JP3213662B2 - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JP3213662B2 JP3213662B2 JP32559293A JP32559293A JP3213662B2 JP 3213662 B2 JP3213662 B2 JP 3213662B2 JP 32559293 A JP32559293 A JP 32559293A JP 32559293 A JP32559293 A JP 32559293A JP 3213662 B2 JP3213662 B2 JP 3213662B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heat exchanger
- outside air
- temperature sensor
- air temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Air Conditioning Control Device (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、外気温を推定する機
能を備えた空気調和機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner having a function of estimating an outside air temperature.
【0002】[0002]
【従来の技術】外気温を検知するための外気温センサを
備え、その検知温度に応じて、たとえば室外ファンの速
度制御、インバータの電流レリース制御、設定室内温度
の補正制御を行なう空気調和機がある。2. Description of the Related Art An air conditioner is provided with an outside air temperature sensor for detecting an outside air temperature, and performs, for example, speed control of an outdoor fan, current release control of an inverter, and correction control of a set indoor temperature in accordance with the detected temperature. is there.
【0003】外気温センサは一般的に室外ユニットに取
付けられるが、この取付けに当たっては外気温センサが
日射や室外熱交換器の輻射熱の影響を受けないよう配慮
する必要がある。[0003] The outside air temperature sensor is generally mounted on the outdoor unit, but in this mounting, it is necessary to take care that the outside air temperature sensor is not affected by solar radiation or radiant heat of the outdoor heat exchanger.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、外気温
センサが日射の影響を受けるかどうかは室外ユニットの
設置状況によって決まることが多く、取付け箇所の選定
が非常に難しいのが実情である。結局は日射の影響を避
けられず、適正な外気温検知ができずに運転制御に支障
を来たす心配がある。However, whether or not the outside air temperature sensor is affected by solar radiation is often determined by the installation condition of the outdoor unit, and it is actually difficult to select a mounting location. Eventually, there is a concern that the influence of solar radiation cannot be avoided, and that it is not possible to properly detect the outside air temperature, thereby impairing driving control.
【0005】室外ユニットにおける外気温センサの取付
け箇所を据付け時に作業員が選定するようにすることも
考えられるが、これは作業員にとって面倒なことであ
り、また誤った取付けがなされてしまう心配もある。[0005] It is conceivable that an operator selects an installation location of the outside air temperature sensor in the outdoor unit at the time of installation. However, this is troublesome for the operator, and there is a concern that the installation may be performed incorrectly. is there.
【0006】この発明は上記の事情を考慮したもので、
その目的とするところは、外気温センサを要さずに外気
温を捕らえることができ、これにより外気温センサを用
いる場合のような取付け箇所の配慮を不要とし、しかも
日射等の悪影響を受けることもなく、据付け時の作業負
担を軽減しながらまたコストの低減を図りながら信頼性
の高い外気温検知が可能な空気調和機を提供することに
ある。[0006] The present invention has been made in view of the above circumstances,
Its purpose is to capture the outside air temperature without the need for an outside air temperature sensor, which eliminates the need for consideration of mounting locations as when using an outside air temperature sensor, and also has the adverse effect of solar radiation etc. Another object of the present invention is to provide an air conditioner capable of detecting the outside air temperature with high reliability while reducing the work load at the time of installation and reducing the cost.
【0007】[0007]
【0008】[0008]
【0009】[0009]
【課題を解決するための手段】 第1 の発明の空気調和機
は、能力可変圧縮機、室外熱交換器、減圧器、室内熱交
換器を接続して冷凍サイクルを構成し、かつ前記圧縮機
に駆動電力を供給するインバータを備え、このインバー
タの出力周波数を空調負荷に応じて制御する空気調和機
において、室外熱交換器の温度を検知する温度センサ
と、運転開始から所定時間は運転開始時の前記温度セン
サの検知温度を外気温として取込む手段と、運転開始か
ら所定時間後は温度センサの検知温度に対するインバー
タの出力周波数に応じた補正により外気温を推定する手
段と、この推定値と運転開始時の温度センサの検知温度
との差を求める手段と、この差が設定値以上のときは運
転開始時の温度センサの検知温度を外気温として取込む
手段と、上記差が設定値以下になるとそこで初めて上記
推定値を外気温として取込む手段と、取込んだ外気温を
用いて運転を制御する制御手段とを備える。 Means for Solving the Problems The air conditioner of the first invention, a variable capacity compressor, an outdoor heat exchanger, a pressure reducer, to connect the indoor heat exchanger constitutes a refrigeration cycle, and the compressor An air conditioner that controls the output frequency of the inverter according to the air-conditioning load, and a temperature sensor that detects the temperature of the outdoor heat exchanger. Means for taking the detected temperature of the temperature sensor as the outside air temperature, means for estimating the outside air temperature by correction according to the output frequency of the inverter with respect to the detected temperature of the temperature sensor after a predetermined time from the start of operation, A means for obtaining a difference from the temperature detected by the temperature sensor at the start of operation, a means for taking the detected temperature of the temperature sensor at the start of operation as the outside temperature when the difference is equal to or greater than a set value, and And means for the becomes a value less Only then the estimated value taking as outside air temperature, and control means for controlling the operation using the outside air temperature the taken.
【0010】第2の発明の空気調和機は、能力可変圧縮
機、室外熱交換器、減圧器、室内熱交換器を接続して冷
凍サイクルを構成し、かつ圧縮機に駆動電力を供給する
インバータと室外熱交換器に送風する室外ファンとを備
え、インバータの出力周波数を空調負荷に応じて制御す
る空気調和機において、室外熱交換器の温度を検知する
温度センサと、圧縮機の駆動電流を検出する電流センサ
と、温度センサの検知温度を出力周波数及び駆動電流に
応じて補正して外気温を推定する手段とを備える。An air conditioner according to a second aspect of the present invention is an inverter that connects a variable capacity compressor, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger to form a refrigeration cycle and supplies driving power to the compressor. And an outdoor fan that blows air to the outdoor heat exchanger.In an air conditioner that controls the output frequency of the inverter according to the air conditioning load, a temperature sensor that detects the temperature of the outdoor heat exchanger and a driving current of the compressor are provided. It comprises a current sensor for detecting, and a means for correcting the temperature detected by the temperature sensor according to the output frequency and the drive current to estimate the outside air temperature.
【0011】[0011]
【0012】[0012]
【作用】 第1 の発明の空気調和機では、運転開始から所
定時間は運転開始時の室外熱交換器の温度を外気温とし
て取込み、運転開始から所定時間後は室外熱交換器の温
度をインバータの出力周波数に応じて補正して外気温を
推定し、この推定値と運転開始時の室外熱交換器の温度
との差を求め、この差が設定値以上のときは運転開始時
の温度センサの検知温度を外気温として取込み、差が設
定値以下になるとそこで初めて上記推定値を外気温とし
て取込み、取込んだ外気温を運転制御に用いる。第2の
発明の空気調和機では、室外熱交換器の温度をインバー
タの出力周波数と駆動電流に応じて補正して外気温を推
定する。 In the air conditioner according to the first aspect of the present invention, the temperature of the outdoor heat exchanger at the start of operation is taken as the outside air temperature for a predetermined time from the start of operation, and the temperature of the outdoor heat exchanger is converted to the inverter temperature after a predetermined time from the start of operation. Estimates the outside air temperature by correcting according to the output frequency of the outdoor heat exchanger, and calculates the difference between this estimated value and the temperature of the outdoor heat exchanger at the start of operation. Is detected as the outside temperature, and when the difference becomes equal to or less than the set value, the above estimated value is first taken as the outside temperature, and the taken outside temperature is used for operation control. In the air conditioner of the second invention, the temperature of the outdoor heat exchanger is corrected according to the output frequency of the inverter and the drive current to estimate the outside air temperature.
【0013】[0013]
【実施例】以下、この発明の第1実施例について図面を
参照して説明する。図2に示すように、室外ユニットA
および室内ユニットBにヒートポンプ式冷凍サイクルが
搭載される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 2, the outdoor unit A
The indoor unit B is equipped with a heat pump refrigeration cycle.
【0014】1は能力可変圧縮機で、その圧縮機1の吐
出口に四方弁2を介して室外熱交換器3が接続される。
この室外熱交換器3に減圧器であるところの膨張弁4を
介して室内熱交換器5が接続され、その室内熱交換器5
は四方弁2を介して圧縮機1の吸込口に接続される。Reference numeral 1 denotes a variable capacity compressor. An outdoor heat exchanger 3 is connected to a discharge port of the compressor 1 via a four-way valve 2.
An indoor heat exchanger 5 is connected to the outdoor heat exchanger 3 via an expansion valve 4 which is a decompressor.
Is connected to the suction port of the compressor 1 via the four-way valve 2.
【0015】室外熱交換器3の近傍に室外ファン6、室
内熱交換器5の近傍に室内ファン7が設けられる。室外
熱交換器3に熱交換器温度センサ11が取付けられる。
室内ファン7によって形成される吸込み風路に室内温度
センサ12が設けられる。An outdoor fan 6 is provided near the outdoor heat exchanger 3 and an indoor fan 7 is provided near the indoor heat exchanger 5. The heat exchanger temperature sensor 11 is attached to the outdoor heat exchanger 3.
An indoor temperature sensor 12 is provided in a suction air passage formed by the indoor fan 7.
【0016】制御回路を図1に示す。室内ユニットBの
室内制御部20が商用交流電源30に接続される。そし
て、室内制御部20に電源ラインACLおよびシリアル
信号ラインSLを介して室外ユニットAの室外制御部4
0が接続される。FIG. 1 shows a control circuit. The indoor control unit 20 of the indoor unit B is connected to the commercial AC power supply 30. Then, the outdoor control unit 4 of the outdoor unit A is connected to the indoor control unit 20 via the power line ACL and the serial signal line SL.
0 is connected.
【0017】室内制御部20は、マイクロコンピュータ
およびその周辺回路からなる。この室内制御部20に、
受光部21、室内ファンモータ6M、および室内温度セ
ンサ12が接続される。受光部21は、リモートコント
ロール式の操作器(以下、リモコンと略称する)22か
ら送信される赤外線光を受光する。The indoor control unit 20 comprises a microcomputer and its peripheral circuits. In this indoor control unit 20,
The light receiving unit 21, the indoor fan motor 6M, and the indoor temperature sensor 12 are connected. The light receiving unit 21 receives infrared light transmitted from a remote control type operation device (hereinafter, abbreviated as a remote controller) 22.
【0018】室外制御部50はマイクロコンピュータお
よびその周辺回路からなる。この室外制御部50に、四
方弁2、室外ファンモータ6M、熱交換器温度センサ1
1、およびインバータ回路41が接続される。インバー
タ回路41は、電源ラインACLの電圧を整流し、それ
を室外制御部40の指令に応じた所定周波数(およびレ
ベル)の電圧に変換し、出力する。この出力は圧縮機モ
ータ1Mの駆動電力となる。The outdoor controller 50 comprises a microcomputer and its peripheral circuits. The outdoor control unit 50 includes a four-way valve 2, an outdoor fan motor 6M, a heat exchanger temperature sensor 1
1 and the inverter circuit 41 are connected. The inverter circuit 41 rectifies the voltage of the power supply line ACL, converts the rectified voltage into a voltage of a predetermined frequency (and level) according to a command from the outdoor control unit 40, and outputs the voltage. This output is the driving power of the compressor motor 1M.
【0019】ここで、室内制御部20および室外制御部
40は、シリアル信号ラインSLを通して電源電圧同期
のデータ転送を行ない、当該空気調和機を制御するもの
で、次の機能手段を備える。Here, the indoor control unit 20 and the outdoor control unit 40 perform data transfer synchronized with the power supply voltage through the serial signal line SL to control the air conditioner, and have the following functional units.
【0020】[1]圧縮機1の吐出冷媒を図2に示す実
線矢印の方向に流し、これにより冷房サイクルを形成し
て室外熱交換器3を凝縮器、室内熱交換器5を蒸発器と
して機能させ、冷房運転またはドライ運転(=弱冷房運
転)を実行する手段。[1] The refrigerant discharged from the compressor 1 flows in the direction of the solid arrow shown in FIG. 2 to form a cooling cycle, and the outdoor heat exchanger 3 is used as a condenser and the indoor heat exchanger 5 is used as an evaporator. Means for functioning and performing a cooling operation or a dry operation (= weak cooling operation).
【0021】[2]圧縮機1の吐出冷媒を四方弁2の切
換により図2に示す破線矢印の方向に流し、これにより
暖房サイクルを形成して室内熱交換器5を凝縮器、室外
熱交換器3を蒸発器として機能させ、暖房運転を実行す
る手段。[2] The refrigerant discharged from the compressor 1 is caused to flow in the direction of the dashed arrow shown in FIG. 2 by switching the four-way valve 2, thereby forming a heating cycle and causing the indoor heat exchanger 5 to operate as a condenser and outdoor heat exchanger. Means for causing the heater 3 to function as an evaporator and performing a heating operation.
【0022】[3]暖房時、熱交換器温度センサ11の
検知温度が所定値以下たとえば零℃以下になると四方弁
2を切換え、室外熱交換器3に対する除霜運転を実行す
る手段。[3] Means for switching the four-way valve 2 and performing the defrosting operation on the outdoor heat exchanger 3 when the temperature detected by the heat exchanger temperature sensor 11 becomes lower than a predetermined value, for example, 0 ° C. or lower during heating.
【0023】[4]冷房および暖房時、室内温度センサ
12の検知温度Taとリモコン設定温度Tsとの差ΔT
を空調負荷として求め、その差ΔTに応じてインバータ
回路41の出力周波数(圧縮機1の運転周波数)Fを制
御する手段。[4] During cooling and heating, the difference ΔT between the detected temperature Ta of the indoor temperature sensor 12 and the set temperature Ts of the remote controller.
Means for determining the output frequency (the operating frequency of the compressor 1) F of the inverter circuit 41 in accordance with the difference ΔT.
【0024】[5]運転開始から所定時間t1 (たとえ
ば60秒)において、運転開始時の熱交換器温度センサ1
1の検知温度Teを外気温Toとして取込む手段。 [6]運転開始から所定時間t1 (たとえば60秒)後、
熱交換器温度センサ11の検知温度Teを出力周波数F
に応じて補正し、これにより外気温Toを推定する手
段。[5] At a predetermined time t 1 (for example, 60 seconds) from the start of operation, the heat exchanger temperature sensor 1 at the start of operation
Means for taking in the detected temperature Te as the outside air temperature To. [6] After a predetermined time t 1 (for example, 60 seconds) from the start of operation,
The detected temperature Te of the heat exchanger temperature sensor 11 is output frequency F
Means for estimating the outside air temperature To.
【0025】[7]取込みまたは推定した外気温Toを
用いて運転を制御する制御手段。 つぎに、上記の構成の作用を図3を参照して説明する。
リモコン22で冷房運転の開始操作がなされると、熱交
換器温度センサ11の検知温度Teが読込まれ、それが
外気温Toとして制御部内のメモリに記憶される。同時
に、タイムカウントtが開始される。[7] Control means for controlling operation using the taken-in or estimated outside air temperature To. Next, the operation of the above configuration will be described with reference to FIG.
When the start operation of the cooling operation is performed by the remote controller 22, the detected temperature Te of the heat exchanger temperature sensor 11 is read and stored in the memory in the control unit as the outside air temperature To. At the same time, a time count t is started.
【0026】そして、圧縮機1が起動され、その圧縮機
1から吐出される冷媒が四方弁2、室外熱交換器3、膨
張弁4、室内熱交換器5、四方弁2を通って圧縮機1に
戻り、冷房サイクルが形成される。これにより、室外熱
交換器3が凝縮器、室内熱交換器5が蒸発器として機能
し、室内が冷房される。Then, the compressor 1 is started, and the refrigerant discharged from the compressor 1 passes through the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, the indoor heat exchanger 5, and the four-way valve 2, and Returning to 1, a cooling cycle is formed. Thereby, the outdoor heat exchanger 3 functions as a condenser and the indoor heat exchanger 5 functions as an evaporator, and the room is cooled.
【0027】この冷房時、室内温度センサ12の検知温
度Taが読込まれ、それとリモコン22による設定温度
Tsとの差ΔT(=Ta−Ts)が空調負荷として求め
られる。この温度差ΔTに応じた値にインバータ回路4
1の出力周波数(圧縮機1の運転周波数)Fが設定さ
れ、圧縮機1の能力が制御される。At the time of cooling, the detected temperature Ta of the room temperature sensor 12 is read, and the difference ΔT (= Ta−Ts) between the detected temperature Ta and the temperature Ts set by the remote controller 22 is obtained as the air conditioning load. Inverter circuit 4 has a value corresponding to this temperature difference ΔT.
An output frequency F (operation frequency of the compressor 1) F is set, and the capacity of the compressor 1 is controlled.
【0028】また、運転中は、メモリに記憶した外気温
Toに応じて種々の制御が実行される。たとえば、外気
温Toに応じて室外ファンモータ6Mの速度タップが切
換えられる。外気温Toが所定値以上と高い場合、イン
バータ回路41の異常温度上昇を避けるため、電流レリ
ース制御が行なわれる。室内の快適性を得るため、外気
温Toに応じて設定温度Tsが補正される。During operation, various controls are executed according to the outside air temperature To stored in the memory. For example, the speed tap of outdoor fan motor 6M is switched according to outside air temperature To. When the outside air temperature To is higher than a predetermined value, a current release control is performed to avoid an abnormal rise in the temperature of the inverter circuit 41. In order to obtain indoor comfort, the set temperature Ts is corrected according to the outside air temperature To.
【0029】タイムカウントtが所定時間t1 に達した
後は、熱交換器温度センサ11の検知温度Teが逐次に
読込まれるとともに、インバータ回路41の出力周波数
Fに対応する補正値f(F)が逐次に読出される。After the time count t reaches the predetermined time t 1 , the detected temperature Te of the heat exchanger temperature sensor 11 is sequentially read, and the correction value f (F (F) corresponding to the output frequency F of the inverter circuit 41 is obtained. ) Are sequentially read.
【0030】補正値f(F)は、出力周波数Fの関数で
あり、図4に示す補正値設定条件としてあらかじめ制御
部内のROMに記憶されている。また、出力周波数Fに
応じて室外送風機6の回転数は段階的(例えば3段階)
に切換えられるので、このf(F)に送風機6の回転数
の変化も加味されていると考えられる。たとえば、出力
周波数Fが10Hzのとき、補正値f(F)として数値“-
1.0”が読出される。出力周波数Fが36Hzであれば、補
正値f(F)として数値“-7.0”が読出される。なお、
図4に示した補正値設定条件は冷房用であり、図示して
いないが暖房用ももちろん用意されている。The correction value f (F) is a function of the output frequency F, and is stored in advance in the ROM in the control unit as the correction value setting condition shown in FIG. Further, the number of rotations of the outdoor blower 6 is stepwise (for example, three steps) according to the output frequency F.
Therefore, it is considered that the change in the number of revolutions of the blower 6 is added to this f (F). For example, when the output frequency F is 10 Hz, the correction value f (F) is set to a numerical value “−”.
1.0 "is read out. If the output frequency F is 36 Hz, a numerical value" -7.0 "is read out as the correction value f (F).
The correction value setting condition shown in FIG. 4 is for cooling, and although not shown, it is of course also prepared for heating.
【0031】検知温度Teが読込まれ、また補正値f
(F)が読出されると、両者を用いた下式の演算によ
り、外気温の推定値To1 が求められる。 To1 =Te+f(F) すなわち、熱交換器温度Teと外気温Toとの間には、
図5に示すように、出力周波数Fをパラメータとする比
例関係があり、たとえば出力周波数F=86Hzで見ると、
熱交換器温度Teと外気温Toとの間に常に 9.0℃の差
が存在する。この温度差を補正値f(F)として定めて
いる。The detected temperature Te is read, and the correction value f
When (F) is read, by the operation of the following equation using both the estimated value To 1 of the outside air temperature is determined. To 1 = Te + f (F) That is, between the heat exchanger temperature Te and the outside air temperature To,
As shown in FIG. 5, there is a proportional relationship with the output frequency F as a parameter.
There is always a 9.0 ° C difference between the heat exchanger temperature Te and the outside air temperature To. This temperature difference is defined as a correction value f (F).
【0032】推定値To1 が求まると、それが外気温T
oとして制御部内のメモリに更新記憶される。以後、こ
の推定および更新される外気温Toに基づき、上記した
タップ切換、電流レリース制御、設定温度補正が行なわ
れる。When the estimated value To 1 is obtained, it is calculated based on the outside air temperature T.
It is updated and stored in the memory in the control unit as o. Thereafter, the above-described tap switching, current release control, and set temperature correction are performed based on the estimated and updated outside air temperature To.
【0033】なお、熱交換器温度Teと推定値To1 と
の関係を示したのが図6であり、起動時は運転が不安定
なために図5の比例関係が成り立たず、推定値To1 が
実際の外気温から大きく離れるが、起動からしばらくし
て運転が安定するようになると図5の比例関係が成り立
ち、推定値To1 が実際の外気温に近付くことが判か
る。FIG. 6 shows the relationship between the heat exchanger temperature Te and the estimated value To 1. Since the operation is unstable at startup, the proportional relationship shown in FIG. Although 1 greatly deviates from the actual outside temperature, when the operation becomes stable some time after the start, the proportional relationship in FIG. 5 is established, and it is understood that the estimated value To 1 approaches the actual outside temperature.
【0034】したがって、起動から所定時間t1 につい
ては、外気温とほぼ等しい状態にある運転開始時の熱交
換器温度Teをそのまま外気温Toとして用いるように
している。そして、所定時間t1 後は、推定値To1 を
外気温Toとするのである。こうして求められる外気温
Toは、図7に示すように、実際の外気温とほぼ等しい
安定した値となる。Therefore, for a predetermined time t 1 from the start, the heat exchanger temperature Te at the start of the operation, which is substantially equal to the outside air temperature, is used as the outside air temperature To as it is. Then, after a predetermined time t 1, is an estimate To 1 taken as the outside air temperature To. The outside air temperature To thus obtained is a stable value substantially equal to the actual outside air temperature, as shown in FIG.
【0035】このように、熱交換器温度Teから外気温
Toを捕らえることにより、外気温センサは不要であ
る。よって、外気温センサを用いる場合のような取付け
箇所の配慮はまったく不要であり、また日射等の悪影響
も皆無であり、据付け時の作業負担を軽減しながら信頼
性の高い外気温検知が可能となる。As described above, by capturing the outside air temperature To from the heat exchanger temperature Te, an outside air temperature sensor is not required. Therefore, there is no need to consider the installation location, such as when using an outside air temperature sensor, and there is no adverse effect such as solar radiation, making it possible to detect the outside air temperature with high reliability while reducing the work load during installation. Become.
【0036】しかも、熱交換器温度センサ11は暖房時
の着霜検知用としてもともと設けられているものであ
り、それを外気温検知に兼用するので、部品の追加は不
要であり、外気温センサが不要となることと合わせてコ
ストの低減が図れる。Moreover, the heat exchanger temperature sensor 11 is originally provided for detecting frost formation during heating, and is also used for detecting the outside air temperature. The cost can be reduced in addition to the fact that it becomes unnecessary.
【0037】次に、この発明の第2実施例について説明
する。ここでは、室内制御部20および室外制御部40
が次の機能手段を備える。その他の構成については第1
実施例と同じである。Next, a second embodiment of the present invention will be described. Here, the indoor control unit 20 and the outdoor control unit 40
Has the following functional means. For other configurations, refer to
This is the same as the embodiment.
【0038】ここで、室内制御部20および室外制御部
40は、シリアル信号ラインSLを通して電源電圧同期
のデータ転送を行ない、当該空気調和機を制御するもの
で、次の機能手段を備える。Here, the indoor control unit 20 and the outdoor control unit 40 perform data transfer synchronized with the power supply voltage through the serial signal line SL to control the air conditioner, and have the following functional units.
【0039】[1]圧縮機1の吐出冷媒を図2に示す実
線矢印の方向に流し、これにより冷房サイクルを形成し
て室外熱交換器3を凝縮器、室内熱交換器5を蒸発器と
して機能させ、冷房運転またはドライ運転(=弱冷房運
転)を実行する手段。[1] The refrigerant discharged from the compressor 1 flows in the direction of the solid line arrow shown in FIG. 2 to form a cooling cycle, and the outdoor heat exchanger 3 is used as a condenser and the indoor heat exchanger 5 is used as an evaporator. Means for functioning and performing a cooling operation or a dry operation (= weak cooling operation).
【0040】[2]圧縮機1の吐出冷媒を四方弁2の切
換により図2に示す破線矢印の方向に流し、これにより
暖房サイクルを形成して室内熱交換器5を凝縮器、室外
熱交換器3を蒸発器として機能させ、暖房運転を実行す
る手段。[2] The refrigerant discharged from the compressor 1 is caused to flow in the direction of the dashed arrow shown in FIG. 2 by switching the four-way valve 2, thereby forming a heating cycle and allowing the indoor heat exchanger 5 to operate as a condenser and an outdoor heat exchanger. Means for causing the heater 3 to function as an evaporator and performing a heating operation.
【0041】[3]暖房時、熱交換器温度センサ11の
検知温度が所定値以下たとえば零℃以下になると四方弁
2を切換え、室外熱交換器3に対する除霜運転を実行す
る手段。[3] Means for switching the four-way valve 2 and performing the defrosting operation on the outdoor heat exchanger 3 when the temperature detected by the heat exchanger temperature sensor 11 becomes lower than a predetermined value, for example, 0 ° C. or lower during heating.
【0042】[4]冷房および暖房時、室内温度センサ
12の検知温度Taとリモコン設定温度Tsとの差ΔT
を空調負荷として求め、その差ΔTに応じてインバータ
回路41の出力周波数(圧縮機1の運転周波数)Fを制
御する手段。[4] During cooling and heating, the difference ΔT between the detected temperature Ta of the indoor temperature sensor 12 and the set temperature Ts of the remote controller.
Means for determining the output frequency (the operating frequency of the compressor 1) F of the inverter circuit 41 in accordance with the difference ΔT.
【0043】[5]運転開始から所定時間t1 (たとえ
ば60秒)において、運転開始時の熱交換器温度センサ1
1の検知温度Teを外気温Toとして取込む手段。 [6]運転開始から所定時間t1 (たとえば60秒)後、
熱交換器温度センサ11の検知温度Teを出力周波数F
に応じて補正し、これにより外気温Toを推定する手
段。[5] At a predetermined time t 1 (for example, 60 seconds) from the start of operation, the heat exchanger temperature sensor 1 at the start of operation
Means for taking in the detected temperature Te as the outside air temperature To. [6] After a predetermined time t 1 (for example, 60 seconds) from the start of operation,
The detected temperature Te of the heat exchanger temperature sensor 11 is output frequency F
Means for estimating the outside air temperature To.
【0044】[7]取込みまたは推定した外気温Toを
用いて運転を制御する制御手段。 [8]運転開始から所定時間t1 後、上記の[6]の機
能手段で求めた推定値To1 と運転開始時の熱交換器温
度センサ11の検知温度Teとの差を求める手段。[7] Control means for controlling operation using the taken-in or estimated outside air temperature To. [8] After a predetermined time t 1 from the start of operation, means for calculating a difference between the detected temperature Te of the heat exchanger temperature sensor 11 estimates To 1 and start of operation obtained by the functional means of [6] above.
【0045】[9]求めた差が設定値α(たとえば 2
℃)以上のときは運転開始時の熱交換器温度センサ11
の検知温度Teを外気温Toとして取込む手段。 [10]求めた差が設定値α以下になるとそこで初めて推
定値To1 を外気温Toとして取込む手段。[9] The obtained difference is equal to the set value α (for example, 2
℃) or more, the heat exchanger temperature sensor 11 at the start of operation
Means for taking in the detected temperature Te of FIG. [10] obtained difference is below the set value α when So taking the first estimate To 1 as the outside air temperature To means.
【0046】つぎに、上記の構成の作用を図8を参照し
て説明する。運転開始時、まず制御部内のフラグflagが
“0”にセットされる。そして、熱交換器温度センサ1
1の検知温度Teが外気温Toとして制御部内のメモリ
に記憶される。これは、少なくとも運転開始から所定時
間t1 が経過するまで、継続される。Next, the operation of the above configuration will be described with reference to FIG. At the start of operation, first, a flag "flag" in the control unit is set to "0". And the heat exchanger temperature sensor 1
The first detected temperature Te is stored in the memory in the control unit as the outside air temperature To. This is at least the start of operation until a predetermined time t 1 has elapsed, is continued.
【0047】運転開始から所定時間t1 が経過すると、
熱交換器温度センサ11の検知温度Teが逐次に読込ま
れるとともに、インバータ回路41の出力周波数Fに対
応する補正値f(F)が逐次に読出される。When a predetermined time t 1 has elapsed since the start of operation,
The detected temperature Te of the heat exchanger temperature sensor 11 is sequentially read, and the correction value f (F) corresponding to the output frequency F of the inverter circuit 41 is sequentially read.
【0048】そして、読込まれる検知温度Teに対し、
読出される補正値f(F)が加算され、外気温の推定値
To1 が求められる。 To1 =Te+f(F) 推定値To1 が求まると、それとすでに記憶されている
外気温To(つまり運転開始時の熱交換器温度センサ1
1の検知温度Te)との差(=To1 −To)が求めら
れる。Then, for the detected temperature Te read,
Read the correction value f (F) is added, the estimated value To 1 of the outside air temperature is determined. To 1 = Te + f (F) When the estimated value To 1 is obtained, the estimated value To 1 and the stored outside air temperature To (ie, the heat exchanger temperature sensor 1 at the start of operation)
1 (= To 1 −To).
【0049】この差(絶対値)が設定値α以上ならば、
まだ運転が安定していないとの判断の下に、すでに記憶
されている外気温Toがそのまま継続的に有効とされ
る。差が設定値α以下になると、運転が安定したとの判
断の下に、推定値To1 がそこで初めて外気温Toとし
て更新記憶される。以後、フラグflagが“1”にセット
され、推定および更新される外気温Toが有効となる。If this difference (absolute value) is equal to or greater than the set value α,
Based on the determination that the operation has not been stabilized yet, the already stored outside air temperature To is continuously valid as it is. When the difference is below the set value alpha, under the determination that the operation is stabilized, the estimate To 1 is where it is first updated and stored as the outside air temperature To. Thereafter, the flag flag is set to “1”, and the estimated and updated outside air temperature To becomes effective.
【0050】効果については第1実施例と同じである
が、特に推定値To1 を外気温Toとして取込むか否か
の判断を時間経過と推定値To1 の大きさとの2段構え
で判定しているので、外気温Toとしての信頼性が向上
するという効果が加わる。The effect is the same as that of the first embodiment. In particular, the determination as to whether or not to take in the estimated value To 1 as the outside temperature To is made based on two stages of the passage of time and the magnitude of the estimated value To 1. Therefore, the effect of improving the reliability as the outside air temperature To is added.
【0051】次に、この発明の第3実施例について説明
する。この実施例は、第1及び第2の実施例に加え、冷
凍サイクル中の冷媒ガス量を加味して外気温Toを推定
するものである。Next, a third embodiment of the present invention will be described. In this embodiment, in addition to the first and second embodiments, the outside air temperature To is estimated by taking into account the amount of refrigerant gas in the refrigeration cycle.
【0052】ここでは、図9に示すように、室外ユニッ
トAに電流センサ42が備えられており、この電流セン
サ42は室外制御部40とインバ−タ回路41との間の
電源ラインACLの電流値を検出し、検出結果(検出電
流Iin)を室外制御部40へ送る。Here, as shown in FIG. 9, the outdoor unit A is provided with a current sensor 42, and the current sensor 42 supplies a current to the power supply line ACL between the outdoor control unit 40 and the inverter circuit 41. The value is detected, and the detection result (detection current Iin) is sent to the outdoor control unit 40.
【0053】室内制御部20および室外制御部40は次
の機能手段を備える。 [1]圧縮機1の吐出冷媒を図2に示す実線矢印の方向
に流し、これにより冷房サイクルを形成して室外熱交換
器3を凝縮器、室内熱交換器5を蒸発器として機能さ
せ、冷房運転またはドライ運転(=弱冷房運転)を実行
する手段。The indoor control section 20 and the outdoor control section 40 have the following functional means. [1] The refrigerant discharged from the compressor 1 is caused to flow in the direction of the solid arrow shown in FIG. 2, thereby forming a cooling cycle, and causing the outdoor heat exchanger 3 to function as a condenser and the indoor heat exchanger 5 to function as an evaporator. Means for performing a cooling operation or a dry operation (= weak cooling operation).
【0054】[2]圧縮機1の吐出冷媒を四方弁2の切
換により図2に示す破線矢印の方向に流し、これにより
暖房サイクルを形成して室内熱交換器5を凝縮器、室外
熱交換器3を蒸発器として機能させ、暖房運転を実行す
る手段。[2] The refrigerant discharged from the compressor 1 is caused to flow in the direction of the dashed arrow shown in FIG. 2 by switching the four-way valve 2, thereby forming a heating cycle and allowing the indoor heat exchanger 5 to operate as a condenser and outdoor heat exchanger. Means for causing the heater 3 to function as an evaporator and performing a heating operation.
【0055】[3]暖房時、熱交換器温度センサ11の
検知温度が所定値以下たとえば零℃以下になると四方弁
2を切換え、室外熱交換器3に対する除霜運転を実行す
る手段。[3] A means for switching the four-way valve 2 and performing a defrosting operation on the outdoor heat exchanger 3 when the temperature detected by the heat exchanger temperature sensor 11 becomes lower than a predetermined value, for example, 0 ° C. or lower during heating.
【0056】[4]冷房および暖房時、室内温度センサ
12の検知温度Taとリモコン設定温度Tsとの差ΔT
を空調負荷として求め、その差ΔTに応じてインバータ
回路41の出力周波数(圧縮機1の運転周波数)Fを制
御する手段。[4] During cooling and heating, the difference ΔT between the detected temperature Ta of the indoor temperature sensor 12 and the set temperature Ts of the remote controller.
Means for determining the output frequency (the operating frequency of the compressor 1) F of the inverter circuit 41 in accordance with the difference ΔT.
【0057】[5]運転開始から所定時間t1 (たとえ
ば5分)において、運転開始時の熱交換器温度センサ1
1の検知温度TeをToとして取込む手段。 [6]運転開始から所定時間t1 (たとえば5分)後、
出力周波数F(及び室外ファン回転数rps)に応じた
第1の補正値f(F)を読み出す手段。[5] At a predetermined time t 1 (for example, 5 minutes) from the start of operation, the heat exchanger temperature sensor 1 at the start of operation
Means for taking in the detected temperature Te as To. [6] After a predetermined time t 1 (for example, 5 minutes) from the start of operation,
Means for reading a first correction value f (F) corresponding to the output frequency F (and the outdoor fan rotation speed rps).
【0058】[7]運転開始から所定時間t1 (たとえ
ば5分)後、電流センサ42の検知電流Iinに基いて、
出力周波数Fに応じた冷媒ガス量を読み出す手段。 [8]冷媒ガス量に基づき第2の補正値f(I)を読み
出す手段。[7] After a predetermined time t 1 (for example, 5 minutes) from the start of operation, based on the detection current Iin of the current sensor 42,
Means for reading the amount of refrigerant gas according to the output frequency F. [8] Means for reading the second correction value f (I) based on the refrigerant gas amount.
【0059】[9]第1の補正値f(F)、第2の補正
値f(I)、及び、熱交換器温度センサ11の検知温度
Teに基づいて外気温の推定値To1 を求める手段。 [10]推定値To1 をToとして更新記憶する手段。[9] The estimated value To 1 of the outside air temperature is obtained based on the first correction value f (F), the second correction value f (I), and the detected temperature Te of the heat exchanger temperature sensor 11. means. [10] Means for updating and storing the estimated value To 1 as To.
【0060】[11]更新された外気温Toを用いて運転
を制御する制御手段。 つぎに、上記の構成の作用を図10を参照して説明す
る。リモコン22で冷房運転の開始操作がなされると、
熱交換器温度センサ11の検知温度Teが読込まれ、そ
れが外気温Toとして制御部内のメモリに記憶される。
同時に、タイムカウントtが開始される。[11] Control means for controlling operation using the updated outside air temperature To. Next, the operation of the above configuration will be described with reference to FIG. When the start operation of the cooling operation is performed by the remote controller 22,
The detected temperature Te of the heat exchanger temperature sensor 11 is read and stored in the memory in the control unit as the outside air temperature To.
At the same time, a time count t is started.
【0061】そして、圧縮機1が起動され、その圧縮機
1から吐出される冷媒が四方弁2、室外熱交換器3、膨
張弁4、室内熱交換器5、四方弁2を通って圧縮機1に
戻り、冷房サイクルが形成される。これにより、室外熱
交換器3が凝縮器、室内熱交換器5が蒸発器として機能
し、室内が冷房される。Then, the compressor 1 is started, and the refrigerant discharged from the compressor 1 passes through the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, the indoor heat exchanger 5, and the four-way valve 2, and Returning to 1, a cooling cycle is formed. Thereby, the outdoor heat exchanger 3 functions as a condenser and the indoor heat exchanger 5 functions as an evaporator, and the room is cooled.
【0062】この冷房時、室内温度センサ12の検知温
度Taが読込まれ、それとリモコン22による設定温度
Tsとの差ΔT(=|Ta−Ts|)が空調負荷として
求められる。この温度差ΔTに応じた値にインバータ回
路41の出力周波数(圧縮機1の運転周波数)Fが設定
され、圧縮機の能力が制御される。At the time of cooling, the detected temperature Ta of the indoor temperature sensor 12 is read, and the difference ΔT (= | Ta−Ts |) between the detected temperature Ta and the temperature Ts set by the remote controller 22 is obtained as the air conditioning load. The output frequency (the operating frequency of the compressor 1) F of the inverter circuit 41 is set to a value corresponding to the temperature difference ΔT, and the capacity of the compressor is controlled.
【0063】また、運転中は、第1実施例と同様に、メ
モリに記憶した外気温Toに応じて種々の制御が実行さ
れる。タイムカウントtが所定時間t1 に達した後は、
熱交換器温度センサ11の検知温度Teと、電流センサ
42の検知電流Iinが逐次読み込まれるとと同時に、イ
ンバ−タ回路41の出力周波数Fに対応する補正値f
(F)、f(I)が逐次に読み出される。During operation, various controls are executed in accordance with the outside air temperature To stored in the memory, as in the first embodiment. After the time count t has reached the predetermined time t 1 is
As the detection temperature Te of the heat exchanger temperature sensor 11 and the detection current Iin of the current sensor 42 are sequentially read, a correction value f corresponding to the output frequency F of the inverter circuit 41 is obtained.
(F) and f (I) are sequentially read.
【0064】補正値f(F)は、図11に示すように出
力周波数Fの関数であり、第1実施例と同様に、補正値
設定条件としてあらかじめ制御部内のROMに記憶され
ている。The correction value f (F) is a function of the output frequency F as shown in FIG. 11, and is stored in advance in the ROM in the control unit as the correction value setting condition, as in the first embodiment.
【0065】補正値f(I)は、図13に示すように冷
媒ガス量の関数であり、冷媒ガス量は、図12に示すよ
うに電流センサ42の検出電流Iinと相関を有してい
る。図12に示すように、冷媒ガス量が変化すると圧縮
機1に作用する負荷が変化し、圧縮機1の駆動に必要な
電流値(電流センサ42の検出電流Iin)も変化する。
この冷媒ガス量と電流Iinとの関係は、出力周波数F
(F1 〜F3 )に応じて異なる。そして、図13に示す
ように、f(I)が分かれば冷媒ガス量が決まる。すな
わち、冷媒ガス量が減ればf(I)は減少する。これら
の相関はあらかじめ制御部内のROMに記憶されてい
る。The correction value f (I) is a function of the refrigerant gas amount as shown in FIG. 13, and the refrigerant gas amount has a correlation with the detection current Iin of the current sensor 42 as shown in FIG. . As shown in FIG. 12, when the refrigerant gas amount changes, the load acting on the compressor 1 changes, and the current value required for driving the compressor 1 (the detection current Iin of the current sensor 42) also changes.
The relationship between the refrigerant gas amount and the current Iin is based on the output frequency F
It varies depending on (F 1 ~F 3). Then, as shown in FIG. 13, if f (I) is known, the refrigerant gas amount is determined. That is, if the refrigerant gas amount decreases, f (I) decreases. These correlations are stored in the ROM in the control unit in advance.
【0066】なお、図が繁雑になることを避けるため
に、冷媒ガス量と電流Iinとの関係を3段階(F1 〜F
3 についてのみ)示したが、実際には運転する可能性の
ある周波数の全てにつき冷媒ガス量と電流Iinとの関係
が記憶されている。また、図12及び図13に示した補
正値設定条件は冷房用であり、図示していないが暖房用
ももちろん用意されている。In order to avoid complication of the diagram, the relationship between the refrigerant gas amount and the current Iin is determined in three stages (F 1 to F 1).
3 only), the relationship between the refrigerant gas amount and the current Iin is stored for all frequencies that may actually be operated. The correction value setting conditions shown in FIG. 12 and FIG. 13 are for cooling, and although not shown, they are of course prepared for heating.
【0067】検知温度Teが読み込まれ、また、補正値
f(F)、f(I)が読み出されると、両者を用いた下
式の演算により、外気温の推定値To1 が求められる。 To1 =Te+f(F)+f(I) 図14はこの関係を示している。To1 はTeと比例関
係に在る。冷媒量が減少すると、f(I)は増大する。[0067] sensed temperature Te is read, also, the correction value f (F), if f (I) is read out, the calculation of the following equation using both the estimated value To 1 of the outside air temperature is determined. To 1 = Te + f (F) + f (I) FIG. 14 shows this relationship. To 1 is in a proportional relationship with Te. As the amount of refrigerant decreases, f (I) increases.
【0068】以上説明したように本実施例においては、
室外熱交換器3の温度、圧縮機1の出力周波数、及び、
冷媒ガス量に基づいて外気温が設定されるので、第1実
施例と同様の効果を奏する外に、冷媒ガス量の影響を防
ぎながら外気温検知を行うことができる。したがって、
据付時の冷凍サイクル中の冷媒封入量の多少に関わら
ず、外気温検知の推定の正確度を更に向上することがで
きる。なお、この発明は上記実施例に限定されるもので
はなく、要旨を変えない範囲で種々変形実施可能であ
る。As described above, in this embodiment,
The temperature of the outdoor heat exchanger 3, the output frequency of the compressor 1, and
Since the outside air temperature is set based on the amount of the refrigerant gas, the outside air temperature can be detected while preventing the effect of the amount of the refrigerant gas besides having the same effect as in the first embodiment. Therefore,
Regardless of the amount of refrigerant charged in the refrigeration cycle at the time of installation, the accuracy of the estimation of the outside air temperature can be further improved. The present invention is not limited to the above embodiment, and various modifications can be made without changing the gist.
【0069】[0069]
【発明の効果】以上述べたように第1および第2の発明
によれば、室外熱交換器の温度から外気温を推定するよ
うにので、外気温センサを要さずに外気温を捕らえるこ
とができ、これにより外気温センサを用いる場合のよう
な取付け箇所の配慮を不要とし、しかも日射等の悪影響
を受けることもなく、据付け時の作業負担を軽減しなが
らまたコストの低減を図りながら信頼性の高い外気温検
知が可能な空気調和機を提供できる。As described above, according to the first and second aspects of the present invention, the outside air temperature is estimated from the temperature of the outdoor heat exchanger, so that the outside air temperature can be detected without requiring an outside air temperature sensor. This eliminates the need for consideration of mounting locations, such as when using an outside air temperature sensor, and eliminates adverse effects such as solar radiation, reducing the work load during installation and reducing costs while maintaining reliability. It is possible to provide an air conditioner capable of highly sensitive outside air temperature detection.
【図1】この発明の第1実施例の制御回路のブロック
図。FIG. 1 is a block diagram of a control circuit according to a first embodiment of the present invention.
【図2】同実施例の冷凍サイクルの構成図。FIG. 2 is a configuration diagram of a refrigeration cycle of the embodiment.
【図3】同実施例の作用を説明するためのフローチャー
ト。FIG. 3 is a flowchart for explaining the operation of the embodiment.
【図4】同実施例の補正値設定条件のフォーマットを示
す図。FIG. 4 is a view showing a format of a correction value setting condition of the embodiment.
【図5】同実施例の熱交換器温度と外気温との比例関係
を示す図。FIG. 5 is a diagram showing a proportional relationship between the heat exchanger temperature and the outside air temperature in the embodiment.
【図6】同実施例の熱交換器温度と推定値との関係を示
す図。FIG. 6 is a diagram showing a relationship between a heat exchanger temperature and an estimated value according to the embodiment.
【図7】同実施例において求まる外気温の変化を示す
図。FIG. 7 is a diagram showing a change in outside air temperature obtained in the embodiment.
【図8】この発明の第2実施例の作用を説明するための
フローチャート。FIG. 8 is a flowchart for explaining the operation of the second embodiment of the present invention.
【図9】この発明の第3実施例の制御回路のブロック
図。FIG. 9 is a block diagram of a control circuit according to a third embodiment of the present invention.
【図10】同実施例の作用を説明するためのフローチャ
ート。FIG. 10 is a flowchart for explaining the operation of the embodiment.
【図11】同実施例の熱交換器温度と出力周波数のみを
考慮した推定値との比例関係を示す図。FIG. 11 is a diagram showing a proportional relationship between the heat exchanger temperature and an estimated value in which only the output frequency is considered in the embodiment.
【図12】同実施例の駆動電流と冷媒量との関係を示す
図。FIG. 12 is a view showing the relationship between the drive current and the amount of refrigerant in the embodiment.
【図13】同実施例の冷媒ガス量と第2の補正値との関
係を示す図。FIG. 13 is a view showing a relationship between the refrigerant gas amount and a second correction value in the embodiment.
【図14】同実施例の熱交換器温度と出力周波数及び冷
媒ガス量を考慮した推定値との比例関係を示す図。FIG. 14 is a diagram showing a proportional relationship between a heat exchanger temperature and an estimated value in consideration of an output frequency and a refrigerant gas amount in the embodiment.
1…能力可変圧縮機、3…室外熱交換器、5…室内熱交
換器、11…熱交換器温度センサ、12…室内温度セン
サ、20…室内制御部、40…室外制御部、41…イン
バータ回路、42…電流センサ。DESCRIPTION OF SYMBOLS 1 ... Variable capacity compressor, 3 ... Outdoor heat exchanger, 5 ... Indoor heat exchanger, 11 ... Heat exchanger temperature sensor, 12 ... Indoor temperature sensor, 20 ... Indoor control part, 40 ... Outdoor control part, 41 ... Inverter Circuit, 42 ... Current sensor.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 白川 暢介 静岡県富士市蓼原336番地 株式会社東 芝富士工場内 (72)発明者 長澤 敦氏 静岡県富士市蓼原336番地 株式会社東 芝富士工場内 (72)発明者 大村 直起 静岡県富士市蓼原336番地 株式会社東 芝富士工場内 (72)発明者 上村 俊行 静岡県富士市蓼原336番地 株式会社東 芝富士工場内 (72)発明者 古根村 仁 静岡県富士市蓼原336番地 株式会社東 芝富士工場内 (56)参考文献 特開 昭62−125244(JP,A) 特開 昭60−62543(JP,A) 特開 昭56−59152(JP,A) 特開 昭54−129738(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24F 11/02 103 F24F 11/02 102 F24F 11/02 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Junsuke Shirakawa 336 Tatehara, Fuji-shi, Shizuoka Prefecture Inside the Toshiba Fuji Plant, Ltd. (72) Inventor Atsushi Nagasawa 336 Tatehara, Fuji City, Shizuoka Prefecture Higashi-Shiba Fuji Plant, Ltd. (72) Inventor Naoki Omura 336 Tatehara, Fuji-shi, Shizuoka Prefecture Inside the Toshiba Fuji Plant, Ltd. (72) Inventor Toshiyuki Uemura 336 Tatehara, Fuji City, Shizuoka Prefecture Inside the Toshiba Fuji Plant, Ltd. (72) Inventor Konemura 336 Tatehara, Fuji City, Shizuoka Prefecture Inside the Toshiba Fuji Plant (56) References JP-A-62-125244 (JP, A) JP-A-60-62543 (JP, A) JP-A-56-59152 (JP) , A) JP-A-54-129738 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F24F 11/02 103 F24F 11/02 102 F24F 11/02
Claims (2)
器、室内熱交換器を接続して冷凍サイクルを構成し、か
つ前記圧縮機に駆動電力を供給するインバータを備え、
このインバータの出力周波数を空調負荷に応じて制御す
る空気調和機において、前記室外熱交換器の温度を検知
する温度センサと、運転開始から所定時間は運転開始時
の前記温度センサの検知温度を外気温として取込む手段
と、運転開始から所定時間後は前記温度センサの検知温
度を前記出力周波数に応じて補正して外気温を推定する
手段と、この推定値と運転開始時の前記温度センサの検
知温度との差を求める手段と、この差が設定値以上のと
きは運転開始時の前記温度センサの検知温度を外気温と
して取込む手段と、前記差が設定値以下になるとそこで
初めて前記推定値を外気温として取込む手段と、取込ん
だ外気温を用いて運転を制御する制御手段とを備えたこ
とを特徴とする空気調和機。1. A refrigeration cycle comprising a variable capacity compressor, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger, and an inverter for supplying drive power to the compressor.
In an air conditioner that controls the output frequency of the inverter according to the air conditioning load, a temperature sensor that detects the temperature of the outdoor heat exchanger and a temperature sensor that detects the temperature of the temperature sensor at the start of operation for a predetermined time from the start of operation. Means for taking in as air temperature, means for estimating the outside air temperature by correcting the detected temperature of the temperature sensor according to the output frequency after a predetermined time from the start of operation, and the estimated value and the temperature sensor at the start of operation. Means for obtaining a difference from the detected temperature, means for taking the detected temperature of the temperature sensor at the start of operation when the difference is equal to or more than a set value as an outside air temperature, An air conditioner comprising: means for taking a value as an outside air temperature; and control means for controlling operation using the taken outside air temperature.
器、室内熱交換器を接続して冷凍サイクルを構成し、か
つ前記圧縮機に駆動電力を供給するインバータを備え、
前記インバータの出力周波数を空調負荷に応じて制御す
る空気調和機において、前記室外熱交換器の温度を検知
する温度センサと、前記圧縮機の駆動電流を検出する電
流検出手段と、前記温度センサの検知温度を前記出力周
波数及び前記駆動電流に応じて補正して外気温を推定す
る手段とを備えたことを特徴とする空気調和機。2. A refrigeration cycle comprising a variable capacity compressor, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger, and an inverter for supplying drive power to the compressor.
In an air conditioner that controls an output frequency of the inverter according to an air conditioning load, a temperature sensor that detects a temperature of the outdoor heat exchanger, a current detection unit that detects a drive current of the compressor, Means for correcting the detected temperature in accordance with the output frequency and the drive current to estimate an outside air temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32559293A JP3213662B2 (en) | 1993-08-31 | 1993-12-24 | Air conditioner |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21567593 | 1993-08-31 | ||
JP5-215675 | 1993-08-31 | ||
JP32559293A JP3213662B2 (en) | 1993-08-31 | 1993-12-24 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07120049A JPH07120049A (en) | 1995-05-12 |
JP3213662B2 true JP3213662B2 (en) | 2001-10-02 |
Family
ID=26520991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32559293A Expired - Lifetime JP3213662B2 (en) | 1993-08-31 | 1993-12-24 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3213662B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3429397B2 (en) | 1995-08-28 | 2003-07-22 | 東芝キヤリア株式会社 | Air conditioner |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4591139B2 (en) * | 2005-03-16 | 2010-12-01 | パナソニック株式会社 | Air conditioner |
JP5267449B2 (en) * | 2009-12-25 | 2013-08-21 | ダイキン工業株式会社 | Air conditioner |
CN105371403B (en) * | 2015-11-30 | 2018-01-26 | 珠海格力电器股份有限公司 | variable-frequency air-cooled air conditioning unit and control method |
JP6877644B2 (en) * | 2018-07-02 | 2021-05-26 | 三菱電機株式会社 | Refrigeration cycle equipment, air conditioner and hot water supply equipment |
CN112944576B (en) * | 2021-03-18 | 2022-03-29 | 宁波奥克斯电气股份有限公司 | Frequency control method and device for air conditioner compressor and air conditioner |
CN113531774A (en) * | 2021-07-13 | 2021-10-22 | 珠海拓芯科技有限公司 | Air conditioner external ring temperature calculation method and device, air conditioner and computer storage medium |
CN113983660A (en) * | 2021-10-20 | 2022-01-28 | 北京小米移动软件有限公司 | Outdoor environment temperature detection method and device and air exchange equipment |
-
1993
- 1993-12-24 JP JP32559293A patent/JP3213662B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3429397B2 (en) | 1995-08-28 | 2003-07-22 | 東芝キヤリア株式会社 | Air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JPH07120049A (en) | 1995-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3476899B2 (en) | Air conditioner | |
JP2997487B2 (en) | Refrigeration apparatus and method for indicating amount of refrigerant in refrigeration apparatus | |
JPH10153353A (en) | Air conditioner | |
JP3475014B2 (en) | Air conditioner | |
JP3213662B2 (en) | Air conditioner | |
CN108603681B (en) | Air conditioner and air conditioner | |
JP3019081B1 (en) | Air conditioning outdoor unit with outside air temperature detection function | |
KR100545958B1 (en) | Air Conditioner and Method for Controlling Air Conditioner | |
JPH11237097A (en) | Multiroom air conditioner | |
JP3443433B2 (en) | Air conditioner | |
US10837670B2 (en) | Air-conditioning apparatus | |
KR100565995B1 (en) | Method for Operating of Multi Type Air-conditioner by Install Position of Indoor-unit | |
JPH1038398A (en) | Controller of electric expansion valve | |
JPH10197031A (en) | Trouble detector for air conditioner | |
JPH10170052A (en) | Air conditioner | |
KR100232155B1 (en) | Control method for air flow of air conditioner | |
JPH05126384A (en) | Air conditioner | |
JP3149932B2 (en) | Air conditioner operation control method | |
JP2536313B2 (en) | Operation control device for air conditioner | |
KR20000055144A (en) | Method for preventing freezing of the heat exchanger in the air conditioner | |
JP3182439B2 (en) | Air conditioner | |
JP2507369B2 (en) | Air conditioner | |
KR0140567B1 (en) | Control method of indoor / outdoor fan of combined cooling / heating air conditioner | |
JPH1194406A (en) | Air conditioner | |
JP2875037B2 (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120719 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120719 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130719 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |