JPH07117269B2 - Defrosting operation control device for air conditioner - Google Patents

Defrosting operation control device for air conditioner

Info

Publication number
JPH07117269B2
JPH07117269B2 JP2253147A JP25314790A JPH07117269B2 JP H07117269 B2 JPH07117269 B2 JP H07117269B2 JP 2253147 A JP2253147 A JP 2253147A JP 25314790 A JP25314790 A JP 25314790A JP H07117269 B2 JPH07117269 B2 JP H07117269B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
outdoor heat
temperature
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2253147A
Other languages
Japanese (ja)
Other versions
JPH04131645A (en
Inventor
正博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2253147A priority Critical patent/JPH07117269B2/en
Publication of JPH04131645A publication Critical patent/JPH04131645A/en
Publication of JPH07117269B2 publication Critical patent/JPH07117269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、空気調和装置の除霜運転制御装置に関し、詳
しくは除霜運転の開始時期を適切にするための改良に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defrosting operation control device for an air conditioner, and more particularly, to an improvement for appropriately starting a defrosting operation.

(従来の技術) 従来より、この種の除霜運転制御装置として、特公昭58
−54332号公報に開示されるように、予め、除霜運転を
開始すべき条件式を室外熱交換器の温度及び室外温度の
両温度に基いて一義的に決定し、その条件式を満たす室
外熱交換器の温度及び室外温度のときに、室外熱交換器
の着霜時と判断して、除霜運転を開始するものが知られ
ている。
(Prior Art) Conventionally, as a defrosting operation control device of this type, Japanese Patent Publication No.
As disclosed in Japanese Laid-Open Patent Publication No. 54332/1989, a conditional expression for starting the defrosting operation is uniquely determined based on both the temperature of the outdoor heat exchanger and the outdoor temperature, and the outdoor condition that satisfies the conditional expression is determined. It is known that when the temperature of the heat exchanger and the outdoor temperature are the same, it is determined that the outdoor heat exchanger is frosting and the defrosting operation is started.

(発明が解決しようとする課題) しかしながら、昨今のように圧縮機をインバータ等で能
力制御する場合には、除霜運転を開始すべき条件が圧縮
機の能力状態に応じて異なってくるため、上記従来のよ
うに条件式を一義的に設定するものでは、着霜量の少い
状態で除霜運転が早期に開始されたり、除霜運転の開始
が遅れ過ぎたりする欠点が生じる。
(Problems to be Solved by the Invention) However, when the capacity of a compressor is controlled by an inverter or the like as in recent years, the conditions for starting the defrosting operation differ depending on the capacity state of the compressor. If the conditional expression is uniquely set as in the above-mentioned conventional case, there is a drawback that the defrosting operation is started early in a state where the amount of frost is small, or the start of the defrosting operation is too late.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、最適な除霜タイミングを検出して、除霜運転の開
始を常に適切な時期に行うことにある。
The present invention has been made in view of the above point, and an object thereof is to detect the optimum defrosting timing and always start the defrosting operation at an appropriate time.

(課題を解決するための手段) 上記の目的を達成するため、本発明では、暖房運転時に
おける室外熱交換器の熱交換性能を把握し、これにより
着霜による室外熱交換器の熱交換性能の低下を正確に検
出することとする。
(Means for Solving the Problem) In order to achieve the above object, in the present invention, the heat exchange performance of the outdoor heat exchanger during the heating operation is grasped, and thereby the heat exchange performance of the outdoor heat exchanger due to frost formation. It is necessary to accurately detect the decrease in

つまり、本発明の具体的な解決手段は、第1図に示すよ
うに、圧縮機(1)、室内熱交換器(2)、膨脹弁
(3)、及び室外熱交換器(4)を順次閉回路に接続し
た冷媒循環系統を有し、暖房運転可能とした空気調和装
置を前提として、上記室外熱交換器(4)に着霜した霜
を除霜する除霜手段(12)と、上記室外熱交換器(4)
の蒸発能力を算出する蒸発能力算出手段(20)と、該蒸
発能力算出手段(20)により算出された室外熱交換器
(4)の蒸発能力と,室外熱交換器(4)の温度及び外
気温度とに基いて室外熱交換器(4)の熱交換性能に関
する指数を算出する指数算出手段(21)と、該指数算出
手段(21)により算出した熱交換性能に関する指数に基
いて除霜運転の開始時期を判断し、上記除霜手段(12)
を作動させる制御手段(22)とを設ける構成としてい
る。
That is, as a concrete solution means of the present invention, as shown in FIG. 1, the compressor (1), the indoor heat exchanger (2), the expansion valve (3), and the outdoor heat exchanger (4) are sequentially arranged. Defrosting means (12) for defrosting the frost formed on the outdoor heat exchanger (4) on the premise of an air conditioner that has a refrigerant circulation system connected to a closed circuit and is capable of heating operation; Outdoor heat exchanger (4)
Evaporation capacity calculating means (20) for calculating the evaporation capacity of the outdoor heat exchanger (4) calculated by the evaporation capacity calculating means (20), the temperature of the outdoor heat exchanger (4) and the outside air Index calculation means (21) for calculating an index related to the heat exchange performance of the outdoor heat exchanger (4) based on the temperature, and defrosting operation based on the index related to the heat exchange performance calculated by the index calculation means (21) The defrosting means (12) for determining the start time of
And a control means (22) for operating the.

その場合、蒸発能力算出手段(20)は特に、室内熱交換
器(2)の凝縮能力と圧縮機(1)の入力とに基いて蒸
発能力を算出するもので構成する。また、この室内熱交
換器(2)の凝縮能力を算出は、室内熱交換器(2)の
空気の吸込温度と吹出温度との温度差、及び室内熱交換
器(2)の空気通過流量に基いて行ったり、室内熱交換
器(2)の冷媒出入口間の冷媒のエンタルピ差、及び冷
媒の循環流量に基いて行う。
In that case, the evaporation capacity calculation means (20) is particularly configured to calculate the evaporation capacity based on the condensation capacity of the indoor heat exchanger (2) and the input of the compressor (1). Further, the condensation capacity of the indoor heat exchanger (2) is calculated by the temperature difference between the intake temperature and the outlet temperature of air in the indoor heat exchanger (2) and the air passage flow rate of the indoor heat exchanger (2). Or the enthalpy difference of the refrigerant between the refrigerant inlet and outlet of the indoor heat exchanger (2) and the circulating flow rate of the refrigerant.

更に、蒸発能力算出手段(20)は他に、圧縮機(1)吸
入側の冷媒と室内熱交換器(2)出口の冷媒とのエンタ
ルピ差、及び冷媒の循環流量に基いて蒸発能力を直接算
出するもので構成する。
Furthermore, the evaporation capacity calculation means (20) directly determines the evaporation capacity based on the enthalpy difference between the refrigerant on the suction side of the compressor (1) and the refrigerant on the outlet of the indoor heat exchanger (2), and the circulation flow rate of the refrigerant. Consist of what is calculated.

(作用) 上記の構成により、本発明では、暖房運転時には、蒸発
器として作用する室外熱交換器(4)の蒸発能力が算出
され、この蒸発能力と,室外熱交換器(4)の温度及び
室外温度に基いて室外熱交換器(4)の熱交換能力に関
する指数が算出される。
(Operation) With the above configuration, in the present invention, the evaporation capacity of the outdoor heat exchanger (4) acting as an evaporator is calculated during the heating operation, and this evaporation capacity, the temperature of the outdoor heat exchanger (4), and An index relating to the heat exchange capacity of the outdoor heat exchanger (4) is calculated based on the outdoor temperature.

そして、室外熱交換器(4)に着霜が生じ、これにより
空気の流通断面積が閉塞され始めて、室外送風ファン
(4a)から送風されて室外熱交換器(4)を通過する空
気量が減少して、室外熱交換器(4)の熱交換能力が低
下し始めると、その熱交換能力に関する指数も変化する
ので、この指数に基いて室外熱交換器(4)の除霜運転
の開始時期を正確に判断できる。
Then, frost is formed on the outdoor heat exchanger (4), whereby the air flow cross-sectional area begins to be blocked, and the amount of air blown from the outdoor blower fan (4a) and passing through the outdoor heat exchanger (4) is increased. When the heat exchange capacity of the outdoor heat exchanger (4) begins to decrease and the heat exchange capacity of the outdoor heat exchanger (4) begins to decrease, the index relating to the heat exchange capacity also changes. Therefore, the defrosting operation of the outdoor heat exchanger (4) is started based on this index. The time can be accurately judged.

ここに、室外熱交換器(4)の熱交換能力に関する指数
を算出して、この熱交換能力の変化を直接把握している
ので、たとえ圧縮機(1)が能力制御されても、その圧
縮機(1)の能力状態に拘らず、室外熱交換器(4)の
着霜を正確に検出して、除霜運転の開始時期を適切タイ
ミングにできる。
Here, since the index relating to the heat exchange capacity of the outdoor heat exchanger (4) is calculated and the change in the heat exchange capacity is directly grasped, even if the capacity of the compressor (1) is controlled, the compression Regardless of the capacity state of the machine (1), frost formation on the outdoor heat exchanger (4) can be accurately detected, and the defrosting operation start timing can be set to an appropriate timing.

しかも、その場合に、室外熱交換器の蒸発能力の算出
を、例えば室内熱交換器の凝縮能力と圧縮機の電気入力
とに基づいて間接的に行ったり、室外熱交換器の冷媒の
エンタルピ差や,通過空気の通過前後の空気温度差に基
いて直接に行えば、蒸発能力の算出を正確に行えるの
で、除霜運転の開始時期を一層適切タイミングにでき
る。
Moreover, in that case, the evaporation capacity of the outdoor heat exchanger is indirectly calculated based on, for example, the condensation capacity of the indoor heat exchanger and the electric input of the compressor, or the enthalpy difference of the refrigerant in the outdoor heat exchanger is calculated. Alternatively, if it is directly performed based on the difference in air temperature before and after passage of the passing air, the evaporation capacity can be calculated accurately, so that the start time of the defrosting operation can be made more appropriate.

(発明の効果) 以上説明したように、本発明の空気調和装置の除霜運転
制御装置によれば、暖房運転時における室外熱交換器の
熱交換能力をその指数の算出により直接把握したので、
圧縮機の能力状態に拘らず、室外熱交換器の着霜を正確
に判断して、その除霜運転の開始時期を適切にすること
ができる。
(Effect of the invention) As described above, according to the defrosting operation control device for an air conditioner of the present invention, the heat exchange capacity of the outdoor heat exchanger during the heating operation is directly grasped by calculating its index,
Regardless of the capacity state of the compressor, it is possible to accurately determine the frost formation on the outdoor heat exchanger and to appropriately set the start time of the defrosting operation.

また、室外熱交換器の蒸発能力の算出を、室内熱交換器
の凝縮能力,圧縮機の電気入力,室外熱交換器の冷媒の
エンタルピ差,通過空気の通過前後の空気温度差に基い
て直接に又は間接に行えば、除霜運転の開始時期一層適
切タイミングにできる。
In addition, the evaporation capacity of the outdoor heat exchanger is calculated directly based on the condensing capacity of the indoor heat exchanger, the electric input of the compressor, the enthalpy difference of the refrigerant in the outdoor heat exchanger, and the air temperature difference before and after passing the passing air. Or indirectly, the defrosting operation can be started at a more appropriate timing.

(実施例) 以下、本発明の実施例を図面に基いて説明する。(Example) Hereinafter, the Example of this invention is described based on drawing.

第2図において、(1)は圧縮機、(2)は室内送風フ
ァン(2a)を有する室内熱交換器、(3)は電動膨脹
弁、(4)は室外送風ファン(4a)を有する室外熱交換
器、(5)は四路切換弁であって、上記の機器は冷媒配
管(6)…によって閉回路に接続されて冷媒循環系統
(8)が形成されている。上記四路切換弁(5)の実線
位置への切換時には、実線矢印で示すように圧縮機
(1)から吐出された高温冷媒を室内熱交換器(2)に
流して室内を暖房し、これにより液化した低温冷媒を室
外熱交換器(4)に流して外気から吸熱し再び高温冷媒
として圧縮機(1)に戻すことを繰返す。これに対し、
四路切換弁(5)の破線位置への切換時には、破線矢印
で示すように圧縮機(1)から吐出された高温冷媒を室
外熱交換器(4)に流して外気に放熱し、これにより液
化した低温冷媒を室内熱交換器(2)に流して室内を冷
房し再び高温冷媒として圧縮器(1)に戻すことを繰返
す。
In FIG. 2, (1) is a compressor, (2) is an indoor heat exchanger having an indoor blower fan (2a), (3) is an electric expansion valve, and (4) is an outdoor blower having an outdoor blower fan (4a). The heat exchanger (5) is a four-way switching valve, and the above devices are connected in a closed circuit by refrigerant pipes (6) to form a refrigerant circulation system (8). When the four-way switching valve (5) is switched to the solid line position, the high temperature refrigerant discharged from the compressor (1) is flown into the indoor heat exchanger (2) to heat the room as indicated by the solid line arrow. The liquefied low-temperature refrigerant is repeatedly flown into the outdoor heat exchanger (4) to absorb heat from the outside air and returned to the compressor (1) as a high-temperature refrigerant again. In contrast,
At the time of switching the four-way switching valve (5) to the broken line position, the high-temperature refrigerant discharged from the compressor (1) flows into the outdoor heat exchanger (4) to radiate heat to the outside air, as indicated by the broken line arrow. The liquefied low-temperature refrigerant is flown into the indoor heat exchanger (2) to cool the room and return it to the compressor (1) as high-temperature refrigerant again.

また、上記圧縮機(1)の吐出側と四路切換弁(5)の
間の冷媒配管(6)には、除霜用の冷媒配管(9)が接
続され、該冷媒配管(9)の他端は電動膨脹弁(3)と
室外熱交換器(4)との間の冷媒配管(6)に接続され
ていて、該除霜用の冷媒配管(9)の途中には、該配管
(9)を開閉する除霜用の電磁弁(10)が介設されてい
る。該電磁弁(10)は、四路切換弁(5)が実線位置に
ある暖房運転時に室外熱交換器(4)に着霜が生じたと
判断されるときに開制御される。
A refrigerant pipe (9) for defrosting is connected to the refrigerant pipe (6) between the discharge side of the compressor (1) and the four-way switching valve (5). The other end is connected to a refrigerant pipe (6) between the electric expansion valve (3) and the outdoor heat exchanger (4), and the pipe (9) is provided in the middle of the defrosting refrigerant pipe (9). An electromagnetic valve (10) for defrosting which opens and closes 9) is provided. The solenoid valve (10) is controlled to be opened when it is determined that the outdoor heat exchanger (4) is frosted during the heating operation in which the four-way switching valve (5) is in the solid line position.

よって、上記除霜用の電磁弁(10)の開時には、圧縮機
(1)から吐出されたホットガスの一部を除霜用の冷媒
配管(9)を経て室外熱交換器(4)における冷媒循環
系統(8)の冷媒導入側に供給することにより、その除
霜を正サイクルで行うようにした除霜手段(12)を構成
している。
Therefore, when the electromagnetic valve (10) for defrosting is opened, a part of the hot gas discharged from the compressor (1) is passed through the refrigerant pipe (9) for defrosting in the outdoor heat exchanger (4). By supplying the refrigerant to the refrigerant introduction side of the refrigerant circulation system (8), the defrosting means (12) is configured to perform the defrosting in a normal cycle.

さらに、(15)は内部にCPU等を有するコントローラで
あって、該コントローラ(15)によりインバータ(16)
を制御して圧縮機(1)を室温に応じて能力制御する機
能を有する。
Further, (15) is a controller having a CPU or the like inside, and the controller (15) allows an inverter (16)
To control the capacity of the compressor (1) according to the room temperature.

上記コントローラ(15)には、暖房運転時における室外
空気の乾球温度DBg及び湿球温度WBg、室外熱交換器
(4)の温度(蒸発温度)Te及び室内熱交換器(2)の
吹出し空気温度To及び吸込み空気温度Ti、室内送風ファ
ン(2a)の回転数、並びに圧縮機(1)の入力電流I及
び印加電圧Vの各信号が入力されている。
The controller (15) includes the dry-bulb temperature DBg and the wet-bulb temperature WBg of the outdoor air during the heating operation, the temperature (evaporation temperature) Te of the outdoor heat exchanger (4), and the air blown from the indoor heat exchanger (2). The signals of the temperature To, the intake air temperature Ti, the rotation speed of the indoor blower fan (2a), the input current I of the compressor (1) and the applied voltage V are input.

次に、コントローラ(15)による室外熱交換器(4)の
除霜運転の制御を第3図に示す制御フローに基いて説明
する。
Next, the control of the defrosting operation of the outdoor heat exchanger (4) by the controller (15) will be described based on the control flow shown in FIG.

スタートして、ステップS1で暖房運転時に凝縮機として
作用する室内熱交換器(2)の凝縮能力Qcを算出する。
この算出は室内空気の吹出温度To及び吸込温度Tiに基い
て下記式 Qc=Gi・Cp・(To−Ti) Gi;室内熱交換器(2)を通過する空気の重量流量 Cp;空気定圧比熱 に基いて算出する。
After the start, in step S 1 , the condensing capacity Qc of the indoor heat exchanger (2) acting as a condenser during heating operation is calculated.
This calculation is based on the blowout temperature To and suction temperature Ti of indoor air. The following equation Qc = Gi · Cp · (To−Ti) Gi; Weight flow rate of air passing through the indoor heat exchanger (2) Cp; Air constant pressure specific heat Calculate based on.

さらに、ステップS2で圧縮機(1)の電気入力Wを式W
=I・Vに基いて算出する。
Further, in step S 2 , the electric input W of the compressor (1) is changed to the formula W
= Calculated based on IV.

その後、ステップS3で室外熱交換器(4)の蒸発能力Qe
を第4図のモリエル線図から判るように上記の室内熱交
換器(2)の凝縮能力Qc及び圧縮機(1)の入力に基い
て式Qe=Qc−Wにて算出する。
Thereafter, the evaporation capacity Qe of the outdoor heat exchanger (4) in step S 3
As can be seen from the Mollier diagram of FIG. 4, it is calculated by the equation Qe = Qc−W based on the condensation capacity Qc of the indoor heat exchanger (2) and the input of the compressor (1).

続いて、室外熱交換器(4)の熱交換能力の指数Kを算
出するため、先ず、ステップS4で室外熱交換器(4)で
の空気のエンタルピ差を算出する。この算出は、室外熱
交換器(4)の蒸発能力が湿り熱交換により得られ、空
気のエンタルピ差が駆動力となって熱交換が行われるの
で、室外空気の乾球温度DBg及び湿球温度WBgから空気の
エンタルピHaを求めると共に、室外熱交換器(4)の温
度Teからその温度相当の飽和空気エンタルピHeを求め
る。
Subsequently, in order to calculate the index K of the heat exchange capacity of the outdoor heat exchanger (4), first calculates the enthalpy difference of the air in the outdoor heat exchanger (4) at Step S 4. In this calculation, the evaporation capacity of the outdoor heat exchanger (4) is obtained by wet heat exchange, and the enthalpy difference of the air serves as a driving force to perform heat exchange. Therefore, the dry-bulb temperature DBg and the wet-bulb temperature of the outdoor air are calculated. The enthalpy Ha of the air is obtained from WBg, and the saturated air enthalpy He corresponding to that temperature is obtained from the temperature Te of the outdoor heat exchanger (4).

ここに、室外熱交換器(4)の蒸発能力Qeは、上記の各
エンタルピHa,Heから下記式 Qe=Go・ε・(Ha−He) …(1) Go;室外空気の重量流量 ε;エンタルピ効率 に基いて算出でき、上記(1)式のGo・εを室外熱交換
器(4)の熱交換能力に関する指数Kと置くと、上記
(1)式を変形して、 K=Qe/(Ha−He) …(2) が得られる。従って、続いてステップS5で上記(2)式
に基いて室外熱交換器(4)の熱交換能力に関する指数
K(=Go・ε)を算出する。
Here, the evaporation capacity Qe of the outdoor heat exchanger (4) is calculated from the above enthalpies Ha and He by the following equation Qe = Go · ε · (Ha−He) (1) Go; Weight flow rate of outdoor air ε; It can be calculated based on the enthalpy efficiency, and if Go · ε in the above equation (1) is set as the index K related to the heat exchange capacity of the outdoor heat exchanger (4), the above equation (1) is transformed to K = Qe / (Ha-He) (2) is obtained. Therefore, subsequently, in step S 5 , the index K (= Go · ε) relating to the heat exchange capacity of the outdoor heat exchanger (4) is calculated based on the equation (2).

そして、ステップS6で上記算出した指数Kを除霜運転を
開始すべき設定値KDと比較する。ここに設定値KDは室外
送風ファン(4a)の回転数の段階によって変更される。
そして、K>KDの非着霜時にはステップS1に戻って以上
の算出動作を繰返し、一方、K≦KDの着霜時と判断する
ときには、ステップS7で上記第2図の除霜用の電磁弁
(10)を開制御して、室外熱交換器(4)の除霜運転を
開始する。
Then, in step S 6 , the index K calculated above is compared with the set value K D for starting the defrosting operation. Here, the set value K D is changed depending on the rotation speed of the outdoor blower fan (4a).
When K> K D non-frosting, the process returns to step S 1 and repeats the above calculation operation. On the other hand, when it is judged that K ≦ K D frosting occurs, in step S 7 , the defrosting of FIG. 2 is performed. The solenoid valve (10) for use is controlled to open, and the defrosting operation of the outdoor heat exchanger (4) is started.

よって、上記第3図の制御フローにおいて、ステップS1
〜S3により、室内熱交換器(2)の凝縮能力Qeと圧縮機
(1)の入力とに基いて、室外熱交換器(4)の蒸発能
力を算出するようにした蒸発能力算出手段(20)を構成
している。また、ステップS4及びS5により、上記算出式
(2)に基いて、蒸発能力算出手段(20)により算出さ
れた室外熱交換器(4)の蒸発能力Qeと,外気の乾球温
度DBg及び湿球温度WBgから求めた空気のエンタルピHa、
及び室外熱交換器(4)の温度Teから求めたその温度相
当の飽和空気エンタルピHeとに基いて室外熱交換器
(4)の熱交換性能に関する指数K(=Go・ε)を算出
するようにした指数算出手段(21)を構成している。ま
た、同制御フローのステップS6及びS7により、上記指数
算出手段(21)により算出した熱交換性能に関する指数
Kに基いて、K≦KDのとき除霜運転の開始時期であると
判断して、除霜用の電磁弁(10)を開制御して除霜手段
(12)を作動させるようにした制御手段(22)を構成し
ている。
Therefore, in the control flow of FIG. 3 above, step S 1
Evaporation capacity calculation means for calculating the evaporation capacity of the outdoor heat exchanger (4) based on the condensation capacity Qe of the indoor heat exchanger (2) and the input of the compressor (1) by S 3 to S 3. 20). Further, in steps S 4 and S 5 , the evaporation capacity Qe of the outdoor heat exchanger (4) calculated by the evaporation capacity calculation means (20) and the dry-bulb temperature DBg of the outside air are calculated based on the calculation formula (2). And the enthalpy Ha of the air obtained from the wet-bulb temperature WBg,
And an index K (= Go · ε) relating to the heat exchange performance of the outdoor heat exchanger (4) based on the saturated air enthalpy He corresponding to the temperature Te of the outdoor heat exchanger (4) The index calculation means (21). Further, in steps S 6 and S 7 of the control flow, it is determined that the defrosting operation start time is satisfied when K ≦ K D , based on the index K relating to the heat exchange performance calculated by the index calculation means (21). The defrosting solenoid valve (10) is controlled to be opened to operate the defrosting means (12), thereby forming a control means (22).

したがって、上記実施例においては、暖房運転時に、室
内熱交換器(2)の凝縮能力Qc及び圧縮機(1)の電気
入力Wに基いて室外熱交換器(4)の蒸発能力Qeが算出
され、その後に上記第(2)式に基いて室外熱交換器
(4)の熱交換能力に関する指数K(=Go・ε)が算出
されることが繰返される。
Therefore, in the above-described embodiment, the evaporation capacity Qe of the outdoor heat exchanger (4) is calculated based on the condensation capacity Qc of the indoor heat exchanger (2) and the electric input W of the compressor (1) during the heating operation. After that, the index K (= Go · ε) regarding the heat exchange capacity of the outdoor heat exchanger (4) is calculated based on the above equation (2), which is repeated.

今、室外熱交換器(4)に着霜が生じ進行すると、その
霜によって室外送風ファン(4a)から送風される空気の
室外熱交換器(4)での通過断面積が閉塞される分、そ
の空気通過流量Goが減少して、室外熱交換器(4)の熱
交換能力が低下する。また、その熱交換能力の低下と共
に、空気通過流量Goが減少するのに応じて上記の熱交換
能力に関する指数K(=Go・ε)も第5図に示すように
小さくなる。その結果、上記の指数Kが着霜時に相当す
る設定値KD以下になった(K≦KD)時点で、除霜用の電
磁弁(10)が開制御されるので、圧縮機(1)から吐出
されたホットガスの一部が除霜用の冷媒配管(9)を経
て室外熱交換器(4)に流通して、該室外熱交換器
(4)の除霜が開始される。
Now, when frost forms on the outdoor heat exchanger (4) and progresses, the frost blocks the passage cross section of the air blown from the outdoor blower fan (4a) in the outdoor heat exchanger (4). The air passing flow rate Go decreases, and the heat exchange capacity of the outdoor heat exchanger (4) decreases. Further, as the heat exchange capacity decreases, the index K (= Go · ε) relating to the heat exchange capacity also decreases as shown in FIG. 5 as the air flow rate Go decreases. As a result, when the index K becomes equal to or less than the set value K D corresponding to frost formation (K ≦ K D ), the defrosting solenoid valve (10) is controlled to open, so that the compressor (1 A part of the hot gas discharged from (4) flows through the defrosting refrigerant pipe (9) to the outdoor heat exchanger (4), and defrosting of the outdoor heat exchanger (4) is started.

ここに、上記の指数Kは、室外熱交換器(4)の熱交換
能力の変化に良好に対応していて、室外熱交換器(4)
の熱交換能力が正確に把握されているので、圧縮機
(1)が室温の変化に応じてインバータ(16)により能
力制御されても、その能力状態に拘らず、室外熱交換器
(4)の除霜運転の開始時期を適切にすることができ
る。
Here, the above-mentioned index K corresponds well to the change in the heat exchange capacity of the outdoor heat exchanger (4), and the outdoor heat exchanger (4)
Since the heat exchange capacity of the compressor (1) is accurately grasped, even if the capacity of the compressor (1) is controlled by the inverter (16) according to the change of room temperature, the outdoor heat exchanger (4) is irrespective of its capacity state. The defrosting operation start timing can be set appropriately.

第6図は室内熱交換器(2)の凝縮能力Qcの算出の変形
例を示し、上記実施例では、室内熱交換器(2)の空気
吹出温度Toと吸込温度Tiとの温度差に応じて算出したの
に代え、室内熱交換器(2)の冷媒出入口間の冷媒のエ
ンタルピ差に基いて算出するものである。
FIG. 6 shows a modification of the calculation of the condensing capacity Qc of the indoor heat exchanger (2). In the above embodiment, the temperature difference between the air outlet temperature To and the suction temperature Ti of the indoor heat exchanger (2) depends on the temperature difference. Instead of the above calculation, it is calculated based on the enthalpy difference of the refrigerant between the refrigerant inlet and outlet of the indoor heat exchanger (2).

つまり、室内熱交換器(2)の冷媒入口側の冷媒温度Tc
ond−in及び凝縮温度Tc、蒸発温度Te、圧縮機(1)吸
入側の冷媒温度Tsuc、圧縮機(1)の回転数nを検出す
ると共に、室内熱交換器(2)の冷媒出口側の冷媒温度
Tcond−outを、過冷却度をSCとして式Tcond−out=Tcon
d−in+SCにより算出した後、これ等に基いて室内熱交
換器(2)の冷媒入口及び出口の各冷媒のエンタルピHc
ond−in,Hcond−outを第6図からも判るように下記式 Hcond−in=f(Tc,Tcond−in) Hcond−out=f(Tc,Tcond−out) に基いて算出する。
That is, the refrigerant temperature Tc at the refrigerant inlet side of the indoor heat exchanger (2)
The ond-in and the condensation temperature Tc, the evaporation temperature Te, the refrigerant temperature Tsuc on the suction side of the compressor (1), the rotation speed n of the compressor (1) are detected, and the refrigerant outlet side of the indoor heat exchanger (2) is detected. Refrigerant temperature
Tcond-out = Tcond-out = Tcon
After calculated by d-in + SC, based on these, the enthalpy Hc of each refrigerant at the refrigerant inlet and outlet of the indoor heat exchanger (2)
Ond-in and Hcond-out are calculated based on the following formula Hcond-in = f (Tc, Tcond-in) Hcond-out = f (Tc, Tcond-out) as can be seen from FIG.

その後、冷媒の循環重量流量Gを下記式 G=(1/ρ)・F =(1/ρ)・Vrev・n により算出する。ここに、ρは冷媒の吸込側の密度[kg
/m3]であって、ρ=f(Te,Tsuc)である。また、Fは
冷媒の循環体積流量[m3/h]、Vrevは圧縮機(1)の1
回転当りの排除体積である。
Then, the circulating weight flow rate G of the refrigerant is calculated by the following equation G = (1 / ρ) · F = (1 / ρ) · Vrev · n. Where ρ is the density of the refrigerant on the suction side [kg
/ m 3 ], and ρ = f (Te, Tsuc). Further, F is the circulation volume flow of the refrigerant [m 3 / h], and Vrev is 1 of the compressor (1).
Excluded volume per revolution.

そして、上記の冷媒出入口の各エンタルピHcond−in,Hc
ond−outと冷媒の循環重量流量Gとに基いて、凝縮能力
Qcを下記式 Qc=G・(Hcond−in−Hcond−out) にて算出する。
And each enthalpy Hcond-in, Hc of the refrigerant inlet and outlet
Condensation capacity based on the on-out and the circulating weight flow rate G of the refrigerant
Qc is calculated by the following formula Qc = G · (Hcond-in-Hcond-out).

次に、蒸発能力算出手段(20)の変形例として、室外熱
交換器(4)の蒸発能力Qeを直接算出する例を説明す
る。
Next, as a modified example of the evaporation capacity calculation means (20), an example in which the evaporation capacity Qe of the outdoor heat exchanger (4) is directly calculated will be described.

室外熱交換器(4)の冷媒出入口間の冷媒のエンタルピ
差は、第6図から判るようにHsuc−Hcond−outであるの
で、冷媒の循環重量流量をGとして、蒸発能力Qeは、 Qe=G・(Hsuc−Hcond−out) により算出される。
Since the enthalpy difference of the refrigerant between the refrigerant inlet and outlet of the outdoor heat exchanger (4) is Hsuc-Hcond-out as can be seen from FIG. 6, the circulation weight flow rate of the refrigerant is G, and the evaporation capacity Qe is Qe = It is calculated by G · (Hsuc-Hcond-out).

その場合、圧縮機(1)吸入側の冷媒温度Tsucは検出せ
ずに、蒸発温度Tcと過熱度SHとに基いてTc+SHにより算
出してもよい。
In that case, the refrigerant temperature Tsuc on the suction side of the compressor (1) may be calculated by Tc + SH based on the evaporation temperature Tc and the superheat degree SH without detecting the refrigerant temperature Tsuc.

また、上記実施例では、暖房運転時での室外熱交換器
(4)の熱交換能力に関する指数としてK(=Go・ε)
を用いたが、これに代えて、室外空気の重量流量Goを用
いてもよい。
In the above embodiment, K (= Go · ε) is used as an index relating to the heat exchange capacity of the outdoor heat exchanger (4) during the heating operation.
However, instead of this, the weight flow rate Go of the outdoor air may be used.

つまり、室外送風ファン(4a)から室外熱交換器(4)
に流通し通過した後の室外空気のエンタルピをHa−ou
t、通過前のエンタルピをHa−inとして、これ等を室外
熱交換器(4)の温度Te,室外空気の通過前の乾球温度D
Bin及び湿球温度WBin,並びに通過後の乾球温度DBout及
び湿球温度WBoutに基いて算出すれば、室外熱交換器
(4)の蒸発能力Qeは式 Qe=Go・(Ha−out−Ha−in) で示される。従って、室外空気の重量流量Goを室外熱交
換器(4)の熱交換能力の指数として上記の式により算
出し、その流量Goの低下を直接見れば、着霜による室外
熱交換器(4)の熱交換能力の低下を直接検出できる。
That is, from the outdoor blower fan (4a) to the outdoor heat exchanger (4)
The enthalpy of the outdoor air after passing through the
t, the enthalpy before passing is Ha-in, and these are the temperature Te of the outdoor heat exchanger (4), and the dry-bulb temperature D before passing the outdoor air.
The evaporation capacity Qe of the outdoor heat exchanger (4) can be calculated based on Bin and wet bulb temperature WBin, and the dry bulb temperature DBout after passing and the wet bulb temperature WBout. -In). Therefore, the weight flow rate Go of the outdoor air is calculated by the above formula as an index of the heat exchange capacity of the outdoor heat exchanger (4), and if the decrease in the flow rate Go is directly observed, the outdoor heat exchanger (4) due to frost formation It is possible to directly detect the decrease in heat exchange capacity of.

さらに、熱交換能力に関する指数として、他のものをも
使用できる。例えば、室外熱交換器(4)に流通した室
外空気の該熱交換部でのエンタルピをHとし、室外熱
交換器(4)の温度相当の飽和空気エンタルピをHeとし
て、室外熱交換器(4)の蒸発能力Qeは式 Qe=h・A・(H−He) で示される。ここに、Aは室外熱交換器(4)の伝熱面
積、hはエンタルピ差基準の熱伝達率であって、h=f
(Te,DBin,WBin)で算出される。
In addition, other indexes can be used as indexes for heat exchange capacity. For example, the enthalpy of the outdoor air flowing through the outdoor heat exchanger (4) at the heat exchange section is H , the saturated air enthalpy corresponding to the temperature of the outdoor heat exchanger (4) is He, and the outdoor heat exchanger ( The evaporation capacity Qe of 4) is expressed by the equation Qe = h · A · (H −He). Where A is the heat transfer area of the outdoor heat exchanger (4), h is the heat transfer coefficient based on the enthalpy difference, and h = f
Calculated as (Te, DBin, WBin).

従って、エンタルピ差ΔH(=H−He)を上記式によ
り算出し、着霜による該エンタルピ差ΔHを熱交換能力
に関する指数とし、その増加を見て室外熱交換器(4)
の熱交換能力の低下を検出し、これが第7図に示すよう
に除霜運転開始時に相当する設定値ΔHdを越えた時点で
除霜運転を開始すれば、適切の開始時期で除霜運転を行
うことができる。
Therefore, the enthalpy difference ΔH (= H −He) is calculated by the above formula, the enthalpy difference ΔH due to frost is used as an index relating to the heat exchange capacity, and the increase is observed to determine the outdoor heat exchanger (4).
If a decrease in heat exchange capacity is detected and the defrosting operation is started when it exceeds the set value ΔHd corresponding to the start of the defrosting operation as shown in Fig. 7, the defrosting operation will be started at an appropriate start time. It can be carried out.

さらに、蒸発能力Qeは、上記のエンタルピ差ΔHに変え
て、温度差ΔT(=T−Te)に基いて式 Qe=h′・A・(T−Te) (hは温度差基準の熱伝達率である)で算出されるの
で、この温度差ΔT(=T−Te)を熱交換能力に関す
る指数とすれば、上記と同様に適切な開始時期で除霜運
転を行うことができる。
Furthermore, the evaporation capacity Qe is changed to the enthalpy difference [Delta] H, wherein Qe = h '· A · ( T ∽ -Te) based on the temperature difference ΔT (= T ∽ -Te) ( h is the temperature difference criteria since the calculated heat a transfer rate), the temperature difference ΔT (= T -Te) if index for heat exchange capability, it is possible to perform the defrosting operation in the appropriate start timing in the same manner as described above .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成を示すブロック図である。第2図
ないし第7図は本発明の実施例を示し、第2図は全体構
成図、第3図は除霜運転の制御を示すフローチャート
図、第4図は熱交換能力に関する指数Kの着霜の進行に
対する変化の様子を示す説明図、第5図は室外熱交換器
の蒸発能力算出のためのモリエル線図を示す説明図、第
6図は室内熱交換器の凝縮能力算出のためのモリエル線
図を示す説明図、第7図は熱交換能力に関する指数とし
てエンタルピ差ΔHを用いた場合の該エンタルピ差の着
霜の進行に対する変化の様子を示す説明図である。 (1)……圧縮機、(2)……室内熱交換器、(3)…
…膨脹弁、(4)……室外熱交換器、(8)……冷媒循
環系統、(20)……蒸発能力算出手段、(21)……指数
算出手段、(22)……制御手段。
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 7 show an embodiment of the present invention, FIG. 2 is an overall configuration diagram, FIG. 3 is a flow chart diagram showing control of defrosting operation, and FIG. 4 is an index K relating to heat exchange capacity. FIG. 5 is an explanatory view showing a state of change with respect to the progress of frost, FIG. 5 is an explanatory view showing a Mollier diagram for calculating the evaporation capacity of the outdoor heat exchanger, and FIG. 6 is a drawing for calculating the condensation capacity of the indoor heat exchanger. FIG. 7 is an explanatory diagram showing a Mollier diagram, and FIG. 7 is an explanatory diagram showing how the enthalpy difference ΔH is used as an index relating to the heat exchange capacity, and the change in the enthalpy difference with respect to the progress of frost formation. (1) ... Compressor, (2) ... Indoor heat exchanger, (3) ...
... expansion valve, (4) ... outdoor heat exchanger, (8) ... refrigerant circulation system, (20) ... evaporation capacity calculation means, (21) ... index calculation means, (22) ... control means.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】圧縮機(1)、室内熱交換器(2)、膨脹
弁(3)、及び室外熱交換器(4)を順次閉回路に接続
した冷媒循環系統(8)を有し、暖房運転可能とした空
気調和装置において、上記室外熱交換器(4)に着霜し
た霜を除霜する除霜手段(12)と、上記室外熱交換器
(4)の蒸発能力を算出する蒸発能力算出手段(20)
と、該蒸発能力算出手段(20)により算出された室外熱
交換器(4)の蒸発能力と,室外熱交換器(4)の温度
及び外気温度とに基いて室外熱交換器(4)の熱交換性
能に関する指数を算出する指数算出手段(21)と、該指
数算出手段(21)により算出した熱交換性能に関する指
数に基いて除霜運転の開始時期を判断し、上記除霜手段
(12)を作動させる制御手段(22)とを備えたことを特
徴とする空気調和装置の除霜運転制御装置。
1. A refrigerant circulation system (8) in which a compressor (1), an indoor heat exchanger (2), an expansion valve (3) and an outdoor heat exchanger (4) are sequentially connected in a closed circuit, In an air conditioner capable of heating operation, defrosting means (12) for defrosting the frost formed on the outdoor heat exchanger (4) and evaporation for calculating the evaporation capacity of the outdoor heat exchanger (4). Ability calculation means (20)
Of the outdoor heat exchanger (4) based on the evaporation capacity of the outdoor heat exchanger (4) calculated by the evaporation capacity calculation means (20) and the temperature of the outdoor heat exchanger (4) and the outside air temperature. Index calculation means (21) for calculating an index related to heat exchange performance, and a start time of defrosting operation is determined based on the index related to heat exchange performance calculated by the index calculation means (21). And a control means (22) for operating the air conditioner.
【請求項2】蒸発能力算出手段(20)は、室内熱交換器
(2)の凝縮能力と、圧縮機(1)の入力とに基いて蒸
発能力を算出するものである請求項(1)記載の空気調
和装置の除霜運転制御装置。
2. The evaporation capacity calculation means (20) calculates the evaporation capacity based on the condensation capacity of the indoor heat exchanger (2) and the input of the compressor (1). A defrosting operation control device for the air conditioner described.
【請求項3】蒸発能力算出手段(20)は、室内熱交換器
(2)の凝縮能力を、室内熱交換器(2)の空気の吸込
温度と吹出温度との温度差、及び室内熱交換器(2)の
空気通過流量に基いて算出するものである請求項(2)
記載の空気調和装置の除霜運転制御装置。
3. The evaporation capacity calculation means (20) calculates the condensation capacity of the indoor heat exchanger (2), the temperature difference between the air intake temperature and the outlet temperature of the indoor heat exchanger (2), and the indoor heat exchange. The calculation is based on the flow rate of air passing through the device (2).
A defrosting operation control device for the air conditioner described.
【請求項4】蒸発能力算出手段(20)は、室内熱交換器
(2)の凝縮能力を、室内熱交換器(2)の冷媒出入口
間の冷媒のエンタルピ差、及び冷媒の循環流量に基いて
算出するものである請求項(2)記載の空気調和装置の
除霜運転制御装置。
4. The evaporation capacity calculation means (20) determines the condensation capacity of the indoor heat exchanger (2) based on the enthalpy difference of the refrigerant between the refrigerant inlet and outlet of the indoor heat exchanger (2) and the circulation flow rate of the refrigerant. The defrosting operation control device for an air conditioner according to claim 2, wherein
【請求項5】蒸発能力算出手段(20)は、圧縮機(1)
吸入側の冷媒と室内熱交換器(2)出口の冷媒とのエン
タルピ差、及び冷媒の循環流量に基いて蒸発能力を直接
算出するものである請求項(1)記載の空気調和装置の
除霜運転制御装置。
5. The evaporation capacity calculation means (20) is a compressor (1).
The defrosting of the air conditioner according to claim 1, wherein the evaporation capacity is directly calculated based on the enthalpy difference between the refrigerant on the suction side and the refrigerant at the outlet of the indoor heat exchanger (2) and the circulation flow rate of the refrigerant. Operation control device.
JP2253147A 1990-09-20 1990-09-20 Defrosting operation control device for air conditioner Expired - Fee Related JPH07117269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2253147A JPH07117269B2 (en) 1990-09-20 1990-09-20 Defrosting operation control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2253147A JPH07117269B2 (en) 1990-09-20 1990-09-20 Defrosting operation control device for air conditioner

Publications (2)

Publication Number Publication Date
JPH04131645A JPH04131645A (en) 1992-05-06
JPH07117269B2 true JPH07117269B2 (en) 1995-12-18

Family

ID=17247176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2253147A Expired - Fee Related JPH07117269B2 (en) 1990-09-20 1990-09-20 Defrosting operation control device for air conditioner

Country Status (1)

Country Link
JP (1) JPH07117269B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9829231B2 (en) * 2010-10-14 2017-11-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4365378B2 (en) * 2006-02-21 2009-11-18 三菱電機株式会社 Defrosting operation control device and defrosting operation control method
JP4715852B2 (en) * 2008-02-11 2011-07-06 株式会社デンソー Heat pump water heater
JP5092829B2 (en) * 2008-03-19 2012-12-05 ダイキン工業株式会社 Air conditioner
JP2010127568A (en) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp Abnormality detection device and refrigerating cycle device including the same
JP5289475B2 (en) * 2011-02-01 2013-09-11 三菱電機株式会社 Refrigeration cycle apparatus, flow rate calculation method and program
JP2012247122A (en) * 2011-05-27 2012-12-13 Mitsubishi Electric Corp Refrigerating cycle device
JP6250428B2 (en) * 2014-02-12 2017-12-20 東芝キヤリア株式会社 Refrigeration cycle equipment
CN106403422B (en) * 2016-09-21 2019-03-01 广东工业大学 A kind of polycyclic pipeline heat exchanger defrosting starting point determination method of air source heat pump and system
EP3633290B1 (en) * 2017-05-31 2023-03-29 Daikin Industries, Ltd. Air conditioning apparatus
WO2018221652A1 (en) * 2017-05-31 2018-12-06 ダイキン工業株式会社 Air conditioning apparatus
JP6590026B2 (en) * 2017-08-09 2019-10-16 ダイキン工業株式会社 Air conditioner
BR102018011553A2 (en) * 2018-06-07 2019-12-10 Embraco Ind De Compressores E Solucoes Em Refrigeracao Ltda method and control system of a refrigeration system and refrigeration equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9829231B2 (en) * 2010-10-14 2017-11-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Also Published As

Publication number Publication date
JPH04131645A (en) 1992-05-06

Similar Documents

Publication Publication Date Title
EP2719966B1 (en) Refrigeration air-conditioning device
US8567203B2 (en) Air conditioner and defrosting operation method of the same
US6779356B2 (en) Apparatus and method for controlling operation of air conditioner
JP2007225158A (en) Defrosting operation control device and method
JP2007225155A (en) Defrosting operation control device and method
JPH07117269B2 (en) Defrosting operation control device for air conditioner
CN109253524B (en) Control method of heat pump system, heat pump system and air conditioner
KR101706840B1 (en) An air conditioning system and a method for controlling the same
JPH1151500A (en) Heat pump type air-conditioner
JP4869117B2 (en) Air conditioner
JPH04110576A (en) Heat pump type air conditioner
JP3668750B2 (en) Air conditioner
JP2001194017A (en) Supercritical vapor compressor type freezing cycle
JP3661014B2 (en) Refrigeration equipment
JP2893844B2 (en) Air conditioner
JPH06137691A (en) Controlling equipment for refrigerant circuit
JP4012892B2 (en) Air conditioner
KR20100088377A (en) Air conditioner and defrosting driving method of the same
JPH0443173B2 (en)
JP2523534B2 (en) Air conditioner
JPH07332736A (en) Air conditioner
JPH06257865A (en) Air conditioner
JPH08178448A (en) Multi-room type air conditioner
KR20100088378A (en) Air conditioner and defrosting driving method of the same
KR20010065318A (en) Heat pump air-conditioner and control method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071218

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees