JPS61250438A - Defrosting operation control device for air conditioner - Google Patents

Defrosting operation control device for air conditioner

Info

Publication number
JPS61250438A
JPS61250438A JP60087535A JP8753585A JPS61250438A JP S61250438 A JPS61250438 A JP S61250438A JP 60087535 A JP60087535 A JP 60087535A JP 8753585 A JP8753585 A JP 8753585A JP S61250438 A JPS61250438 A JP S61250438A
Authority
JP
Japan
Prior art keywords
temperature
humidity
heat exchanger
outside air
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60087535A
Other languages
Japanese (ja)
Other versions
JPH0443173B2 (en
Inventor
Seiji Kamesaka
精二 亀坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP60087535A priority Critical patent/JPS61250438A/en
Publication of JPS61250438A publication Critical patent/JPS61250438A/en
Publication of JPH0443173B2 publication Critical patent/JPH0443173B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To accurately determine the frosting condition so as to improve the operation efficiency by providing a heat exchanger temperature sensor, an ambient air temperature sensor, a humidity sensor, an absolute humidity operator means and a comparator means, and determining the frosting condition for defrosting operation based on the detection of a fact that the temperature as detected by the outside heat exchanger temperature sensor is sub-zero and the comparative result by the comparator means. CONSTITUTION:The absolute humidity is determined by performing a calculation from the saturated water vapor volume relative to the temperature measured by an outside air temperature sensor 9 and the relative humidity measured by an outside humidity sensor 8. The determination is made under the condition that the temperature measured by a heat exchanger temperature sensor 7 is sub-zero, and the absolute humidity is found larger than the saturated water vapor volume for afore-said temperature when they are compared. The amount of frosting from the start of frosting is determined by performing a calculation from the difference between the absolute humidity and the saturated water vapor volume relative to the temperature of the outside heat exchanger as well as the temperature of the outside heat exchanger, and when it is determined that the frosting exceeded the predetermined level, the defrosting signal is outputted. In this manner, the determination of starting the defrosting operation can appropriately be made under any condition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧縮機、四方弁、室外熱交換器、絞り装置お
よび室内熱交換器を順次連通してなる空気熱源式ヒート
ポンプ形の空気調和機の除霜運転制御装置に関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an air-source heat pump type air conditioner in which a compressor, a four-way valve, an outdoor heat exchanger, a throttling device, and an indoor heat exchanger are connected in sequence. This relates to a defrosting operation control device for a machine.

〔従来技術及び発明が解決しようとする問題点〕従来、
この種の空気調和機の冷凍サイクルは、第6図に示すよ
うに、暖房運転時圧縮機aから吐出された冷媒が、実線
矢印のように四方弁すを通り、室内熱交換器Cで凝縮さ
れ、キャピラリチューブd、eを通り、室外熱交換器f
で蒸発し、再び使用弁すを通り、圧縮機aに戻る。
[Prior art and problems to be solved by the invention] Conventionally,
In the refrigeration cycle of this type of air conditioner, as shown in Figure 6, during heating operation, the refrigerant discharged from compressor a passes through a four-way valve as shown by the solid arrow, and is condensed in indoor heat exchanger C. and passes through capillary tubes d and e to outdoor heat exchanger f
It evaporates, passes through the service valve again, and returns to compressor a.

また、低外気温時には、室外熱交換器fの温度が低くな
り、やがて室外熱交換器fの表面に霜が付着し始め、そ
のため伝熱特性が低下して熱交換器能力が急激に減少し
始め、これにつれて暖房能力も低下する。
In addition, when the outside temperature is low, the temperature of the outdoor heat exchanger f becomes low, and eventually frost begins to adhere to the surface of the outdoor heat exchanger f, which causes the heat transfer characteristics to deteriorate and the heat exchanger capacity to rapidly decrease. At first, the heating capacity also decreases.

このため、室外熱交換器fの配管温度を熱交換器温度セ
ンサgで検知すると共に、外気相対湿度を外気湿度セン
サhで検知し、室外熱交換器fの配管温度がある一定温
度以下で、かつ相対湿度が一定値以上のとき、図中の破
線に示されるように、冷房運転とし、室外熱交換器fに
高温、高圧の冷媒を送り、室外熱交換器fに付着した霜
を融解させ、室外熱交換器fの能力を回復させ、再び図
中の実線に示される暖房運転にするものである。
Therefore, the pipe temperature of the outdoor heat exchanger f is detected by the heat exchanger temperature sensor g, and the outside air relative humidity is detected by the outside air humidity sensor h, and when the pipe temperature of the outdoor heat exchanger f is below a certain temperature, And when the relative humidity is above a certain value, as shown by the broken line in the figure, cooling operation is started, and high-temperature, high-pressure refrigerant is sent to the outdoor heat exchanger f to melt the frost attached to the outdoor heat exchanger f. , the capacity of the outdoor heat exchanger f is restored and the heating operation is resumed as indicated by the solid line in the figure.

しかし、上述のような従来の除霜運転モードにおいて、
除霜運転開始の判定条件は、室外熱交換器fの温度と外
気相対湿度だけであるため、相対湿度についての一定値
の定め方によっては、着霜していても除霜運転しなかっ
たり、着霜していなくても除霜運転が行われたりすると
いう欠点があった。
However, in the conventional defrosting operation mode as mentioned above,
The criteria for starting the defrosting operation are only the temperature of the outdoor heat exchanger f and the relative humidity of the outside air, so depending on how the constant value for relative humidity is determined, the defrosting operation may not start even if frost has formed, or the defrosting operation may not start even if frost has formed. There was a drawback that the defrosting operation was performed even when no frost had formed.

すなわち、相対湿度は一定体積の空気中に実際に含まれ
ている水蒸気量とその空気がそのときの温度で含み得る
最大の水蒸気量(飽和水蒸気量)との比をパーセントで
表わしたものである。これを温度対水蒸気量特性で表わ
すと、第7図に示すように横軸と100%(飽和水蒸気
量)特性曲線Xとの間に存する曲線で示される。相対湿
度がどのような値であっても室外熱交換器fの温度が零
度以下でなければ着霜することがなく、かつ室外熱交換
器fの温度は外気にさらされていて外気温度に対して略
一定の温度差ΔTを呈するようになっている。
In other words, relative humidity is the ratio of the amount of water vapor actually contained in a given volume of air to the maximum amount of water vapor that the air can contain at that temperature (saturated water vapor amount), expressed as a percentage. . When this is expressed as a temperature vs. water vapor amount characteristic, it is represented by a curve that lies between the horizontal axis and the 100% (saturated water vapor amount) characteristic curve X, as shown in FIG. No matter what the relative humidity is, unless the temperature of the outdoor heat exchanger f is below zero, frost will not form, and the temperature of the outdoor heat exchanger f is exposed to the outside air and is not relative to the outside temperature. Thus, a substantially constant temperature difference ΔT is exhibited.

従って、室外熱交換器fの温度が零度のときの外気温度
をT1、零度のときの飽和水蒸気量をDIとすると、T
1を通る縦軸に平行な直線Yl 、DIを通る横軸に平
行な直線Zl及び上述の曲線Xによって囲まれる範囲内
の相対湿度において着霜することになる。この着霜の生
じる最小相対湿度RH1は曲線Xl上のものであり、こ
の相対湿度RH1が上記一定値として定められる。また
、図示のように外気温度T2に下がり、これにともない
室外交換器fの温度もT3に下がったとするとも、T2
を通る縦軸に平行な直線Y2、温度T3のときの飽和水
蒸量D2を通る直線Z2及び曲線Xによって囲まれる相
対湿度において着霜が生じるが、上記設定した相対湿度
RH1はY2、Z2、Xによって囲まれる範囲内に入っ
ていないため、湿度センサによる検知相対湿度がRH+
のときには実際には着霜していなくても、着霜している
とみなして除霜運転が行われるようになる。
Therefore, if the outside air temperature when the temperature of the outdoor heat exchanger f is 0 degrees is T1, and the saturated water vapor amount when the temperature is 0 degrees is DI, then T
Frost will form at a relative humidity within the range surrounded by the straight line Yl passing through DI parallel to the vertical axis, the straight line Zl passing through DI parallel to the horizontal axis, and the above-mentioned curve X. The minimum relative humidity RH1 at which frost formation occurs is on the curve Xl, and this relative humidity RH1 is determined as the above-mentioned constant value. Furthermore, if the outside air temperature drops to T2 as shown in the figure, and the temperature of the outdoor exchanger f also drops to T3, then T2
Frost formation occurs at the relative humidity surrounded by the straight line Y2 parallel to the vertical axis passing through, the straight line Z2 passing through the saturated water evaporation amount D2 at temperature T3, and the curve X, but the relative humidity RH1 set above is Y2, Z2, Since it is not within the range surrounded by X, the relative humidity detected by the humidity sensor is RH+
When this happens, it is assumed that frost has formed and the defrosting operation is performed even if there is actually no frost.

このようなことは、可変能力のインバータ式の圧縮機を
使用し、ΔTが変化されるようになっている冷凍サイク
ルにおいて更に顕著に現われる。
This phenomenon is more noticeable in a refrigeration cycle in which a variable capacity inverter type compressor is used and ΔT is varied.

従って、このようなときはいくら除霜運転を行っても、
暖房能力の向上ははかれず、また逆に除霜運転中は、暖
房運転が停止するため室温が低下し、快適性が損われる
他、除霜運転中は冷房運転となるため凝縮器、蒸発器が
逆転し、運転効率が低下する欠点を有していた。
Therefore, in such cases, no matter how much defrosting operation is performed,
The heating capacity cannot be improved, and conversely, during defrosting operation, heating operation is stopped, resulting in a drop in room temperature, which impairs comfort. This had the disadvantage that the equipment would rotate backwards, reducing operating efficiency.

以上のような欠点を解消したものとして、室外熱交換器
への流入空気中の水分量と流出空気中の水分量とを入口
と出口とにそれぞれ設けた湿度センサ、温度センサを用
いて得た信号により演算して求め、その差により着霜量
を知るようになしたものも提案されているが、該装置の
場合、多くのセンサを必要とし、構成複雑で高価となる
という欠点がある。
In order to overcome the above drawbacks, the amount of moisture in the air flowing into the outdoor heat exchanger and the amount of moisture in the air flowing out can be obtained by using a humidity sensor and a temperature sensor installed at the inlet and outlet, respectively. An apparatus has been proposed in which the amount of frost is determined by calculation based on the signals and the difference between them, but this apparatus requires a large number of sensors, has a complicated structure, and is expensive.

c問題点を解決するための手段〕 本発明は上述した従来のものの欠点を除去し、着霜の判
定を適切に行い運転効率の向上を図り、しかも構成が簡
単で安価な空気調和器の除霜運転制御装置を提供しよう
とするもので、該目的を達成するためになされた本発明
による装置は、室外熱交換器の温度を検知する交換器温
度センサと、外気の温度を検知する外気温度センサと、
外気の湿度を検知する湿度センサと、前記外気温度セン
サにより検知した温度と湿度センサにより検知した湿度
により外気の絶対湿度を演算する絶対湿度演算手段と、
前記交換器温度センサにより検知した温度に対する飽和
水蒸気量と前記演算した絶対湿度を比較する比較手段と
を備え、前記外気交換器温度センサにより検知した温度
が零度以下であることと前記比較手段による比較効果と
により着霜を判定し、該判定によって除霜運転を制御す
ることを特徴とする。
Means for Solving Problems c] The present invention eliminates the above-mentioned drawbacks of the conventional ones, appropriately determines frost formation, improves operating efficiency, and provides an air conditioner with a simple and inexpensive configuration. It is an object of the present invention to provide a frost operation control device, and the device according to the present invention has been made to achieve the object. sensor and
a humidity sensor that detects the humidity of the outside air, and an absolute humidity calculation means that calculates the absolute humidity of the outside air based on the temperature detected by the outside air temperature sensor and the humidity detected by the humidity sensor;
a comparison means for comparing the saturated water vapor amount with respect to the temperature detected by the exchanger temperature sensor and the calculated absolute humidity, and a comparison by the comparison means that the temperature detected by the outside air exchanger temperature sensor is below zero degrees; The present invention is characterized in that frost formation is determined based on the effect and the defrosting operation is controlled based on the determination.

本発明は更に、着霜の判定後の除霜運転の開始を簡単な
構成により適切に行えるようにした空気調和器の除霜運
転制御装置を提供しようとするもので、該目的を達成す
るためになされた本発明による装置は、前記判定手段に
よる着霜判定時の前記演算した絶対湿度と飽和水蒸気量
の差である凝縮水分量を演算する手段と、前記判定手段
による着霜判定時の前記交換器温度センサにより検知し
た温度と前記凝縮水分量とにより、着霜量が所定量にあ
る時間を演算する手段とを備え、着霜判定後接演算した
時間経過した時点で除霜運転を開始することを特徴とす
る。
A further object of the present invention is to provide a defrosting operation control device for an air conditioner that can appropriately start a defrosting operation after determining whether frost has formed. The apparatus according to the present invention has a means for calculating a condensed moisture amount which is the difference between the calculated absolute humidity and a saturated water vapor amount when frost formation is determined by the determination means; A means for calculating the time period during which the amount of frost formation is at a predetermined amount based on the temperature detected by the exchanger temperature sensor and the amount of condensed moisture is provided, and the defrosting operation is started when the calculated time has elapsed after the frost formation determination. It is characterized by

〔作 用〕[For production]

外気温度とその温度での相対湿度とから絶対湿度を演算
し、該絶対湿度が室外熱交換器の温度に対する飽和水蒸
気量以上で、かつ室外熱交換器の温度が零度以下である
ことを条件に着霜の開始を判定して除霜運転を制御して
いるため、運転効率の向上が図られると共に室外熱交換
器の能力が変化しても着霜開始を適切に判定することが
できる。
Calculate the absolute humidity from the outside air temperature and the relative humidity at that temperature, and provide that the absolute humidity is at least the saturated amount of water vapor for the temperature of the outdoor heat exchanger, and the temperature of the outdoor heat exchanger is below zero degrees. Since the defrosting operation is controlled by determining the start of frost formation, it is possible to improve operational efficiency and to appropriately determine the start of frost formation even if the capacity of the outdoor heat exchanger changes.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図乃至第5図に基づいて説
明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 5.

まず、室外熱交換器への着霜の条件について説明する。First, conditions for frost formation on the outdoor heat exchanger will be explained.

着霜は室外熱交換器の温度が零度以下で、かつ室外熱交
換器表面に凝縮水があることを条件にして発生する。ま
た、室外熱交換器表面の凝縮水は、ファンにより室外熱
交換器表面に送られてくる外気中に含まれている水蒸気
量が室外熱交換器の温度での飽和水蒸気量以上のときに
生じる。
Frost formation occurs when the temperature of the outdoor heat exchanger is below zero degrees and there is condensed water on the surface of the outdoor heat exchanger. In addition, condensed water on the surface of the outdoor heat exchanger is generated when the amount of water vapor contained in the outside air sent to the surface of the outdoor heat exchanger by the fan is greater than or equal to the saturated amount of water vapor at the temperature of the outdoor heat exchanger. .

以上のことから、外気の温度及び相対湿度と室外熱交換
器の温度を知ることによって、以下のようにして着霜条
件が求められる。
From the above, by knowing the temperature and relative humidity of the outside air and the temperature of the outdoor heat exchanger, the frosting conditions can be determined as follows.

各温度に対する飽和水蒸気量Dsは第3図に示すように
既知であるので、同図において相対湿度RHと外気温度
TAとから外気中の水蒸気量、すなわち絶対湿度Dハを
D SA  −RH/ 100なる演算によって求めら
れることができ、該絶対湿度D^と室外熱交換器の温度
TEでの飽和水蒸気量Dsεとを比較することにより、
TE<OでがっD^>Dsεの検出により着霜の始まる
条件を検知することができる。勿論Tε〉0のとき、或
いはDA<DSεのときには着霜は生じない。
Since the saturated water vapor amount Ds for each temperature is known as shown in Figure 3, in the same figure, the water vapor amount in the outside air, that is, the absolute humidity D, can be calculated from the relative humidity RH and the outside air temperature TA as D SA -RH/100 By comparing the absolute humidity D^ and the saturated water vapor amount Dsε at the temperature TE of the outdoor heat exchanger,
By detecting TE<OdegaD^>Dsε, it is possible to detect the conditions under which frost formation begins. Of course, no frosting occurs when Tε>0 or when DA<DSε.

一般に、室外熱交換器は着霜が起り始めただけではその
能力は低下せず、成る一定の着霜量を越えたところで始
めて能力低下することが知られている。従って、着霜条
件の検知により除霜運転を直ちに開始することは全くの
無駄であり、着霜量が所定値Vに達するまでは除霜運転
を開始させないことが好ましい。
Generally, it is known that the performance of an outdoor heat exchanger does not decrease just when frost begins to form, but only when a certain amount of frost is exceeded. Therefore, it is completely wasteful to start the defrosting operation immediately upon detection of the frosting condition, and it is preferable not to start the defrosting operation until the amount of frosting reaches the predetermined value V.

ところで、上述の着霜条件が成り立っている状態での着
霜速度は、第4図に示すように凝縮水分量ΔD(=D^
−Dsε)に比例し、かつ第5図に示すように室外熱交
換器の温度Tε (くo)に反比例する。
By the way, the frost formation rate when the above-mentioned frost formation conditions are satisfied is the condensed moisture amount ΔD (=D^
-Dsε), and inversely proportional to the temperature Tε (kuo) of the outdoor heat exchanger, as shown in FIG.

従って、凝縮水分量ΔD、室外熱交換温度Tεにそれぞ
れ一定の定数α、βを生じたものを時間tで積分したも
のの和が所定値■よりも大きくなったとき、すなわち、 fαΔDdt+ fβTεdt>V となったときに、霜が所定量材いたとみなし除霜運転を
開始させるデフロスト信号を発生させればよい。今、着
霜開始後のΔD、Tεに変化がないとすると、以下のよ
うにしてtを決定することができる。
Therefore, when the sum of the condensed water content ΔD and the outdoor heat exchange temperature Tε, which have constant constants α and β, respectively, integrated over time t, becomes larger than the predetermined value ■, that is, fαΔDdt+ fβTεdt>V. When this happens, it is assumed that a predetermined amount of frost has been present on the material, and a defrost signal is generated to start the defrosting operation. Now, assuming that there is no change in ΔD and Tε after the start of frost formation, t can be determined as follows.

上式をtについて解くと、 ■ αΔD+βTε となる。従って、実際のデフロスト信号の発生は着霜条
件の検知によりタイマーを起動して時間tをカウントし
た時点で簡略的に行うことができる。
Solving the above equation for t yields: ■ αΔD+βTε. Therefore, the actual generation of the defrost signal can be simply performed when the timer is started and the time t is counted upon detection of the frosting condition.

次に、本発明の一実施例における除霜運転制御装置につ
いて第1図及び第2図を参照して説明する。
Next, a defrosting operation control device according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

同図において、1は圧縮機、2は四方弁、3は室内熱交
換器で、4,5はキャピラリチューブ、6は室外熱交換
器で、これらを順次連結することにより周知の冷凍サイ
クルを構成している。冷媒は暖房時実線の如く流れ、ま
た除霜運転時と冷房運転時は破線の如く流れる。7は室
外熱交換器6の交換器温度センサ、8は外気湿度センサ
、9は外気温度センサである。
In the figure, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 and 5 are capillary tubes, and 6 is an outdoor heat exchanger. By sequentially connecting these, a well-known refrigeration cycle is constructed. are doing. The refrigerant flows as shown by the solid line during heating, and flows as shown by the broken line during defrosting and cooling operations. 7 is an exchanger temperature sensor of the outdoor heat exchanger 6, 8 is an outside air humidity sensor, and 9 is an outside air temperature sensor.

着霜開始は、外気温度センサ9により測定した温度に対
する飽和水蒸気量と外気湿度センサ8により測定した相
対湿度とにより演算して絶対湿度を求め、交換器温度セ
ンサ7により測定した温度が零度以下で、かつ該温度に
対する飽和水蒸気量と上記絶対湿度との比較により絶対
湿度が大きいことを条件にこれを判定する。そして、デ
フロスト信号の発生は、着霜開始からの着霜量を絶対湿
度と室外熱交換器の温度に対する飽和水蒸気量との差と
、室外熱交換器の温度とにより演算して求め、該着霜量
が所定値以上となったことに応じて行う。
The start of frosting is determined by calculating the absolute humidity based on the saturated water vapor amount for the temperature measured by the outside air temperature sensor 9 and the relative humidity measured by the outside air humidity sensor 8, and when the temperature measured by the exchanger temperature sensor 7 is below zero degrees. , and by comparing the saturated water vapor amount at the temperature with the above-mentioned absolute humidity, this is determined on the condition that the absolute humidity is large. The generation of the defrost signal is determined by calculating the amount of frost formed from the start of frost formation using the difference between the absolute humidity and the saturated water vapor amount with respect to the temperature of the outdoor heat exchanger, and the temperature of the outdoor heat exchanger. This is done in response to the amount of frost reaching a predetermined value or higher.

次に、第2図により、同実施例の制御回路について説明
する。
Next, the control circuit of the same embodiment will be explained with reference to FIG.

同図において、制御回路10には、交換器温度センサ7
、外気湿度センサ8及び外気温度センサ9が接続されて
いる。制御回路lOは各センサからの検知信号を増幅す
るセンス増幅器10a、1Ob、10cを有し、センス
増幅器10aの出力は絶対湿度演算回路10dの一方の
入力に、センス増幅器10bの出力は上記絶対湿度演算
回路lOdの他方の入力に、センス増幅器10cの出力
は零度以下検出回路10eの入力と飽和水蒸気量決定回
路10fの入力とにそれぞれ接続されている。
In the figure, the control circuit 10 includes an exchanger temperature sensor 7.
, an outside air humidity sensor 8, and an outside air temperature sensor 9 are connected. The control circuit 1O has sense amplifiers 10a, 1Ob, and 10c that amplify detection signals from each sensor.The output of the sense amplifier 10a is input to one input of the absolute humidity calculation circuit 10d, and the output of the sense amplifier 10b is connected to the above-mentioned absolute humidity. The output of the sense amplifier 10c is connected to the other input of the arithmetic circuit lOd, the input of the below-zero temperature detection circuit 10e, and the input of the saturated water vapor amount determination circuit 10f, respectively.

上記零度以下検出回路10eはその入力に印加される交
換器温度TEが零度以下であることを検出しその出力に
検出信号を出力し、これを上記絶対湿度演算回路10d
、飽和水蒸気量決定回路10fの制御人力Cと、アンド
回路10gの一方の入力とに印加する。
The below-zero temperature detection circuit 10e detects that the exchanger temperature TE applied to its input is below zero degrees, outputs a detection signal to its output, and sends this to the absolute humidity calculation circuit 10d.
, is applied to the control human power C of the saturated water vapor amount determining circuit 10f and one input of the AND circuit 10g.

上記絶対湿度演算回路10dはその制御人力Cに信号が
加えられているとき、その入力に印加される外気温度T
A及び外気相対湿度RHと既知の外気温度に対する飽和
水蒸気量D S Aとから、下式 %式% により、外気の絶対湿度Doを演算する。
When a signal is applied to the control human power C, the absolute humidity calculation circuit 10d receives the outside air temperature T applied to its input.
From A, the outside air relative humidity RH, and the saturated water vapor amount DSA for the known outside air temperature, the absolute humidity Do of the outside air is calculated using the following formula %.

上記飽和水蒸気量決定回路10fはその入力に印加され
る交換器温度Tεによりその温度に対する飽和水蒸気量
DSEを決定する。
The saturated water vapor amount determination circuit 10f determines the saturated water vapor amount DSE for the exchanger temperature Tε applied to its input.

上記絶対湿度演算回路10dの出力と飽和水蒸気量決定
回路10fの出力とは比較回路10hと差演算回路10
iの両人力にそれぞれ接続されており、比較回路10h
においては絶対湿度り内と飽和水蒸気11Dsεとの比
較が行われ、D^〉DSHのときその出力に信号が出力
されてアンド回路10gの他方の入力に印加される。ア
ンド回路10gはその再入口に信号が印加されることに
よって出力に信号を出力し、これをタイマー回路10j
の起動人力Tと上記差演算回路lO1の制御人力Cとに
印加する。
The output of the absolute humidity calculation circuit 10d and the output of the saturated water vapor amount determination circuit 10f are the same as that of the comparison circuit 10h and the difference calculation circuit 10.
It is connected to both of i and the comparison circuit 10h.
, a comparison is made between the absolute humidity and the saturated water vapor 11Dsε, and when D^>DSH, a signal is outputted and applied to the other input of the AND circuit 10g. When a signal is applied to its re-entrance, the AND circuit 10g outputs a signal to its output, which is sent to the timer circuit 10j.
is applied to the starting human power T and the control human power C of the difference calculation circuit lO1.

上記差演算回路10iはその制御人力Cに信号が加えら
れるとその入力に印加されている絶対湿度DAと飽和水
蒸気量Dsεとの差、すなわち凝縮水蒸気量ΔDを下式 %式% により演算し、その演算結果を時間演算回路10にの一
方の入力に印加する。時間演算回路10にの他方の入力
には交換器温度TEが印加されていて、ここで下式で表
わされる演算を行って時間tを求める。
When a signal is applied to the control human power C, the difference calculation circuit 10i calculates the difference between the absolute humidity DA applied to its input and the saturated water vapor amount Dsε, that is, the condensed water vapor amount ΔD, using the following formula: The calculation result is applied to one input of the time calculation circuit 10. The exchanger temperature TE is applied to the other input of the time calculation circuit 10, and the calculation expressed by the following formula is performed here to determine the time t.

t=V/(αΔD+βTε) なお式中、■は予め定めた一定値で、室外熱交換器の能
率を低下させる室外熱交換器への着霜量に対応し、α、
βは定数である。
t=V/(αΔD+βTε) In the formula, ■ is a predetermined constant value, which corresponds to the amount of frost on the outdoor heat exchanger that reduces the efficiency of the outdoor heat exchanger, and α,
β is a constant.

該時間演算回路10kによって求められた時間tは比較
回路102においてタイマー回路10jの起動後の計時
時間と比較され、該計時時間がtより大となると比較回
路101の出力に信号が出力される。該信号は、図示し
ないリレーコイルをオンし、四方弁を切り換えて除霜運
転モードにするデフロスト信号として利用される。
The time t obtained by the time calculation circuit 10k is compared with the time measured after activation of the timer circuit 10j in the comparison circuit 102, and when the measured time becomes greater than t, a signal is outputted to the output of the comparison circuit 101. This signal is used as a defrost signal to turn on a relay coil (not shown), switch the four-way valve, and set the defrosting operation mode.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、どのような条件下
でも着霜の開始を適切に判定することができる。しかも
、好ましい実施例では、除霜運転開始時点も室外熱交換
器能力を最大限に利用できるように決定されることがで
き、より一層の運転効率の向上が図られる。そして、こ
れらは3つのセンサからの信号の処理によって実現され
、構成も比較的簡単であるなどの効果が得られる。
As explained above, according to the present invention, the start of frost formation can be appropriately determined under any conditions. Moreover, in the preferred embodiment, the time point at which the defrosting operation starts can be determined so as to make maximum use of the outdoor heat exchanger capacity, thereby further improving the operating efficiency. These are realized by processing signals from three sensors, and advantages such as a relatively simple configuration can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における除霜運転制御装置を
具備した空気調和機の冷凍サイクル図、第2図は同除霜
運転制御装置の電気回路を示すブロック図、第3図乃至
第5図は本発明の詳細な説明するためのグラフ、第6図
は従来例を示す冷凍サイクル図、第7図は従来例の欠点
を説明するためのグラフである。 l・・・圧縮器、2・・・四方弁、3・・・室内熱交換
器、4.5・・・キャピラリチューブ、6・・・室外熱
交換器、7・・・交換器温度センサ、8・・・外気湿度
センサ、9・・・外気温度センサ、10・・・制御回路
、10d・・・絶対湿度演算回路、10e・・・零度以
下検出回路、10f・・・飽和水蒸気量決定回路、Lo
g・・・アンド回路、10h・・・比較回路、10i・
・・差演算回路、10j・・・タイマー、10k・・・
時間演算回路、10f・・・比較回路。 特許出願人   株式会社鷺宮製作所 第1図 藻屑 T’Cl ;1iJiA(’?l AD         泰71
 TE  (’C)第6図 73   0T2    Tl 温fi  (’C) 手続補正書(自発) 昭和60年10月31日 需庁舵宇賀道部殿 1、 事件の表示  昭和60年特許願第087535
号2、  発明の名称 空気調和機の除霜運転制御装置 3、  補正をする者 胴中との静 特許出願人 住所東京都中野区若宮2丁目55#5号名称 株式会社
iイ乍所 4、代理人 5、  補正命令の日付   昭和  年  月  日
6、  補正により増加する発明の数 補正の内容(特願昭60−087535号)1、明細書
中特許請求の範囲を以下の如く訂正する。 「(l)  圧縮機、四方弁、室外熱交換器、絞り装置
及び室内熱交換器を順次1通してなる空気調和機、 に
おいて、室外熱交換器の温度を検知する交換器温度セン
サと、外気の温度を検知する外気温度センサと、外気の
湿度を検知する湿度センサと、前記外気温度センサによ
り検知した温度と湿度センサにより検知した湿度により
外気の絶対湿度を演算する絶対湿度演算手段と、前記交
換器温度センサにより検知した温度に対する飽和水蒸気
量と前記演算した絶対湿度を比較する比較手段とを備え
、前記交換器温度センサにより検知した温度が零度以下
であることと前記比較手段による比較効果とにより着霜
を判定し、該判定によって除霜運転を制御することを特
徴とする除霜運転制御装置。 (2)  圧縮機、四方弁、室外熱交換器、絞り装置及
び室内熱交換器を順次産道してなる空気調和機において
、室外熱交換器の温度を検知する交換器温度センサと、
外気の温度を検知する外気温度センサと、外気の湿度を
検知する湿度センサと、前記外気温度センサにより検知
した温度と湿度センサにより検知した湿度により外気の
絶対湿度を演算する絶対湿度演算手段と、前記交換器温
度センサにより検知した温度に対する飽和水蒸気量と前
記演算した絶対湿度を比較する比較手段と前記交換器温
度センサにより検知した温度が零度以下であることと前
記比較手段による比較効果とにより着霜を判定する判定
手段と、前記判定手段による着霜判定時の前記演算した
絶対湿度と飽和水蒸気量の差である凝縮水分量を演算す
る手段と、前記判定手段による着霜判定時の前記交換器
温度センサにより検知した温度と前記凝縮水分量とによ
り、着霜量が所定量になる時間を演算する手段とを備え
、着霜判定後接演算した時間経過した時点で除霜運転を
開始することを特徴とする除霜運転制御装置。」2、同
書第3頁第13行の「使用弁」を「四方弁」に訂正する
。 3、 同書第5頁第16行の「するとも」を「すると」
に訂正する。 46  同書第9頁第14行の「D3」をrDsaJに
訂正する。 5、同書第9頁第19行のrTEJを「T、」に訂正す
る。 6、同書第10頁第13行の「比例」の前に「略」を挿
入する。 7、同書第10頁第14行の「室外熱交換器」の前に「
、ΔT (−TA  Tx )が一定であれば、」を挿
入する。 8、同書第10頁第15行の「反比例」を「略比例」に
訂正する。 9、図面第1図、第2図、第5図、第6図及び第7図を
添付図面と差し替える。 特許出願人  株式会社讐宮製作所 V 1戻TE  (’C) 第6図 Ts    OT2    Tl 1a崖 (@C)
FIG. 1 is a refrigeration cycle diagram of an air conditioner equipped with a defrosting operation control device according to an embodiment of the present invention, FIG. 2 is a block diagram showing an electric circuit of the defrosting operation control device, and FIGS. FIG. 5 is a graph for explaining the present invention in detail, FIG. 6 is a refrigeration cycle diagram showing a conventional example, and FIG. 7 is a graph for explaining the drawbacks of the conventional example. 1... Compressor, 2... Four-way valve, 3... Indoor heat exchanger, 4.5... Capillary tube, 6... Outdoor heat exchanger, 7... Exchanger temperature sensor, 8...Outside air humidity sensor, 9...Outside air temperature sensor, 10...Control circuit, 10d...Absolute humidity calculation circuit, 10e...Zero temperature or below detection circuit, 10f...Saturated water vapor amount determination circuit , Lo
g...AND circuit, 10h...comparison circuit, 10i.
...Difference calculation circuit, 10j...Timer, 10k...
Time calculation circuit, 10f... comparison circuit. Patent Applicant Saginomiya Seisakusho Co., Ltd. Figure 1 Algae T'Cl;1iJiA('?l AD Yasushi 71
TE ('C) Figure 6 73 0T2 Tl Onfi ('C) Procedural amendment (spontaneous) October 31, 1985 Mr. Uga Michibu of the Demand Agency 1, Indication of the case Patent application No. 087535 of 1985
No. 2, Name of the invention: Air conditioner defrosting operation control device 3, Person making the amendment: Patent applicant address: 2-55 Wakamiya, Nakano-ku, Tokyo, No. 5 Name: Ii-sho Co., Ltd. 4, Agent 5, Date of amendment order: Month, Day 6, 1939. Contents of amendment to increase the number of inventions due to amendment (Japanese Patent Application No. 60-087535) 1. The scope of claims in the specification is amended as follows. (l) In an air conditioner consisting of a compressor, a four-way valve, an outdoor heat exchanger, a throttling device, and an indoor heat exchanger in sequence, an exchanger temperature sensor that detects the temperature of the outdoor heat exchanger, and an exchanger temperature sensor that detects the temperature of the outdoor heat exchanger; an outside air temperature sensor that detects the temperature of the outside air; a humidity sensor that detects the humidity of the outside air; an absolute humidity calculation means that calculates the absolute humidity of the outside air based on the temperature detected by the outside air temperature sensor and the humidity detected by the humidity sensor; Comparing means for comparing the saturated water vapor amount with respect to the temperature detected by the exchanger temperature sensor and the calculated absolute humidity, and the temperature detected by the exchanger temperature sensor is below zero degrees and the comparative effect of the comparing means. A defrosting operation control device that determines frost formation and controls defrosting operation based on the determination. (2) A compressor, a four-way valve, an outdoor heat exchanger, a throttle device, and an indoor heat exchanger are sequentially operated. In the air conditioner formed by the birth canal, an exchanger temperature sensor that detects the temperature of the outdoor heat exchanger;
an outside air temperature sensor that detects the temperature of the outside air; a humidity sensor that detects the humidity of the outside air; and an absolute humidity calculation means that calculates the absolute humidity of the outside air based on the temperature detected by the outside air temperature sensor and the humidity detected by the humidity sensor; Comparison means for comparing the saturated water vapor amount with respect to the temperature detected by the exchanger temperature sensor and the calculated absolute humidity, the temperature detected by the exchanger temperature sensor being below zero degrees, and the comparison effect of the comparison means. a determining means for determining frost; a means for calculating a condensed moisture content which is the difference between the calculated absolute humidity and a saturated water vapor amount when determining frost formation by the determining means; and the replacement when determining frost formation by the determining means. means for calculating the time required for the amount of frost to reach a predetermined amount based on the temperature detected by the temperature sensor and the amount of condensed moisture, and the defrosting operation is started when the calculated time has elapsed after determining the formation of frost. A defrosting operation control device characterized by: ” 2. In the same book, page 3, line 13, “valve used” is corrected to “four-way valve.” 3. In the same book, page 5, line 16, “tomo” is changed to “to”
Correct. 46 "D3" on page 9, line 14 of the same book is corrected to rDsaJ. 5. Correct rTEJ to "T," on page 9, line 19 of the same book. 6. Insert "abbreviation" before "proportionality" in line 13 of page 10 of the same book. 7. In the same book, page 10, line 14, before "outdoor heat exchanger"
, ΔT (-TA Tx ) is constant, insert ". 8. In the same book, page 10, line 15, "inversely proportional" is corrected to "approximately proportional." 9. Figures 1, 2, 5, 6 and 7 are replaced with the attached drawings. Patent applicant Susumiya Seisakusho Co., Ltd. V 1 return TE ('C) Figure 6 Ts OT2 Tl 1a cliff (@C)

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機、四方弁、室外熱交換器、絞り装置及び室
内熱交換器を順次連通してなる空気調和機において、室
外熱交換器の温度を検知する交換器温度センサと、外気
の温度を検知する外気温度センサと、外気の湿度を検知
する湿度センサと、前記外気温度センサにより検知した
温度と湿度センサにより検知した湿度により外気の絶対
湿度を演算する絶対湿度演算手段と、前記交換器温度セ
ンサにより検知した温度に対する飽和水蒸気量と前記演
算した絶対湿度を比較する比較手段とを備え、前記交換
器温度センサにより検知した温度が零度以下であること
と前記比較手段による比較効果とにより着霜を判定し、
該判定によって除霜運転を制御することを特徴とする除
霜運転制御装置。
(1) In an air conditioner in which a compressor, a four-way valve, an outdoor heat exchanger, a throttle device, and an indoor heat exchanger are connected in sequence, an exchanger temperature sensor that detects the temperature of the outdoor heat exchanger and the temperature of the outside air are provided. an outside air temperature sensor that detects the humidity of the outside air, a humidity sensor that detects the humidity of the outside air, an absolute humidity calculation means that calculates the absolute humidity of the outside air based on the temperature detected by the outside air temperature sensor and the humidity detected by the humidity sensor, and the exchanger. Comparing means for comparing the saturated water vapor amount with respect to the temperature detected by the temperature sensor and the calculated absolute humidity; Determine frost,
A defrosting operation control device that controls defrosting operation based on the determination.
(2)圧縮機、四方弁、室外熱交換器、絞り装置及び室
内熱交換器を順次連通してなる空気調和機において、室
外熱交換器の温度を検知する交換器温度センサと、外気
の温度を検知する外気温度センサと、外気の湿度を検知
する湿度センサと、前記外気温度センサにより検知した
温度と湿度センサにより検知した湿度により外気の絶対
湿度を演算する絶対湿度演算手段と、前記交換器温度セ
ンサにより検知した温度に対する飽和水蒸気量と前記演
算した絶対湿度を比較する比較手段と前記交換器温度セ
ンサにより検知した温度が零度以下であることと前記比
較手段による比較効果とにより着霜を判定する判定手段
と、前記判定手段による着霜判定時の前記演算した絶対
湿度と飽和水蒸気量の差である凝縮水分量を演算する手
段と、前記判定手段による着霜判定時の前記交換器温度
センサにより検知した温度と前記凝縮水分量とにより、
着霜量が所定量になる時間を演算する手段とを備え、着
霜判定後該演算した時間経過した時点で除霜運転を開始
することを特徴とする除霜運転制御装置。
(2) In an air conditioner that sequentially communicates a compressor, a four-way valve, an outdoor heat exchanger, a throttling device, and an indoor heat exchanger, an exchanger temperature sensor that detects the temperature of the outdoor heat exchanger and the temperature of the outside air are provided. an outside air temperature sensor that detects the humidity of the outside air, a humidity sensor that detects the humidity of the outside air, an absolute humidity calculation means that calculates the absolute humidity of the outside air based on the temperature detected by the outside air temperature sensor and the humidity detected by the humidity sensor, and the exchanger. Frost formation is determined based on a comparison means for comparing the saturated water vapor amount with respect to the temperature detected by the temperature sensor and the calculated absolute humidity, the temperature detected by the exchanger temperature sensor being below zero degrees, and the comparison effect by the comparison means. a means for calculating a condensed moisture amount which is the difference between the calculated absolute humidity and a saturated water vapor amount when frost formation is determined by the determination means; and the exchanger temperature sensor when frost formation is determined by the determination means. Based on the temperature detected by and the amount of condensed water,
What is claimed is: 1. A defrosting operation control device comprising means for calculating a time period for which the amount of frost formation reaches a predetermined amount, and starting a defrosting operation when the calculated time period has elapsed after frost formation determination.
JP60087535A 1985-04-25 1985-04-25 Defrosting operation control device for air conditioner Granted JPS61250438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60087535A JPS61250438A (en) 1985-04-25 1985-04-25 Defrosting operation control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60087535A JPS61250438A (en) 1985-04-25 1985-04-25 Defrosting operation control device for air conditioner

Publications (2)

Publication Number Publication Date
JPS61250438A true JPS61250438A (en) 1986-11-07
JPH0443173B2 JPH0443173B2 (en) 1992-07-15

Family

ID=13917678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60087535A Granted JPS61250438A (en) 1985-04-25 1985-04-25 Defrosting operation control device for air conditioner

Country Status (1)

Country Link
JP (1) JPS61250438A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278844A (en) * 1988-09-14 1990-03-19 Hokkaido Electric Power Co Inc:The Air conditioner
US5778147A (en) * 1994-07-29 1998-07-07 Samsung Electronics Co., Ltd. Dew preventing device for air conditioners
JP2007263426A (en) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd Defrosting control device
WO2018072727A1 (en) * 2016-10-20 2018-04-26 广东美的暖通设备有限公司 Method and device for defrosting air conditioner
KR20180124556A (en) * 2017-05-12 2018-11-21 엘지전자 주식회사 An air conditioner and a method for controlling the same
CN112303815A (en) * 2020-09-27 2021-02-02 青岛海尔空调电子有限公司 Defrosting control method of air conditioner outdoor unit and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686429U (en) * 1979-12-07 1981-07-11
JPS58184435A (en) * 1982-04-21 1983-10-27 Hitachi Ltd Air cooled heat pump type air conditioner device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686429U (en) * 1979-12-07 1981-07-11
JPS58184435A (en) * 1982-04-21 1983-10-27 Hitachi Ltd Air cooled heat pump type air conditioner device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278844A (en) * 1988-09-14 1990-03-19 Hokkaido Electric Power Co Inc:The Air conditioner
US5778147A (en) * 1994-07-29 1998-07-07 Samsung Electronics Co., Ltd. Dew preventing device for air conditioners
JP2007263426A (en) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd Defrosting control device
WO2018072727A1 (en) * 2016-10-20 2018-04-26 广东美的暖通设备有限公司 Method and device for defrosting air conditioner
EP3531045A4 (en) * 2016-10-20 2019-08-28 GD Midea Heating & Ventilating Equipment Co., Ltd. Method and device for defrosting air conditioner
KR20180124556A (en) * 2017-05-12 2018-11-21 엘지전자 주식회사 An air conditioner and a method for controlling the same
CN112303815A (en) * 2020-09-27 2021-02-02 青岛海尔空调电子有限公司 Defrosting control method of air conditioner outdoor unit and air conditioner

Also Published As

Publication number Publication date
JPH0443173B2 (en) 1992-07-15

Similar Documents

Publication Publication Date Title
JP2997487B2 (en) Refrigeration apparatus and method for indicating amount of refrigerant in refrigeration apparatus
CN108759029B (en) Air conditioning system, control method of air conditioning system and air conditioner
JPS58120054A (en) Air conditioner
JPH10153353A (en) Air conditioner
WO2023029653A1 (en) Defrosting control method for outdoor unit of air conditioner, and air conditioner
JP2001124387A (en) Air-conditioning device for vehicle
JPS61250438A (en) Defrosting operation control device for air conditioner
JPH08121917A (en) Refrigerant quantity determining device
JP2007278618A (en) Refrigeration unit
JP2003262385A (en) Air conditioner
JP2004225929A (en) Air conditioner and control method of air conditioner
JP2822705B2 (en) Defrost control device for heat pump type air conditioner
JP3213662B2 (en) Air conditioner
JP3443433B2 (en) Air conditioner
JPH1089779A (en) Air conditioner
JP3641849B2 (en) refrigerator
JP4131509B2 (en) Refrigeration cycle controller
JPH05126384A (en) Air conditioner
JP3511708B2 (en) Operation control unit for air conditioner
JP3444360B2 (en) Constant temperature and constant room equipment
JPH07167473A (en) Defrosting operation controller for air conditioner
JPH02195155A (en) Air conditioner
JPS6124614B2 (en)
JPH0260940B2 (en)
JP2000179969A (en) Multi-chamber type air conditioner