の記憶手段13と減圧装置
3の開度の下限値(最小弁開度)を記憶している第二の
記憶手段14と前記外気温度検出手段17とからの信号
で制御手段11が減圧装置3の弁開度を制御することで
ある。
This embodiment is different from the first embodiment in that an outside air temperature detecting means 17 for detecting the outside air temperature is provided, and the discharge temperature detecting means 12 and a predetermined target discharge temperature are stored. The control means 11 receives signals from the first storage means 13 and the second storage means 14 which stores the lower limit value (minimum valve opening degree) of the opening degree of the pressure reducing device 3 and the outside air temperature detecting means 17. That is to control the valve opening of the pressure reducing device 3.

【0051】なお、実施例1と同符号の部分は同一構成
を有し、説明は省略する。
The parts denoted by the same reference numerals as in the first embodiment have the same configuration, and the description is omitted.

【0052】次に動作、作用について説明する。Next, the operation and operation will be described.

【0053】蒸発器4が大気熱から吸熱する量は外気温
度によって大きく異なる。そのため、運転起動時の圧縮
機1の吐出温度の上昇割合も大きく異なるので、必要な
循環冷媒量も変化する。
The amount of heat that the evaporator 4 absorbs from atmospheric heat greatly differs depending on the outside air temperature. Therefore, the rate of increase in the discharge temperature of the compressor 1 at the time of starting the operation also differs greatly, so that the required amount of circulating refrigerant also changes.

【0054】図7は横軸に外気温度をとり、縦軸に最小
弁開度をとって、外気温度に対する最小弁開度の関係を
示したものである。いま、減圧装置3の弁開度が一定と
した場合、外気温度が高くなると蒸発器4が大気熱から
吸熱する量が増えるが、冷媒循環量が余り増えないの
で、運転効率が悪くなる。そして、圧縮機1の吸入冷媒
の過熱度は大きくなり、圧縮機1の吐出温度も高くな
る。この吐出温度を一定に保つには冷媒循環量を増やす
必要があるので、図7に示すように、外気温度が高くな
ると最小弁開度を大きくする。
FIG. 7 shows the relationship between the outside air temperature and the minimum valve opening by taking the outside air temperature on the horizontal axis and the minimum valve opening on the vertical axis. Now, when the valve opening degree of the pressure reducing device 3 is constant, the amount of heat absorbed by the evaporator 4 from atmospheric heat increases when the outside air temperature increases, but the refrigerant circulation amount does not increase so much, and the operating efficiency deteriorates. Then, the degree of superheat of the refrigerant sucked into the compressor 1 increases, and the discharge temperature of the compressor 1 also increases. Since it is necessary to increase the amount of the circulating refrigerant in order to keep the discharge temperature constant, the minimum valve opening is increased as the outside air temperature is increased, as shown in FIG.

【0055】これとは逆に、外気温度が低くなると、蒸
発器4が大気熱から吸熱する量が減るが、冷媒循環量は
余り減らないので、圧縮機1の吸入冷媒の過熱度は小さ
くなり、圧縮機1の吐出温度も低くなる。その結果、運
転起動後なかなか所定の沸き上げ温度にならない。この
吐出温度を高温に保つには冷媒循環量を減らす必要があ
るので、図7に示すように、外気温度が低くなると最小
弁開度を小さくする。
Conversely, when the outside air temperature decreases, the amount of heat absorbed by the evaporator 4 from atmospheric heat decreases, but the amount of circulating refrigerant does not decrease so much, so that the degree of superheat of the refrigerant sucked into the compressor 1 decreases. In addition, the discharge temperature of the compressor 1 also decreases. As a result, the predetermined boiling temperature is not easily reached after the operation is started. To maintain the discharge temperature at a high temperature, it is necessary to reduce the amount of circulating refrigerant. Therefore, as shown in FIG. 7, when the outside air temperature decreases, the minimum valve opening is reduced.

【0056】図7で説明した運転起動時以外の着霜運転
時にも同様のことが言えるので、外気温度が高ければ最
小弁開度を大きくし、外気温度が低ければ最小弁開度を
小さくなるように設定する。
The same can be said for the frosting operation other than the operation start-up described with reference to FIG. 7. Therefore, when the outside air temperature is high, the minimum valve opening is increased, and when the outside air temperature is low, the minimum valve opening is decreased. Set as follows.

【0057】上記のように、運転起動時に減圧装置3の
最小弁開度を外気温度に応じて変化させることによっ
て、必要な循環冷媒量が得られるので、給湯運転起動時
の効率が良くなり、また、運転起動後すぐに所定の沸き
上げ温度の湯が得られる。
As described above, the required amount of circulating refrigerant can be obtained by changing the minimum valve opening of the pressure reducing device 3 at the start of operation according to the outside air temperature, so that the efficiency at the start of hot water supply operation is improved. Further, hot water having a predetermined boiling temperature can be obtained immediately after the start of operation.

【0058】さらに、着霜運転時にも減圧装置3の最小
弁開度を外気温度に応じて変化させることによって、必
要な循環冷媒量が得られるので給湯運転時の効率が良く
なり、また、所定の沸き上げ温度の湯が得られるので外
気温度が低い場合でも給湯負荷を賄うことができる。
Further, by changing the minimum valve opening of the pressure reducing device 3 in accordance with the outside air temperature even during the frosting operation, the required amount of circulating refrigerant can be obtained, so that the efficiency in the hot water supply operation is improved, and Since the hot water having the boiling temperature can be obtained, the hot water supply load can be covered even when the outside air temperature is low.

【0059】(実施例3)図8は本発明の実施例3のヒ
ートポンプ給湯機の構成図、図9は同ヒートポンプ給湯
機の外気温度に対する給水温度を示す説明図、図10は
同ヒートポンプ給湯機の給水温度に対する減圧装置の最
小弁開度を示す説明図である。
(Embodiment 3) FIG. 8 is a block diagram of a heat pump water heater according to a third embodiment of the present invention, FIG. 9 is an explanatory diagram showing a water supply temperature with respect to an outside air temperature of the heat pump water heater, and FIG. 10 is a heat pump water heater. It is explanatory drawing which shows the minimum valve opening degree of the decompression device with respect to the supply water temperature.

【0060】図8に示す本実施例において、実施例1と
異なる点は、給水温度を検出する給水温度検出手段18
を設けたことであり、また、吐出温度検出手段12と所
定の目標吐出温度を記憶している第一の記憶手段13と
減圧装置3の開度の下限値(最小弁開度)を記憶してい
る第二の記憶手段14と前記給水温度検出手段18とか
らの信号で制御手段11が減圧装置3の弁開度を制御す
ることである。
The present embodiment shown in FIG. 8 is different from the first embodiment in that a feed water temperature detecting means 18 for detecting a feed water temperature is used.
The discharge temperature detecting means 12, the first storage means 13 for storing a predetermined target discharge temperature, and the lower limit value (minimum valve opening degree) of the opening of the pressure reducing device 3 are stored. The control means 11 controls the valve opening of the pressure reducing device 3 based on signals from the second storage means 14 and the feedwater temperature detecting means 18.

【0061】なお、実施例1と同符号の部分は同一構成
を有し、説明は省略する。
Note that the portions denoted by the same reference numerals as in the first embodiment have the same configuration, and description thereof will be omitted.

【0062】一般に、外気温度と給水温度とは図9に示
すような関係がある。また、この図9の外気温度と給水
温度との関係と、図7で示した外気温度に対する減圧装
置3の最小弁開度の関係から、図10で示すように、給
水温度に対する減圧装置3の最小弁開度の関係が求ま
る。
Generally, there is a relationship between the outside air temperature and the supply water temperature as shown in FIG. Further, from the relationship between the outside air temperature and the supply water temperature in FIG. 9 and the relationship between the outside air temperature and the minimum valve opening degree of the pressure reduction device 3 shown in FIG. 7, as shown in FIG. The relationship of the minimum valve opening is obtained.

【0063】実施例2で説明したように、蒸発器4が大
気熱から吸熱する量は外気温度によって大きく異なる。
そこで、図10の関係を用いれば、外気温度を検出する
代わりに、給水温度を検出すれば、実施例2と同様の動
作、作用が得られるので、説明は省略する。
As described in the second embodiment, the amount of heat absorbed by the evaporator 4 from atmospheric heat greatly differs depending on the outside air temperature.
Therefore, if the relationship of FIG. 10 is used, the same operation and action as in the second embodiment can be obtained by detecting the supply water temperature instead of detecting the outside air temperature, and the description is omitted.

【0064】なお、給水温度検出手段18として、入口
水温検出手段10を用いても良い。
As the water supply temperature detecting means 18, the inlet water temperature detecting means 10 may be used.

【0065】上記の結果、運転起動時に減圧装置3の起
動最小弁開度を給水温度に応じて変化させることによっ
て、必要な循環冷媒量が得られるので、給湯運転起動時
の効率が良くなり、また、運転起動後すぐに所定の沸き
上げ温度の湯が得られる。
As a result, the required amount of circulating refrigerant can be obtained by changing the minimum valve opening of the pressure reducing device 3 at the start of operation in accordance with the feedwater temperature, so that the efficiency of starting the hot water supply operation is improved. Further, hot water having a predetermined boiling temperature can be obtained immediately after the start of operation.

【0066】さらに、着霜運転時にも減圧装置3の最小
弁開度を給水温度に応じて変化させることによって、必
要な循環冷媒量が得られるので給湯運転時の効率が良く
なり、また、所定の沸き上げ温度の湯が得られるので給
水温度すなわち外気温度が低い場合でも給湯負荷を賄う
ことができる。
Further, by changing the minimum valve opening of the pressure reducing device 3 in accordance with the feed water temperature even during the frosting operation, the required amount of circulating refrigerant can be obtained, so that the efficiency in the hot water supply operation is improved, and Since the hot water having the boiling temperature is obtained, the hot water supply load can be covered even when the water supply temperature, that is, the outside air temperature is low.

【0067】(実施例4)図11は本発明の実施例4の
ヒートポンプ給湯機の構成図、図12は同ヒートポンプ
給湯機の出湯有無に対する給水温度検出手段が検出した
温度の変化を示す説明図である。
(Embodiment 4) FIG. 11 is a block diagram of a heat pump water heater according to a fourth embodiment of the present invention, and FIG. 12 is an explanatory diagram showing a change in temperature detected by a water supply temperature detecting means depending on whether or not the heat pump water heater is hot. It is.

【0068】図11に示す本実施例において、実施例3
と異なる点は、出湯検出手段19を設けたことであり、
また、前記出湯検出手段19が出湯を検出したときに給
水温度検出手段18からの信号で制御手段11が給水温
度を検出することである。
In the present embodiment shown in FIG.
The difference from the first embodiment is that hot water detecting means 19 is provided.
Further, the control means 11 detects the water supply temperature by a signal from the water supply temperature detection means 18 when the water supply detection means 19 detects the hot water supply.

【0069】なお、実施例1と同符号の部分は同一構成
を有し、説明は省略する。
The parts denoted by the same reference numerals as in the first embodiment have the same configuration, and the description is omitted.

【0070】図12は横軸に時間をとり、縦軸に出湯検
出手段19が検出した出湯の有無と給水温度検出手段1
8が検出した温度とをとって、出湯前後に給水温度検出
手段18が検出する温度の変化を示したものである。出
湯がない場合は、給水温度検出手段18を設けている部
分の温度は給水の流れが無いために、外気温度等の周囲
温度の影響を受ける。そして、出湯口15から出湯があ
ると新しい市水が給水口16を通って貯湯槽5に入るの
で、給水温度検出手段18を設けている部分の温度は正
しい給水温度を検出することができる。図12に示すよ
うに、出湯開始時の点A以前の給水温度検出手段18が
検出する温度は、外気温度等の周囲温度の影響をうけた
温度t0である。そして、出湯が始まると新しい市水が
流入してくるので、しばらくすると給水温度検出手段1
8を設けている部分の温度は正しい給水温度tになる。
そこで、出湯検出手段19が出湯を検出した後、遅延時
間Tを経過した時点Bで給水温度検出手段18が温度を
検出するれば、正しい給水温度を検出することができ
る。
In FIG. 12, the horizontal axis represents time, and the vertical axis represents the presence or absence of hot water detected by hot water detecting means 19 and water supply temperature detecting means 1.
8 shows the change in the temperature detected by the water supply temperature detecting means 18 before and after tapping the hot water. When there is no hot water, the temperature of the portion provided with the feedwater temperature detecting means 18 is affected by the ambient temperature such as the outside air temperature because there is no flow of the feedwater. Then, when there is hot water from the hot water outlet 15, new city water enters the hot water storage tank 5 through the water supply port 16, so that the temperature of the portion provided with the water supply temperature detecting means 18 can detect the correct water supply temperature. As shown in FIG. 12, the temperature detected by the water supply temperature detecting means 18 before the point A at the start of hot water supply is the temperature t0 affected by the ambient temperature such as the outside air temperature. Then, when the hot water starts, new city water flows in, so after a while, the water supply temperature detecting means 1
The temperature of the portion provided with 8 becomes the correct feed water temperature t.
Therefore, if the water supply temperature detection means 18 detects the temperature at the time point B after the delay time T has elapsed after the hot water detection means 19 detects the hot water supply, the correct water supply temperature can be detected.

【0071】なお、動作、作用については実施例3と同
様であるので説明は省略する。
The operation and operation are the same as those of the third embodiment, and the description is omitted.

【0072】(実施例5)図13は本発明の実施例5の
ヒートポンプ給湯機の構成図、図14は同ヒートポンプ
給湯機の起動後の経過時間に対する吐出温度の変化を示
す説明図、図15は同ヒートポンプ給湯機の定常時の減
圧装置の開度に対する吐出圧力の変化を示す説明図であ
る。
(Embodiment 5) FIG. 13 is a block diagram of a heat pump water heater according to a fifth embodiment of the present invention, FIG. 14 is an explanatory diagram showing a change in discharge temperature with respect to an elapsed time after the start of the heat pump water heater, and FIG. FIG. 4 is an explanatory diagram showing a change in discharge pressure with respect to an opening degree of a pressure reducing device in a steady state of the heat pump water heater.

【0073】本実施例において、実施例1と異なる点
は、給湯運転が起動時か定常時かを判定する起動定常判
定手段20と、起動最小弁開度記憶手段14aと定常最
小弁開度記憶手段14bから成る第二の記憶手段14を
設けた構成としていることである。
This embodiment is different from the first embodiment in that the starting steady state determining means 20 for judging whether the hot water supply operation is started or in a steady state, the starting minimum valve opening storage means 14a and the steady minimum valve opening storage. The second storage means 14 comprising the means 14b is provided.

【0074】なお、実施例1と同符号の部分は同一構成
を有し、説明は省略する。
Note that the portions denoted by the same reference numerals as in the first embodiment have the same configuration, and description thereof will be omitted.

【0075】次に動作、作用について説明する。Next, the operation and operation will be described.

【0076】図14は横軸に運転起動後の時間をとり、
縦軸に吐出温度をとって、運転起動後の時間に対する吐
出温度の変化の関係を示したものである。同図におい
て、点線、実線、一点鎖線になるに従って、減圧装置3
の最小弁開度は大きい(それぞれの最小弁開度をA、
B、CとするとA<B<C)。また、二点鎖線は常用最
大温度を示す。同図からわかるように、減圧装置3の最
小弁開度の小さい方(最小弁開度A)が吐出温度の立ち
上がりは速いが上下のハンチング量は大きい。逆に、減
圧装置3の最小弁開度の大きい方(最小弁開度C)は吐
出温度の立ち上がりは遅いが上下のハンチング量は小さ
い。そこで、圧縮機1の耐久性に影響する常用最大温度
を越えないで、なおかつ、吐出温度の立ち上がりが速い
実線で示す弁開度(弁開度B)を起動時の減圧装置3の
最小開度に設定すればよい。
FIG. 14 shows the time after the start of operation on the horizontal axis.
The vertical axis represents the discharge temperature, and shows the relationship between the change in the discharge temperature and the time after the start of operation. In the figure, as the dotted line, the solid line, and the dashed line become,
Is large (each minimum valve opening is A,
If B and C, A <B <C). The two-dot chain line indicates the maximum temperature for ordinary use. As can be seen from the figure, the smaller the minimum valve opening of the pressure reducing device 3 (minimum valve opening A), the faster the rise of the discharge temperature, but the larger the amount of hunting up and down. Conversely, the larger the minimum valve opening of the pressure reducing device 3 (the minimum valve opening C), the slower the rise of the discharge temperature but the smaller the amount of hunting up and down. Therefore, the valve opening (valve opening B) indicated by a solid line that does not exceed the normal maximum temperature that affects the durability of the compressor 1 and has a rapid rise in the discharge temperature is set to the minimum opening of the pressure reducing device 3 at the time of startup. Should be set to.

【0077】図15は横軸に減圧装置3の弁開度をと
り、縦軸に吐出圧力をとって、定常時の減圧装置3の弁
開度に対する吐出圧力の関係を示したものである。同図
において、二点鎖線は常用最大圧力を示す。同図からわ
かるように、減圧装置3の弁開度を減少させるに従って
吐出圧力は増加し、弁開度Dになると、吐出圧力は常用
最大圧力に等しくなる。そこで、弁開度Dを定常時の減
圧装置3の最小弁開度に設定すればよい。なお、図14
における起動時の最小弁開度Bと図15における定常時
の最小弁開度Dとは一般的に異なる。
FIG. 15 shows the relationship between the valve opening of the pressure reducing device 3 and the discharge pressure in a steady state, with the horizontal axis representing the valve opening of the pressure reducing device 3 and the vertical axis representing the discharge pressure. In the same figure, the two-dot chain line indicates the normal maximum pressure. As can be seen from the figure, the discharge pressure increases as the valve opening of the pressure reducing device 3 decreases, and when the valve opening D is reached, the discharge pressure becomes equal to the normal maximum pressure. Therefore, the valve opening D may be set to the minimum valve opening of the pressure reducing device 3 in a steady state. FIG.
Is generally different from the minimum valve opening B at the time of startup in FIG.

【0078】図13において、起動定常判定手段20が
起動運転を検出した場合には、第二の記憶手段14にあ
る起動最小弁開度記憶手段14aと、吐出温度検出手段
12と所定の目標吐出温度を記憶している第一の記憶手
段13とからの信号で制御手段11が減圧装置3の弁開
度を制御する。
In FIG. 13, when the steady start determination means 20 detects the startup operation, the minimum startup valve opening storage means 14a in the second storage means 14, the discharge temperature detection means 12, and the predetermined target discharge The control means 11 controls the valve opening of the pressure reducing device 3 by a signal from the first storage means 13 which stores the temperature.

【0079】また、起動定常判定手段20が定常運転を
検出した場合には、第二の記憶手段14にある定常最小
弁開度記憶手段14bと、吐出温度検出手段12と所定
の目標吐出温度を記憶している第一の記憶手段13とか
らの信号で制御手段11が減圧装置3の弁開度を制御す
る。
When the steady start-up determining means 20 detects a steady operation, the steady-state minimum valve opening storage means 14b in the second storage means 14, the discharge temperature detecting means 12 and the predetermined target discharge temperature are stored. The control means 11 controls the valve opening of the pressure reducing device 3 based on the stored signal from the first storage means 13.

【0080】上記のように、起動運転と定常運転とで、
減圧装置3の弁開度の下限値(最小弁開度)を別々に設
定しているため、常に必要な循環冷媒量が得られるの
で、給湯運転の効率が良くなる。
As described above, the startup operation and the steady operation are
Since the lower limit value (minimum valve opening) of the valve opening of the pressure reducing device 3 is separately set, the required amount of circulating refrigerant is always obtained, so that the efficiency of hot water supply operation is improved.

【0081】(実施例6)図16は本発明の実施例6の
ヒートポンプ給湯機の構成図、図17は同ヒートポンプ
給湯機の定常時の減圧装置の開度に対する異なった電源
周波数における吐出圧力の変化を示す説明図である。
(Embodiment 6) FIG. 16 is a block diagram of a heat pump water heater according to Embodiment 6 of the present invention, and FIG. 17 is a graph showing the discharge pressure at different power supply frequencies with respect to the opening degree of the pressure reducing device in the steady state of the heat pump water heater. It is explanatory drawing which shows a change.

【0082】本実施例において、実施例1と異なる点
は、電源の周波数を判定する電源周波数検出手段21を
設けたことであり、また、前記電源周波数検出手段21
と、電源周波数に対する最小弁開度を記憶している第二
の記憶手段14と、吐出温度検出手段12と所定の目標
吐出温度を記憶している第一の記憶手段13とからの信
号で制御手段11が減圧装置3の弁開度を制御する構成
としていることである。
The present embodiment is different from the first embodiment in that a power supply frequency detecting means 21 for determining the frequency of the power supply is provided.
And a second storage means 14 for storing the minimum valve opening degree with respect to the power supply frequency, a discharge temperature detection means 12 and a first storage means 13 for storing a predetermined target discharge temperature. The means 11 is configured to control the valve opening of the pressure reducing device 3.

【0083】なお、実施例1と同符号の部分は同一構成
を有し、説明は省略する。
The portions denoted by the same reference numerals as in the first embodiment have the same configuration, and the description will be omitted.

【0084】次に動作、作用について説明する。Next, the operation and operation will be described.

【0085】図17は横軸に減圧装置3の弁開度をと
り、縦軸に吐出圧力をとって、定常時の減圧装置3の弁
開度に対する吐出圧力の関係を示したものである。とこ
ろで、一般に我が国においては、商用の電源周波数とし
ては50Hzと60Hzとがある。そして、同じヒートポン
プ給湯機でも電源周波数が異なると、冷媒循環量が異な
る。同図において、実線は電源周波数が60Hzの場合、
点線は電源周波数が50Hzの場合を示す。又、二点鎖線
は常用最大圧力を示す。いま、吐出圧力が常用最大圧力
に等しくなる弁開度を最小弁開度とすると、電源周波数
が60Hzの場合は最小弁開度がEとなり、50Hzの場合
は最小弁開度がFとなる(E>F)。上記のように、電
源周波数によって、減圧装置3の弁開度の下限値 (最
小弁開度)を設定しているため、常に必要な循環冷媒量
が得られるので、給湯運転の効率が良くなる。
FIG. 17 shows the relationship between the valve opening of the pressure reducing device 3 and the discharge pressure in a steady state, with the horizontal axis representing the valve opening of the pressure reducing device 3 and the vertical axis representing the discharge pressure. By the way, in Japan, there are generally 50 Hz and 60 Hz as commercial power supply frequencies. And even if the same heat pump water heater has a different power supply frequency, the refrigerant circulation amount is different. In the figure, the solid line indicates that the power supply frequency is 60 Hz.
The dotted line shows the case where the power supply frequency is 50 Hz. The two-dot chain line indicates the normal maximum pressure. Now, assuming that the valve opening at which the discharge pressure becomes equal to the normal maximum pressure is the minimum valve opening, the minimum valve opening is E when the power supply frequency is 60 Hz, and the minimum valve opening is F when the power supply frequency is 50 Hz ( E> F). As described above, since the lower limit (minimum valve opening) of the valve opening of the pressure reducing device 3 is set by the power supply frequency, the required amount of circulating refrigerant is always obtained, and the efficiency of the hot water supply operation is improved. .

【0086】(実施例7)図18は本発明の実施例7の
ヒートポンプ給湯機の構成図、図19は同ヒートポンプ
給湯機の起動後の経過時間に対する吐出温度の変化を示
す説明図である。
(Embodiment 7) FIG. 18 is a configuration diagram of a heat pump water heater of Embodiment 7 of the present invention, and FIG. 19 is an explanatory diagram showing a change in discharge temperature with respect to an elapsed time after the start of the heat pump water heater.

【0087】本実施例において、実施例1と異なる点
は、圧縮機が温まっている熱時を判定する熱時判定手段
22と熱時における運転起動時の減圧装置3の開度の下
限値(熱時起動最小弁開度)を記憶している第三の記憶
手段23とを設けた構成としていることである。
This embodiment is different from the first embodiment in that the hot-time judging means 22 for judging when the compressor is hot and the lower limit of the opening degree of the pressure reducing device 3 when the operation is started during the hot time ( The third storage means 23 for storing the minimum valve opening during startup during heating is provided.

【0088】なお、実施例1と同符号の部分は同一構成
を有し、説明は省略する。
The portions denoted by the same reference numerals as in the first embodiment have the same configuration, and the description will be omitted.

【0089】次に動作、作用について説明する。Next, the operation and operation will be described.

【0090】図19は横軸に運転起動後の時間をとり、
縦軸に吐出温度をとって、減圧装置3の弁開度を一定と
した場合の運転起動後の時間に対する吐出温度の変化の
関係を示したものである。同図において、実線は運転起
動時に圧縮機1が温まっている熱時の場合であり、点線
は圧縮機1が冷えている冷時の場合である。同図からわ
かるように、実線で示す熱時の方が、点線で示す冷時よ
りも吐出温度の上昇速度が大きい。このため、熱時と冷
時とで起動最小弁開度を同じにすれば、熱時の場合には
吐出温度が目標吐出温度を大きく超え、その結果、ハン
チングが大きくなってしまう。そこで、熱時の運転起動
の減圧装置3の弁開度の下限値を、冷時の運転起動の起
動最小弁開度よりも大きい弁開度である、熱時起動最小
弁開度に設定し、冷媒循環量を大きくする。
FIG. 19 shows the time after the start of operation on the horizontal axis.
The vertical axis represents the discharge temperature, and shows the relationship of the change in the discharge temperature with respect to the time after the start of operation when the valve opening of the pressure reducing device 3 is kept constant. In the figure, a solid line indicates a case where the compressor 1 is warm when the operation is started, and a dotted line indicates a case where the compressor 1 is cold when the compressor 1 is cold. As can be seen from the figure, the rate of rise of the discharge temperature is higher in the hot state shown by the solid line than in the cold state shown by the dotted line. For this reason, if the minimum startup valve opening is the same between hot and cold, the discharge temperature greatly exceeds the target discharge temperature in the case of hot, and as a result, hunting increases. Therefore, the lower limit of the valve opening of the decompression device 3 for the hot start of operation is set to the hot start minimum valve opening that is larger than the start minimum valve opening of the cold start of operation. And increase the refrigerant circulation amount.

【0091】図18において、運転を起動する場合、熱
時判定手段22は圧縮機1が温まっている熱時か、圧縮
機1が冷えている冷時かを判定する。熱時であれば、熱
時起動最小弁開度を記憶している第三の記憶手段23か
らの信号と目標吐出温度を記憶している第一の記憶手段
13からの信号と吐出温度検出手段12からの信号と
で、制御手段11は減圧装置3の弁開度を制御する。
In FIG. 18, when the operation is started, the hot-time judging means 22 judges whether the compressor 1 is hot or the compressor 1 is cold. If it is hot, the signal from the third storage means 23 storing the hot start minimum valve opening degree, the signal from the first storage means 13 storing the target discharge temperature, and the discharge temperature detection means The control means 11 controls the valve opening degree of the pressure reducing device 3 with the signal from the controller 12.

【0092】冷時であれば、冷時の起動最小弁開度を記
憶している第二の記憶手段14からの信号と目標吐出温
度を記憶している第一の記憶手段13からの信号と吐出
温度検出手段12からの信号とで、制御手段11は減圧
装置3の弁開度を制御する。
In the cold state, a signal from the second storage means 14 for storing the minimum opening degree of the start valve in the cold state and a signal from the first storage means 13 for storing the target discharge temperature. The control means 11 controls the valve opening of the pressure reducing device 3 with the signal from the discharge temperature detecting means 12.

【0093】上記のように、圧縮機1が温まっている熱
時の運転起動の場合には、減圧装置3の下限の弁開度
(熱時起動最小弁開度)を、冷時の運転起動時の起動最
小弁開度より大きい弁開度に設定しているので必要な循
環冷媒量が得られるため、給湯運転起動時の効率が良く
なり、さらに、吐出温度のハンチングを小さくすること
ができる。
As described above, when the operation is started when the compressor 1 is hot, the lower limit valve opening of the pressure reducing device 3 (minimum valve opening during hot start) is set to the operation start during cold operation. Since the required circulating refrigerant amount is obtained because the valve opening is set to be larger than the minimum valve opening at startup, the efficiency at the time of starting hot water supply operation is improved, and the hunting of the discharge temperature can be reduced. .

【0094】(実施例8)図20は本発明の実施例8の
ヒートポンプ給湯機の構成図である。
(Eighth Embodiment) FIG. 20 is a configuration diagram of a heat pump water heater according to an eighth embodiment of the present invention.

【0095】本実施例において、実施例7と異なる点は
熱時判定手段22として圧縮機温度検出手段24を設け
た構成としていることである。
This embodiment is different from the seventh embodiment in that a compressor temperature detecting means 24 is provided as the hot-time judging means 22.

【0096】なお、実施例7と同符号の部分は同一構成
を有し、説明は省略する。
The parts denoted by the same reference numerals as in the seventh embodiment have the same configuration, and the description will be omitted.

【0097】次に動作、作用について説明する。Next, the operation and operation will be described.

【0098】図20において、運転を起動する場合、圧
縮機温度検出手段24は圧縮機1の温度を検出する。そ
して、この検出された温度が所定の温度(例えば50゜
C)以上であれば熱時とし、検出された温度が前記所定
の温度未満であればは冷時と判定する。以下の動作、作
用については実施例7と同様なので説明は省略する。
Referring to FIG. 20, when the operation is started, the compressor temperature detecting means 24 detects the temperature of the compressor 1. If the detected temperature is equal to or higher than a predetermined temperature (for example, 50 ° C.), it is determined to be hot, and if the detected temperature is lower than the predetermined temperature, it is determined to be cold. The following operation and operation are the same as in the seventh embodiment, and a description thereof will not be repeated.

【0099】(実施例9)図21は本発明の実施例9の
ヒートポンプ給湯機の構成図である。
(Embodiment 9) FIG. 21 is a configuration diagram of a heat pump water heater according to Embodiment 9 of the present invention.

【0100】本実施例において、実施例7と異なる点は
熱時判定手段22として、前回の運転停止からの経過時
間を計算する第一の時間計測手段25を設けた構成とし
ていることである。
The present embodiment is different from the seventh embodiment in that the hot-time judging means 22 is provided with a first time measuring means 25 for calculating an elapsed time from the previous stop of operation.

【0101】なお、実施例7と同符号の部分は同一構成
を有し、説明は省略する。
The parts denoted by the same reference numerals as in the seventh embodiment have the same configuration, and the description will be omitted.

【0102】次に動作、作用について説明する。Next, the operation and operation will be described.

【0103】図21において、運転を起動する場合、第
一の時間計測手段25は前回の運転停止からの経過時間
を計算する。そして、この計算された経過時間が所定の
経過時間(例えば60分)未満であれば熱時とし、計算
された経過時間が前記所定の経過時間以上であればは冷
時と判定する。以下の動作、作用については実施例7と
同様なので説明は省略する。
In FIG. 21, when starting the operation, the first time measuring means 25 calculates the elapsed time from the previous stop of the operation. If the calculated elapsed time is shorter than a predetermined elapsed time (for example, 60 minutes), it is determined to be hot, and if the calculated elapsed time is equal to or longer than the predetermined elapsed time, it is determined to be cold. The following operation and operation are the same as in the seventh embodiment, and a description thereof will not be repeated.

【0104】(実施例10)図22は本発明の実施例1
0のヒートポンプ給湯機の構成図、図23は同ヒートポ
ンプ給湯機の起動後の経過時間に対する吐出温度の変化
を示す説明図である。
(Embodiment 10) FIG. 22 shows Embodiment 1 of the present invention.
0 is a configuration diagram of the heat pump water heater, and FIG. 23 is an explanatory diagram showing a change in the discharge temperature with respect to an elapsed time after the start of the heat pump water heater.

【0105】本実施例において、実施例7と異なる点は
熱時判定手段22として運転起動後の経過時間を計算す
る第二の時間計測手段26と吐出温度検出手段12とを
設けた構成としていることである。
The present embodiment is different from the seventh embodiment in that a second time measuring means 26 for calculating an elapsed time after the start of operation and a discharge temperature detecting means 12 are provided as the hot time judging means 22. That is.

【0106】なお、実施例7と同符号の部分は同一構成
を有し、説明は省略する。
The parts denoted by the same reference numerals as in the seventh embodiment have the same configuration, and the description will be omitted.

【0107】次に動作、作用について説明する。Next, the operation and operation will be described.

【0108】図23は、横軸に運転起動からの経過時間
をとり、縦軸に吐出温度をとって、減圧装置3の弁開度
を一定とした場合の運転起動からの経過時間に対する吐
出温度の変化を示したものである。同図において、実線
は、運転起動時に圧縮機1が温まっている熱時の場合で
あり、点線は冷時の場合を示す。そして、運転開始後、
吐出温度判定時間(例えば5分)経過した時点で、実線
上に示すように吐出温度Thが設定吐出温度Tset
(例えば50゜C)以上であれば熱時とし、点線上に示
すように吐出温度Tcが前記設定吐出温度Tset未満
であれば冷時とする。このような関係になる設定吐出温
度Tsetを予め求めておけばよい。
In FIG. 23, the horizontal axis indicates the elapsed time from the start of operation, and the vertical axis indicates the discharge temperature. The discharge temperature with respect to the elapsed time from the start of operation when the valve opening of the pressure reducing device 3 is constant. This shows the change of In the figure, a solid line indicates a case where the compressor 1 is warm when the operation is started, and a dotted line indicates a case where the compressor 1 is cold. And after the start of operation,
At the time when the discharge temperature determination time (for example, 5 minutes) has elapsed, the discharge temperature Th is set to the set discharge temperature Tset as indicated by the solid line.
If the discharge temperature Tc is lower than the set discharge temperature Tset as shown by a dotted line, it is determined as hot. The set discharge temperature Tset having such a relationship may be obtained in advance.

【0109】図22において、運転を起動すると、第二
の時間計測手段26は運転起動からの経過時間を計算す
る。そして、この計算された経過時間が吐出温度判定時
間になれば、吐出温度検出手段12は吐出温度を検出す
る。検出した吐出温度が設定吐出温度以上であれば熱時
とし、検出した吐出温度が設定吐出温度未満であればは
冷時と判定する。以下の動作、作用については実施例7
と同様なので説明は省略する。
In FIG. 22, when the operation is started, the second time measuring means 26 calculates the elapsed time from the start of the operation. Then, when the calculated elapsed time reaches the discharge temperature determination time, the discharge temperature detecting means 12 detects the discharge temperature. If the detected discharge temperature is equal to or higher than the set discharge temperature, it is determined to be hot, and if the detected discharge temperature is lower than the set discharge temperature, it is determined to be cool. The following operation and operation are described in the seventh embodiment.
Therefore, the description is omitted.

【0110】(実施例11)図24は本発明の実施例1
1のヒートポンプ給湯機の構成図、図25は同ヒートポ
ンプ給湯機の熱時における外気温度に対する減圧装置の
起動最小弁開度(熱時起動最小弁開度)を示す説明図で
ある。
(Embodiment 11) FIG. 24 shows Embodiment 1 of the present invention.
FIG. 25 is a configuration diagram of the heat pump water heater 1 and FIG. 25 is an explanatory diagram showing the minimum opening of the pressure reducing device (minimum opening of the hot start valve) of the pressure reducing device with respect to the outside air temperature when the heat pump water heater is hot.

【0111】本実施例において、実施例7と異なる点
は、外気温度検出手段17を設けたことであり、また、
熱時における運転起動時の減圧装置3の開度の下限値
(熱時起動最小弁開度)を記憶している第三の記憶手段
23と外気温度検出手段17と吐出温度検出手段12と
からの信号で制御手段11が減圧装置3の弁開度を制御
する構成としていることである。
The present embodiment is different from the seventh embodiment in that an outside air temperature detecting means 17 is provided.
The third storage means 23 which stores the lower limit value of the opening degree of the pressure reducing device 3 at the start of operation at the time of heating (minimum valve opening at the time of heating), the outside air temperature detection means 17 and the discharge temperature detection means 12 The control means 11 is configured to control the valve opening degree of the pressure reducing device 3 by the signal of (1).

【0112】実施例2で説明したように、熱時において
も、蒸発器4が大気熱から吸熱する量は外気温度によっ
て大きく異なる。そのため、運転起動時の圧縮機1の吐
出温度の上昇割合も大きく異なるので、必要な循環冷媒
量も変化する。
As described in the second embodiment, even when hot, the amount of heat absorbed by the evaporator 4 from atmospheric heat differs greatly depending on the outside air temperature. Therefore, the rate of increase in the discharge temperature of the compressor 1 at the time of starting the operation also differs greatly, so that the required amount of circulating refrigerant also changes.

【0113】図25は横軸に外気温度をとり、縦軸に起
動最小弁開度をとって、外気温度に対する熱時の起動最
小弁開度の関係を示したものである。いま、減圧装置3
の弁開度が一定で外気温度が高くなると、蒸発器4が大
気熱から吸熱する量が増えるのに冷媒循環量が余り増え
ないので、運転効率が悪くなる。そして、圧縮機1の吸
入冷媒の過熱度は大きくなり、圧縮機1の吐出温度も高
くなる。この吐出温度を一定に保つには冷媒循環量を増
やす必要があるので、図25に示すように、外気温度が
高くなると起動最小弁開度を大きくする。
FIG. 25 shows the relationship between the outside air temperature and the minimum start-up valve opening during heating, with the horizontal axis indicating the outside air temperature and the vertical axis indicating the minimum start-up valve opening. Now, decompression device 3
When the outside air temperature rises while the valve opening degree is constant, the amount of refrigerant absorbed by the evaporator 4 from atmospheric heat increases, but the amount of circulating refrigerant does not increase so much, and the operating efficiency deteriorates. Then, the degree of superheat of the refrigerant sucked into the compressor 1 increases, and the discharge temperature of the compressor 1 also increases. Since it is necessary to increase the amount of circulating refrigerant in order to keep the discharge temperature constant, as shown in FIG. 25, when the outside air temperature increases, the minimum opening of the startup valve is increased.

【0114】これとは逆に、外気温度が低くなると、蒸
発器4が大気熱から吸熱する量が減るるのに冷媒循環量
が余り減らないので、圧縮機1の吸入冷媒の過熱度は小
さくなり、圧縮機1の吐出温度も低くなる。その結果、
運転起動後なかなか所定の沸き上げ温度にならない。こ
の吐出温度を高温に保つには冷媒循環量を減らす必要が
あるので、図25に示すように、外気温度が低くなると
起動最小弁開度を小さくする。
Conversely, when the outside air temperature decreases, the amount of refrigerant circulated does not decrease so much as the amount of heat absorbed by the evaporator 4 from atmospheric heat decreases, so that the degree of superheat of the refrigerant sucked into the compressor 1 decreases. As a result, the discharge temperature of the compressor 1 also decreases. as a result,
It is not easy to reach the prescribed boiling temperature after starting operation. In order to maintain the discharge temperature at a high temperature, it is necessary to reduce the amount of the circulating refrigerant. Therefore, as shown in FIG.

【0115】上記のように、熱時の運転起動時に減圧装
置3の起動最小弁開度を外気温度に応じて変化させるこ
とによって、必要な循環冷媒量が得られるので、給湯運
転起動時の効率が良くなり、また、運転起動後すぐに所
定の沸き上げ温度の湯が得られる。
As described above, the required circulating refrigerant amount can be obtained by changing the startup minimum valve opening of the pressure reducing device 3 in accordance with the outside air temperature at the start of the hot operation, so that the efficiency at the start of the hot water supply operation can be obtained. And hot water having a predetermined boiling temperature can be obtained immediately after the start of operation.

【0116】(実施例12)図26は本発明の実施例1
2のヒートポンプ給湯機の構成図、図27は同ヒートポ
ンプ給湯機の給水温度に対する減圧装置の熱時起動最小
弁開度を示す説明図である。
(Embodiment 12) FIG. 26 shows Embodiment 1 of the present invention.
FIG. 27 is a configuration diagram of the heat pump water heater of FIG. 2, and FIG. 27 is an explanatory diagram showing a minimum startup valve opening of the pressure reducing device during heating with respect to a water supply temperature of the heat pump water heater.

【0117】本実施例において、実施例7と異なる点
は、給水温度を検出する給水温度検出手段18を設けた
ことであり、また、吐出温度検出手段12と所定の目標
吐出温度を記憶している第一の記憶手段13と減圧装置
3の開度の下限値(熱時起動最小弁開度)を記憶してい
る第三の記憶手段23と前記給水温度検出手段18とか
らの信号で制御手段11が減圧装置3の弁開度を制御す
ることである。
The present embodiment is different from the seventh embodiment in that a feed water temperature detecting means 18 for detecting a feed water temperature is provided, and the discharge temperature detecting means 12 and a predetermined target discharge temperature are stored. Control by signals from the first storage means 13 and the third storage means 23 which stores the lower limit value of the opening degree of the pressure reducing device 3 (minimum valve opening during hot start) and the water supply temperature detecting means 18. Means 11 is to control the valve opening of the pressure reducing device 3.

【0118】なお、実施例7と同符号の部分は同一構成
を有し、説明は省略する。
The parts denoted by the same reference numerals as in the seventh embodiment have the same configuration, and the description is omitted.

【0119】一般に、外気温度と給水温度とは実施例3
で説明したように、図9に示すような関係がある。ま
た、この図9の外気温度と給水温度との関係と、図25
で示した外気温度に対する減圧装置3の熱時の起動最小
弁開度の関係から、図27で示すように、給水温度に対
する減圧装置3の熱時の起動最小弁開度の関係が求ま
る。
In general, the outside air temperature and the supply water temperature are
As described above, there is a relationship as shown in FIG. The relationship between the outside air temperature and the supply water temperature in FIG.
From the relationship between the outside air temperature and the start-up minimum valve opening when the pressure reducing device 3 is hot as shown in FIG. 27, the relationship between the supply water temperature and the start-up minimum valve opening when the pressure reducing device 3 is hot can be obtained as shown in FIG.

【0120】実施例2で説明したように、蒸発器4が大
気熱から吸熱する量は外気温度によって大きく異なる。
そこで、図27の関係を用いれば、外気温度を検出する
代わりに、給水温度を検出すれば、実施例11と同様の
動作、作用が得られるので、説明は省略する。
As described in the second embodiment, the amount of heat absorbed by the evaporator 4 from atmospheric heat greatly differs depending on the outside air temperature.
Therefore, by using the relationship of FIG. 27, instead of detecting the outside air temperature, the same operation and action as in the eleventh embodiment can be obtained by detecting the water supply temperature, and the description is omitted.

【0121】なお、給水温度検出手段18として、入口
水温検出手段10を用いても良い。
As the feed water temperature detecting means 18, the inlet water temperature detecting means 10 may be used.

【0122】上記の結果、熱時の運転起動時に減圧装置
3の起動最小弁開度を給水温度に応じて変化させること
によって、必要な循環冷媒量が得られるので、給湯運転
起動時の効率が良くなり、また、運転起動後すぐに所定
の沸き上げ温度の湯が得られる。
As a result, the required circulating refrigerant amount can be obtained by changing the startup minimum valve opening of the pressure reducing device 3 in accordance with the feed water temperature when the hot operation is started, so that the efficiency in starting the hot water supply operation is reduced. As a result, hot water having a predetermined boiling temperature can be obtained immediately after the start of operation.

【0123】(実施例13)図28は本発明の実施例1
3のヒートポンプ給湯機の構成図、図29は同ヒートポ
ンプ給湯機の運転起動後の時間に対する吐出温度と弁開
度の関係を示す説明図である。
(Embodiment 13) FIG. 28 shows Embodiment 1 of the present invention.
3 is a configuration diagram of the heat pump water heater, and FIG. 29 is an explanatory diagram showing the relationship between the discharge temperature and the valve opening with respect to the time after the start of operation of the heat pump water heater.

【0124】本実施例において、実施例1と異なる点
は、運転起動初期の減圧装置3の弁開度である起動初期
弁開度を記憶している第四の記憶手段27と、減圧装置
3の弁開度を前記起動初期弁開度に固定して吐出温度に
よる制御を行わない所定の不感帯時間を記憶している第
五の記憶手段28と、起動後の運転時間を計測する運転
時間計測手段29とを設けた構成としていることであ
る。なお、前記起動初期弁開度は最小弁開度以上に設定
する。
The present embodiment is different from the first embodiment in that the fourth storage means 27 for storing the initial valve opening of the pressure reducing device 3 at the initial stage of operation start-up, and the pressure reducing device 3 The fifth storage means 28 which stores a predetermined dead zone time in which the valve opening is not fixed to the starting initial valve opening and the discharge temperature is not controlled, and an operation time measurement for measuring an operation time after the start. And means 29 are provided. The starting initial valve opening is set to be equal to or larger than the minimum valve opening.

【0125】すなわち、運転を起動すると制御手段11
は、減圧装置3の弁開度を第四の記憶手段27に記憶し
ている起動初期弁開度に設定する。同時に、運転時間計
測手段29は運転起動からの時間を計測する。そして、
制御手段11は、運転時間計測手段29の計測した時間
が第五の記憶手段28の記憶している不感帯時間以上に
なれば、実施例1で説明したように、吐出温度検出手段
12と、目標吐出温度を記憶している第一の記憶手段1
3と、最小弁開度を記憶している第二の記憶手段14と
からの信号によって、減圧装置3弁開度の制御を行う。
That is, when the operation is started, the control means 11
Sets the valve opening of the pressure reducing device 3 to the starting initial valve opening stored in the fourth storage means 27. At the same time, the operation time measuring means 29 measures the time from the start of operation. And
If the time measured by the operation time measuring means 29 is equal to or longer than the dead zone time stored in the fifth storage means 28, the control means 11 sets the discharge temperature detecting means 12 and the target temperature as described in the first embodiment. First storage means 1 for storing the discharge temperature
3 and a signal from the second storage means 14 which stores the minimum valve opening, the opening of the pressure reducing device 3 is controlled.

【0126】図29は、横軸に運転起動後の時間をと
り、縦軸に減圧装置3の弁開度と吐出温度とをとって、
運転起動後の時間に対する減圧装置3の弁開度と吐出温
度の変化を示したものである。同図において、運転起動
後、所定の不感帯時間の間は減圧装置3の弁開度は起動
初期弁開度で一定である。そして、不感帯時間が終了す
ると、測定時間△T毎に、制御手段11は吐出温度検出
手段12からの信号によって吐出温度を検出し、第一の
記憶手段13に記憶している目標吐出温度と前記吐出温
度との差に応じて、減圧装置3の弁開度を制御する。同
図に示す吐出温度において、実線は本実施例の場合であ
り、一点鎖線と点線は第一と第二の従来例で示したキャ
ピラリーチューブと温度自動膨張弁の場合である。同図
における比較からわかるように、本実施例の場合の方
が、温度自動膨張弁よりも吐出温度のハンチングが少な
く、温度自動膨張弁とキャピラリーチューブとよりも吐
出温度の上昇が速くなる。
In FIG. 29, the horizontal axis indicates the time after the start of operation, and the vertical axis indicates the valve opening and discharge temperature of the pressure reducing device 3.
It shows changes in the valve opening degree and discharge temperature of the pressure reducing device 3 with respect to the time after the start of operation. In the figure, after the operation is started, the valve opening of the pressure reducing device 3 is constant at the starting initial valve opening during a predetermined dead zone time. When the dead zone time ends, the control unit 11 detects the discharge temperature based on the signal from the discharge temperature detection unit 12 at every measurement time ΔT, and compares the target discharge temperature stored in the first storage unit 13 with the target discharge temperature. The valve opening of the pressure reducing device 3 is controlled according to the difference from the discharge temperature. At the discharge temperature shown in the figure, the solid line is the case of this embodiment, and the one-dot chain line and the dotted line are the case of the capillary tube and the automatic temperature expansion valve shown in the first and second conventional examples. As can be seen from the comparison in the figure, in the case of this embodiment, the hunting of the discharge temperature is smaller than in the automatic temperature expansion valve, and the discharge temperature rises faster than in the automatic temperature expansion valve and the capillary tube.

【0127】上記のように、運転起動初期に前記減圧装
置の開度が起動初期弁開度に固定し、吐出温度制御を行
わない不感帯時間を設けることにより、吐出温度の上昇
が早くなり、また、冷媒回路の圧力と温度とのハンチン
グを小さくすることができるので、運転起動後すぐに所
定の沸き上げ温度の湯が得られる。
As described above, the opening of the pressure reducing device is fixed at the initial valve opening at the start of operation and the dead zone time during which the discharge temperature control is not performed is provided. Since the hunting between the pressure and the temperature of the refrigerant circuit can be reduced, hot water having a predetermined boiling temperature can be obtained immediately after the start of operation.

【0128】(実施例14)図30は本発明の実施例1
4のヒートポンプ給湯機の構成図、図31は同ヒートポ
ンプ給湯機の外気温度に対する減圧装置の起動初期弁開
度を示す説明図である。
(Embodiment 14) FIG. 30 shows Embodiment 1 of the present invention.
4 is a configuration diagram of the heat pump water heater, and FIG. 31 is an explanatory diagram showing the initial valve opening of the decompression device with respect to the outside air temperature of the heat pump water heater.

【0129】本実施例において、実施例13と異なる点
は、外気温度検出手段17を設けたことであり、また、
運転起動時の不感帯時間における減圧装置3の開度(起
動初期弁開度)を記憶している第四の記憶手段27と外
気温度検出手段17とからの信号で制御手段11が減圧
装置3の弁開度を起動初期弁開度に設定する構成として
いることである。
The present embodiment is different from the thirteenth embodiment in that an outside air temperature detecting means 17 is provided.
The control unit 11 controls the pressure reducing device 3 based on a signal from the fourth storage unit 27 storing the opening of the pressure reducing device 3 during the dead zone time at the start of operation (starting valve opening) and the outside air temperature detecting unit 17. The configuration is such that the valve opening is set to the initial valve opening at startup.

【0130】実施例2で説明したように、蒸発器4が大
気熱から吸熱する量は外気温度によって大きく異なるの
で、必要な冷媒循環量も変化する。
As described in the second embodiment, since the amount of heat absorbed by the evaporator 4 from atmospheric heat greatly varies depending on the outside air temperature, the required refrigerant circulation amount also changes.

【0131】図31は横軸に外気温度をとり、縦軸に起
動初期弁開度をとって、外気温度に対する起動初期弁開
度の関係を示したものである。外気温度の低い冬は、大
気熱からの吸熱量が少ないので、必要な冷媒循環量は小
さい。この場合には、起動初期弁開度を小さくする。一
方、外気温度の高い夏は、大気熱からの吸熱量も多いの
で、必な冷媒循環量は大きい。この場合には、起動初期
弁開度を大きくする。
FIG. 31 shows the relationship between the outside air temperature and the starting initial valve opening by taking the outside air temperature on the horizontal axis and the starting initial valve opening on the vertical axis. In winter when the outside air temperature is low, the amount of heat absorbed from atmospheric heat is small, so the required amount of refrigerant circulating is small. In this case, the startup initial valve opening is reduced. On the other hand, in summer when the outside air temperature is high, the amount of heat absorbed from atmospheric heat is large, so the required amount of refrigerant circulation is large. In this case, the starting initial valve opening is increased.

【0132】上記のように、運転起動時に減圧装置3の
起動初期弁開度を外気温度に応じて変化させることによ
って、必要な循環冷媒量が得られるので、給湯運転起動
時の効率が良くなり、また、運転起動後すぐに所定の沸
き上げ温度の湯が得られる。
As described above, by changing the initial valve opening of the pressure reducing device 3 at the start of operation in accordance with the outside air temperature, the required amount of circulating refrigerant can be obtained, so that the efficiency of starting the hot water supply operation can be improved. Also, hot water having a predetermined boiling temperature can be obtained immediately after the start of operation.

【0133】(実施例15)図32は本発明の実施例1
5のヒートポンプ給湯機を示す構成図、図33は同ヒー
トポンプ給湯機の外気温度に対する吐出温度制御を行わ
ない起動時の不感帯時間を示す説明図である。
(Embodiment 15) FIG. 32 shows Embodiment 1 of the present invention.
FIG. 33 is a configuration diagram showing the heat pump water heater of FIG. 5, and FIG. 33 is an explanatory diagram showing a dead zone time at the time of startup without performing discharge temperature control on the outside air temperature of the heat pump water heater.

【0134】本実施例において、実施例13と異なる点
は、運転起動時の不感帯時間における減圧装置3の開度
(起動初期弁開度)を記憶している第四の記憶手段27
と、外気温度検出手段17と、外気温度に対する不感帯
時間を記憶している第五の記憶手段28と、起動後の運
転時間を計測する運転時間計測手段29とからの信号で
制御手段11が減圧装置3の弁開度を起動初期弁開度に
設定する構成としていることである。
The present embodiment is different from the thirteenth embodiment in that the fourth storage means 27 stores the opening of the pressure reducing device 3 (starting initial valve opening) during the dead zone time at the start of operation.
The control means 11 depressurizes the signal by signals from the outside air temperature detecting means 17, the fifth storage means 28 for storing the dead zone time for the outside air temperature, and the operating time measuring means 29 for measuring the operating time after startup. The configuration is such that the valve opening of the device 3 is set to the initial valve opening of startup.

【0135】実施例2で説明したように、蒸発器4が大
気熱から吸熱する量は外気温度によって大きく異なり、
さらに、圧縮機1そのものの温度も異なる。そのため、
運転起動時の圧縮機1の吐出温度の上昇割合も大きく異
なるので、必要な循環冷媒量も変化する。
As described in the second embodiment, the amount of heat absorbed by the evaporator 4 from atmospheric heat greatly differs depending on the outside air temperature.
Further, the temperature of the compressor 1 itself is different. for that reason,
Since the rise rate of the discharge temperature of the compressor 1 at the time of starting the operation is also greatly different, the required amount of circulating refrigerant is also changed.

【0136】図33は横軸に外気温度をとり、縦軸に起
動時の不感帯時間をとって、外気温度に対する不感帯時
間の関係を示したものである。外気温度の低い冬は、起
動時には圧縮機1の温度が低く、かつ、大気熱からの吸
熱量も少ないので、吐出温度の上昇は非常に遅い。この
ように吐出温度と目標吐出温度との差が大きい場合に、
この差に応じて、吐出温度の制御を行うと吐出温度が大
きくハンチングするので、起動時の不感帯時間は長くす
る。一方、外気温度の高い夏は、起動時には圧縮機1の
温度が高く、かつ、大気熱からの吸熱量も多いので、吐
出温度の上昇は非常に速い。このように吐出温度と目標
吐出温度との差が比較的小さい場合には、この差に応じ
て、吐出温度の制御をする方が吐出温度は速く目標吐出
温度になるので、起動時の不感帯時間は短くする。
FIG. 33 shows the relationship between the outside air temperature and the dead zone time, with the horizontal axis representing the outside air temperature and the vertical axis representing the dead zone time at startup. In winter when the outside air temperature is low, the temperature of the compressor 1 is low at startup and the amount of heat absorbed from atmospheric heat is small, so that the discharge temperature rises very slowly. When the difference between the discharge temperature and the target discharge temperature is large,
If the discharge temperature is controlled according to this difference, the discharge temperature will largely hunt, so that the dead zone time at the time of startup is increased. On the other hand, in summer when the outside air temperature is high, the temperature of the compressor 1 is high at the time of startup and the amount of heat absorbed from atmospheric heat is large, so that the discharge temperature rises very quickly. When the difference between the discharge temperature and the target discharge temperature is relatively small, controlling the discharge temperature in accordance with this difference results in a faster discharge temperature and the target discharge temperature. Is shortened.

【0137】上記のように、運転起動時の不感帯時間を
外気温度に応じて変化させることによって、必要な循環
冷媒量が得られるので、給湯運転起動時の効率が良くな
り、また、運転起動後すぐに所定の沸き上げ温度の湯が
得られる。
As described above, the required circulating refrigerant amount can be obtained by changing the dead zone time at the start of operation according to the outside air temperature, so that the efficiency at the start of hot water supply operation is improved, and Hot water having a predetermined boiling temperature can be obtained immediately.

【0138】(実施例16)図34は本発明の実施例1
6のヒートポンプ給湯機を示す構成図、図35は同ヒー
トポンプ給湯機の起動後の経過時間に対する吐出温度の
変化を示す説明図である。
(Embodiment 16) FIG. 34 shows Embodiment 1 of the present invention.
6 is a configuration diagram showing a heat pump water heater, and FIG. 35 is an explanatory diagram showing a change in discharge temperature with respect to an elapsed time after the heat pump water heater is started.

【0139】本実施例において、実施例13と異なる点
は、圧縮機が温まっている熱時を判定する熱時判定手段
22と、熱時における運転起動時の起動初期弁開度を記
憶している第六の記憶手段30とを設けた構成としてい
ることである。
The present embodiment is different from the thirteenth embodiment in that a hot-time judging means 22 for judging when the compressor is hot and a starting initial valve opening at the start of operation when the compressor is hot are stored. And a sixth storage means 30 provided.

【0140】なお、実施例13と同符号の部分は同一構
成を有し、説明は省略する。
The parts having the same reference numerals as in the thirteenth embodiment have the same configuration, and the description will be omitted.

【0141】次に動作、作用について説明する。Next, the operation and operation will be described.

【0142】図35は横軸に運転起動後の時間をとり、
縦軸に吐出温度をとって、減圧装置3の弁開度を一定と
した場合の運転起動後の時間に対する吐出温度の変化の
関係を示したものである。同図において、実線は運転起
動時に圧縮機1が温まっている熱時の場合であり、点線
は圧縮機1が冷えている冷時の場合である。同図からわ
かるように、実線で示す熱時の方が、点線で示す冷時よ
りも吐出温度の上昇速度が大きい。このため、熱時と冷
時とで起動初期弁開度を同じにすれば、熱時の場合には
吐出温度が目標吐出温度を大きく超え、その結果、ハン
チングが大きくなってしまう。そこで、熱時の起動初期
弁開度を、冷時の起動初期弁開度よりも大きい弁開度に
設定し、冷媒循環量を大きくする。
FIG. 35 shows the time after the start of operation on the horizontal axis.
The vertical axis represents the discharge temperature, and shows the relationship of the change in the discharge temperature with respect to the time after the start of operation when the valve opening of the pressure reducing device 3 is kept constant. In the figure, a solid line indicates a case where the compressor 1 is warm when the operation is started, and a dotted line indicates a case where the compressor 1 is cold when the compressor 1 is cold. As can be seen from the figure, the rate of rise of the discharge temperature is higher in the hot state shown by the solid line than in the cold state shown by the dotted line. For this reason, if the startup initial valve opening is the same between hot and cold, the discharge temperature greatly exceeds the target discharge temperature in the case of hot, and as a result, hunting increases. Therefore, the initial valve opening of the hot start is set to be larger than the initial valve opening of the cold start, and the refrigerant circulation amount is increased.

【0143】図34において、運転を起動する場合、熱
時判定手段22は圧縮機1が温まっている熱時か、圧縮
機1が冷えている冷時かを判定する。熱時であれば、熱
時の起動初期弁開度を記憶している第六の記憶手段30
と起動時の不感帯時間を記憶している第五の記憶手段2
8と目標吐出温度を記憶している第一の記憶手段13と
吐出温度検出手段12とからの信号で、制御手段11は
減圧装置3の弁開度を制御する。
Referring to FIG. 34, when the operation is started, the hot-time judging means 22 judges whether the compressor 1 is hot or the compressor 1 is cold. If it is hot, the sixth storage means 30 that stores the starting initial valve opening degree when hot.
Storage means 2 for storing the dead zone time at the time of start-up
The control means 11 controls the valve opening of the pressure reducing device 3 based on signals from the first storage means 13 storing the target discharge temperature 8 and the target discharge temperature and the discharge temperature detecting means 12.

【0144】冷時であれば、冷時の起動初期弁開度を記
憶している第四の記憶手段27と起動時の不感帯時間を
記憶している第五の記憶手段28と目標吐出温度を記憶
している第一の記憶手段13と吐出温度検出手段12と
からの信号とで、制御手段11は減圧装置3の弁開度を
制御する。
In the cold state, the fourth storage means 27 for storing the initial valve opening of the cold start, the fifth storage means 28 for storing the dead zone time at the start, and the target discharge temperature. The control means 11 controls the valve opening of the pressure reducing device 3 based on the stored signals from the first storage means 13 and the discharge temperature detection means 12.

【0145】上記のように、圧縮機1が温まっている熱
時の運転起動の場合には、起動初期弁開度を、冷時の運
転起動時の起動初期弁開度より大きい弁開度に設定して
いるので必要な循環冷媒量が得られるため、給湯運転起
動時の効率が良くなり、さらに、吐出温度のハンチング
を小さくすることができる。
As described above, when the operation is started when the compressor 1 is hot, the initial valve opening of the compressor is set to a valve opening larger than the initial valve opening of the cold operation. Since it is set, the required amount of circulating refrigerant can be obtained, so that the efficiency at the time of starting the hot water supply operation is improved, and the hunting of the discharge temperature can be reduced.

【0146】(実施例17)図36は本発明の実施例1
7のヒートポンプ給湯機を示す構成図、図37は同ヒー
トポンプ給湯機の外気温度に対する減圧装置の熱時の起
動初期弁開度を示す説明図である。
(Embodiment 17) FIG. 36 shows Embodiment 1 of the present invention.
FIG. 37 is a configuration diagram showing the heat pump water heater of FIG. 7, and FIG. 37 is an explanatory diagram showing a starting initial valve opening degree when the pressure reducing device is heated with respect to the outside air temperature of the heat pump water heater.

【0147】本実施例において、実施例13と異なる点
は、圧縮機が温まっている熱時を判定する熱時判定手段
22と、外気温度に対する熱時の起動初期弁開度を記憶
している第六の記憶手段30を設けたことである。
The present embodiment is different from the thirteenth embodiment in that a hot-time judging means 22 for judging when the compressor is hot and a starting initial valve opening degree when the compressor is hot with respect to the outside air temperature are stored. The sixth storage means 30 is provided.

【0148】実施例2で説明したように、蒸発器4が大
気熱から吸熱する量は外気温度によって大きく異なるの
で、必要な冷媒循環量も変化する。
As described in the second embodiment, since the amount of heat absorbed by the evaporator 4 from the atmospheric heat varies greatly depending on the outside air temperature, the required refrigerant circulation amount also changes.

【0149】図37は横軸に外気温度をとり、縦軸に熱
時の起動初期弁開度をとって、外気温度に対する熱時の
起動初期弁開度の関係を示したものである。外気温度の
低い冬は、大気熱からの吸熱量が少ないので、必要な冷
媒循環量は小さい。この場合には、熱時の起動初期弁開
度を小さくする。一方、外気温度の高い夏は、大気熱か
らの吸熱量も多いので、必な冷媒循環量は大きい。この
場合には、熱時の起動初期弁開度を大きくする。
FIG. 37 shows the relationship between the outside air temperature and the initial valve opening during heating with respect to the outside air temperature, with the horizontal axis representing the outside air temperature and the vertical axis representing the opening temperature during startup. In winter when the outside air temperature is low, the amount of heat absorbed from atmospheric heat is small, so the required amount of refrigerant circulating is small. In this case, the startup initial valve opening during heating is reduced. On the other hand, in summer when the outside air temperature is high, the amount of heat absorbed from atmospheric heat is large, so the required amount of refrigerant circulation is large. In this case, the opening degree of the initial valve at the time of heating is increased.

【0150】上記のように、熱時の運転起動時に減圧装
置3の起動初期弁開度を外気温度に応じて変化させるこ
とによって、必要な循環冷媒量が得られるので、給湯運
転起動時の効率が良くなり、また、運転起動後すぐに所
定の沸き上げ温度の湯が得られる。
As described above, the required amount of circulating refrigerant can be obtained by changing the initial valve opening of the pressure reducing device 3 in accordance with the outside air temperature at the time of hot operation start-up. And hot water having a predetermined boiling temperature can be obtained immediately after the start of operation.

【0151】(実施例18)図38は本発明の実施例1
8のヒートポンプ給湯機を示す構成図、図39は同ヒー
トポンプ給湯機の起動後の経過時間に対する吐出温度の
変化を示す説明図である。
(Embodiment 18) FIG. 38 shows Embodiment 1 of the present invention.
8 is a configuration diagram showing the heat pump water heater, and FIG. 39 is an explanatory diagram showing a change in the discharge temperature with respect to an elapsed time after the heat pump water heater is started.

【0152】本実施例において、実施例5と異なる点
は、運転起動からの経過時間を計測する起動経過時間計
測手段31と所定の時間を記憶している第七の記憶手段
32とを設けた構成としていることである。
This embodiment is different from the fifth embodiment in that a start elapsed time measuring means 31 for measuring an elapsed time from the start of operation and a seventh storage means 32 for storing a predetermined time are provided. It is a configuration.

【0153】なお、実施例5と同符号の部分は同一構成
を有し、説明は省略する。
Note that the portions denoted by the same reference numerals as in the fifth embodiment have the same configuration, and the description will be omitted.

【0154】次に動作、作用について説明する。Next, the operation and operation will be described.

【0155】図39は横軸に運転起動後の時間をとり、
縦軸に吐出温度をとって、運転起動後の時間に対する吐
出温度の変化の関係を示したものである。同図におい
て、運転起動後の時間Tでは吐出温度がほぼ一定であ
る。また、吐出温度がほぼ一定になれば、その他の温度
も同様にほぼ一定になり、定常運転状態になったと判断
できる。そして、このように予め求めておいた前記時間
Tを所定の時間として第七の記憶手段32に記憶させて
おく。
FIG. 39 shows the time after the start of operation on the horizontal axis.
The vertical axis represents the discharge temperature, and shows the relationship between the change in the discharge temperature and the time after the start of operation. In the figure, the discharge temperature is substantially constant at time T after the start of operation. Further, when the discharge temperature becomes substantially constant, the other temperatures become substantially constant in the same manner, and it can be determined that a steady operation state has been attained. The time T obtained in advance as described above is stored in the seventh storage means 32 as a predetermined time.

【0156】図38において、運転が起動されると、起
動経過時間計測手段31は運転起動からの経過時間を計
測する。そして、制御手段11は、起動経過時間計測手
段31の計測した経過時間が第七の記憶手段32が記憶
している所定の時間になれば、起動状態から定常状態に
なったと判断する。
In FIG. 38, when the operation is started, the start elapsed time measuring means 31 measures the elapsed time from the start of the operation. Then, when the elapsed time measured by the activation elapsed time measurement means 31 reaches a predetermined time stored in the seventh storage means 32, the control means 11 determines that the state has changed from the activation state to the steady state.

【0157】以下の動作、作用については実施例5と同
様なので説明は省略する。
The following operation and operation are the same as those of the fifth embodiment, and the description is omitted.

【0158】(実施例19)図40は本発明の実施例1
9のヒートポンプ給湯機を示す構成図、図41は同ヒー
トポンプ給湯機の起動後の経過時間に対する吐出温度の
変化を示す説明図である。
(Embodiment 19) FIG. 40 shows Embodiment 1 of the present invention.
FIG. 41 is a configuration diagram showing the heat pump water heater 9 and FIG. 41 is an explanatory diagram showing a change in the discharge temperature with respect to an elapsed time after the heat pump water heater is started.

【0159】本実施例において、実施例5と異なる点
は、起動定常判定手段20として吐出温度検出手段12
と吐出温度変化検出手段33とを設けた構成としている
ことである。
The present embodiment is different from the fifth embodiment in that the discharge temperature detecting means 12
And a discharge temperature change detecting means 33.

【0160】なお、実施例5と同符号の部分は同一構成
を有し、説明は省略する。次に動作、作用について説明
する。
Note that the portions denoted by the same reference numerals as in the fifth embodiment have the same configuration, and description thereof will be omitted. Next, the operation and operation will be described.

【0161】図41は横軸に運転起動後の時間をとり、
縦軸に吐出温度をとって、運転起動後の時間に対する吐
出温度の変化の関係を示したものである。同図におい
て、△Tは測定時間間隔(例えば5分)であり、この△
T毎に吐出温度検出手段12は吐出温度を検出するとと
もに吐出温度変化検出手段33は△Tの間の吐出温度の
変化を検出する。同図からわかるように、起動初期は吐
出温度の変化△taは大きいが、定常状態に近づくと吐
出温度の変化△tbは小さい。いま、定常状態の判定値
として吐出温度の変化率△t(例えば、5分間で1度以
内の変化とすれば△t=0.2度/分となる)とする
と、この変化率△tより大きければ起動状態とし、この
変化率△t以下ならば定常状態とする。
FIG. 41 shows the time after the start of operation on the horizontal axis.
The vertical axis represents the discharge temperature, and shows the relationship between the change in the discharge temperature and the time after the start of operation. In the figure, ΔT is a measurement time interval (for example, 5 minutes).
At each T, the discharge temperature detecting means 12 detects the discharge temperature, and the discharge temperature change detecting means 33 detects a change in the discharge temperature during ΔT. As can be seen from the figure, the change Δta in the discharge temperature is large in the initial stage of the startup, but the change Δtb in the discharge temperature is small as the steady state is approached. Now, assuming that the change rate of the discharge temperature Δt (for example, if the change is within 1 degree in 5 minutes, Δt = 0.2 degrees / minute) as the determination value of the steady state, the change rate Δt If it is larger, it is set to the start state, and if it is not more than this change rate Δt, it is set to the steady state.

【0162】図40において、運転が起動されると、測
定時間間隔△T毎に、吐出温度検出手段12は吐出温度
を検出し、続いて、吐出温度変化検出手段33は吐出温
度の変化を検出するする。そして、制御手段11は、吐
出温度変化検出手段33が検出した吐出温度の変化の割
合が前記変化率△t以下になれば、起動状態から定常状
態になったと判断する。
In FIG. 40, when the operation is started, at every measurement time interval ΔT, the discharge temperature detecting means 12 detects the discharge temperature, and subsequently, the discharge temperature change detecting means 33 detects the change of the discharge temperature. To do. If the rate of change of the discharge temperature detected by the discharge temperature change detecting means 33 becomes equal to or less than the change rate Δt, the control means 11 determines that the state has changed from the start state to the steady state.

【0163】以下の動作、作用については実施例5と同
様なので説明は省略する。
The following operation and operation are the same as those of the fifth embodiment, and the description is omitted.

【0164】(実施例20)図42は本発明の実施例2
0のヒートポンプ給湯機を示す構成図、図43は同ヒー
トポンプ給湯機の起動後の経過時間に対する沸き上げ温
度の変化を示す説明図である。
(Embodiment 20) FIG. 42 shows Embodiment 2 of the present invention.
FIG. 43 is a configuration diagram illustrating a heat pump water heater of No. 0, and FIG. 43 is an explanatory diagram illustrating a change in a boiling temperature with respect to an elapsed time after activation of the heat pump water heater.

【0165】本実施例において、実施例5と異なる点
は、起動定常判定手段20として沸き上げ温度検出手段
8と沸き上げ温度変化検出手段34とを設けた構成とし
ていることである。
The present embodiment is different from the fifth embodiment in that a boiling-up temperature detecting means 8 and a boiling-up temperature change detecting means 34 are provided as the starting steady state determining means 20.

【0166】なお、実施例5と同符号の部分は同一構成
を有し、説明は省略する。
Note that the portions denoted by the same reference numerals as those in the fifth embodiment have the same configuration, and description thereof will be omitted.

【0167】次に動作、作用について説明する。Next, the operation and operation will be described.

【0168】図43は横軸に運転起動後の時間をとり、
縦軸に沸き上げ温度をとって、運転起動後の時間に対す
る沸き上げ温度の変化の関係を示したものである。同図
において、△Tは測定時間間隔(例えば5分)であり、
この△T毎に沸き上げ温度検出手段8は沸き上げ温度を
検出するとともに沸き上げ温度変化検出手段34は△T
の間の沸き上げ温度の変化を検出する。同図からわかる
ように、起動初期は沸き上げ温度の変化△Waは大きい
が、定常状態に近づくと沸き上げ温度の変化△Wbは小
さい。いま、定常状態の判定値として沸き上げ温度の変
化率△W(例えば、5分間で1度以内の変化とすれば△
W=0.2度/分となる)とすると、この変化率△Wよ
り大きければ起動状態とし、この変化率△W以下ならば
定常状態とする。
FIG. 43 shows the time after the start of operation on the horizontal axis.
The vertical axis represents the boiling temperature and shows the relationship between the change in the boiling temperature and the time after the start of operation. In the figure, ΔT is a measurement time interval (for example, 5 minutes),
The boiling temperature detecting means 8 detects the boiling temperature at every ΔT, and the boiling temperature change detecting means 34 detects the ΔT
During this time, the change in the boiling temperature is detected. As can be seen from the figure, the change △ Wa in the boiling temperature is large at the initial stage of the startup, but the change △ Wb in the boiling temperature is small as the steady state is approached. Now, as a determination value in a steady state, the rate of change of the boiling temperature 1W (for example, if the change is within 1 degree in 5 minutes, △
(W = 0.2 degrees / minute), if the rate of change △ W is larger, the state is set to the starting state, and if the rate of change 以下 W or less, the state is set to the steady state.

【0169】図42において、運転が起動されると、測
定時間間隔△T毎に、沸き上げ温度検出手段8は沸き上
げ温度を検出し、続いて、沸き上げ温度変化検出手段3
4は沸き上げ温度の変化を検出するする。そして、制御
手段11は、沸き上げ温度変化検出手段34が検出した
沸き上げ温度の変化の割合が前記変化率△W以下になれ
ば、起動状態から定常状態になったと判断する。
In FIG. 42, when the operation is started, the boiling temperature detecting means 8 detects the boiling temperature at every measurement time interval ΔT, and then the boiling temperature change detecting means 3
4 detects a change in the boiling temperature. Then, if the rate of change of the boiling temperature detected by the boiling temperature change detecting means 34 falls below the rate of change ΔW, the control means 11 determines that the operating state has changed to the steady state.

【0170】以下の動作、作用については実施例5と同
様なので説明は省略する。
The following operation and operation are the same as those of the fifth embodiment, and the description is omitted.

【0171】[0171]

【発明の効果】以上説明したように本発明の請求項1に
係るヒートポンプ給湯機は、圧縮機、冷媒対水熱交換
器、開度調節が可能な減圧装置、蒸発器を順次接続した
冷媒循環回路と、貯湯槽、循環ポンプ、前記冷媒対水熱
交換器を順次接続した給湯回路と、前記圧縮機の吐出温
度を検出する吐出温度検出手段と、予め設定された目標
吐出温度になるように前記減圧装置の開度を制御する制
御手段とを備え、運転起動時に前記減圧装置の開度が起
動最小弁開度より小さくならないように起動吐出温度制
御を行うので、吐出温度の上昇が早くなり、運転起動後
すぐに所定の沸き上げ温度の湯が得られ、それが貯湯槽
に貯湯されていくので、冬の給湯負荷の大きい日にも湯
切れが起きないという効果がある。
As described above, the heat pump water heater according to claim 1 of the present invention has a refrigerant circulation system in which a compressor, a refrigerant-to-water heat exchanger, a decompression device capable of adjusting the opening degree, and an evaporator are sequentially connected. Circuit, a hot water tank, a circulation pump, a hot water supply circuit in which the refrigerant-to-water heat exchanger is sequentially connected, a discharge temperature detecting means for detecting a discharge temperature of the compressor, and a preset target discharge temperature. Control means for controlling the opening degree of the pressure reducing device, the start discharge temperature control is performed so that the opening degree of the pressure reducing device does not become smaller than the start minimum valve opening degree at the start of operation, so that the discharge temperature rises quickly. Hot water having a predetermined boiling temperature is obtained immediately after the start of operation, and the hot water is stored in the hot water storage tank, so that there is an effect that the hot water does not run out even on a day when the load of hot water supply is large in winter.

【0172】運転起動時以外の例えば冬季の着霜運転時
にも、減圧装置の開度が最小弁開度より小さくならない
ように制御を行うため、最低の必要冷媒循環量が得られ
るので、給湯運転時の効率が向上する。
Even during the frosting operation in winter, for example, other than when the operation is started, control is performed so that the opening of the pressure reducing device does not become smaller than the minimum valve opening, so that the minimum necessary refrigerant circulation amount can be obtained. Time efficiency is improved.

【0173】また、冷媒循環量を制御するので、冷媒循
環量に極端な過不足がなく運転効率が向上するという効
果もある。
Further, since the amount of circulating refrigerant is controlled, there is an effect that the amount of circulating refrigerant is not excessively large or small, and the operation efficiency is improved.

【0174】さらに、運転起動時の圧力と温度とのハン
チングが小さいので、圧力や温度が常用圧力や常用温度
の上限値を超えることもなく、圧縮機の耐久性が良くな
るという効果もある。
Further, since the hunting between the pressure and the temperature at the time of starting the operation is small, the pressure and the temperature do not exceed the upper limits of the normal pressure and the normal temperature, and there is an effect that the durability of the compressor is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1のヒートポンプ給湯機を示す
構成図
FIG. 1 is a configuration diagram illustrating a heat pump water heater according to a first embodiment of the present invention.

【図2】同ヒートポンプ給湯機の弁開度に制限を設けな
い場合の運転起動後の時間に対する吐出温度と弁開度の
関係を示す説明図
FIG. 2 is an explanatory diagram showing the relationship between the discharge temperature and the valve opening with respect to the time after the start of operation when the valve opening of the heat pump water heater is not limited.

【図3】同ヒートポンプ給湯機の弁開度に下限値(起動
最小弁開度)を設けた場合の運転起動後の時間に対する
吐出温度と弁開度の関係を示す説明図
FIG. 3 is an explanatory diagram showing the relationship between the discharge temperature and the valve opening with respect to the time after the start of operation when a lower limit (starting minimum valve opening) is provided for the valve opening of the heat pump water heater.

【図4】同ヒートポンプ給湯機の運転起動後の時間に対
する沸き上げ温度の変化を示す説明図
FIG. 4 is an explanatory diagram showing a change in a boiling temperature with respect to a time after starting operation of the heat pump water heater.

【図5】同ヒートポンプ給湯機の着霜後の時間に対する
弁開度と吐出温度と給湯加熱能力の変化を示す説明図
FIG. 5 is an explanatory diagram showing changes in valve opening, discharge temperature, and hot water heating capacity with respect to time after frost formation of the heat pump water heater.

【図6】本発明の実施例2のヒートポンプ給湯機を示す
構成図
FIG. 6 is a configuration diagram illustrating a heat pump water heater according to a second embodiment of the present invention.

【図7】同ヒートポンプ給湯機の外気温度に対する減圧
装置の最小弁開度を示す説明図
FIG. 7 is an explanatory diagram showing the minimum valve opening of the pressure reducing device with respect to the outside air temperature of the heat pump water heater.

【図8】本発明の実施例3のヒートポンプ給湯機を示す
構成図
FIG. 8 is a configuration diagram illustrating a heat pump water heater according to a third embodiment of the present invention.

【図9】同ヒートポンプ給湯機の外気温度に対する給水
温度を示す説明図
FIG. 9 is an explanatory diagram showing a feed water temperature with respect to an outside air temperature of the heat pump water heater.

【図10】同ヒートポンプ給湯機の給水温度に対する減
圧装置の最小弁開度を示す説明図
FIG. 10 is an explanatory diagram showing a minimum valve opening of the pressure reducing device with respect to a feed water temperature of the heat pump water heater.

【図11】本発明の実施例4のヒートポンプ給湯機を示
す構成図
FIG. 11 is a configuration diagram illustrating a heat pump water heater according to a fourth embodiment of the present invention.

【図12】同ヒートポンプ給湯機の出湯有無に対する給
水温度検出手段が検出した温度の変化を示す説明図
FIG. 12 is an explanatory diagram showing a change in temperature detected by water supply temperature detection means with respect to the presence or absence of hot water from the heat pump water heater.

【図13】本発明の実施例5のヒートポンプ給湯機を示
す構成図
FIG. 13 is a configuration diagram illustrating a heat pump water heater according to a fifth embodiment of the present invention.

【図14】同ヒートポンプ給湯機の起動後の経過時間に
対する吐出温度の変化を示す説明図
FIG. 14 is an explanatory diagram showing a change in discharge temperature with respect to an elapsed time after the start of the heat pump water heater.

【図15】同ヒートポンプ給湯機の定常時の減圧装置の
開度に対する吐出圧力の変化を示す説明図
FIG. 15 is an explanatory diagram showing a change in discharge pressure with respect to the opening degree of the pressure reducing device in a steady state of the heat pump water heater.

【図16】本発明の実施例6のヒートポンプ給湯機を示
す構成図
FIG. 16 is a configuration diagram showing a heat pump water heater according to Embodiment 6 of the present invention.

【図17】同ヒートポンプ給湯機の定常時の減圧装置の
開度に対する異なった電源周波数における吐出圧力の変
化を示す説明図
FIG. 17 is an explanatory diagram showing a change in discharge pressure at different power supply frequencies with respect to the opening degree of the pressure reducing device in a steady state of the heat pump water heater.

【図18】本発明の実施例7のヒートポンプ給湯機を示
す構成図
FIG. 18 is a configuration diagram illustrating a heat pump water heater according to a seventh embodiment of the present invention.

【図19】同ヒートポンプ給湯機の起動後の経過時間に
対する吐出温度の変化を示す説明図
FIG. 19 is an explanatory diagram showing a change in discharge temperature with respect to an elapsed time after the start of the heat pump water heater.

【図20】本発明の実施例8のヒートポンプ給湯機を示
す構成図
FIG. 20 is a configuration diagram illustrating a heat pump water heater according to an eighth embodiment of the present invention.

【図21】本発明の実施例9のヒートポンプ給湯機を示
す構成図
FIG. 21 is a configuration diagram showing a heat pump water heater according to a ninth embodiment of the present invention.

【図22】本発明の実施例7のヒートポンプ給湯機を示
す構成図
FIG. 22 is a configuration diagram showing a heat pump water heater according to a seventh embodiment of the present invention.

【図23】同ヒートポンプ給湯機の起動後の経過時間に
対する吐出温度の変化を示す説明図
FIG. 23 is an explanatory diagram showing a change in discharge temperature with respect to an elapsed time after the start of the heat pump water heater.

【図24】本発明の実施例11のヒートポンプ給湯機を
示す構成図
FIG. 24 is a configuration diagram showing a heat pump water heater according to Embodiment 11 of the present invention.

【図25】同ヒートポンプ給湯機の熱時における外気温
度に対する減圧装置の起動最小弁開度(熱時起動最小弁
開度)を示す説明図
FIG. 25 is an explanatory diagram showing the minimum opening of a pressure reducing device (minimum opening of a hot start valve) with respect to the outside air temperature when the heat pump water heater is hot.

【図26】本発明の実施例12のヒートポンプ給湯機を
示す構成図
FIG. 26 is a configuration diagram showing a heat pump water heater according to Embodiment 12 of the present invention.

【図27】同ヒートポンプ給湯機の給水温度に対する減
圧装置の熱時起動最小弁開度を示す説明図
FIG. 27 is an explanatory diagram showing a minimum valve opening of the pressure reducing device when the pressure reducing device is heated when the temperature of the heat pump water supply device is increased.

【図28】本発明の実施例13のヒートポンプ給湯機を
示す構成図
FIG. 28 is a configuration diagram showing a heat pump water heater according to Embodiment 13 of the present invention.

【図29】同ヒートポンプ給湯機の運転起動後の時間に
対する吐出温度と弁開度の関係を示す説明図
FIG. 29 is an explanatory diagram showing a relationship between a discharge temperature and a valve opening degree with respect to a time after starting operation of the heat pump water heater.

【図30】本発明の実施例14のヒートポンプ給湯機を
示す構成図
FIG. 30 is a configuration diagram showing a heat pump water heater according to Embodiment 14 of the present invention.

【図31】同ヒートポンプ給湯機の外気温度に対する減
圧装置の起動初期弁開度を示す説明図
FIG. 31 is an explanatory diagram showing the initial valve opening of the pressure reducing device at the start of operation with respect to the outside air temperature of the heat pump water heater.

【図32】本発明の実施例15のヒートポンプ給湯機を
示す構成図
FIG. 32 is a configuration diagram illustrating a heat pump water heater according to Embodiment 15 of the present invention.

【図33】同ヒートポンプ給湯機の外気温度に対する吐
出温度制御を行わない起動時の不感帯時間を示す説明図
FIG. 33 is an explanatory diagram showing a dead zone time at the time of startup without performing discharge temperature control on the outside air temperature of the heat pump water heater.

【図34】本発明の実施例16のヒートポンプ給湯機を
示す構成図
FIG. 34 is a configuration diagram showing a heat pump water heater according to Embodiment 16 of the present invention.

【図35】同ヒートポンプ給湯機の起動後の経過時間に
対する吐出温度の変化を示す説明図
FIG. 35 is an explanatory diagram showing a change in discharge temperature with respect to an elapsed time after activation of the heat pump water heater.

【図36】本発明の実施例17のヒートポンプ給湯機を
示す構成図
FIG. 36 is a configuration diagram showing a heat pump water heater of embodiment 17 of the present invention.

【図37】同ヒートポンプ給湯機の外気温度に対する減
圧装置の熱時の起動初期弁開度を示す説明図
FIG. 37 is an explanatory diagram showing a starting initial valve opening degree when the pressure reducing device is heated with respect to the outside air temperature of the heat pump water heater.

【図38】本発明の実施例18のヒートポンプ給湯機を
示す構成図
FIG. 38 is a configuration diagram showing a heat pump water heater according to Embodiment 18 of the present invention.

【図39】同ヒートポンプ給湯機の起動後の経過時間に
対する吐出温度の変化を示す説明図
FIG. 39 is an explanatory diagram showing a change in discharge temperature with respect to an elapsed time after the start of the heat pump water heater.

【図40】本発明の実施例19のヒートポンプ給湯機を
示す構成図
FIG. 40 is a configuration diagram showing a heat pump water heater of a nineteenth embodiment of the present invention.

【図41】同ヒートポンプ給湯機の起動後の経過時間に
対する吐出温度の変化を示す説明図
FIG. 41 is an explanatory diagram showing a change in discharge temperature with respect to an elapsed time after the start of the heat pump water heater.

【図42】本発明の実施例20のヒートポンプ給湯機を
示す構成図
FIG. 42 is a configuration diagram showing a heat pump water heater according to a twentieth embodiment of the present invention.

【図43】同ヒートポンプ給湯機の起動後の経過時間に
対する沸き上げ温度の変化を示す説明図
FIG. 43 is an explanatory diagram showing a change in a boiling temperature with respect to an elapsed time after activation of the heat pump water heater.

【図44】第一の従来例におけるヒートポンプ給湯機を
示す構成図
FIG. 44 is a configuration diagram showing a heat pump water heater in the first conventional example.

【図45】第二の従来例におけるヒートポンプ給湯機を
示す構成図
FIG. 45 is a configuration diagram showing a heat pump water heater in a second conventional example.

【符号の説明】 1 圧縮機 2 冷媒対水熱交換器 3 減圧装置 4 蒸発器 5 貯湯槽 6 循環ポンプ 11 制御手段 12 吐出温度検出手段[Description of Signs] 1 Compressor 2 Refrigerant-to-water heat exchanger 3 Decompression device 4 Evaporator 5 Hot water storage tank 6 Circulation pump 11 Control means 12 Discharge temperature detection means

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、冷媒対水熱交換器、開度調節が可
能な減圧装置、蒸発器を順次接続した冷媒循環回路と、
貯湯槽、循環ポンプ、前記冷媒対水熱交換器を順次接続
した給湯回路と、前記圧縮機の吐出温度を検出する吐出
温度検出手段と、予め設定された目標吐出温度になるよ
うに前記減圧装置の開度を制御する制御手段とを備え、
前記減圧装置の開度に最小弁開度を設けたことを特徴と
するヒートポンプ給湯機。
1. A refrigerant circuit in which a compressor, a refrigerant-to-water heat exchanger, a decompression device capable of adjusting an opening degree, and an evaporator are sequentially connected.
A hot water supply circuit in which a hot water storage tank, a circulation pump, and the refrigerant-to-water heat exchanger are sequentially connected, discharge temperature detecting means for detecting a discharge temperature of the compressor, and the pressure reducing device so as to reach a preset target discharge temperature Control means for controlling the opening of the
A heat pump water heater, wherein a minimum valve opening is provided for the opening of the pressure reducing device.
【請求項2】減圧装置の最小弁開度は外気温度検出手段
からの信号によって得た外気温度によって異なることを
特徴とする請求項1記載のヒートポンプ給湯機。
2. The heat pump water heater according to claim 1, wherein the minimum valve opening of the pressure reducing device varies depending on the outside air temperature obtained by a signal from the outside air temperature detecting means.
【請求項3】減圧装置の最小弁開度は給水温度検出手段
からの信号によって得た給水温度によって異なることを
特徴とする請求項1記載のヒートポンプ給湯機。
3. The heat pump water heater according to claim 1, wherein the minimum valve opening of the pressure reducing device varies depending on the feed water temperature obtained by a signal from the feed water temperature detecting means.
【請求項4】出湯検出手段が出湯を検出した後、給水温
度検出手段が給水温度を検出することを特徴とする請求
項3記載のヒートポンプ給湯機。
4. The heat pump water heater according to claim 3, wherein the hot water temperature detecting means detects the hot water temperature after the hot water detecting means detects hot water.
【請求項5】運転の起動と定常を判定する起動定常判定
手段からの信号によって、前記減圧装置の最小弁開度を
運転起動時と定常時とで変えることを特徴とする請求項
1記載のヒートポンプ給湯機。
5. The system according to claim 1, wherein the minimum valve opening of the pressure reducing device is changed between the start of operation and the steady state by a signal from the start / steady state determination means for judging the start and steady state of the operation. Heat pump water heater.
【請求項6】減圧装置の最小弁開度は電源周波数によっ
て異なることを特徴とする請求項1記載のヒートポンプ
給湯機。
6. The heat pump water heater according to claim 1, wherein the minimum valve opening of the pressure reducing device varies depending on the power supply frequency.
【請求項7】圧縮機が温まっているか否かを判定する熱
時判定手段が熱時を検出した時の運転起動の場合には、
前記減圧装置の起動最小弁開度を大きくすることを特徴
とする請求項1記載のヒートポンプ給湯機。
7. When the operation is started when the hot time judging means for judging whether or not the compressor is warm detects the hot time,
2. The heat pump water heater according to claim 1, wherein the minimum opening of the pressure reducing device is increased.
【請求項8】熱時判定手段として圧縮機温度検出手段を
用いたことを特徴とする請求項7記載のヒートポンプ給
湯機。
8. The heat pump water heater according to claim 7, wherein a compressor temperature detecting means is used as the hot time judging means.
【請求項9】熱時判定手段として前回の運転停止からの
経過時間を計算する第一の時間計測手段を用いたことを
特徴とする請求項7記載のヒートポンプ給湯機。
9. The heat pump water heater according to claim 7, wherein a first time measuring means for calculating an elapsed time from a previous stop of operation is used as the hot time judging means.
【請求項10】熱時判定手段として運転起動後の経過時
間を計算する第二の時間計測手段と吐出温度検出手段と
を用いたことを特徴とする請求項7記載のヒートポンプ
給湯機。
10. The heat pump water heater according to claim 7, wherein a second time measuring means for calculating an elapsed time after the start of operation and a discharge temperature detecting means are used as the hot time judging means.
【請求項11】熱時の前記減圧装置の起動最小弁開度は
外気温度検出手段からの信号によって得た外気温度によ
って異なることを特徴とする請求項7記載のヒートポン
プ給湯機。
11. The heat pump water heater according to claim 7, wherein the minimum opening of the decompression device when the temperature is hot varies depending on the outside air temperature obtained by a signal from the outside air temperature detecting means.
【請求項12】熱時の前記減圧装置の起動最小弁開度は
給水温度検出手段からの信号によって得た給水温度によ
って異なることを特徴とする請求項7記載のヒートポン
プ給湯機。
12. The heat pump water heater according to claim 7, wherein the minimum opening degree of the decompression device at the time of heating is different depending on the feed water temperature obtained by a signal from the feed water temperature detecting means.
【請求項13】運転起動時に減圧装置の開度を、最小弁
開度以上の開度である起動初期弁開度に固定する不感帯
時間を設けたことを特徴とする請求項1記載のヒートポ
ンプ給湯機。
13. A heat pump hot water supply according to claim 1, wherein a dead zone time is provided for fixing the opening of the pressure reducing device to an opening of the initial valve which is equal to or greater than the minimum valve opening when the operation is started. Machine.
【請求項14】起動初期弁開度は外気温度検出手段から
の信号によって得た外気温度によって異なることを特徴
とする請求項13記載のヒートポンプ給湯機。
14. The heat pump water heater according to claim 13, wherein the opening degree of the starting valve differs depending on the outside air temperature obtained by a signal from the outside air temperature detecting means.
【請求項15】不感帯時間は、外気温度検出手段からの
信号によって得た外気温度によって異なること特徴とす
る請求項13記載のヒートポンプ給湯機。
15. The heat pump water heater according to claim 13, wherein the dead zone time varies depending on the outside air temperature obtained by a signal from the outside air temperature detecting means.
【請求項16】熱時には起動初期弁開度大きくすること
を特徴とする請求項13記載のヒートポンプ給湯機。
16. The heat pump water heater according to claim 13, wherein the initial opening of the valve during startup is increased when it is hot.
【請求項17】熱時の起動初期弁開度は外気温度検出手
段からの信号によって得た外気温度によって異なること
を特徴とする請求項13記載のヒートポンプ給湯機。
17. The heat pump water heater according to claim 13, wherein the initial opening of the valve at the time of heating is different depending on the outside air temperature obtained by a signal from the outside air temperature detecting means.
【請求項18】起動定常判定手段として、運転起動から
の経過時間を計測する起動経過時間計測手段を用いたこ
とを特徴とする請求項5記載のヒートポンプ給湯機。
18. The heat pump water heater according to claim 5, wherein a starting elapsed time measuring means for measuring an elapsed time from the start of the operation is used as the starting steady state determining means.
【請求項19】起動定常判定手段として、吐出温度検出
手段と吐出温度変化検出手段とを用いたことを特徴とす
る請求項5記載のヒートポンプ給湯機。
19. The heat pump water heater according to claim 5, wherein a discharge temperature detecting means and a discharge temperature change detecting means are used as the steady start determination means.
【請求項20】起動定常判定手段として、沸き上げ温度
検出手段と沸き上げ温度変化検出手段とを用いたことを
特徴とする請求項5記載のヒートポンプ給湯機。
20. The heat pump water heater according to claim 5, wherein a boiling temperature detecting means and a boiling temperature change detecting means are used as the starting steady state determining means.
JP2000021619A 2000-01-31 2000-01-31 Heat pump water heater Expired - Fee Related JP3690229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000021619A JP3690229B2 (en) 2000-01-31 2000-01-31 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000021619A JP3690229B2 (en) 2000-01-31 2000-01-31 Heat pump water heater

Publications (3)

Publication Number Publication Date
JP2001208434A true JP2001208434A (en) 2001-08-03
JP2001208434A5 JP2001208434A5 (en) 2005-07-21
JP3690229B2 JP3690229B2 (en) 2005-08-31

Family

ID=18548003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000021619A Expired - Fee Related JP3690229B2 (en) 2000-01-31 2000-01-31 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3690229B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247981A (en) * 2006-03-16 2007-09-27 Matsushita Electric Ind Co Ltd Cogeneration system
JP2009168320A (en) * 2008-01-15 2009-07-30 Chugoku Electric Manufacture Co Ltd Heat pump type hot water supply system
JP2015113996A (en) * 2013-12-09 2015-06-22 リンナイ株式会社 Hot water supply device
JP2015148431A (en) * 2014-02-10 2015-08-20 パナソニックIpマネジメント株式会社 Refrigeration device
JP2017075766A (en) * 2015-10-16 2017-04-20 ダイキン工業株式会社 Heat pump type heating device
WO2019049637A1 (en) * 2017-09-05 2019-03-14 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioning device
WO2019102538A1 (en) * 2017-11-22 2019-05-31 三菱電機株式会社 Air conditioner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247981A (en) * 2006-03-16 2007-09-27 Matsushita Electric Ind Co Ltd Cogeneration system
JP2009168320A (en) * 2008-01-15 2009-07-30 Chugoku Electric Manufacture Co Ltd Heat pump type hot water supply system
JP2015113996A (en) * 2013-12-09 2015-06-22 リンナイ株式会社 Hot water supply device
JP2015148431A (en) * 2014-02-10 2015-08-20 パナソニックIpマネジメント株式会社 Refrigeration device
JP2017075766A (en) * 2015-10-16 2017-04-20 ダイキン工業株式会社 Heat pump type heating device
WO2019049637A1 (en) * 2017-09-05 2019-03-14 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioning device
JP2019043423A (en) * 2017-09-05 2019-03-22 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner
WO2019102538A1 (en) * 2017-11-22 2019-05-31 三菱電機株式会社 Air conditioner
CN111356885A (en) * 2017-11-22 2020-06-30 三菱电机株式会社 Air conditioner
JPWO2019102538A1 (en) * 2017-11-22 2020-11-19 三菱電機株式会社 air conditioner
CN111356885B (en) * 2017-11-22 2022-02-01 三菱电机株式会社 Air conditioner

Also Published As

Publication number Publication date
JP3690229B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
JP4337880B2 (en) Heat pump water heater
JP3659197B2 (en) Heat pump water heater
JP3632645B2 (en) Heat pump water heater
JP3737357B2 (en) Water heater
JP3937715B2 (en) Heat pump water heater
JP5708249B2 (en) Heat pump water heater
JP2001208434A (en) Heat pump hot water supplier
JP2002188860A5 (en)
JP3800862B2 (en) Heat pump water heater
JP3740380B2 (en) Heat pump water heater
JP3700474B2 (en) Heat pump water heater
JP3703995B2 (en) Heat pump water heater
JP3900186B2 (en) Heat pump water heater
JPH08296895A (en) Heat pump hot-water supply apparatus
JP4251785B2 (en) Heat pump water heater
JP5840062B2 (en) Heat pump type liquid heating device and heat pump type water heater
JP3849577B2 (en) Heat pump bath water heater
JP2000346447A5 (en)
JP4090179B2 (en) Heat pump water heater
JP4465986B2 (en) Heat pump type water heater
JP3060980B2 (en) Heat pump water heater
JP2003056907A (en) Heat pump water heater
JP2504424B2 (en) Refrigeration cycle
JP5772665B2 (en) Heat pump type water heater
JP6959194B2 (en) Hot water supply device and control method of hot water supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041202

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20041202

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees