KR100256317B1 - Defrost device and algorithm of heat pump - Google Patents

Defrost device and algorithm of heat pump Download PDF

Info

Publication number
KR100256317B1
KR100256317B1 KR1019970065646A KR19970065646A KR100256317B1 KR 100256317 B1 KR100256317 B1 KR 100256317B1 KR 1019970065646 A KR1019970065646 A KR 1019970065646A KR 19970065646 A KR19970065646 A KR 19970065646A KR 100256317 B1 KR100256317 B1 KR 100256317B1
Authority
KR
South Korea
Prior art keywords
temperature
outdoor
indoor
heat exchanger
refrigerant
Prior art date
Application number
KR1019970065646A
Other languages
Korean (ko)
Other versions
KR19990047293A (en
Inventor
유윤호
Original Assignee
구자홍
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자주식회사 filed Critical 구자홍
Priority to KR1019970065646A priority Critical patent/KR100256317B1/en
Publication of KR19990047293A publication Critical patent/KR19990047293A/en
Application granted granted Critical
Publication of KR100256317B1 publication Critical patent/KR100256317B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Abstract

PURPOSE: A defrost apparatus and defrost method for heat pump is provided to achieve an improved comfort and prevent energy loss by correctly judging the amount of frost formed at the outdoor heat exchanger. CONSTITUTION: A defrost apparatus comprises a compressor(101) for compressing refrigerant; an indoor heat exchanger(102) for condensing the compressed refrigerant into a liquid refrigerant; an expansion valve(104) for expanding the condensed liquid refrigerant from the indoor heat exchanger into a two-phase refrigerant; an outdoor heat exchanger(105) for boiling the expanded two-phase refrigerant into vapor phase; temperature sensors(108,109) mounted at the air inlet side of the indoor heat exchanger and the outdoor heat exchanger, respectively, and which sense indoor and outdoor air temperatures after elapse of a predetermined time since starting of heating operation of the heat pump; and a control unit for calculating evaporating temperature based on the indoor and outdoor air temperatures input from temperature sensors, calculating the difference between thus-calculated evaporating temperature and input indoor pipeline temperature, and determining a defrost operation starting point.

Description

히트펌프의 제상 장치 및 방법Defrost apparatus and method of heat pump

본 발명은 히트펌프에 관한 것으로서, 특히 착상시 적절한 제상을 실시하기 위한 히트펌프의 제상 장치 및 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to heat pumps and, more particularly, to a defrosting apparatus and method for heat pumps for proper defrosting during implantation.

히트펌프는 일반적으로 냉/난방을 동시에 수행하는 기기로서, 그 구조는 도 1 에 도시된 바와 같이, 냉매를 압축하는 압축기(1)와, 상기 압축기(1)로부터 압축된 고온고압의 냉매를 액냉매상태로 응축시키는 실내열교환기(2) 및 실내팬(3)과, 상기 실내열교환기(2)로부터 응축된 액냉매를 팽창시켜 2상상태(액상+기상)의 냉매로 변화시키는 팽창밸브(4)와, 상기 팽창밸브(4)를 통과하면서 압력과 온도가 떨어져 2상상태로 변한 냉매를 기상상태의 냉매로 증발시키는 실외열교환기(5) 및 실외팬(6)과, 냉방 또는 난방 모드 선택에 따라 냉매의 유로를 변경하는 사방변(7)으로 구성된다.A heat pump is a device that performs both cooling and heating at the same time. The structure of the heat pump is a compressor (1) for compressing a refrigerant as shown in FIG. 1, and a high temperature and high pressure refrigerant compressed from the compressor (1). An indoor heat exchanger (2) and an indoor fan (3) condensing in a refrigerant state, and an expansion valve for expanding a liquid refrigerant condensed from the indoor heat exchanger (2) to change into a refrigerant in a two-phase state (liquid + gas phase) ( 4) and an outdoor heat exchanger (5) and an outdoor fan (6) for evaporating the refrigerant changed into a two-phase state due to a drop in pressure and temperature while passing through the expansion valve (4), and a cooling or heating mode. It consists of the four sides 7 which change the flow path of a refrigerant | coolant according to selection.

또한, 상기 실내열교환기(2)의 공기 흡입측에는 흡입공기의 온도를 감지하는 실내흡입공기 온도센서(8)와, 실내배관측에는 실내배관을 통해 유입되는 냉매의 온도를 감지하기 위한 실내배관 온도센서(9)와, 실외열교환기(2)에는 온도를 운전시간에 따라 감지하는 실외배관 온도센서(10)가 부착되어 진다.In addition, the indoor suction air temperature sensor 8 for detecting the temperature of the intake air on the air suction side of the indoor heat exchanger 2, and the indoor pipe temperature sensor for detecting the temperature of the refrigerant flowing through the indoor pipe on the indoor piping side. (9) and the outdoor heat exchanger (2) is attached to the outdoor pipe temperature sensor 10 for sensing the temperature according to the operating time.

이와 같이 구성된 종래 히트펌프의 난방운전에 대해 살펴보면 다음과 같다.Looking at the heating operation of the conventional heat pump configured as described above are as follows.

먼저, 전원이 인가되면 압축기(1)로 냉매가 유입되어 압축되고, 상기 압축기(1)로부터 압축된 고온고압의 냉매는 실내열교환기(2)로 유입되어 액상 및 기상의 2상상태로 변하게 되고, 계속적인 열교환에 의해서 실내열교환기(2) 출구에서는 액상으로 변하게 된다.First, when power is applied, the refrigerant flows into the compressor 1 and is compressed, and the high temperature and high pressure refrigerant compressed from the compressor 1 flows into the indoor heat exchanger 2 to change into a two-phase state of liquid and gaseous phase. As a result of the continuous heat exchange, the liquid is converted into the liquid phase at the outlet of the indoor heat exchanger (2).

이때, 실내공기는 실내팬(3)의 회전에 의해 실내열교환기(2)로 유입되어 고온고압의 냉매와 열교환을 하고, 온도가 올라간 상태에서 실내로 토출되어 난방을 실시하게 된다.At this time, the indoor air is introduced into the indoor heat exchanger (2) by the rotation of the indoor fan (3) to exchange heat with the refrigerant of high temperature and high pressure, and discharged into the room in the state where the temperature is raised to perform heating.

상기 실내열교환기(2)로부터 응축된 액냉매는 팽창밸브(4)를 통과하면서 압력과 온도가 급격히 떨어져 2상상태의 냉매로 변해 실외열교환기(5)로 유입된다.The liquid refrigerant condensed from the indoor heat exchanger (2) passes through the expansion valve (4) and rapidly changes in pressure and temperature to become a refrigerant in a two-phase state and flows into the outdoor heat exchanger (5).

상기 실외열교환기(5)로 유입된 2상상태의 냉매는 실외공기와의 열교환을 실시하면서 기상상태의 냉매가스로 증발되고, 다시 압축기(1)로 유입되어 사이클이 반복된다.The refrigerant in the two-phase state introduced into the outdoor heat exchanger (5) is evaporated into the refrigerant gas in the gaseous state while performing heat exchange with the outdoor air, and flows back into the compressor (1) to repeat the cycle.

이와 같이 히트펌프의 난방운전시는 압축기(1)로부터 나온 냉매가 실내열교환기(2)로 유입되지만 냉방운전시는 4방변(7)에 의해 냉매의 유로가 변하여 반대로 압축기(1)로부터 나온 냉매가 실외열교환기(5)로 먼저 유입된다.As described above, the refrigerant from the compressor 1 flows into the indoor heat exchanger 2 during the heating operation of the heat pump, but during the cooling operation, the flow path of the refrigerant is changed by the four-direction 7 and the refrigerant from the compressor 1 is reversed. Is first introduced into the outdoor heat exchanger (5).

이때, 상기 실외열교환기(5)에서의 열교환작용은 흡입된 실외공기로부터 열을 흡수하는 것으로, 도 2 와 같이(도면중 실선은 실외온도 7oC이상시, 점선은 실외온도 5℃이하시) 실외공기의 온도가 약 7℃라면 실외열교환기(5)의 온도는 약 1 ∼ 2℃인 상태에서 사이클이 형성되고, 실외공기가 더 내려가서 4 ∼ 5℃이하가 되면 실외열교환기(5)의 온도도 실외공기를 따라 내려가면서 사이클이 형성되므로 실외열교환기(5)의 온도는 0℃ 이하로 내려가게 된다.At this time, the heat exchange action in the outdoor heat exchanger (5) absorbs heat from the sucked outdoor air, as shown in FIG. 2 (in the drawing, the solid line is at an outdoor temperature of 7 ° C or more, and the dotted line is at an outdoor temperature of 5 ° C. or less). ) If the temperature of outdoor air is about 7 ℃, the cycle of the outdoor heat exchanger 5 is formed at a temperature of about 1 to 2 ℃, and when the outdoor air goes down to 4 to 5 ℃ or less, the outdoor heat exchanger (5 The temperature of the outdoor heat exchanger (5) is lowered to 0 ° C. or lower since a cycle is formed while the temperature is lowered along the outdoor air.

이에 따라, 실외공기의 온도가 4 ∼ 5℃ 이하(이를 착상조건이라 함)가 되면 실외열교환기(5)의 외벽 위에는 착상이 발생하고, 이 서리층은 공기와 냉매 사이에서 열전달을 방해하는 열저항체로 작용할 뿐만 아니라 실외열교환기(5)를 통과하는 실외공기의 유로를 가로막아 공기의 시스템 저항을 증가시키므로 실외열교환기(5) 내로 유입되는 풍량을 감소시켜 실외열교환기(5)의 공기측 열전달 계수가 감소하고, 실외열교환기(5)에서의 열전달량의 감소로 이어지게 된다.Accordingly, when the temperature of the outdoor air reaches 4 to 5 ° C. or less (this is called an implantation condition), frost is generated on the outer wall of the outdoor heat exchanger 5, and the frost layer is heat that prevents heat transfer between the air and the refrigerant. In addition to acting as a resistor, it increases the system resistance of the air by blocking the flow path of outdoor air passing through the outdoor heat exchanger (5), thereby reducing the amount of air flowing into the outdoor heat exchanger (5) to heat the air side of the outdoor heat exchanger (5). The coefficient decreases, which leads to a decrease in the amount of heat transfer in the outdoor heat exchanger 5.

상기한 문제를 해결하기 위한 방법으로 냉매를 난방운전시와 반대방향으로 유동하게 하는 제상운전을 실시하게 된다.As a method for solving the above problems, a defrosting operation is performed in which the refrigerant flows in the opposite direction as in the heating operation.

종래품에 있어서 제상운전은 도 3 과 같이, 실외열교환기(5) 온도를 운전시간에 따라 감지하여 제상운전 시점을 결정하게 되는데, 난방운전 시간이 특정시간(예를 들어 40분) 경과후 특정온도(예를 들어 -9℃) 이하이면 제상운전을 수행하고, 그 온도 이하가 아니면 계속 난방운전을 수행하게 되는 것이다.In the conventional product, the defrosting operation is to determine the defrosting operation time by detecting the temperature of the outdoor heat exchanger 5 according to the operation time as shown in FIG. 3, and the heating operation time is specified after a specific time (for example, 40 minutes) has elapsed. If the temperature is lower than the temperature (for example, -9 ° C), the defrosting operation is performed. If not, the heating operation is continuously performed.

그러나 이러한 종래의 히트펌프는 외기온이 낮은 경우는 증발온도가 -10℃ 이하로 내려갈 수 있기 때문에 실외열교환기에 착상이 발생되지 않더라고 불필요한 제상운전을 수행하게 되고, 또한 난방운전중 실내를 환기시키기 위해 창문을 열어 놓으면 실내열교환기의 응축온도가 저하되어 증발온도도 저하하게 된다. 이때도 역시 증발온도가 특정온도 보다 낮아지게 되면 필요없는 제상운전을 하게 된다.However, since the evaporation temperature can be lowered below -10 ° C when the outside air temperature is low, such a conventional heat pump performs unnecessary defrosting operation even though no frosting occurs in the outdoor heat exchanger, and also to ventilate the room during the heating operation. If the window is left open, the condensation temperature of the indoor heat exchanger is lowered and the evaporation temperature is also lowered. In this case, too, when the evaporation temperature is lower than a specific temperature, defrosting operation is unnecessary.

이와 같이, 실외열교환기에 서리가 어느 정도 있는지를 정확하게 판단할 수 없기 때문에 불필요한 제상운전을 하게 되어 난방 쾌적감을 떨어뜨리고(제상운전 동안은 역사이클 운전을 하게 되어 난방이 안됨), 에너지 손실이 유발되는 문제점이 있었다.As such, it is impossible to accurately determine how much frost is in the outdoor heat exchanger, which causes unnecessary defrosting operation, resulting in poor heating comfort (reverse cycle operation during defrosting operation, no heating), and energy loss. There was a problem.

본 발명은 이러한 점을 감안하여 히트펌프의 난방운전시 제상운전이 반드시 필요한 상황인지를 정확히 판단하여 제상운전을 수행함으로써 불필요한 제상운전으로 인하여 발생되는 사용자의 난방 불쾌감을 없애고, 에너지 손실을 방지하는 데 그 목적이 있다.In view of the above, the present invention accurately determines whether the defrosting operation is absolutely necessary during the heating operation of the heat pump, and performs the defrosting operation to eliminate heating discomfort generated by unnecessary defrosting operation and to prevent energy loss. The purpose is.

도 1 은 종래 히트펌프의 사이클 구성도.1 is a cycle configuration diagram of a conventional heat pump.

도 2 는 종래 히트펌프의 착상시 증발 온도에 따른 사이클 변화도.Figure 2 is a cycle change diagram according to the evaporation temperature when the conventional heat pump implanted.

도 3 은 종래 히트펌프의 제상운전 순서도.3 is a flowchart of a defrosting operation of a conventional heat pump.

도 4 는 본 발명에 의한 히트펌프의 사이클 구성도.4 is a cycle configuration diagram of a heat pump according to the present invention.

도 5 는 히트펌프의 난방운전시 실외열교환기에 착상이 발생되지 않을 때의 실내/외 온도변화에 따른 증발온도 변화를 나타낸 그래프.5 is a graph showing a change in evaporation temperature according to the indoor / outdoor temperature change when the heat exchange operation of the heat pump does not occur in the outdoor heat exchanger.

도 6 은 본 발명에 의한 히트펌프의 제상운전 순서도.6 is a flowchart of a defrosting operation of a heat pump according to the present invention.

*** 도면의 주요 부분에 대한 부호의 설명 ****** Explanation of symbols for the main parts of the drawing ***

101 : 압축기 102 : 실내열교환기101: compressor 102: indoor heat exchanger

103 : 실내팬 104 : 팽창밸브103: indoor fan 104: expansion valve

105 : 실외열교환기 106 : 실외팬105: outdoor heat exchanger 106: outdoor fan

107 : 4방변 108 : 실내 흡입공기 온도센서107: four-way 108: indoor intake air temperature sensor

109 : 실외 흡입공기 온도센서 110 : 실내배관 온도센서109: outdoor intake air temperature sensor 110: indoor piping temperature sensor

111 : 실외배관 온도센서111: outdoor piping temperature sensor

이하, 본 발명에 의한 실시예를 첨부한 도면에 의거하여 상세히 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 4 는 본 발명에 의한 히트펌프의 구성도로서, 냉매를 압축하는 압축기(101)와, 상기 압축기(101)로부터 압축된 냉매를 액냉매로 응축하는 실내열교환기(102) 및 실내팬(103)과, 상기 실내 열교환기(102)로부터 응축된 액냉매를 2상의 냉매로 팽창시키는 팽창밸브(104)와, 상기 팽창밸브(104)로부터 팽창된 2상의 냉매를 기상으로 비등시키는 실외열교환기(105) 및 실외팬(106)과, 운전모드에 따라 냉매의 유로를 변경하는 4방변(107)으로 구성된다.4 is a configuration diagram of a heat pump according to the present invention, which includes a compressor 101 for compressing a refrigerant, an indoor heat exchanger 102, and an indoor fan 103 for condensing the refrigerant compressed from the compressor 101 with liquid refrigerant. ), An expansion valve 104 for expanding the liquid refrigerant condensed from the indoor heat exchanger 102 to the two-phase refrigerant, and an outdoor heat exchanger for boiling the two-phase refrigerant expanded from the expansion valve 104 to the gas phase. 105 and an outdoor fan 106, and four sides 107 for changing the flow path of the refrigerant in accordance with the operation mode.

또한, 상기 실내/외 열교환기(102)(105)의 공기 흡입측에는 흡입 공기의 온도를 감지하기 위한 실내/외 흡입공기 온도센서(108)(109)와, 실내/외 배관측에는 실내/외 배관을 통해 유입되는 냉매의 온도를 감지하기 위한 실내/외 배관 온도센서(110)(111)가 부착된다.In addition, the indoor / outdoor intake air temperature sensor 108 (109) for sensing the temperature of the intake air on the air intake side of the indoor / outdoor heat exchanger (102) 105, and the indoor / outdoor piping on the indoor / outdoor piping side Indoor / outdoor piping temperature sensor 110, 111 for detecting the temperature of the refrigerant flowing through the is attached.

이와 같이 구성된 본 발명의 작용을 도 6 에 의거하여 상세히 설명하면 다음과 같다.The operation of the present invention configured as described above will be described in detail with reference to FIG.

본 발명에 의한 히트 펌프의 냉/난방 사이클은 종래와 동일하므로 생략하고, 제상운전에 대해서만 서술하기로 한다.Since the heat / cooling cycle of the heat pump according to the present invention is the same as in the related art, it will be omitted and only the defrosting operation will be described.

제상운전은 실외열교환기(105)에 발생된 서리를 제거하기 위한 운전으로서, 먼저 난방운전 개시 후 5분이 경과될 때 실외배관 온도센서(111)로부터 실외배관온도(Te)를 측정하고, 실내/외 흡입공기 온도센서(108)(109)로부터 실내/외 온도(Ti/To)를 측정하고, 이 실내/외 온도를 아래의 수학식 1에 대입하여 증발온도(Tce)를 측정하게 된다.Defrosting operation is an operation for removing frost generated on the outdoor heat exchanger 105, first, measuring the heating operation start outdoor piping temperature (T e) from the outdoor piping temperature sensor 111 when 5 minutes have passed after indoors The indoor / outdoor temperature (T i / T o ) is measured from the external / intake air temperature sensors 108 and 109, and the evaporation temperature (T ce ) is measured by substituting the indoor / outdoor temperature into the following equation (1). Done.

Tce= a + b*To+ c*Ti T ce = a + b * T o + c * T i

a, b, c : 상수a, b, c: constant

상기의 수학식 1이 가능한 것은 도 5 에 도시된 바와 같이, 실내/외 온도(Ti/To) 변화에 따라 증발온도(Tce)가 변하는 점을 이용한 것으로, 난방운전시 서리성장으로 실외열교환기(105)가 완전히 막혔을 때의 실제 증발온도(Tce)가 착상직전의 온도(Te)와는 일정한 온도차를 보이기 때문이다.Equation 1 is possible as shown in Figure 5, by using the point that the evaporation temperature (T ce ) is changed in accordance with the change of the indoor / outdoor temperature (T i / T o ), outdoor by frost growth during heating operation because the heat exchanger 105, the actual evaporating temperature at the time completely blocked (T ce) is seen a predetermined temperature difference than the temperature (T e) of the immediately preceding implantation.

실제 증발온도(Tce)(실외배관온도)는 착상되지 않은 경우 수학식 1에 의해 계산된 증발온도(Tce)와 동일하며, 착상이 100%인 경우는 실외배관 온도센서(111)에 의해 측정된 실외배관온도(Te)와 약 20℃ 차이가 나고, 착상이 50%인 경우는 실외배관 온도센서(111)에 의해 측정된 실외배관온도(Te)와 약 10℃ 차이를 보이게 된다.The actual evaporation temperature (T ce ) (outdoor piping temperature) is the same as the evaporation temperature (T ce ) calculated by Equation 1 when not implanted, and when the implantation is 100% by the outdoor pipe temperature sensor 111 The measured outdoor pipe temperature (T e ) is about 20 ℃ difference, and if the idea is 50% will show a difference of about 10 ℃ and the outdoor pipe temperature (T e ) measured by the outdoor pipe temperature sensor 111. .

상기의 결과에 의해 착상의 정도와 증발온도의 변화가 선형적으로 변화됨을 알 수 있고, 이에 의해 증발온도(Tce)와 실외배관 온도센서(111)에 의해 측정된 실외배관온도(Te)의 차에 의해 착상의 정도를 알 수 있게 된다.It can be seen from the above result that the degree of implantation and the change in evaporation temperature are linearly changed, whereby the evaporation temperature T ce and the outdoor pipe temperature T e measured by the outdoor pipe temperature sensor 111. The degree of conception can be known by the difference.

이에 따라, 착상의 정도가 적은 경우에는 불핀요한 제상운전으로 인한 에너지 손실을 유발하게 되고, 착상의 정도가 너무 많으면 풍량감소, 효율감소 등의 문제가 수반되므로 증발온도(Tce)와 실외배관온도(Te)의 차이가 15℃이상(Te<Tce-15℃)이면 제상운전을 행하고, 그렇지 않으면 계속 난방운전을 수행하도록 한 것이다.Accordingly, when the degree of implantation is small, energy loss due to undesired defrosting operation is caused, and when the degree of implantation is too large, problems such as reduced air volume and reduced efficiency entail evaporation temperature (T ce ) and outdoor piping temperature. If the difference of (T e ) is 15 ° C. or more (T e <T ce −15 ° C.), defrosting operation is performed, otherwise heating operation is continued.

이상에서 설명한 바와 같이 실외열교환기에 서리가 어느 정도 있는지를 정확하게 판단할 수 있으므로 불필요한 제상운전을 하지 않게 되어 난방 쾌적감이 향상되고, 에너지 손실이 방지되는 효과가 있다.As described above, since it is possible to accurately determine how much frost is in the outdoor heat exchanger, unnecessary defrosting operation is avoided, thereby improving heating comfort and preventing energy loss.

Claims (5)

냉매를 압축하는 압축기와,A compressor for compressing the refrigerant, 상기 압축기로부터 압축된 냉매를 액냉매로 응축하는 실내 열교환기와,An indoor heat exchanger for condensing the refrigerant compressed by the compressor with a liquid refrigerant; 상기 실내 열교환기로부터 응축된 액냉매를 2상의 냉매로 팽창시키는 팽창밸브와,An expansion valve for expanding the liquid refrigerant condensed from the indoor heat exchanger into a two-phase refrigerant; 상기 팽창밸브로부터 팽창된 2상의 냉매를 기상으로 비등시키는 실외 열교환기와,An outdoor heat exchanger for boiling two phases of refrigerant expanded from the expansion valve in a gas phase; 실내/외 열교환기의 공기흡입측에 장착되어 히트펌프의 난방운전 개시 후 일정시간이 되면 실내/외 온도를 측정하는 온도센서와,A temperature sensor mounted on the air suction side of the indoor / outdoor heat exchanger and measuring the indoor / outdoor temperature when a predetermined time after the heating operation of the heat pump is started; 상기 온도센서로부터 입력된 실내/외 온도를 바탕으로 증발온도를 계산하고, 이 증발온도와 기입력된 실내배관온도와의 차를 계산하여 제상운전 개시점을 판단하는 제어부를 포함하여 구성된 것을 특징으로 하는 히트펌프의 제상 장치.And a controller configured to calculate an evaporation temperature based on the indoor / outdoor temperature input from the temperature sensor, and determine a start point of defrosting operation by calculating a difference between the evaporation temperature and the previously input indoor piping temperature. Defrost apparatus of the heat pump. 난방운전 개시로부터 일정 시간 경과 후 센서에 의해 실외배관온도(Te) 및 실내/외 온도(Ti/To)를 측정하는 단계와,Measuring an outdoor pipe temperature (T e ) and an indoor / outdoor temperature (T i / T o ) by a sensor after a predetermined time has elapsed from the start of heating operation, 센서로부터 실외배관온도 및 실내/외 온도가 입력되면 이 실내/외 온도를 바탕으로 증발온도(Tce)를 계산하는 단계와,Calculating the evaporation temperature (T ce ) based on the indoor / outdoor temperature when the outdoor piping temperature and the indoor / outdoor temperature are input from the sensor; 증발온도(Tce)와 실외배관온도(Te)의 차이를 판단하여 일정 온도 이상이 되면 제상운전을 수행하고, 일정 온도 이하이면 계속 난방운전을 수행하는 단계로 이루어진 것을 특징으로 하는 히트펌프의 제상 방법.Determination of the difference between the evaporation temperature (T ce ) and the outdoor pipe temperature (T e ) of performing a defrost operation when the temperature is above a certain temperature, and continues to perform a heating operation when the temperature is below a predetermined temperature of the heat pump Defrost method. 제 2 항에 있어서,The method of claim 2, 상기 증발온도(Tce)는 관계식 Tce= a + b * To+ c * Ti, (a b c : 상수)에 의해 도출되는 것을 특징으로 하는 히트펌프의 제상 방법.The evaporation temperature (T ce ) is a defrosting method of the heat pump, characterized in that derived by the relation T ce = a + b * T o + c * T i , (abc: constant). 제 2 항에 있어서,The method of claim 2, 상기 일정 시간은 5분인 것을 특징으로 하는 히트펌프의 제상 방법.Defrosting method of the heat pump, characterized in that the predetermined time is 5 minutes. 제 2 항에 있어서,The method of claim 2, 상기 일정 온도는 15℃인 것을 특징으로 하는 히트펌프의 제상 방법.Defrosting method of the heat pump, characterized in that the predetermined temperature is 15 ℃.
KR1019970065646A 1997-12-03 1997-12-03 Defrost device and algorithm of heat pump KR100256317B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970065646A KR100256317B1 (en) 1997-12-03 1997-12-03 Defrost device and algorithm of heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970065646A KR100256317B1 (en) 1997-12-03 1997-12-03 Defrost device and algorithm of heat pump

Publications (2)

Publication Number Publication Date
KR19990047293A KR19990047293A (en) 1999-07-05
KR100256317B1 true KR100256317B1 (en) 2000-05-15

Family

ID=19526355

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970065646A KR100256317B1 (en) 1997-12-03 1997-12-03 Defrost device and algorithm of heat pump

Country Status (1)

Country Link
KR (1) KR100256317B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389159B1 (en) * 2000-08-08 2003-06-25 캐리어 주식회사 Defrost Drive Complete Sensing Unit in Heat Pump
KR100779539B1 (en) * 2006-11-02 2007-11-27 주식회사 대우일렉트로닉스 Method for controlling defrosting mode in heat pump air-conditioner

Also Published As

Publication number Publication date
KR19990047293A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
EP2458305B1 (en) Heat pump device
JPH086990B2 (en) Reversing valve malfunction detection and correction method in heat pump
JPH10103818A (en) Air-conditioner
KR20060082455A (en) Defrost driving control device and its operating method in the heat pump air-conditioner
KR20090069920A (en) Air conditioning system
KR920000348B1 (en) Refrigerant-heaing type heating apparatus
JP2002318039A (en) Air conditioner
JP3668750B2 (en) Air conditioner
JP3596506B2 (en) Refrigeration equipment
KR100256317B1 (en) Defrost device and algorithm of heat pump
KR20100036786A (en) Air conditioner and control method of the same
JP3791444B2 (en) Air conditioner
JP4264208B2 (en) Air conditioner
JP3661014B2 (en) Refrigeration equipment
CN112944618A (en) Air conditioner capacity estimation method and air conditioner
JP4131509B2 (en) Refrigeration cycle controller
KR100557038B1 (en) Method for Controlling Expansion Valve of Heat pump
KR20010065318A (en) Heat pump air-conditioner and control method thereof
KR19980018431A (en) Air conditioner
JP3603358B2 (en) Refrigeration equipment
JP2541172B2 (en) Operation control device for air conditioner
KR100304553B1 (en) Heatpump air-conditioner and method for controlling warming mode thereof
KR100292496B1 (en) Method for preventing inflow of compressor liquid refrigerant in heat pump air conditioner and its device
KR100585683B1 (en) Frosting/defrosting method for inverter heat pump air conditioner
KR880000935B1 (en) Control device for refrigeration cycle

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee