JP2507369B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2507369B2
JP2507369B2 JP61286628A JP28662886A JP2507369B2 JP 2507369 B2 JP2507369 B2 JP 2507369B2 JP 61286628 A JP61286628 A JP 61286628A JP 28662886 A JP28662886 A JP 28662886A JP 2507369 B2 JP2507369 B2 JP 2507369B2
Authority
JP
Japan
Prior art keywords
temperature
compressor
detector
pressure
condensing temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61286628A
Other languages
Japanese (ja)
Other versions
JPS63143461A (en
Inventor
孝 佐野
一宏 羽有
廣則 衛藤
紀昭 堀内
浩清 寺田
尚紀 鈴木
研作 小国
富夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61286628A priority Critical patent/JP2507369B2/en
Publication of JPS63143461A publication Critical patent/JPS63143461A/en
Application granted granted Critical
Publication of JP2507369B2 publication Critical patent/JP2507369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧縮機運転周波数の変更制御を具備した制
御装を有する能力可変式冷凍サイクルを構成する空気調
和機に係り、特に凝縮温度と蒸発温度による圧力比制御
方式を採用した空気調和機に関する。
Description: TECHNICAL FIELD The present invention relates to an air conditioner that constitutes a variable capacity refrigeration cycle having a control device equipped with change control of a compressor operating frequency, and particularly relates to a condensing temperature and The present invention relates to an air conditioner that employs a pressure ratio control method based on evaporation temperature.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭55−158457に記載のように、吐
出側に設けた温度検出器により膨張弁の開度を調整し、
吐出ガス温度の上昇を防止していた。
The conventional device, as described in JP-A-55-158457, adjusts the opening degree of the expansion valve by the temperature detector provided on the discharge side,
The rise in discharge gas temperature was prevented.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、吐出ガス温度の上昇を伴わず、圧縮機用モー
タ温度が上昇する条件すなわち吸入圧力が低く、吐出圧
力が高い運転状態(圧力比の高い状態)でのモータ温度
過昇について配慮がなされておらず、圧縮機の信頼性確
保が充分に満足されない問題点があった。
However, consideration is given to the excessive rise of the motor temperature under the condition that the compressor motor temperature rises without the rise of the discharge gas temperature, that is, the suction pressure is low and the discharge pressure is high (the pressure ratio is high). Therefore, there was a problem that the reliability of the compressor was not sufficiently satisfied.

本発明の目的は、上記欠点に鑑み案出したものであ
り、吐出圧力と吸入圧力の比である圧力比を設定値以下
にすることにより、圧縮機のモータ温度の上昇を防止す
ることにある。
The object of the present invention was devised in view of the above-mentioned drawbacks, and it is to prevent a rise in the motor temperature of the compressor by setting the pressure ratio, which is the ratio of the discharge pressure and the suction pressure, to a set value or less. .

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、圧縮機出口の高圧圧力の凝縮温度(TC)
を検出する第1検出器と、膨張弁出口の蒸発温度(T
E′)を検出する第2検出器と、圧縮機の運転周波数を
検知し、この運転周波数と蒸発温度(TE′)から膨張弁
出口から圧縮機間の圧力損失を補正して圧縮機の吸入圧
力に相当する蒸発温度(TE)を演算する手段と、前記蒸
発温度(TE)に対し、予め設定した設定圧力比から設定
凝縮温度(TCO)を演算する手段と、設定凝縮温度(TC
O)と凝縮温度(TC)を所定の時間周期で比較し、前記
凝縮温度(TC)が前記設定凝縮温度(TCO)より一定値
以上高い場合には運転中の圧力比が一定の幅の中に入る
ように運転周波数を低下させて制御する制御装置とを備
えることによって達成される。
The above purpose is the condensation temperature (TC) of high pressure at the compressor outlet.
The first detector for detecting the temperature and the evaporation temperature (T
The second detector that detects E ′) and the operating frequency of the compressor are detected, and the operating frequency and the evaporation temperature (TE ′) are used to correct the pressure loss between the expansion valve outlet and the compressor, and the suction of the compressor. A means for calculating an evaporation temperature (TE) corresponding to the pressure, a means for calculating a set condensing temperature (TCO) from a preset set pressure ratio with respect to the evaporating temperature (TE), and a set condensing temperature (TC
O) and the condensing temperature (TC) are compared in a predetermined time cycle, and when the condensing temperature (TC) is higher than the set condensing temperature (TCO) by a certain value or more, the pressure ratio during operation is within a certain range. And a control device for controlling the operating frequency by lowering the operating frequency so as to enter.

さらに、上記膨張弁出口の蒸発温度(TE′)を検出す
る第2検出器と、圧縮機の運転周波数を検知し、この運
転周波数と蒸発温度(TE′)から膨張弁出口から圧縮機
間の圧力損失を補正して、圧縮機の吸入圧力に相当する
蒸発温度(TE)を演算する手段に代えて、上記第2検出
器は、吸入圧力に相当する蒸発温度(TE)を直接検出す
るようにし、直接検出された蒸発温度(TE)に対し、予
め設定された設定圧力比から設定凝縮温度(TCO)を演
算するようにしてもよい。
Further, the second detector for detecting the evaporation temperature (TE ') at the outlet of the expansion valve and the operating frequency of the compressor are detected, and the operating frequency and the evaporation temperature (TE') are used to detect the difference between the outlet of the expansion valve and the compressor. Instead of the means for calculating the evaporation temperature (TE) corresponding to the suction pressure of the compressor by correcting the pressure loss, the second detector directly detects the evaporation temperature (TE) corresponding to the suction pressure. Alternatively, the set condensing temperature (TCO) may be calculated from the directly detected evaporation temperature (TE) from a preset set pressure ratio.

[作用] 本発明では、吸入圧力に相当する蒸発温度から予め設
定された設定圧力比に基づき設定凝縮温度(TCO)を演
算し、これを実際に検出された吐出出口における凝縮温
度(TC)とを比較する。そして、凝縮温度(TC)が設定
凝縮温度(TCO)より一定値以上高い場合には運転中の
圧力比が一定の幅の中に入るように運転周波数を低下さ
せて制御する制御装置を備えているので、圧力比(吐出
圧力/吸入圧力)が設定圧力比に対し許容値内に制御で
き、運転時には設定圧力比に近い値以下の圧力比に制御
されるので、吐出ガス温度の過昇を伴わない。したがっ
て、圧縮機モータの温度上昇を防止しつつその運転周波
数を制御することができるから、圧縮機の信頼性を向上
することができる。
[Operation] In the present invention, the set condensing temperature (TCO) is calculated from the evaporation temperature corresponding to the suction pressure based on the preset set pressure ratio, and this is used as the actually detected condensing temperature (TC) at the discharge outlet. To compare. When the condensing temperature (TC) is higher than the set condensing temperature (TCO) by a certain value or more, a control device is provided to reduce the operating frequency so that the pressure ratio during operation falls within a certain range. Since the pressure ratio (discharge pressure / suction pressure) can be controlled within the allowable value for the set pressure ratio, and the pressure ratio is controlled to a value close to or lower than the set pressure ratio during operation, the discharge gas temperature will not rise excessively. Not accompanied. Therefore, since the operating frequency of the compressor motor can be controlled while preventing the temperature rise of the compressor motor, the reliability of the compressor can be improved.

〔実施例〕〔Example〕

以下本発明の一実施例を図により説明する。第1図は
本発明の一実施例のサイクル系統図である。冷凍サイク
ルは、圧縮機3に四方切換弁4、室外熱交換器5、正逆
流の膨張弁6、室内熱交換器7、を順次連結し形成され
ており、圧縮機3の吐出側に凝縮温度検知用サーミスタ
(第1検出器)1を、膨張弁6と室外熱交換器5の間の
冷媒配管上に蒸発温度検知用サーミスタ(第2検出器)
2を各々設け、更に前記膨張弁6を駆動し、上記サーミ
スタ1,2の電気抵抗値を検知し、圧縮器3のモータ(図
示せず)の運転周波数を変更する制御装置8を設けたも
のである。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cycle system diagram of an embodiment of the present invention. The refrigeration cycle is formed by sequentially connecting the four-way switching valve 4, the outdoor heat exchanger 5, the forward / reverse flow expansion valve 6, and the indoor heat exchanger 7 to the compressor 3, and the condensing temperature on the discharge side of the compressor 3 The thermistor for detection (first detector) 1 is placed on the refrigerant pipe between the expansion valve 6 and the outdoor heat exchanger 5 to detect the evaporation temperature (second detector).
2, each of which is further provided with a control device 8 which drives the expansion valve 6 to detect the electric resistance values of the thermistors 1 and 2 and change the operating frequency of the motor (not shown) of the compressor 3. Is.

第5図は、上記制御装置8の内部の各演算回路を示
す。11は、圧縮機3の運転周波数に対応した膨張弁6の
出口から圧縮機3の間の配管系の圧力損失に相当する温
度差ΔTEの温度降下補正演算回路、12は、前記温度降下
値(ΔTE)と検出蒸発温度(TE′)を吸入圧力に相当す
る補正蒸発温度(TE)に補正する演算回路、13は前記補
正蒸発温度(TE)に対し所定の圧力比に相当する設定凝
縮温度(Tco)の演算回路、14は、前記設定凝縮温度(T
co)と前記凝縮温度検知用サーミスタ1により検出した
凝縮温度(TC)とを比較演算する比較演算回路、15は、
圧縮機3の運転周波数検知器である。
FIG. 5 shows each arithmetic circuit inside the control device 8. Reference numeral 11 is a temperature drop correction arithmetic circuit for a temperature difference ΔTE corresponding to the pressure loss of the piping system between the outlet of the expansion valve 6 and the compressor 3 corresponding to the operating frequency of the compressor 3, and 12 is the temperature drop value ( ΔTE) and the detected evaporation temperature (TE ') are corrected to a corrected evaporation temperature (TE) corresponding to the suction pressure, and 13 is a set condensation temperature (TE) corresponding to a predetermined pressure ratio with respect to the corrected evaporation temperature (TE). Tco) arithmetic circuit, 14 is the set condensing temperature (T
co) and a condensing temperature (TC) detected by the condensing temperature detecting thermistor 1 are compared, and 15 is a comparison arithmetic circuit.
It is an operating frequency detector of the compressor 3.

第6図は、制御装置8と圧縮機駆動部19を分離させた
例を示すもので、圧縮機駆動部19から信号線191により
圧縮機3の運転周波数検知器151に信号を送る。
FIG. 6 shows an example in which the control device 8 and the compressor drive unit 19 are separated from each other, and a signal is sent from the compressor drive unit 19 to the operating frequency detector 151 of the compressor 3 via a signal line 191.

第7図は別の制御装置81を示し、蒸発温度検知用サー
ミスタ(第2検出器)21の取付位置を第8図に示すよう
に圧縮機3の吸入側配管20の圧縮機吸込側近傍とした例
である。これによれば、前記配管系の温度降下補正およ
び温度降下量を吸入圧力に相当する補正蒸発温度に変更
するための演算回路を省略することができる。
FIG. 7 shows another control device 81. The evaporation temperature detecting thermistor (second detector) 21 is mounted at a position near the suction side of the suction side pipe 20 of the compressor 3 as shown in FIG. It is an example. According to this, the arithmetic circuit for correcting the temperature drop of the piping system and changing the temperature drop amount to the corrected evaporation temperature corresponding to the suction pressure can be omitted.

暖房時冷媒は、室内熱交換器7に吐出され、ここで凝
縮する。一方膨張弁6にて蒸発し、室外熱交換器5で冷
却され、四方弁4を介し、圧縮機3に吸入される。ここ
で、凝縮温度TCは上記圧縮機3の吐出側の配管より分岐
した配管を低圧側配管にて冷却することにより吐出圧力
の飽和温度として、サーミスタ1にて検知している。ま
た膨張弁6の出口の冷媒は飽和2相冷媒であり、低圧側
圧力の飽和温度TE′として、サーミスタ2にて検知して
いる。但し圧縮機3の吸入圧力に対し、室外熱交換器5
中で生ずる圧力損失による温度差ΔTEがある。従って制
御装置中に第4図に示す処理フローを行う機能を設け
る。すなわち、圧縮機3の運転周波数に対応する、TE′
とΔTEの関係を演算し、圧縮機3の吸入圧力に相当した
冷媒の蒸発温度を下式にて求める。
The heating refrigerant is discharged to the indoor heat exchanger 7 and condensed there. On the other hand, it is evaporated in the expansion valve 6, cooled in the outdoor heat exchanger 5, and sucked into the compressor 3 via the four-way valve 4. Here, the condensing temperature TC is detected by the thermistor 1 as a saturation temperature of the discharge pressure by cooling the pipe branched from the discharge side pipe of the compressor 3 with the low pressure side pipe. The refrigerant at the outlet of the expansion valve 6 is a saturated two-phase refrigerant, which is detected by the thermistor 2 as the saturation temperature TE 'of the low pressure side pressure. However, for the suction pressure of the compressor 3, the outdoor heat exchanger 5
There is a temperature difference ΔTE due to the pressure loss that occurs inside. Therefore, a function for performing the processing flow shown in FIG. 4 is provided in the control device. That is, TE ′ corresponding to the operating frequency of the compressor 3
And ΔTE are calculated, and the evaporation temperature of the refrigerant corresponding to the suction pressure of the compressor 3 is calculated by the following formula.

TE=TE′−ΔTE TE′に対するΔTEは、TE′が高い程ΔTEが大きく、ま
た周波数が高い程ΔTEが大きくなる特性を有しており演
算可能である。また、圧力比に設定値を設けると第3図
に示す通り、TEと設定凝縮温度Tcoに一定した関連を有
する。第3図では設定圧力比εを8とした場合に上記演
算結果TEが−20℃であれば許容できる最高の凝縮温度
は、50℃に設定できることを示している。上記最高凝縮
温度を設定凝縮温度Tcoとし、上記Tcoと検知したTCを比
較し、現在の圧力比がε以下であるか判断する。
TE = TE′−ΔTE The ΔTE with respect to TE ′ has a characteristic that the higher the TE ′, the larger the ΔTE, and the higher the frequency, the larger the ΔTE, and can be calculated. Further, when a set value is set for the pressure ratio, there is a fixed relationship between TE and the set condensing temperature Tco, as shown in FIG. FIG. 3 shows that the maximum allowable condensing temperature can be set to 50 ° C. if the calculated result TE is −20 ° C. when the set pressure ratio ε is 8. The maximum condensation temperature is set as the set condensation temperature Tco, and the detected TC is compared with the detected TC to determine whether the current pressure ratio is ε or less.

判断した結果がε以上であれば圧縮機3の運転周波数
を所定値降下させる。またε以下と判断すれば周波数を
所定値上昇させる。上記TE′検知から周波数の上昇、下
降を所定時間間隔で実施する。
If the judged result is ε or more, the operating frequency of the compressor 3 is lowered by a predetermined value. If it is determined to be ε or less, the frequency is increased by a predetermined value. The frequency is raised and lowered from the above TE 'detection at predetermined time intervals.

本実施例によれば、周波数の降下時は、冷媒の循環量
が低下し、吸入圧力が上昇し、吐出圧力が低下する為圧
力比は設定値以下となり、周波数の上昇時は圧力比が設
定値以上となる。従って圧力比は設定値に対して、一定
の幅の中に制御可能となり、圧縮機モータの過熱による
焼損を防止でき信頼性の向上も図れる。
According to the present embodiment, when the frequency decreases, the circulation amount of the refrigerant decreases, the suction pressure increases, and the discharge pressure decreases, so the pressure ratio becomes less than or equal to the set value, and the pressure ratio is set when the frequency increases. Greater than or equal to the value. Therefore, the pressure ratio can be controlled within a certain range with respect to the set value, and burnout due to overheating of the compressor motor can be prevented and reliability can be improved.

[発明の効果] 以上のように本発明によれば、設定した圧力比で圧縮
機の運転を可能とするので、圧縮比が過昇し圧縮機のモ
ータ温度を過昇することなく周波数を制御し圧縮機の信
頼性向上を図れる。
EFFECTS OF THE INVENTION As described above, according to the present invention, the compressor can be operated at the set pressure ratio, so that the frequency is controlled without excessively increasing the compression ratio and the motor temperature of the compressor. The reliability of the compressor can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の冷凍サイクル図、第2図は
検知蒸発温度に対する温度降下特性曲線図、第3図は設
定圧力比特性線図、第4図は制御フロー、第5図は演算
回路図、第6図は他の実施例の制御装置図、第7図は、
更に他の制御装置図、第8図は他の実施例の部分冷凍サ
イクル図である。 1……凝縮温度検知用サーミスタ(第1検出器)、2、
21……蒸発温度検知用サーミスタ(第2検出器)、3…
…圧縮機、4……四方弁、5……室外熱交換器、6……
膨張弁、7……室内熱交換器、8……制御装置
FIG. 1 is a refrigeration cycle diagram of an embodiment of the present invention, FIG. 2 is a temperature drop characteristic curve diagram with respect to a detected evaporation temperature, FIG. 3 is a set pressure ratio characteristic diagram, FIG. 4 is a control flow chart, and FIG. Is an arithmetic circuit diagram, FIG. 6 is a control device diagram of another embodiment, and FIG.
Still another control device diagram, FIG. 8 is a partial refrigeration cycle diagram of another embodiment. 1 ... Thermistor for detecting condensation temperature (first detector), 2,
21 ... Evaporation temperature detection thermistor (second detector), 3 ...
… Compressor, 4 …… four-way valve, 5 …… outdoor heat exchanger, 6 ……
Expansion valve, 7 ... Indoor heat exchanger, 8 ... Control device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀内 紀昭 清水市村松390番地 株式会社日立製作 所清水工場内 (72)発明者 寺田 浩清 清水市村松390番地 株式会社日立製作 所清水工場内 (72)発明者 鈴木 尚紀 清水市村松390番地 株式会社日立製作 所清水工場内 (72)発明者 小国 研作 土浦市神立町502番地 株式会社日立製 作所機械研究所内 (72)発明者 吉川 富夫 清水市村松390番地 株式会社日立製作 所清水工場内 (56)参考文献 実開 昭61−178159(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Noriaki Horiuchi 390 Muramatsu, Shimizu Ichi, Shimizu Plant, Hitachi, Ltd. (72) Inventor Hiroki Terada 390 Muramatsu, Shimizu Ichi, Shimizu, Hitachi (72) ) Inventor Naoki Suzuki, 390 Muramatsu, Shimizu City, Hitachi, Ltd., Shimizu Plant (72) Inventor, Kensaku Oguni, 502, Kamimachi, Tsuchiura City, Ltd. 390 Address, Shimizu Plant, Hitachi, Ltd. (56) References: 61-178159 (JP, U)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】周波数を可変として駆動されるモータを有
する圧縮機を備えた冷凍サイクルにおいて、 圧縮機出口の高圧圧力の凝縮温度(TC)を検出する第1
検出器と、 膨張弁出口の蒸発温度(TE′)を検出する第2検出器
と、 圧縮機の運転周波数を検知し、この運転周波数と前記第
2検出器によって検出された蒸発温度(TE′)から前記
膨張弁出口から前記圧縮機間の圧力損失を補正して圧縮
機の吸入圧力に相当する蒸発温度(TE)を演算する手段
と、 前記蒸発温度(TE)に対し、予め設定された設定圧力比
に相当する設定凝縮温度(TCO)を演算する手段と、 前記設定凝縮温度(TCO)と前記第1検出器によって検
出された凝縮温度(TC)を所定の時間周期で比較し、前
記凝縮温度(TC)が前記設定凝縮温度(TCO)より一定
値以上高い場合には圧力比が一定の幅の中に入るように
前記圧縮機の運転周波数を低下させるように制御する制
御装置と を備えたことを特徴とする空気調和機。
1. A refrigeration cycle equipped with a compressor having a motor driven with a variable frequency, for detecting a condensing temperature (TC) of high pressure at the compressor outlet.
A detector, a second detector for detecting the evaporation temperature (TE ') at the outlet of the expansion valve, and an operating frequency of the compressor, the operating frequency and the evaporation temperature (TE') detected by the second detector. ) From the expansion valve outlet to correct the pressure loss between the compressors to calculate the evaporation temperature (TE) corresponding to the suction pressure of the compressor, and the evaporation temperature (TE) preset Means for calculating a set condensing temperature (TCO) corresponding to a set pressure ratio, and comparing the set condensing temperature (TCO) and the condensing temperature (TC) detected by the first detector in a predetermined time period, When the condensing temperature (TC) is higher than the set condensing temperature (TCO) by a certain value or more, a control device that controls so as to reduce the operating frequency of the compressor so that the pressure ratio falls within a certain range. An air conditioner characterized by being equipped.
【請求項2】周波数を可変として駆動されるモータを有
する圧縮機を備えた冷凍サイクルにおいて、 圧縮機出口の高圧圧力の凝縮温度(TC)を検出する第1
検出器と、 吸入圧力に相当する蒸発温度(TE)を検出する第2検出
器と、 前記蒸発温度(TE)に対し、予め設定された設定圧力比
から設定凝縮温度(TCO)を演算する手段と、 前記設定凝縮温度(TCO)と前記第1検出器によって検
出された凝縮温度(TC)を所定の時間周期で比較し、前
記凝縮温度(TC)が前記設定凝縮温度(TCO)より一定
値以上高い場合には圧力比が一定の幅の中に入るように
前記圧縮機の運転周波数を低下させるように制御する制
御装置と を備えたことを特徴とする空気調和機。
2. A refrigeration cycle equipped with a compressor having a motor driven with a variable frequency, for detecting a condensing temperature (TC) of high pressure at the compressor outlet.
A detector, a second detector for detecting the evaporation temperature (TE) corresponding to the suction pressure, and a means for calculating a set condensation temperature (TCO) from the evaporation temperature (TE) from a preset set pressure ratio And comparing the set condensing temperature (TCO) with the condensing temperature (TC) detected by the first detector in a predetermined time period, and the condensing temperature (TC) is a constant value from the set condensing temperature (TCO). And a control device for controlling so that the operating frequency of the compressor is lowered so that the pressure ratio falls within a certain range when the pressure is higher than the above.
JP61286628A 1986-12-03 1986-12-03 Air conditioner Expired - Fee Related JP2507369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61286628A JP2507369B2 (en) 1986-12-03 1986-12-03 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61286628A JP2507369B2 (en) 1986-12-03 1986-12-03 Air conditioner

Publications (2)

Publication Number Publication Date
JPS63143461A JPS63143461A (en) 1988-06-15
JP2507369B2 true JP2507369B2 (en) 1996-06-12

Family

ID=17706875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61286628A Expired - Fee Related JP2507369B2 (en) 1986-12-03 1986-12-03 Air conditioner

Country Status (1)

Country Link
JP (1) JP2507369B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816560B2 (en) * 1989-01-24 1996-02-21 ダイキン工業株式会社 Air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328270Y2 (en) * 1985-04-25 1991-06-18

Also Published As

Publication number Publication date
JPS63143461A (en) 1988-06-15

Similar Documents

Publication Publication Date Title
JPH10153353A (en) Air conditioner
JPH0868576A (en) Refrigerator
JP3849467B2 (en) Air conditioner
JPH11287538A (en) Air-conditioner
JP3849468B2 (en) Air conditioner
JP3213662B2 (en) Air conditioner
JP2507369B2 (en) Air conditioner
JPH0278844A (en) Air conditioner
JP3791444B2 (en) Air conditioner
KR100565995B1 (en) Method for Operating of Multi Type Air-conditioner by Install Position of Indoor-unit
JPS6333623B2 (en)
JP4223101B2 (en) Air conditioner
JP3791443B2 (en) Air conditioner
JP2536337B2 (en) Operation control device for air conditioner
JPH0719617A (en) Air current velocity adjusting device of condenser fan
JPH06100395B2 (en) Refrigeration system operation controller
KR0146310B1 (en) Defrost device and method of airconditioner
JP3462551B2 (en) Speed control device for blower for condenser
KR100304553B1 (en) Heatpump air-conditioner and method for controlling warming mode thereof
KR100256317B1 (en) Defrost device and algorithm of heat pump
KR100544709B1 (en) A air conditioner and prevention method of freezing thereof
JP2536313B2 (en) Operation control device for air conditioner
JP2592141B2 (en) Heat pump type air conditioner
JP3443442B2 (en) Air conditioner
JP2964854B2 (en) Refrigerant heating and cooling machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees