JPH0443173B2 - - Google Patents

Info

Publication number
JPH0443173B2
JPH0443173B2 JP60087535A JP8753585A JPH0443173B2 JP H0443173 B2 JPH0443173 B2 JP H0443173B2 JP 60087535 A JP60087535 A JP 60087535A JP 8753585 A JP8753585 A JP 8753585A JP H0443173 B2 JPH0443173 B2 JP H0443173B2
Authority
JP
Japan
Prior art keywords
temperature
amount
heat exchanger
humidity
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60087535A
Other languages
Japanese (ja)
Other versions
JPS61250438A (en
Inventor
Seiji Kamesaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP60087535A priority Critical patent/JPS61250438A/en
Publication of JPS61250438A publication Critical patent/JPS61250438A/en
Publication of JPH0443173B2 publication Critical patent/JPH0443173B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧縮機、四方弁、室外熱交換器、絞
り装置及び室内熱交換器を順次連通してなる空気
熱源式ヒートポンプ形の空気調和機の除霜運転制
御装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an air-source heat pump type air conditioner in which a compressor, a four-way valve, an outdoor heat exchanger, a throttle device, and an indoor heat exchanger are connected in sequence. This relates to a defrosting operation control device for a machine.

〔従来技術及び発明が解決しようとする問題点〕[Prior art and problems to be solved by the invention]

従来、この種の空気調和機の冷凍サイクルは、
第6図に示すように、暖房運転時圧縮機aから吐
出された冷媒が、実線矢印のように四方弁bを通
り、室内熱交換器cで凝縮され、キヤピラリチユ
ーブd,eを通り、室外熱交換器fで蒸発し、再
び四方弁bを通り、圧縮機aに戻る。
Conventionally, the refrigeration cycle of this type of air conditioner is
As shown in FIG. 6, during heating operation, the refrigerant discharged from the compressor a passes through the four-way valve b as indicated by the solid arrow, is condensed in the indoor heat exchanger c, passes through capillary tubes d and e, It evaporates in the outdoor heat exchanger f, passes through the four-way valve b again, and returns to the compressor a.

また、低外気温時には、室外熱交換器fの温度
が低くなり、やがて室外熱交換器fの表面に霜が
付着し始め、そのため伝熱特性が低下して熱交換
器能力が急激に減少し始め、これにつれて暖房能
力も低下する。
In addition, when the outside temperature is low, the temperature of the outdoor heat exchanger f becomes low, and eventually frost begins to adhere to the surface of the outdoor heat exchanger f, which causes the heat transfer characteristics to deteriorate and the heat exchanger capacity to rapidly decrease. At first, the heating capacity also decreases.

このため、室外熱交換器fの配管温度を熱交換
器温度センサgで検知すると共に、外気相対湿度
を外気湿度センサhで検知し、室外熱交換器fの
配管温度がある一定温度以下で、かつ相対湿度が
一定値以上のとき、図中の破線に示されるよう
に、冷房運転とし、室外熱交換器fに高温、高圧
の冷媒を送り、室外熱交換器fに付着した霜を融
解させ、室外熱交換器fの能力を回復させ、再び
図中の実線に示される暖房運転にするものであ
る。
Therefore, the pipe temperature of the outdoor heat exchanger f is detected by the heat exchanger temperature sensor g, and the outside air relative humidity is detected by the outside air humidity sensor h, and when the pipe temperature of the outdoor heat exchanger f is below a certain temperature, And when the relative humidity is above a certain value, as shown by the broken line in the figure, cooling operation is started, and high-temperature, high-pressure refrigerant is sent to the outdoor heat exchanger f to melt the frost attached to the outdoor heat exchanger f. , the capacity of the outdoor heat exchanger f is restored and the heating operation is resumed as indicated by the solid line in the figure.

しかし、上述のような従来の除霜運転モードに
おいて、除霜運転開始の判定条件は、室外熱交換
器fの温度の外気相対湿度だけであるため、相対
湿度についての一定値の定め方によつては、着霜
していても除霜運転しなかつたり、着霜していな
くても除霜運転が行われたりするという欠点があ
つた。
However, in the conventional defrosting operation mode as described above, the judgment condition for starting the defrosting operation is only the outside air relative humidity at the temperature of the outdoor heat exchanger f. In the past, there were disadvantages in that the defrosting operation was not performed even if frost had formed, or the defrosting operation was performed even if no frost had formed.

すなわち、相対湿度は一定体積の空気中に実際
に含まれている水蒸気量とその空気がそのときの
温度で含む得る最大の水蒸気量(飽和水蒸気量)
との比をパーセントで表わしたものである。これ
を温度対水蒸気量特性で表わすと、第7図に示す
ように横軸と100%(飽和水蒸気量)特性曲線X
との間に存する曲線で示される。相対湿度がどの
ような値であつても室外熱交換器fの温度が零度
以下でなければ着霜することがなく、かつ室外熱
交換器fの温度は外気にさらされていて外気温度
に対して略一定の温度差ΔTを呈するようになつ
ている。
In other words, relative humidity is the amount of water vapor actually contained in a certain volume of air and the maximum amount of water vapor that air can contain at that temperature (saturated water vapor amount).
It is expressed as a percentage. When this is expressed in terms of temperature vs. water vapor amount characteristics, as shown in Figure 7, the horizontal axis and the 100% (saturated water vapor amount) characteristic curve
It is shown by the curve between . No matter what the relative humidity is, frost will not form unless the temperature of the outdoor heat exchanger f is below zero degrees, and the temperature of the outdoor heat exchanger f is exposed to the outside air and is not relative to the outside temperature. It is designed to exhibit a substantially constant temperature difference ΔT.

従つて、室外熱交換器fの温度が零度のときの
外気温度をT1、零度のとき飽和水蒸気量をD1
すると、T1を通る縦軸に平行な直線Y1、D1を通
る横軸に平行な直線Z1及び上述の曲線Xによつて
囲まれる範囲内の相対湿度において着霜すること
になる。この着霜の生じる最小相対湿度RH1
曲線X1上のものであり、この相対湿度RH1が上
記一定値として定められる。また、図示のように
外気温度T2に下がり、これにともない室外交換
器fの温度もT3に下がつたとすると、T2を通る
縦軸に平行な直線Y2、温度T3のときの飽和水蒸
気D2を通る直線Z2及び曲線Xによつて囲まれる
相対湿度において着霜が生じるが、上記設定した
相対湿度RH1はY2、Z2、Xによつて囲まれる範
囲内に入つていないため、湿度センサによる検知
相対湿度がRH1のときには実際には着霜してい
なくても、着霜しているとみなして除霜運転が行
われるようになる。
Therefore, if the outside air temperature when the temperature of the outdoor heat exchanger f is 0 degrees is T 1 and the amount of saturated water vapor is D 1 when the temperature is 0 degrees, then a straight line Y 1 passing through T 1 and passing through D 1 is parallel to the vertical axis. Frost will form at a relative humidity within the range surrounded by the straight line Z 1 parallel to the horizontal axis and the above-mentioned curve X. The minimum relative humidity RH 1 at which frost formation occurs is on the curve X 1 , and this relative humidity RH 1 is determined as the above-mentioned constant value. Also, as shown in the figure, if the outside air temperature drops to T 2 and the temperature of the outdoor exchanger f also drops to T 3 , then when the straight line Y 2 passing through T 2 and parallel to the vertical axis and the temperature T 3 Frost formation occurs at the relative humidity surrounded by the straight line Z 2 passing through the saturated water vapor D 2 of Therefore, when the relative humidity detected by the humidity sensor is RH 1 , it is assumed that frost has formed and the defrosting operation is performed even if there is actually no frost.

このようなことは、可変能力のインバータ式の
圧縮機を使用し、ΔTが変化されるようになつて
いる冷凍サイクルにおいて更に顕著に現われる。
This phenomenon is even more noticeable in a refrigeration cycle in which a variable capacity inverter type compressor is used and ΔT is varied.

従つて、このようなときはいくら除霜運転を行
つても、暖房能力の向上ははかれず、また逆に除
霜運転中は、暖房運転が停止するため室温が低下
し、快適性が損われる他、除霜運転中は冷房運転
となるため凝縮器、蒸発器が逆転し、運転効率が
低下する欠点を有していた。
Therefore, no matter how much defrosting operation is performed in such a case, the heating capacity cannot be improved, and conversely, during defrosting operation, heating operation is stopped, causing the room temperature to drop and comfort to be impaired. In addition, during defrosting operation, cooling operation is performed, so the condenser and evaporator are reversed, reducing operational efficiency.

以上のような欠点を解消したものとして、室外
熱交換器への流入空気中の水分量と流出空気中の
水分量とを入口と出口とにそれぞれ設けた湿度セ
ンサ、温度センサを用いて得た信号により演算し
て求め、その差により着霜量を知るようになした
ものも提案されているが、該装置の場合、多くの
センサを必要とし、構成複雑で高価となるという
欠点がある。
In order to overcome the above drawbacks, the amount of moisture in the air flowing into the outdoor heat exchanger and the amount of moisture in the air flowing out of the outdoor heat exchanger can be obtained by using a humidity sensor and a temperature sensor installed at the inlet and outlet, respectively. A device has been proposed in which the amount of frost is determined by calculation based on the signals and the difference between them, but this device has the disadvantage that it requires a large number of sensors, is complex in structure, and is expensive.

よつて本発明は、上述した従来のものの欠点を
除去し、直霜の判定及び着霜量の計測を簡単な構
成により適切に行つて適時に除霜運転を開始する
ように構成することによつて、着霜を予測して除
霜運転を制御して運転効率の向上を図つた空気調
和機の除霜運転制御装置を提供することを目的と
している。
Therefore, the present invention eliminates the above-mentioned drawbacks of the conventional system, and is configured to appropriately determine direct frost and measure the amount of frost with a simple configuration, and to start defrosting operation at the appropriate time. Therefore, it is an object of the present invention to provide a defrosting operation control device for an air conditioner that predicts frost formation and controls the defrosting operation to improve operational efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため本発明により成された
空気調和機の除霜運転制御装置は、圧縮機、四方
弁、室外熱交換器、絞り装置及び室内熱交換器を
順次連通してなる空気調和機において、室外熱交
換器の温度を検知する交換器温度センサと、外気
の温度を検知する外気温度センサと、外気の湿度
を検知する湿度センサと、前記外気温度センサに
より検知した温度と前記湿度センサにより検知し
た湿度により外気の絶対湿度を演算する絶対湿度
演算手段と、前記交換器温度センサにより検知し
た温度に対する飽和水蒸気量と前記演算した絶対
湿度の比較する比較手段と、前記交換器温度セン
サにより検知した温度が零度以下であることと、
前記比較手段による比較の結果絶対湿度が飽和水
蒸気量より大きいこととにより着霜を判定する判
定手段と、前記判定手段による着霜判定時の前記
演算した絶対湿度と飽和水蒸気量の差である凝縮
水分量を演算する手段と、前記判定手段による着
霜判定時の前記交換器温度センサにより検知した
温度と前記凝縮水分量とにより、着霜量が所定量
になる時間を演算する手段とを備え、着霜判定後
前記演算した時間経過した時点で除霜運転を開始
するようにしたことを特徴としている。
In order to achieve the above object, the defrosting operation control device for an air conditioner according to the present invention is an air conditioner in which a compressor, a four-way valve, an outdoor heat exchanger, a throttling device, and an indoor heat exchanger are connected in sequence. , an exchanger temperature sensor that detects the temperature of the outdoor heat exchanger, an outside air temperature sensor that detects the temperature of outside air, a humidity sensor that detects the humidity of outside air, and the temperature detected by the outside air temperature sensor and the humidity sensor. an absolute humidity calculation means for calculating the absolute humidity of the outside air based on the humidity detected by the exchanger temperature sensor; a comparison means for comparing the saturated water vapor amount with respect to the temperature detected by the exchanger temperature sensor and the calculated absolute humidity; The detected temperature is below zero,
determining means for determining frost formation based on the comparison result by the comparing means that the absolute humidity is greater than the saturated water vapor amount; and condensation, which is the difference between the calculated absolute humidity and the saturated water vapor amount when the determining means determines frost formation. means for calculating the amount of moisture; and means for calculating the time for the amount of frost to reach a predetermined amount based on the temperature detected by the exchanger temperature sensor and the amount of condensed moisture when frost formation is determined by the determining means. , the defrosting operation is started when the calculated time has elapsed after the determination of frost formation.

〔作用〕 上記構成により、外気温度センサにより検知し
た温度と湿度センサにより検知した湿度により外
気の絶対湿度を演算し、この交換器温度センサに
より検知した温度が零度以下で、かつ絶対湿度が
飽和水蒸気量より大きいこととにより着霜を判定
し、着霜判定時の絶対湿度と飽和水蒸気量の差で
ある凝縮水分量を演算し、着霜判定時の交換器温
度センサにより検知した温度と凝縮水分量とによ
り、着霜量が所定量になる時間を演算し、着霜判
定後上記演算した時間経過した時点で除霜運転を
開始するようにしているので、着霜の開始及びそ
の後の着霜量を正確に把握して適時に除霜運転を
開始する制御を行うことができる。
[Function] With the above configuration, the absolute humidity of the outside air is calculated from the temperature detected by the outside air temperature sensor and the humidity detected by the humidity sensor, and the temperature detected by the exchanger temperature sensor is below zero and the absolute humidity is saturated water vapor. The amount of condensed water is calculated as the difference between the absolute humidity at the time of frost determination and the saturated water vapor amount, and the temperature detected by the exchanger temperature sensor and the condensed moisture at the time of frost determination are calculated. The time required for the amount of frost to reach a predetermined amount is calculated based on the amount of frost formation, and the defrosting operation is started when the above calculated time has elapsed after frost formation is determined, so that the start of frost formation and subsequent frost formation It is possible to control the defrosting operation to start the defrosting operation in a timely manner by accurately grasping the amount.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図乃至第5図に基
づいて説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 5.

まず、室外熱交換器への着霜の条件について説
明する。
First, conditions for frost formation on the outdoor heat exchanger will be explained.

着霜は室外熱交換器の温度が零度以下で、かつ
室外熱交換器表面に凝縮水があることを条件にし
て発生する。また、室外熱交換器表面の凝縮水
は、フアンにより室外熱交換器表面に送られてく
る外気中に含まれている水蒸気量が室外熱交換器
の温度での飽和水蒸気量以上のときに生じる。
Frost formation occurs when the temperature of the outdoor heat exchanger is below zero degrees and there is condensed water on the surface of the outdoor heat exchanger. In addition, condensed water on the surface of the outdoor heat exchanger is generated when the amount of water vapor contained in the outside air sent to the surface of the outdoor heat exchanger by a fan is greater than the saturated amount of water vapor at the temperature of the outdoor heat exchanger. .

以上のことから、外気の温度及び相対湿度と室
外熱交換器の温度を知ることによつて、以下のよ
うにして着霜条件が求められる。
From the above, by knowing the temperature and relative humidity of the outside air and the temperature of the outdoor heat exchanger, the frosting conditions can be determined as follows.

各温度に対する飽和水蒸気量DSAは第3図に示
すように既知であるので、同図において相対湿度
RHと外気温度TAとから外気中の水蒸気量、すな
わち絶対湿度DAをDSA・RH/100なる演算によつ
て求められることができ、該絶対湿度DAと室外
熱交換器の温度TEでの飽和水蒸気量DSEとを比較
することにより、TE<0でかつDA>DSEの検出に
より着霜の始まる条件を検知することができる。
勿論TE>0のとき、或いはDA<DSEのときには着
霜は生じない。
Since the saturated water vapor amount D SA for each temperature is known as shown in Figure 3, the relative humidity
From RH and the outside air temperature T A , the amount of water vapor in the outside air, that is, the absolute humidity D A can be calculated by the calculation D SA・RH/100, and the absolute humidity D A and the temperature T of the outdoor heat exchanger can be calculated. By comparing the saturated water vapor amount D SE at E , it is possible to detect conditions where frost formation begins by detecting that T E <0 and D A >D SE .
Of course, frost does not form when T E >0 or when D A <D SE .

一般に、室外熱交換器は着霜が起り始めただけ
ではその能力は低下せず、或る一定の着霜量を越
えたところで始めて能力低下することが知られて
いる。従つて、着霜条件の検知により除霜運転を
直ちに開始することは全くの無駄であり、着霜量
が所定値Vに達するまでは除霜運転を開始させな
いことが好ましい。
Generally, it is known that the performance of an outdoor heat exchanger does not decrease just when frost begins to form, but only when a certain amount of frost is exceeded. Therefore, it is completely wasteful to start the defrosting operation immediately upon detection of the frosting condition, and it is preferable not to start the defrosting operation until the amount of frosting reaches the predetermined value V.

ところで、上述の着霜条件が成り立つている状
態での着霜速度は、第4図に示すように凝縮水分
量ΔD(=DA−DSE)に略比例し、かつ第5図に示
すように、ΔT(=TA−TE)が一定であれば、室
外熱交換器の温度TE(<0)に略比例する。
By the way, when the above-mentioned frost formation conditions are met, the frost formation rate is approximately proportional to the condensed water content ΔD (=D A −D SE ) as shown in Figure 4, and as shown in Figure 5. If ΔT (=T A −T E ) is constant, it is approximately proportional to the temperature T E (<0) of the outdoor heat exchanger.

従つて、凝縮水分量ΔD、室外熱交換温度TE
それぞれ一定の定数α、βを生じたものを時間t
で積分したものの和が所定値Vよりも大きくなつ
たとき、すなわち、 ∫αΔDdt+∫βTEdt>V となつたときに、霜が所定量付いたとみなし除霜
運転を開始させるデフロスト信号を発生させれば
よい。今、着霜開始後のΔD、TEに変化がないと
すると、以下のようにしてtを決定することがで
きる。
Therefore, the amount of condensed water ΔD and the outdoor heat exchange temperature T E with constant constants α and β, respectively, are expressed as time t.
When the sum of the integrated values becomes larger than a predetermined value V, that is, when ∫αΔDdt+∫βT E dt>V, it is assumed that a predetermined amount of frost has formed and a defrost signal is generated to start defrosting operation. That's fine. Now, assuming that there is no change in ΔD and T E after the start of frost formation, t can be determined as follows.

上式をtについて解くと、 t>V/αΔD+βTE となる。従つて、実際のデフロスト信号の発生は
着霜条件の検知によりタイマーを起動して時間t
をカウントした時点で簡略的に行うことができ
る。
Solving the above equation for t yields t>V/αΔD+βT E. Therefore, the actual defrost signal is generated by starting a timer upon detection of the frosting condition and waiting for a time t.
This can be done simply by counting.

次に、本発明の一実施例における除霜運転制御
装置について第1図及び第2図を参照して説明す
る。
Next, a defrosting operation control device according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

同図において、1は圧縮機、2は四方弁、3は
室内熱交換器で、4,5はキヤピラリチユーブ、
6は室外熱交換器で、これらを順次連結すること
により周知の冷凍サイクルを構成している。冷媒
は暖房時実線の如く流れ、また除霜運転時と冷房
運転時は破線の如く流れる。7は室外熱交換器6
の交換温度センサ、8は外気湿度センサ、9は外
気温度センサである。
In the figure, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 and 5 are capillary tubes,
Reference numeral 6 denotes an outdoor heat exchanger, which constitutes a well-known refrigeration cycle by sequentially connecting these. The refrigerant flows as shown by the solid line during heating, and flows as shown by the broken line during defrosting and cooling operations. 7 is outdoor heat exchanger 6
8 is an outside air humidity sensor, and 9 is an outside air temperature sensor.

着霜開始は、外気温度センサ9により測定した
温度に対する飽和水蒸気量と外気湿度センサ8に
より測定した相対湿度とにより演算して絶対湿度
を求め、交換器温度センサ7により測定した温度
が零度以下で、かつ該温度に対する飽和水蒸気量
と上記絶対湿度との比較により絶対湿度が大きい
ことを条件にこれを判定する。そして、デフロス
ト信号の発生は、着霜開始からの着霜量を絶対湿
度の室外熱交換器の温度に対する飽和水蒸気量と
の差と、室外熱交換器の温度とにより演算して求
め、該着霜量が所定値以上となつたことに応じて
行う。
The start of frosting is determined by calculating the absolute humidity based on the saturated water vapor amount for the temperature measured by the outside air temperature sensor 9 and the relative humidity measured by the outside air humidity sensor 8, and when the temperature measured by the exchanger temperature sensor 7 is below zero degrees. , and by comparing the saturated water vapor amount at the temperature with the above-mentioned absolute humidity, this is determined on the condition that the absolute humidity is large. The generation of the defrost signal is calculated by calculating the amount of frost formed from the start of frost formation using the difference between the absolute humidity and the saturated water vapor amount with respect to the temperature of the outdoor heat exchanger, and the temperature of the outdoor heat exchanger. This is done in response to the amount of frost reaching a predetermined value or higher.

次に、第2図により、同実施例の制御回路につ
いて説明する。
Next, the control circuit of the same embodiment will be explained with reference to FIG.

同図において、制御回路10には、交換器温度
センサ7、外気湿度センサ8及び外気温度センサ
9が接続されている。制御回路10は各センサか
らの検知信号を増幅するセンス増幅器10a,1
0b,10cを有し、センス増幅器10aの出力
は絶対湿度演算回路10dの一方の入力に、セン
ス増幅器10bの出力は上記絶対湿度演算回路1
0dの他方の入力に、センス増幅器10cの出力
は零度以下検出回路10eの入力と飽和水蒸気量
決定回路10fの入力とにそれぞれ接続されてい
る。
In the figure, an exchanger temperature sensor 7, an outside air humidity sensor 8, and an outside air temperature sensor 9 are connected to a control circuit 10. The control circuit 10 includes sense amplifiers 10a and 1 that amplify detection signals from each sensor.
0b and 10c, the output of the sense amplifier 10a is connected to one input of the absolute humidity calculation circuit 10d, and the output of the sense amplifier 10b is connected to the absolute humidity calculation circuit 1.
0d, the output of the sense amplifier 10c is connected to the input of the below-zero temperature detection circuit 10e and the input of the saturated water vapor amount determination circuit 10f, respectively.

上記零度以下検出回路10eはその入力に印加
される交換器温度TEが零度以下であることを検
出しその出力に検出信号を出力し、これを上記絶
対湿度演算回路10d、飽和水蒸気量決定回路1
0fの制御入力cと、アンド回路10gの一方の
入力とに印加する。
The below-zero temperature detection circuit 10e detects that the exchanger temperature T E applied to its input is below zero degrees and outputs a detection signal to its output, which is transmitted to the absolute humidity calculation circuit 10d and the saturated water vapor amount determination circuit. 1
It is applied to the control input c of 0f and one input of the AND circuit 10g.

上記絶対湿度演算回路10dはその制御入力c
に信号が加えられているとき、その入力に印加さ
れる外気温度TA及び外気相対湿度RHと既知の外
気温度に対する飽和水蒸気量DSAとから、下式 DA=DSA・RH/100 により、外気の絶対湿度DAを演算する。
The absolute humidity calculation circuit 10d has its control input c
When a signal is applied to the input, from the outside air temperature T A and outside air relative humidity RH applied to the input, and the saturated water vapor amount D SA for the known outside air temperature, the following formula D A = D SA・RH/100 is used. , calculate the absolute humidity D A of the outside air.

上記飽和水蒸気量決定回路10fはその入力に
印加される交換器温度TEによりその温度に対す
る飽和水蒸気量DSEを決定する。
The saturated water vapor amount determining circuit 10f determines the saturated water vapor amount D SE for the exchanger temperature T E applied to its input.

上記絶対湿度演算回路10dの出力と飽和水蒸
気量決定回路10fの出力とは比較回路10hと
差演算回路10iの両入力にそれぞれ接続されて
おり、比較回路10hにおいては絶対湿度DA
飽和水蒸気量DSEとの比較が行われ、DA>DSE
ときその出力に信号が出力されてアンド回路10
gの他方の入力に印加される。アンド回路10g
はその両入口に信号が印加されることによつて出
力に信号を出力し、これをタイマー回路10jの
起動入力Tと上記差演算回路10iの制御入力c
とに印加する。
The output of the absolute humidity calculation circuit 10d and the output of the saturated water vapor amount determination circuit 10f are connected to both inputs of the comparison circuit 10h and the difference calculation circuit 10i, respectively, and in the comparison circuit 10h, the absolute humidity D A and the saturated water vapor amount A comparison is made with D SE , and when D A > D SE , a signal is output to the output and the AND circuit 10
is applied to the other input of g. AND circuit 10g
When a signal is applied to both of its inputs, it outputs a signal to the output, and this signal is applied to the start input T of the timer circuit 10j and the control input c of the difference calculation circuit 10i.
and apply it to.

上記差演算回路10iはその制御入力cに信号
が加えられるとその入力に印加されている絶対湿
度DAと飽和水蒸気量DSEとの差、すなわち凝縮水
蒸気量ΔDを下式 ΔD=DA−DSE により演算し、その演算結果を時間演算回路10
kの一方の入力に印加する。時間演算回路10k
の他方の入力には交換器温度TEが印加されてい
て、ここで下式で表わされる演算を行つて時間t
を求める。
When a signal is applied to its control input c, the difference calculation circuit 10i calculates the difference between the absolute humidity D A applied to the input and the saturated water vapor amount D SE , that is, the condensed water vapor amount ΔD using the following formula ΔD=D A − Calculate by D SE and send the calculation result to the time calculation circuit 10
k to one input. Time calculation circuit 10k
The exchanger temperature T E is applied to the other input of
seek.

t=V/(αΔD+βTE) なお式中、Vは予め定めた一定値で、室外熱交
換器の能率を低下させる室外熱交換器への着霜量
に対応し、α、βは定数である。
t=V/(αΔD+βT E ) In the formula, V is a predetermined constant value and corresponds to the amount of frost on the outdoor heat exchanger that reduces the efficiency of the outdoor heat exchanger, and α and β are constants. .

該時間演算回路10kによつて求められた時間
tは比較回路10lにおいてタイマー回路10j
の起動後の計時時間と比較され、該計時時間がt
より大となると比較回路10lの出力に信号が出
力される。該信号は、図示しないリレーコイルを
オンし、四方弁を切り換えて除霜運転モードにす
るデフロスト信号として利用される。
The time t obtained by the time calculation circuit 10k is calculated by the timer circuit 10j in the comparison circuit 10l.
The measured time after startup is compared with the measured time t.
When it becomes larger, a signal is outputted to the output of the comparator circuit 10l. This signal is used as a defrost signal to turn on a relay coil (not shown), switch the four-way valve, and set the defrosting operation mode.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、交換器温
度センサにより検知した温度が零度以下で、かつ
絶対湿度が飽和水蒸気量より大きいこととにより
着霜を判定しているので、どのような条件下でも
着霜の開始を適切に判定することができる。
As explained above, according to the present invention, frost formation is determined based on whether the temperature detected by the exchanger temperature sensor is below zero degrees and the absolute humidity is greater than the saturated water vapor amount. However, it is possible to appropriately determine the onset of frost formation.

しかも、着霜判定時の絶対湿度と飽和水蒸気量
の差である凝縮水分量を演算し、この凝縮水分量
と着霜判定時の交換器温度センサにより検知した
温度とにより、着霜量が所定量になる時間を演算
し、着霜判定後上記演算した時間経過した時点で
除霜運転を開始するようにしているので、除霜運
転開始時点も室外熱交換器の能力を最大限利用で
きるように決定されることができ、より一層の運
転効率の向上が図られる。
In addition, the amount of condensed water, which is the difference between the absolute humidity and the saturated water vapor amount at the time of frost determination, is calculated, and the amount of frost is determined based on this amount of condensed water and the temperature detected by the exchanger temperature sensor at the time of frost determination. The time required to reach a certain level is calculated, and the defrosting operation is started when the above calculated time has elapsed after frost formation judgment, so that the outdoor heat exchanger's capacity can be utilized to its maximum even when the defrosting operation starts. Therefore, the operating efficiency can be further improved.

そして、これらは3つのセンサからの信号の処
理によつて実現され、構成も従来のものに比べて
比較的簡単であるなどの効果が得られる。
These are realized by processing signals from three sensors, and the configuration is relatively simple compared to conventional ones.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における除霜運転制
御装置を具備した空気調和機の冷凍サイクル図、
第2図は同除霜運転制御装置の電気回路を示すブ
ロツク図、第3図乃至第5図は本発明の原理を説
明するためのグラフ、第6図は従来例を示す冷凍
サイクル図、第7図は従来例の欠点を説明するた
めのグラフである。 1……圧縮器、2……四方弁、3……室内熱交
換器、4,5……キヤピラリチユーブ、6……室
外熱交換器、7……交換器温度センサ、8……外
気湿度センサ、9……外気温度センサ、10……
制御回路、10d……絶対湿度演算回路、10e
……零度以下検出回路、10f……飽和水蒸気量
決定回路、10g……アンド回路、10h……比
較回路、10i……差演算回路、10j……タイ
マー、10k……時間演算回路、10l……比較
回路。
FIG. 1 is a refrigeration cycle diagram of an air conditioner equipped with a defrosting operation control device according to an embodiment of the present invention;
Fig. 2 is a block diagram showing the electric circuit of the defrosting operation control device, Figs. 3 to 5 are graphs for explaining the principle of the present invention, Fig. 6 is a refrigeration cycle diagram showing a conventional example, FIG. 7 is a graph for explaining the drawbacks of the conventional example. 1... Compressor, 2... Four-way valve, 3... Indoor heat exchanger, 4, 5... Capillary tube, 6... Outdoor heat exchanger, 7... Exchanger temperature sensor, 8... Outside air humidity Sensor, 9... Outside temperature sensor, 10...
Control circuit, 10d...Absolute humidity calculation circuit, 10e
... Zero temperature detection circuit, 10f ... Saturated water vapor amount determination circuit, 10g ... AND circuit, 10h ... Comparison circuit, 10i ... Difference calculation circuit, 10j ... Timer, 10k ... Time calculation circuit, 10l ... Comparison circuit.

Claims (1)

【特許請求の範囲】 1 圧縮機、四方弁、室外熱交換器、絞り装置及
び室内熱交換器を順次連通してなる空気調和機に
おいて、 室外熱交換器の温度を検知する交換器温度セン
サと、 外気の温度を検知する外気温度センサと、 外気の湿度を検知する湿度センサと、 前記外気温度センサにより検知した温度と前記
湿度センサにより検知した湿度により外気の絶対
湿度を演算する絶対湿度演算手段と、 前記交換器温度センサにより検知した温度に対
する飽和水蒸気量と前記演算した絶対湿度を比較
する比較手段と、 前記交換器温度センサにより検知した温度が零
度以下であることと、前記比較手段による比較の
結果絶対湿度が飽和水蒸気量より大きいこととに
より着霜を判定する判定手段と、 前記判定手段による着霜判定時の前記演算した
絶対湿度と飽和水蒸気量の差である凝縮水分量を
演算する手段と、 前記判定手段による着霜判定時の前記交換器温
度センサにより検知した温度と前記凝縮水分量と
により、着霜量が所定量になる時間を演算する手
段とを備え、 着霜判定後前記演算した時間経過した時点で除
霜運転を開始するようにした ことを特徴とする除霜運転制御装置。
[Scope of Claims] 1. An air conditioner in which a compressor, a four-way valve, an outdoor heat exchanger, a throttle device, and an indoor heat exchanger are connected in sequence, comprising: an exchanger temperature sensor that detects the temperature of the outdoor heat exchanger; , an outside air temperature sensor that detects the temperature of the outside air, a humidity sensor that detects the humidity of the outside air, and an absolute humidity calculation means that calculates the absolute humidity of the outside air based on the temperature detected by the outside air temperature sensor and the humidity detected by the humidity sensor. and a comparison means for comparing the saturated water vapor amount with respect to the temperature detected by the exchanger temperature sensor and the calculated absolute humidity; and that the temperature detected by the exchanger temperature sensor is below zero degrees, and a comparison by the comparison means. determining means for determining frost formation based on the result that the absolute humidity is greater than the saturated water vapor amount; and calculating the condensed water amount that is the difference between the calculated absolute humidity and the saturated water vapor amount when frost formation is determined by the determining means. and a means for calculating a time period in which the amount of frosting reaches a predetermined amount based on the temperature detected by the exchanger temperature sensor and the amount of condensed water when the frosting is determined by the determining means, after the frosting is determined. A defrosting operation control device characterized in that the defrosting operation is started when the calculated time has elapsed.
JP60087535A 1985-04-25 1985-04-25 Defrosting operation control device for air conditioner Granted JPS61250438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60087535A JPS61250438A (en) 1985-04-25 1985-04-25 Defrosting operation control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60087535A JPS61250438A (en) 1985-04-25 1985-04-25 Defrosting operation control device for air conditioner

Publications (2)

Publication Number Publication Date
JPS61250438A JPS61250438A (en) 1986-11-07
JPH0443173B2 true JPH0443173B2 (en) 1992-07-15

Family

ID=13917678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60087535A Granted JPS61250438A (en) 1985-04-25 1985-04-25 Defrosting operation control device for air conditioner

Country Status (1)

Country Link
JP (1) JPS61250438A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278844A (en) * 1988-09-14 1990-03-19 Hokkaido Electric Power Co Inc:The Air conditioner
KR960005749U (en) * 1994-07-29 1996-02-17 Dew condensation device of air conditioner
JP2007263426A (en) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd Defrosting control device
EP3531045A4 (en) * 2016-10-20 2019-08-28 GD Midea Heating & Ventilating Equipment Co., Ltd. Method and device for defrosting air conditioner
KR102342408B1 (en) * 2017-05-12 2021-12-24 엘지전자 주식회사 An air conditioner and a method for controlling the same
CN112303815A (en) * 2020-09-27 2021-02-02 青岛海尔空调电子有限公司 Defrosting control method of air conditioner outdoor unit and air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184435A (en) * 1982-04-21 1983-10-27 Hitachi Ltd Air cooled heat pump type air conditioner device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686429U (en) * 1979-12-07 1981-07-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184435A (en) * 1982-04-21 1983-10-27 Hitachi Ltd Air cooled heat pump type air conditioner device

Also Published As

Publication number Publication date
JPS61250438A (en) 1986-11-07

Similar Documents

Publication Publication Date Title
US5214918A (en) Refrigerator and method for indicating refrigerant amount
JP3893676B2 (en) Air conditioner
JPS58120054A (en) Air conditioner
US4869074A (en) Regenerative refrigeration cycle apparatus and control method therefor
JPH0443173B2 (en)
CN113847708A (en) Defrosting control method of air conditioner outdoor unit and air conditioner
JPH07117269B2 (en) Defrosting operation control device for air conditioner
JPH0730979B2 (en) Air conditioner
JPH1038398A (en) Controller of electric expansion valve
JPH0245777B2 (en)
JP2550649B2 (en) Refrigeration equipment
JP3511708B2 (en) Operation control unit for air conditioner
KR19980018431A (en) Air conditioner
JPS63318444A (en) Defrosting control device for air conditioner
JPH0684832B2 (en) Defroster for air conditioner
JPH07167473A (en) Defrosting operation controller for air conditioner
JPH0684834B2 (en) Defroster for air conditioner
JPS5832098Y2 (en) Defrosting device for heat pump air conditioners
KR880000935B1 (en) Control device for refrigeration cycle
JP2002286301A (en) Refrigerating cycle
JPS6317955Y2 (en)
JPS62299660A (en) Air conditioner
JP2867792B2 (en) Heating and cooling machine
JPH0260940B2 (en)
JPH0120604Y2 (en)