JPH109683A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH109683A
JPH109683A JP8165784A JP16578496A JPH109683A JP H109683 A JPH109683 A JP H109683A JP 8165784 A JP8165784 A JP 8165784A JP 16578496 A JP16578496 A JP 16578496A JP H109683 A JPH109683 A JP H109683A
Authority
JP
Japan
Prior art keywords
degree
heat exchanger
compressor
superheat
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8165784A
Other languages
Japanese (ja)
Other versions
JP3475014B2 (en
Inventor
Takayuki Kanbe
崇幸 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16578496A priority Critical patent/JP3475014B2/en
Publication of JPH109683A publication Critical patent/JPH109683A/en
Application granted granted Critical
Publication of JP3475014B2 publication Critical patent/JP3475014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively prevent a wet vapor suction to a compressor and to improve the life of the compressor by detecting the degree of superheat of refrigerant in a heat exchanger, and controlling to raise an operating frequency of the compressor by a predetermined value at the time when the degree of superheat is smaller than a target value by a predetermined value or more and the travel of a motor driven expansion valve is minimum. SOLUTION: In a cooling operation, an indoor temperature, a set indoor temperature, an indoor heat exchanger temperature and a suction side tube temperature are read. An operating frequency of a compressor 1 is controlled in response to a difference between the indoor temperature and the set indoor temperature, and a target value of the degree of superheat is set. The degree of superheat of refrigerant in the exchanger 5 is calculated from a difference between the suction side tube temperature and the exchanger temperature. A necessary amount of a valve opening operating to an opening of a motor driven expansion valve 4 at present time point in response to a difference between the set target value and the degree of superheat is obtained, and the valve 4 is operated to travel. In this case, when the degree is smaller by a predetermined value or more than the target value and the opening of the valve 4 is minimum, the operating frequency of the compressor is controlled to be raised by a predetermined value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電動膨張弁を用
いて過熱度制御を行う空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner for controlling a degree of superheat using an electric expansion valve.

【0002】[0002]

【従来の技術】空気調和機には、圧縮機、室外熱交換
器、減圧器、室内熱交換器などを順次接続してなる冷凍
サイクルが搭載され、室内温度センサの検知温度(室内
温度)とリモコンなどで予め設定される温度(設定室内
温度)との比較により、圧縮機の運転が制御される。
2. Description of the Related Art An air conditioner is equipped with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a decompressor, an indoor heat exchanger, and the like are sequentially connected. The operation of the compressor is controlled by comparison with a temperature (set room temperature) preset by a remote controller or the like.

【0003】たとえば、検知室内温度と設定室内温度と
の差(=空調負荷)が求められ、その温度差が零となる
方向に、圧縮機の運転周波数が制御される。この制御に
より、空調負荷に対応する最適な冷房能力あるいは暖房
能力が発揮される。
For example, a difference (= air-conditioning load) between the detected indoor temperature and the set indoor temperature is obtained, and the operating frequency of the compressor is controlled in such a direction that the temperature difference becomes zero. By this control, an optimal cooling capacity or heating capacity corresponding to the air conditioning load is exhibited.

【0004】この運転周波数制御と同時に、蒸発器とし
て機能する室外熱交換器(冷房時)あるいは室内熱交換
器(暖房時)における冷媒の過熱度(スーパヒート量と
も称す)が検出され、その過熱度が目標値となるよう、
減圧器であるところの電動膨張弁の開度が制御される。
電動膨張弁は、供給される駆動パルスの数に応じて、開
度が連続的に変化する。
Simultaneously with the operation frequency control, the degree of superheat (also referred to as superheat amount) of the refrigerant in the outdoor heat exchanger (during cooling) or the indoor heat exchanger (during heating) functioning as an evaporator is detected. Is the target value.
The degree of opening of the electric expansion valve, which is a pressure reducer, is controlled.
The degree of opening of the electric expansion valve continuously changes in accordance with the number of supplied drive pulses.

【0005】しかし、過熱度が目標値より小さい場合に
は、外気と冷媒との温度差が少なく、電動膨張弁から蒸
発器に流れた冷媒のすべてが蒸発しきれない事態が生じ
易い。そして、蒸発しきれなかった液冷媒が圧縮機に吸
込まれてしまういわゆる液バックが生じ、圧縮機に損傷
を生じる虞がある。そこで、この場合は電動膨張弁の開
度が減少される。これにより、電動膨張弁を通過した後
に蒸発器に流れる冷媒の圧力が低下して、これに伴い液
冷媒が気化し易くなり、圧縮機への液バックが防止され
る。
[0005] However, when the degree of superheat is smaller than the target value, the temperature difference between the outside air and the refrigerant is small, and it is likely that all the refrigerant flowing from the electric expansion valve to the evaporator cannot be completely evaporated. Then, a so-called liquid back occurs in which the liquid refrigerant that has not completely evaporated is sucked into the compressor, which may cause damage to the compressor. Therefore, in this case, the opening of the electric expansion valve is reduced. As a result, the pressure of the refrigerant flowing to the evaporator after passing through the electric expansion valve is reduced, whereby the liquid refrigerant is easily vaporized and liquid back to the compressor is prevented.

【0006】一方、過熱度が目標値より大きい場合に
は、外気と冷媒との温度差が大き過ぎ、電動膨張弁から
蒸発器へ流れた冷媒が熱を吸収し過ぎとなっており、室
内温度に悪影響を与えてしまう。そこで、この場合は電
動膨張弁の開度が増大され、電動膨張弁から蒸発器に流
れる冷媒の圧力が増やされ、外気からの熱の吸収を抑え
ている。
On the other hand, if the degree of superheat is larger than the target value, the temperature difference between the outside air and the refrigerant is too large, and the refrigerant flowing from the electric expansion valve to the evaporator absorbs too much heat, and the indoor temperature Adversely affect Therefore, in this case, the opening degree of the electric expansion valve is increased, the pressure of the refrigerant flowing from the electric expansion valve to the evaporator is increased, and the absorption of heat from the outside air is suppressed.

【0007】過熱度が目標値に達すると、そのときの電
動膨張弁の開度がそのまま保持される。なお、図9のフ
ローチャートに示すように、検知室内温度Taと設定室
内温度Txとの差Tk(=Ta−Tx)を、運転周波数
の制御用としてだけでなく、弁開度制御にもそのまま利
用するものがある。
When the superheat reaches the target value, the opening of the electric expansion valve at that time is maintained as it is. As shown in the flowchart of FIG. 9, the difference Tk (= Ta−Tx) between the detected room temperature Ta and the set room temperature Tx is used not only for controlling the operation frequency but also for controlling the valve opening degree. There is something to do.

【0008】この制御では、冷房時、外気温度Toが38
℃以上になると、運転周波数の最低値を通常よりも所定
値上昇させるようにしている。すなわち、外気温度To
が高くて、室外熱交換器(凝縮器)の放熱作用が低下す
る状況であっても、室内熱交換器温度(蒸発器温度)T
eが下がって十分な冷房作用が得られるよう、運転周波
数の低下に制限を与えている。
In this control, during cooling, the outside air temperature To
When the temperature becomes equal to or higher than ℃, the minimum value of the operating frequency is increased by a predetermined value from the normal value. That is, the outside air temperature To
Is high and the heat radiation effect of the outdoor heat exchanger (condenser) is reduced, the indoor heat exchanger temperature (evaporator temperature) T
The lowering of the operating frequency is limited so that e can be lowered to obtain a sufficient cooling effect.

【0009】暖房時は、外気温度Toが−1℃より低
く、しかも室内熱交換器温度(凝縮器温度)Teが18℃
より高い(設定室内温度Txが高い)状況において、そ
の室内熱交換器温度Teが18℃より高い状態を維持して
十分な暖房能力が得られるよう、運転周波数の低下に制
限を与えている。
During heating, the outside air temperature To is lower than -1 ° C., and the indoor heat exchanger temperature (condenser temperature) Te is 18 ° C.
In a situation where the indoor heat exchanger temperature Te is higher (ie, the set indoor temperature Tx is higher), the lowering of the operating frequency is limited so that a state in which the indoor heat exchanger temperature Te is higher than 18 ° C. and sufficient heating capacity can be obtained.

【0010】また、圧縮機の運転周波数が低周波数領域
にあるかどうか判定し、判定が満足されない場合は運転
周波数の制御値保持時間として通常のBを確保するが、
判定が満足される場合は制御値保持時間として通常より
長いA(>B)を確保している。低周波数領域において
長い制御値保持時間Aを確保することにより、圧縮機の
頻繁なオン・オフ運転の繰り返しを回避し、室内温度の
安定を図るようにしている。
It is determined whether or not the operating frequency of the compressor is in a low frequency range. If the determination is not satisfied, a normal B is maintained as a control value holding time of the operating frequency.
If the determination is satisfied, A (> B) longer than usual is secured as the control value holding time. By securing a long control value holding time A in the low frequency region, frequent repetition of the ON / OFF operation of the compressor is avoided, and the indoor temperature is stabilized.

【0011】[0011]

【発明が解決しようとする課題】過熱度が目標値より小
さい場合、電動膨張弁の開度を減少して圧縮機への液バ
ックを防止するようにしているが、電動膨張弁の開度が
すでに最小の状態にある場合には、それ以上の開度の減
少が不可能であり、結局は液バックを防止できないこと
がある。
When the degree of superheat is smaller than the target value, the opening of the electric expansion valve is reduced to prevent the liquid from flowing back to the compressor. If it is already in the minimum state, it is impossible to further reduce the opening, and eventually it may not be possible to prevent the liquid back.

【0012】この発明は上記の事情を考慮したもので、
第1、第3、および第4の発明の空気調和機は、圧縮機
への液バックを確実に防止して圧縮機の寿命向上が図れ
ることを目的とする。第2の発明の空気調和機は、圧縮
機への液バックを極力防止して圧縮機の寿命向上が図れ
ることを目的とする。
The present invention has been made in view of the above circumstances,
It is an object of the air conditioners of the first, third, and fourth inventions to reliably prevent liquid back to the compressor and to improve the life of the compressor. It is an object of the air conditioner of the second invention to prevent liquid back to the compressor as much as possible and to improve the life of the compressor.

【0013】[0013]

【課題を解決するための手段】第1の発明の空気調和機
は、圧縮機、室外熱交換器、電動膨張弁、および室内熱
交換器を接続した冷凍サイクルを備え、空調負荷に応じ
て圧縮機の運転周波数を制御するとともに、蒸発器とし
て機能する室外熱交換器または室内熱交換器における冷
媒の過熱度を検出し、その過熱度が目標値となるよう電
動膨張弁の開度を制御するものであって、上記過熱度が
上記目標値より所定値以上小さく、かつ上記電動膨張弁
の開度が最小のとき、上記圧縮機の運転周波数を所定値
上昇させる制御手段、を設けている。
An air conditioner according to a first aspect of the present invention includes a refrigeration cycle in which a compressor, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger are connected. Controls the operating frequency of the heat exchanger, detects the degree of superheat of the refrigerant in the outdoor heat exchanger or the indoor heat exchanger that functions as an evaporator, and controls the opening of the electric expansion valve so that the degree of superheat becomes a target value. A control means for increasing the operating frequency of the compressor by a predetermined value when the degree of superheat is smaller than the target value by a predetermined value or more and the opening of the electric expansion valve is minimum.

【0014】第2の発明の空気調和機は、圧縮機、室外
熱交換器、電動膨張弁、および室内熱交換器を接続した
冷凍サイクルを備え、空調負荷に応じて圧縮機の運転周
波数を制御するとともに、蒸発器として機能する室外熱
交換器または室内熱交換器における冷媒の過熱度を検出
し、その過熱度が目標値となるよう電動膨張弁の開度を
制御するものであって、上記過熱度が上記目標値より所
定値以上小さく、かつ上記電動膨張弁の開度が最小のと
き、上記圧縮機の運転周波数の制御値保持時間を延長す
る制御手段、を設けている。
An air conditioner according to a second aspect of the present invention includes a refrigeration cycle connecting a compressor, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger, and controls an operating frequency of the compressor according to an air conditioning load. And detecting the degree of superheat of the refrigerant in the outdoor heat exchanger or the indoor heat exchanger functioning as an evaporator, and controlling the degree of opening of the electric expansion valve so that the degree of superheat becomes a target value. When the degree of superheat is smaller than the target value by a predetermined value or more, and when the opening of the electric expansion valve is at a minimum, control means is provided for extending the control value holding time of the operating frequency of the compressor.

【0015】第3の発明の空気調和機は、圧縮機、室外
熱交換器、電動膨張弁、および室内熱交換器を接続した
冷凍サイクルを備え、空調負荷に応じて圧縮機の運転周
波数を制御するとともに、蒸発器として機能する室外熱
交換器または室内熱交換器における冷媒の過熱度を検出
し、その過熱度が目標値となるよう電動膨張弁の開度を
制御するものであって、上記過熱度が上記目標値より所
定値以上小さく、かつ上記電動膨張弁の開度が最小のと
き、上記圧縮機の運転周波数を所定値上昇させるととも
に、その運転周波数の制御値保持時間を延長する制御手
段、を設けている。第4の発明の空気調和機は、第1ま
たは第3の発明の制御手段が、圧縮機の運転周波数を所
定時間ごとに所定値ずつ上昇させる。
An air conditioner according to a third aspect of the present invention includes a refrigeration cycle in which a compressor, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger are connected, and controls an operating frequency of the compressor according to an air conditioning load. And detecting the degree of superheat of the refrigerant in the outdoor heat exchanger or the indoor heat exchanger functioning as an evaporator, and controlling the degree of opening of the electric expansion valve so that the degree of superheat becomes a target value. When the degree of superheat is smaller than the target value by a predetermined value or more and the opening degree of the electric expansion valve is the minimum, the operation frequency of the compressor is increased by a predetermined value, and the control value holding time of the operation frequency is extended. Means. In an air conditioner according to a fourth aspect, the control means according to the first or third aspect increases the operating frequency of the compressor by a predetermined value every predetermined time.

【0016】[0016]

【発明の実施の形態】以下、この発明の第1実施例につ
いて図面を参照して説明する。図2に示すように、圧縮
機1の吐出口に四方弁2を介して室外熱交換器3が配管
接続される。この室外熱交換器3に減圧器であるところ
の電動膨張弁4を介して室内熱交換器5が配管接続さ
れ、その室内熱交換器5に上記四方弁2を介して圧縮機
1の吸込口が配管接続される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 2, an outdoor heat exchanger 3 is connected to the discharge port of the compressor 1 via a four-way valve 2. An indoor heat exchanger 5 is connected to the outdoor heat exchanger 3 via a motor-operated expansion valve 4 which is a decompressor, and the indoor heat exchanger 5 is connected to the suction port of the compressor 1 via the four-way valve 2. Is connected to the pipe.

【0017】電動膨張弁4、供給される駆動パルスの数
に応じて開度が連続的に変化するもので、パルスモータ
バルブ(PMV)と称される。冷房運転時は、図示実線
矢印の方向に冷媒が流れて冷房サイクルが形成され、室
外熱交換器3が凝縮器、室内熱交換器5が蒸発器として
機能する。
The electric expansion valve 4, whose opening continuously changes in accordance with the number of supplied drive pulses, is called a pulse motor valve (PMV). During the cooling operation, the refrigerant flows in the direction of the solid line arrows in the drawing to form a cooling cycle, and the outdoor heat exchanger 3 functions as a condenser and the indoor heat exchanger 5 functions as an evaporator.

【0018】暖房運転時は、四方弁2の流路切換によ
り、図示破線矢印の方向に冷媒が流れて暖房サイクルが
形成され、室内熱交換器5が凝縮器、室外熱交換器3が
蒸発器として機能する。
At the time of the heating operation, by switching the flow path of the four-way valve 2, the refrigerant flows in the direction of the dashed arrow in the drawing to form a heating cycle, the indoor heat exchanger 5 is a condenser, and the outdoor heat exchanger 3 is an evaporator. Function as

【0019】室外熱交換器3の近傍に、室外ファン6が
設けられる。室外ファン6は、室外空気を室外熱交換器
3に強制的に通過させる。室内熱交換器5の近傍に、室
内ファン7が設けられる。室内ファン7は、室内空気を
室内熱交換器5に強制的に通過させる。
An outdoor fan 6 is provided near the outdoor heat exchanger 3. The outdoor fan 6 forces outdoor air to pass through the outdoor heat exchanger 3. An indoor fan 7 is provided near the indoor heat exchanger 5. The indoor fan 7 forces indoor air to pass through the indoor heat exchanger 5.

【0020】圧縮機1の吸込口に接続の配管に、吸込側
配管温度センサ8が取付けられる。吸込側配管温度セン
サ8は、吸込側配管温度Tsを検知する。室外熱交換器
3に、熱交換器温度センサ11が取付けられる。熱交換
器温度センサ11は、室外熱交換器3の温度を検知す
る。
A suction pipe temperature sensor 8 is attached to a pipe connected to a suction port of the compressor 1. The suction side pipe temperature sensor 8 detects the suction side pipe temperature Ts. A heat exchanger temperature sensor 11 is attached to the outdoor heat exchanger 3. The heat exchanger temperature sensor 11 detects the temperature of the outdoor heat exchanger 3.

【0021】室外ファン6への吸込み風路に、外気温度
センサ12が設けられる。外気温度センサ12は、外気
温度Toを検知する。室内熱交換器5に、熱交換器温度
センサ21が取付けられる。熱交換器温度センサ21
は、室内熱交換器5の温度を検知する。
An outside air temperature sensor 12 is provided in a suction air passage to the outdoor fan 6. The outside air temperature sensor 12 detects the outside air temperature To. A heat exchanger temperature sensor 21 is attached to the indoor heat exchanger 5. Heat exchanger temperature sensor 21
Detects the temperature of the indoor heat exchanger 5.

【0022】室内ファン7の吸込み風路に、室内温度セ
ンサ22が設けられる。室内温度センサ22は、室内温
度Taを検知する。制御回路を図1に示す。
An indoor temperature sensor 22 is provided in a suction air passage of the indoor fan 7. The indoor temperature sensor 22 detects the indoor temperature Ta. The control circuit is shown in FIG.

【0023】商用交流電源30に室内制御部40が接続
される。この室内制御部40に、電源ライン31および
シリアル信号ライン32を介して室外制御部50が接続
される。シリアル信号ライン32は、電源電圧同期のデ
ータ転送を行なうためのものである。
An indoor control unit 40 is connected to the commercial AC power supply 30. An outdoor controller 50 is connected to the indoor controller 40 via a power supply line 31 and a serial signal line 32. The serial signal line 32 is for performing data transfer synchronized with the power supply voltage.

【0024】室内制御部40に、熱交換器温度センサ2
1、室内温度センサ22、速度制御回路41、ルーバー
駆動回路42、リモートコントロール式の操作器(以
下、リモコンと略称する)60が接続される。
The indoor controller 40 includes a heat exchanger temperature sensor 2
1, an indoor temperature sensor 22, a speed control circuit 41, a louver drive circuit 42, and a remote control type operation device (hereinafter, abbreviated as a remote control) 60 are connected.

【0025】速度制御回路41は、室内ファンモータ7
Mの速度を制御する。ルーバー駆動回路42は、ルーバ
ーモータ43を駆動する。このルーバーモータ43は、
図示していないが、室内への吹出風の角度を上下(また
は左右)に調節するためのルーバーを駆動する。リモコ
ン60は、各種運転条件の設定用である。
The speed control circuit 41 controls the speed of the indoor fan motor 7.
Control the speed of M. The louver drive circuit 42 drives the louver motor 43. This louver motor 43 is
Although not shown, a louver for adjusting the angle of the wind blown into the room up and down (or left and right) is driven. The remote controller 60 is for setting various operating conditions.

【0026】室外制御部50に、四方弁2、電動膨張弁
(PMV)4、吸込側配管温度センサ8、熱交換器温度
センサ11、外気温度センサ12、インバータ回路5
1、ファン駆動回路52が接続される。
The outdoor control unit 50 includes a four-way valve 2, an electric expansion valve (PMV) 4, a suction pipe temperature sensor 8, a heat exchanger temperature sensor 11, an outside air temperature sensor 12, and an inverter circuit 5.
1. The fan drive circuit 52 is connected.

【0027】インバータ回路51は、商用交流電源電圧
を整流し、それを室外制御部50の指令に応じた周波数
(およびレベル)の電圧に変換し、出力する。この出力
は圧縮機モータ1Mの駆動電力となる。ファン駆動回路
52は、室外ファンモータ6Mを駆動する。
The inverter circuit 51 rectifies the commercial AC power supply voltage, converts it into a voltage (and level) having a frequency (and level) according to a command from the outdoor control unit 50, and outputs the voltage. This output is the driving power of the compressor motor 1M. The fan drive circuit 52 drives the outdoor fan motor 6M.

【0028】室内制御部40および室外制御部50は、
それぞれマイクロコンピュータおよびその周辺回路から
なり、主要な機能手段として次の[1]ないし[11]を
備える。
The indoor control unit 40 and the outdoor control unit 50
Each is composed of a microcomputer and its peripheral circuits, and has the following [1] to [11] as main functional means.

【0029】[1]四方弁2の流路をニュートラル状態
に維持し、圧縮機1の吐出冷媒を四方弁2、室外熱交換
器3、電動膨張弁4、室内熱交換器5、四方弁2に通し
て圧縮機1に戻し、冷房運転を実行する手段。
[1] The flow path of the four-way valve 2 is maintained in a neutral state, and the refrigerant discharged from the compressor 1 is supplied to the four-way valve 2, the outdoor heat exchanger 3, the electric expansion valve 4, the indoor heat exchanger 5, and the four-way valve 2. Means for returning to the compressor 1 to perform a cooling operation.

【0030】[2]四方弁2の流路を切換え、これによ
り圧縮機1の吐出冷媒を四方弁2、室内熱交換器5、電
動膨張弁4、室外熱交換器3、四方弁2に通して圧縮機
1に戻し、暖房運転を実行する手段。
[2] The flow path of the four-way valve 2 is switched, whereby the refrigerant discharged from the compressor 1 is passed through the four-way valve 2, the indoor heat exchanger 5, the electric expansion valve 4, the outdoor heat exchanger 3, and the four-way valve 2. Means for returning to the compressor 1 to perform a heating operation.

【0031】[3]室内温度センサ22で検知される室
内温度Taとリモコン60で予め設定される設定室内温
度Txとの差Tk(=空調負荷)を空調負荷として求
め、その温度差Tkに応じて圧縮機1の運転周波数(イ
ンバータ回路51の出力周波数)Fを制御する手段。
[3] A difference Tk (= air-conditioning load) between the room temperature Ta detected by the room temperature sensor 22 and a set room temperature Tx set in advance by the remote controller 60 is determined as an air-conditioning load, and according to the temperature difference Tk. Means for controlling the operating frequency F of the compressor 1 (the output frequency of the inverter circuit 51).

【0032】[4]上記温度差Tkに応じて過熱度の目
標値SHxを設定する手段。 [5]運転周波数Fの制御ごとに、その制御値(つまり
運転周波数F)を所定時間t1 にわたり保持する手段。
所定時間t1 のことを制御値保持時間と称している。こ
の制御値保持時間t1 を確保することにより、圧縮機1
の頻繁な能力変動を抑えて室内温度の安定を図るように
している。
[4] Means for setting a target value SHx of the degree of superheat in accordance with the temperature difference Tk. [5] A means for holding the control value (that is, the operating frequency F) for a predetermined time t 1 every time the operating frequency F is controlled.
It is called a control data holding time to a predetermined time t 1. By securing this control value holding time t 1 , the compressor 1
In order to stabilize the indoor temperature by suppressing the frequent fluctuation of the capacity.

【0033】[6]運転周波数Fが低周波数領域にある
かどうか判定し、判定が満足されない場合は上記の制御
値保持時間t1 として通常の値を確保し、判定が満足さ
れる場合は制御値保持時間t1 として通常より長い値を
確保する手段。低周波数領域において長い方の制御値保
持時間t1 を確保することにより、圧縮機の頻繁なオン
・オフ運転の繰り返しを回避し、室内温度の安定を図る
ようにしている。
[0033] [6] operation frequency F is determined whether the low frequency range, if the determination is not satisfied to ensure normal value as the control value holding time t 1 of the above, if the determination is satisfied the control means for securing a longer than normal as a value holding time t 1. By ensuring longer control value holding time t 1 of the low-frequency range, to avoid repetition of frequent on-off operation of the compressor, so that stabilize the room temperature.

【0034】[7]冷房運転時、吸込側配管温度センサ
8の検知温度Tsと、熱交換器温度センサ21の検知温
度(蒸発器として機能する室内熱交換器5の温度)Te
との差(=Ts−Te)を室内熱交換器5における冷媒
の過熱度SHとして算出する手段。
[7] During the cooling operation, the detected temperature Ts of the suction side pipe temperature sensor 8 and the detected temperature of the heat exchanger temperature sensor 21 (the temperature of the indoor heat exchanger 5 functioning as an evaporator) Te
Means for calculating the difference (= Ts−Te) as the degree of superheat SH of the refrigerant in the indoor heat exchanger 5.

【0035】[8]暖房運転時、吸込側配管温度センサ
8の検知温度Tsと、熱交換器温度センサ11の検知温
度(蒸発器として機能する室外熱交換器3の温度)Tc
との差(=Ts−Tc)を室外熱交換器3における冷媒
の過熱度SHとして算出する手段。
[8] During the heating operation, the detected temperature Ts of the suction side pipe temperature sensor 8 and the detected temperature of the heat exchanger temperature sensor 11 (temperature of the outdoor heat exchanger 3 functioning as an evaporator) Tc.
(= Ts−Tc) as the degree of superheat SH of the refrigerant in the outdoor heat exchanger 3.

【0036】[9]上記目標値SHxと上記過熱度SH
との差ΔT(=SHx−SH)を算出する手段。 [10]上記過熱度SHを上記目標値SHxに至らせるべ
く、電動膨張弁4の現時点の開度Qに対する開度操作の
必要量ΔQを上記ΔTに応じて求め、その必要量ΔQだ
け電動膨張弁4の開度を操作する手段。
[9] The target value SHx and the superheat degree SH
Means for calculating a difference ΔT (= SHx−SH) from the above. [10] In order to bring the degree of superheat SH to the target value SHx, the required amount ΔQ of the opening operation of the electric expansion valve 4 with respect to the current opening Q is determined according to the above ΔT, and the electric expansion is performed by the required amount ΔQ. Means for operating the opening of the valve 4.

【0037】[11]上記ΔTが所定値Hより大きいとき
(ΔT>H)、つまり過熱度SHが目標値SHxより小
さい側に所定値H以上離れているとき、電動膨張弁4の
開度が最小の状態にあるかどうか判定し、最小でなけれ
ば電動膨張弁4の開度を所定値だけ減少し、最小であれ
ば運転周波数Fを所定時間ごとに所定値ずつ上昇させる
手段。これは、圧縮機1への液バック防止を目的として
いる。
[11] When the ΔT is larger than the predetermined value H (ΔT> H), that is, when the superheat degree SH is separated from the target value SHx by the predetermined value H or more, the opening degree of the electric expansion valve 4 is increased. Means for judging whether or not the state is at a minimum, and if not minimum, the opening degree of the electric expansion valve 4 is decreased by a predetermined value; if it is at a minimum, the operating frequency F is increased by a predetermined value every predetermined time. This aims at preventing liquid back to the compressor 1.

【0038】つぎに、上記の構成の作用を図3および図
4を参照して説明する。運転時(ステップ101 のYES
)、各種温度データ(室内温度Ta、設定室内温度T
x、室内熱交換器温度Te、吸込側配管温度Ts、外気
温度To、室外熱交換器温度Tc)が読込まれる(ステ
ップ102 )。
Next, the operation of the above configuration will be described with reference to FIGS. During operation (YES in step 101)
), Various temperature data (room temperature Ta, set room temperature T)
x, the indoor heat exchanger temperature Te, the suction side pipe temperature Ts, the outside air temperature To, and the outdoor heat exchanger temperature Tc) are read (step 102).

【0039】冷房運転であれば(ステップ103 のYES
)、室内温度センサ22で検知される室内温度Taと
リモコン60で予め設定される設定室内温度Txとの差
Tk(=Ta−Tx)が算出される(ステップ104 )。
そして、温度差Tkに応じて圧縮機1の運転周波数Fが
制御されるとともに、温度差Tkに応じて過熱度の目標
値SHxが設定される(ステップ105 )。
If the operation is the cooling operation (YES in step 103)
), A difference Tk (= Ta−Tx) between the room temperature Ta detected by the room temperature sensor 22 and the set room temperature Tx preset by the remote controller 60 is calculated (step 104).
Then, the operating frequency F of the compressor 1 is controlled according to the temperature difference Tk, and the target value SHx of the degree of superheat is set according to the temperature difference Tk (step 105).

【0040】圧縮機1の吸込側配管の温度Ts(蒸発器
として機能する室内熱交換器5から流出する冷媒の温度
に対応)が吸込側配管温度センサ8で検知されており、
その検知温度Tsと、熱交換器温度センサ21の検知温
度(室内熱交換器5の温度)Teとの差(=Ts−T
e)が、室内熱交換器5における冷媒の過熱度SHとし
て算出される。そして、上記設定された目標値SHxと
過熱度SHとの差ΔT(=SHx−SH)が算出され、
そのΔTに応じて、電動膨張弁4の現時点の開度Qに対
する開度操作の必要量ΔQが求められる。この必要量Δ
Qだけ、電動膨張弁4の開度Qが操作される(ステップ
106 )。この開度操作により、過熱度SHが目標値SH
xへ向け移行する。
The temperature Ts (corresponding to the temperature of the refrigerant flowing out of the indoor heat exchanger 5 functioning as an evaporator) of the suction pipe of the compressor 1 is detected by the suction pipe temperature sensor 8.
The difference (= Ts−T) between the detected temperature Ts and the detected temperature of the heat exchanger temperature sensor 21 (the temperature of the indoor heat exchanger 5) Te.
e) is calculated as the degree of superheat SH of the refrigerant in the indoor heat exchanger 5. Then, a difference ΔT (= SHx−SH) between the set target value SHx and the degree of superheat SH is calculated,
According to the ΔT, the required amount ΔQ of the opening operation of the electric expansion valve 4 with respect to the current opening Q is obtained. This required amount Δ
Q, the opening Q of the electric expansion valve 4 is operated (step
106). By this opening degree operation, the degree of superheat SH becomes the target value SH.
Move to x.

【0041】この冷房時のモリエル線図を図5に示して
いる。暖房運転の場合は(ステップ103 のNO)、リモコ
ン60で予め設定される設定室内温度Txと室内温度セ
ンサ22で検知される室内温度Taとの差Tk(=Tx
−Ta)が算出される(ステップ107 )。そして、温度
差Tkに応じて圧縮機1の運転周波数Fが制御されると
ともに、温度差Tkに応じて過熱度の目標値SHxが設
定される(ステップ108 )。
FIG. 5 shows a Mollier diagram during the cooling. In the case of the heating operation (NO in step 103), the difference Tk (= Tx) between the set room temperature Tx preset by the remote controller 60 and the room temperature Ta detected by the room temperature sensor 22
−Ta) is calculated (step 107). Then, the operating frequency F of the compressor 1 is controlled according to the temperature difference Tk, and the target value SHx of the degree of superheat is set according to the temperature difference Tk (step 108).

【0042】圧縮機1の吸込側配管の温度Ts(蒸発器
として機能する室外熱交換器3から流出する冷媒の温度
に対応)が吸込側配管温度センサ8で検知されており、
その検知温度Tsと、熱交換器温度センサ11の検知温
度(室外熱交換器3の温度)Tcとの差(=Ts−T
c)が、室外熱交換器3における冷媒の過熱度SHとし
て算出される。そして、上記設定された目標値SHxと
過熱度SHとの差ΔT(=SHx−SH)が算出され、
そのΔTに応じて、電動膨張弁4の現時点の開度Qに対
する開度操作の必要量ΔQが求められる。この必要量Δ
Qだけ、電動膨張弁4の開度Qが操作される(ステップ
109 )。この開度操作により、過熱度SHが目標値SH
xへ向け移行する。
The temperature Ts (corresponding to the temperature of the refrigerant flowing out of the outdoor heat exchanger 3 functioning as an evaporator) of the suction side pipe of the compressor 1 is detected by the suction side pipe temperature sensor 8.
The difference (= Ts−T) between the detected temperature Ts and the detected temperature of the heat exchanger temperature sensor 11 (the temperature of the outdoor heat exchanger 3) Tc.
c) is calculated as the degree of superheat SH of the refrigerant in the outdoor heat exchanger 3. Then, a difference ΔT (= SHx−SH) between the set target value SHx and the degree of superheat SH is calculated,
According to the ΔT, the required amount ΔQ of the opening operation of the electric expansion valve 4 with respect to the current opening Q is obtained. This required amount Δ
Q, the opening Q of the electric expansion valve 4 is operated (step
109). By this opening degree operation, the superheat degree SH becomes the target value SH
Move to x.

【0043】この暖房時のモリエル線図を図6に示して
いる。こうして、運転周波数Fが制御され、かつ電動膨
張弁4の開度Qが操作されるのに伴い、タイマー動作が
開始される(ステップ110 )。このタイマー動作は、運
転周波数Fの制御値保持時間t1 をカウントするための
ものである。
FIG. 6 shows a Mollier chart during this heating. In this way, the timer operation is started with the operation frequency F being controlled and the opening degree Q of the electric expansion valve 4 being operated (step 110). The timer operation is used to count the control value holding time t 1 of the operation frequency F.

【0044】制御値保持時間t1 が経過すると(ステッ
プ111 のYES )、上記ΔTが所定値Hより大きいかどう
か判定される(ステップ112 )。ΔTが所定値Hより大
きいとき(ΔT>H、ステップ112 のYES )、つまり過
熱度SHが目標値SHxより小さい側に所定値H以上離
れているとき、電動膨張弁4の開度Qが最小の状態にあ
るかどうか判定される(ステップ113 )。
When the control value holding time t 1 has elapsed (YES in step 111), it is determined whether ΔT is greater than a predetermined value H (step 112). When ΔT is larger than a predetermined value H (ΔT> H, YES in step 112), that is, when the superheat degree SH is smaller than the target value SHx by a predetermined value H or more, the opening degree Q of the electric expansion valve 4 is minimized. Is determined (step 113).

【0045】開度Qの最小値としては、図3に示してい
るように、それ以上は弁機構的に開度減少が不可能な事
実上の最小値Qmin に対し、電動膨張弁4に対する駆動
パルス数として10パルス分および 5パルス分だけそれぞ
れ大きい二段階の基準開度を定めている。
As shown in FIG. 3, the minimum value of the opening degree Q is, as shown in FIG. Two levels of reference opening are set, each larger by 10 and 5 pulses as the number of pulses.

【0046】開度Qが第1基準開度(Qmin + 5パルス
分開度)よりも小さいX領域まで減少していれば、開度
Qが最小の状態にあると判定する。その後、開度Qが第
2基準開度(Qmin +10パルス分開度)よりも大きいY
領域まで増大することにより、開度Qが最小の状態から
離脱したとの判定になる。
If the opening Q has decreased to the X region smaller than the first reference opening (Qmin + 5 pulse opening), it is determined that the opening Q is in the minimum state. Thereafter, the opening degree Q is larger than the second reference opening degree (Qmin + opening amount for 10 pulses).
By increasing to the region, it is determined that the opening degree Q has departed from the minimum state.

【0047】なお、開度Qの最小値として、弁機構的に
開度減少が不可能な事実上の最小値Qmin をそのまま当
て嵌めてもよいことはもちろんである。電動膨張弁4の
開度Qが最小でなければ(ステップ113 のNO)、電動膨
張弁4の開度Qが所定値だけ減少される(ステップ114
)。こうして、弁開度が絞られることにより、電動膨
張弁4から室内熱交換器5に流れる冷媒の量が減って、
その室内熱交換器5に流入する冷媒のすべてが蒸発する
ようになる。したがって、圧縮機1への液バックが防止
される。
As a minimum value of the opening degree Q, it is needless to say that the actual minimum value Qmin which cannot be reduced by the valve mechanism may be directly applied. If the opening Q of the electric expansion valve 4 is not the minimum (NO in step 113), the opening Q of the electric expansion valve 4 is reduced by a predetermined value (step 114).
). Thus, the amount of the refrigerant flowing from the electric expansion valve 4 to the indoor heat exchanger 5 is reduced by reducing the valve opening degree,
All of the refrigerant flowing into the indoor heat exchanger 5 evaporates. Therefore, liquid back to the compressor 1 is prevented.

【0048】電動膨張弁4の開度Qがすでに最小の状態
にあれば(ステップ113 のYES )、それ以上の開度絞り
は不可能であることから、運転周波数Fが所定時間(た
とえば30秒)ごとに所定値(たとえば 5Hz)ずつ上昇さ
れる(ステップ115 )。こうして、運転周波数Fの上昇
がなされることにより、室内熱交換器5だけでなく、室
内熱交換器5から吸込側配管までが冷媒の過熱域とな
る。これにより、圧縮機1への液バックが確実に防止さ
れて、圧縮機1の寿命向上が図れる。
If the opening Q of the electric expansion valve 4 is already in the minimum state (YES in step 113), it is impossible to further restrict the opening, so that the operating frequency F is kept at the predetermined value (for example, 30 seconds). ) Is increased by a predetermined value (for example, 5 Hz) (step 115). By increasing the operating frequency F in this manner, not only the indoor heat exchanger 5 but also the area from the indoor heat exchanger 5 to the suction pipe becomes a superheated region of the refrigerant. As a result, liquid back to the compressor 1 is reliably prevented, and the life of the compressor 1 can be improved.

【0049】リモコン60から運転停止指令が入ると
(ステップ116 のYES )、運転終了となる。次に、第2
実施例について説明する。
When an operation stop command is input from the remote controller 60 (YES in step 116), the operation ends. Next, the second
An example will be described.

【0050】第2実施例では、室内制御部40および室
外制御部50の主要な機能手段である[1]〜[11]の
うち、[11]のみ次のように第1実施例と異なる。 [11]ΔTが所定値Hより大きいとき(ΔT>H)、つ
まり過熱度SHが目標値SHxより小さい側に所定値H
以上離れているとき、電動膨張弁4の開度が最小の状態
にあるかどうか判定し、最小でなければ電動膨張弁4の
開度を所定値だけ減少し、最小であれば運転周波数Fの
制御値保持時間t1 を延長する手段。
The second embodiment differs from the first embodiment only in [11] among [1] to [11], which are the main functional units of the indoor control unit 40 and the outdoor control unit 50, as follows. [11] When ΔT is larger than the predetermined value H (ΔT> H), that is, when the superheat degree SH is smaller than the target value SHx, the predetermined value H
When it is more than the distance, it is determined whether the opening degree of the electric expansion valve 4 is in the minimum state. If not, the opening degree of the electric expansion valve 4 is reduced by a predetermined value. means for extending the control value holding time t 1.

【0051】他の構成は第1実施例と同じである。作用
を図7のフローチャートに示している(ステップ112 ま
では図4と同様)。
The other structure is the same as that of the first embodiment. The operation is shown in the flowchart of FIG. 7 (up to step 112 is the same as in FIG. 4).

【0052】電動膨張弁4の開度Qが最小でなければ
(ステップ113 のNO)、電動膨張弁4の開度Qが所定値
だけ減少される(ステップ114 )。ただし、電動膨張弁
4の開度Qがすでに最小の状態にあれば(ステップ113
のYES )、それ以上の開度絞りは不可能であることか
ら、運転周波数Fの制御値保持時間t1 が所定時間t2
延長される(ステップ117 )。
If the opening Q of the electric expansion valve 4 is not the minimum (NO in step 113), the opening Q of the electric expansion valve 4 is reduced by a predetermined value (step 114). However, if the opening degree Q of the electric expansion valve 4 is already in the minimum state (step 113).
YES), since it is impossible to reduce the opening further, the control value holding time t 1 of the operating frequency F is set to the predetermined time t 2
It is extended (step 117).

【0053】運転周波数Fの制御値保持時間t1 が長く
なると、たとえば低負荷状態となって圧縮機1が運転オ
フする条件になっても、すぐには運転オフせず、圧縮機
1の運転が極力継続される形となる。ひいては、電動膨
張弁4の開度Qを減少したことによる本来の液バック防
止作用が極力継続される形となる。
If the control value holding time t 1 of the operating frequency F becomes long, for example, even if the load becomes low and the compressor 1 is turned off, the operation is not immediately turned off. Will be continued as much as possible. As a result, the original liquid-back preventing action due to the decrease in the opening degree Q of the electric expansion valve 4 is continued as much as possible.

【0054】次に、第3実施例について説明する。第3
実施例では、室内制御部40および室外制御部50の主
要な機能手段である[1]〜[11]のうち、[11]のみ
次のように第1実施例および第2実施例と異なる。
Next, a third embodiment will be described. Third
In the embodiment, among [1] to [11], which are main functional units of the indoor control unit 40 and the outdoor control unit 50, only [11] is different from the first and second embodiments as follows.

【0055】[11]ΔTが所定値Hより大きいとき(Δ
T>H)、つまり過熱度SHが目標値SHxより小さい
側に所定値H以上離れているとき、電動膨張弁4の開度
が最小の状態にあるかどうか判定し、最小でなければ電
動膨張弁4の開度を所定値だけ減少し、最小であれば運
転周波数Fを所定時間ごとに所定値ずつ上昇させるとと
もに運転周波数Fの制御値保持時間t1 を延長する手
段。
[11] When ΔT is greater than a predetermined value H (Δ
T> H), that is, when the superheat degree SH is smaller than the target value SHx by a predetermined value H or more, it is determined whether the opening degree of the electric expansion valve 4 is in the minimum state. Means for reducing the opening of the valve 4 by a predetermined value, and if it is the minimum, increasing the operating frequency F by a predetermined value every predetermined time and extending the control value holding time t 1 of the operating frequency F.

【0056】他の構成は第1実施例と同じである。作用
を図8のフローチャートに示している(ステップ112 ま
では図4と同様)。
The other structure is the same as that of the first embodiment. The operation is shown in the flowchart of FIG. 8 (up to step 112 is the same as in FIG. 4).

【0057】電動膨張弁4の開度Qが最小でなければ
(ステップ113 のNO)、電動膨張弁4の開度Qが所定値
だけ減少される(ステップ114 )。ただし、電動膨張弁
4の開度Qがすでに最小の状態にあれば(ステップ113
のYES )、それ以上の開度絞りは不可能であることか
ら、運転周波数Fが所定時間(たとえば30秒)ごとに所
定値(たとえば 5Hz)ずつ上昇されるとともに(ステッ
プ115 )、運転周波数Fの制御値保持時間t1 が所定時
間t2 延長される(ステップ117 )。
If the opening Q of the electric expansion valve 4 is not the minimum (NO in step 113), the opening Q of the electric expansion valve 4 is reduced by a predetermined value (step 114). However, if the opening degree Q of the electric expansion valve 4 is already in the minimum state (step 113).
YES), since it is impossible to reduce the opening further, the operating frequency F is increased by a predetermined value (for example, 5 Hz) every predetermined time (for example, 30 seconds) (step 115), and the operating frequency F control data holding time t 1 of the predetermined time t 2 extension (step 117).

【0058】こうして、運転周波数Fの上昇がなされる
ことにより、圧縮機1が蒸発器(冷房時は室内熱交換器
5、暖房時は室外熱交換器3)から吸込む冷媒の量が多
くなり、蒸発器内の圧力が低下する。これにより、電動
膨張弁4の開度を最小にして、蒸発器内の圧力を低下さ
せた状態から、さらなる圧力低下が可能となり、液冷媒
が気化し易くなるため、圧縮機1への液バックが確実に
防止される。
As the operating frequency F is increased in this way, the amount of refrigerant that the compressor 1 draws from the evaporator (the indoor heat exchanger 5 during cooling and the outdoor heat exchanger 3 during heating) increases. The pressure in the evaporator drops. As a result, it is possible to further reduce the pressure from a state in which the opening degree of the electric expansion valve 4 is minimized and the pressure in the evaporator is reduced, and the liquid refrigerant is easily vaporized. Is reliably prevented.

【0059】しかも、運転周波数Fの制御値保持時間t
1 が延長されることにより、たとえば低負荷状態となっ
て圧縮機1が運転オフする条件になっても、すぐには運
転オフせず、圧縮機1の運転が極力継続される形とな
る。ひいては、運転周波数Fを上昇させたことによる液
バック防止作用が極力継続される形となる。なお、この
発明は上記各実施例に限定されるものではなく、要旨を
変えない範囲で種々変形実施可能である。
Moreover, the control value holding time t of the operating frequency F
As a result of the extension of 1 , for example, even if the load becomes low and the compressor 1 is turned off, the operation is not turned off immediately and the operation of the compressor 1 is continued as much as possible. As a result, the operation of preventing the liquid back caused by increasing the operating frequency F is continued as much as possible. The present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention.

【0060】[0060]

【発明の効果】以上述べたように、第1の発明の空気調
和機は、過熱度が目標値より所定値以上小さく、かつ電
動膨張弁の開度が最小のとき、圧縮機の運転周波数を所
定値上昇させる構成としたので、圧縮機への液バックを
確実に防止して圧縮機の寿命向上が図れる。
As described above, in the air conditioner of the first invention, when the degree of superheat is smaller than the target value by a predetermined value or more and the opening of the electric expansion valve is minimum, the operating frequency of the compressor is reduced. Since the configuration is such that the predetermined value is increased, liquid back to the compressor is reliably prevented, and the life of the compressor can be improved.

【0061】第2の発明の空気調和機は、過熱度が目標
値より所定値以上小さく、かつ電動膨張弁の開度が最小
のとき、圧縮機の運転周波数の制御値保持時間を延長す
る構成としたので、圧縮機への液バックを極力防止して
圧縮機の寿命向上が図れる。
An air conditioner according to a second aspect of the present invention is configured such that when the degree of superheat is smaller than a target value by a predetermined value or more and the opening of the electric expansion valve is minimum, the control value holding time of the operating frequency of the compressor is extended. Therefore, liquid back to the compressor can be prevented as much as possible to improve the life of the compressor.

【0062】第3の発明の空気調和機は、過熱度が目標
値より所定値以上小さく、かつ電動膨張弁の開度が最小
のとき、圧縮機の運転周波数を所定値上昇させるととも
に、その運転周波数の制御値保持時間を延長する構成と
したので、圧縮機への液バックを確実に防止して圧縮機
の寿命向上が図れる。
In the air conditioner according to the third aspect of the present invention, when the degree of superheat is smaller than the target value by a predetermined value or more and the opening of the electric expansion valve is minimum, the operating frequency of the compressor is raised by a predetermined value, and the operation of the compressor is increased. Since the control value holding time of the frequency is extended, liquid back to the compressor is reliably prevented, and the life of the compressor can be improved.

【0063】第4の発明の空気調和機は、第1または第
3の発明の制御手段が、圧縮機の運転周波数を所定時間
ごとに所定値上昇させる構成としたので、圧縮機への液
バックを確実に防止して圧縮機の寿命向上が図れる。
In the air conditioner of the fourth invention, the control means of the first or third invention is configured to increase the operating frequency of the compressor by a predetermined value at predetermined time intervals. And the life of the compressor can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各実施例の制御回路のブロック図。FIG. 1 is a block diagram of a control circuit of each embodiment.

【図2】各実施例の冷凍サイクルの構成図。FIG. 2 is a configuration diagram of a refrigeration cycle of each embodiment.

【図3】各実施例における弁開度の最小値の判定条件を
示す図。
FIG. 3 is a diagram showing conditions for determining a minimum value of a valve opening in each embodiment.

【図4】第1実施例の作用を説明するためのフローチャ
ート。
FIG. 4 is a flowchart for explaining the operation of the first embodiment.

【図5】各実施例における冷房時のモリエル線図。FIG. 5 is a Mollier chart during cooling in each embodiment.

【図6】各実施例における暖房時のモリエル線図。FIG. 6 is a Mollier chart during heating in each embodiment.

【図7】第2実施例の作用を説明するためのフローチャ
ート。
FIG. 7 is a flowchart for explaining the operation of the second embodiment.

【図8】第3実施例の作用を説明するためのフローチャ
ート。
FIG. 8 is a flowchart for explaining the operation of the third embodiment.

【図9】従来の空気調和機の制御例を示すフローチャー
ト。
FIG. 9 is a flowchart showing a control example of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1…圧縮機、3…室外熱交換器、4…電動膨張弁、5…
室内熱交換器、6…室外ファン、7…室内ファン、8…
吸込側配管温度センサ、11…熱交換器温度センサ、1
2…室内温度センサ、21…熱交換器温度センサ、22
…外気温度センサ、40…室内制御部、50…室外制御
部。
1 ... Compressor, 3 ... Outdoor heat exchanger, 4 ... Electric expansion valve, 5 ...
Indoor heat exchanger, 6 ... Outdoor fan, 7 ... Indoor fan, 8 ...
Suction side pipe temperature sensor, 11 ... heat exchanger temperature sensor, 1
2: indoor temperature sensor, 21: heat exchanger temperature sensor, 22
... outdoor temperature sensor, 40 ... indoor control unit, 50 ... outdoor control unit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、室外熱交換器、電動膨張弁、お
よび室内熱交換器を接続した冷凍サイクルを備え、空調
負荷に応じて圧縮機の運転周波数を制御するとともに、
蒸発器として機能する室外熱交換器または室内熱交換器
における冷媒の過熱度を検出し、その過熱度が目標値と
なるよう電動膨張弁の開度を制御する空気調和機におい
て、前記過熱度が前記目標値より所定値以上小さく、か
つ前記電動膨張弁の開度が最小のとき、前記圧縮機の運
転周波数を所定値上昇させる制御手段、を設けたことを
特徴とする空気調和機。
A refrigeration cycle connected to a compressor, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger, and controls an operating frequency of the compressor according to an air conditioning load;
In an air conditioner that detects the degree of superheat of a refrigerant in an outdoor heat exchanger or an indoor heat exchanger that functions as an evaporator and controls the degree of opening of an electric expansion valve so that the degree of superheat becomes a target value, the degree of superheat is An air conditioner comprising: control means for increasing an operating frequency of the compressor by a predetermined value when the opening degree of the electric expansion valve is smaller than the target value by a predetermined value or more.
【請求項2】 圧縮機、室外熱交換器、電動膨張弁、お
よび室内熱交換器を接続した冷凍サイクルを備え、空調
負荷に応じて圧縮機の運転周波数を制御するとともに、
蒸発器として機能する室外熱交換器または室内熱交換器
における冷媒の過熱度を検出し、その過熱度が目標値と
なるよう電動膨張弁の開度を制御する空気調和機におい
て、前記過熱度が前記目標値より所定値以上小さく、か
つ前記電動膨張弁の開度が最小のとき、前記圧縮機の運
転周波数の制御値保持時間を延長する制御手段、を設け
たことを特徴とする空気調和機。
2. A refrigeration cycle including a compressor, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger, wherein the operating frequency of the compressor is controlled according to an air conditioning load.
In an air conditioner that detects the degree of superheat of a refrigerant in an outdoor heat exchanger or an indoor heat exchanger that functions as an evaporator and controls the degree of opening of an electric expansion valve so that the degree of superheat becomes a target value, the degree of superheat is An air conditioner, comprising: a control unit for extending a control value holding time of an operating frequency of the compressor when the opening degree of the electric expansion valve is smaller than the target value by a predetermined value or more. .
【請求項3】 圧縮機、室外熱交換器、電動膨張弁、お
よび室内熱交換器を接続した冷凍サイクルを備え、空調
負荷に応じて圧縮機の運転周波数を制御するとともに、
蒸発器として機能する室外熱交換器または室内熱交換器
における冷媒の過熱度を検出し、その過熱度が目標値と
なるよう電動膨張弁の開度を制御する空気調和機におい
て、前記過熱度が前記目標値より所定値以上小さく、か
つ前記電動膨張弁の開度が最小のとき、前記圧縮機の運
転周波数を所定値上昇させるとともに、その運転周波数
の制御値保持時間を延長する制御手段、を設けたことを
特徴とする空気調和機。
3. A refrigeration cycle including a compressor, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger connected to control an operation frequency of the compressor according to an air conditioning load.
In an air conditioner that detects the degree of superheat of a refrigerant in an outdoor heat exchanger or an indoor heat exchanger that functions as an evaporator and controls the degree of opening of an electric expansion valve so that the degree of superheat becomes a target value, the degree of superheat is Control means for increasing the operating frequency of the compressor by a predetermined value and extending the control value holding time of the operating frequency when the opening degree of the electric expansion valve is smaller than the target value by a predetermined value or more and the opening degree of the electric expansion valve is a minimum. An air conditioner characterized by being provided.
【請求項4】 請求項1または請求項3に記載の空気調
和機において、制御手段は、圧縮機の運転周波数を所定
時間ごとに所定値ずつ上昇させることを特徴とする空気
調和機。
4. The air conditioner according to claim 1, wherein the control means increases the operating frequency of the compressor by a predetermined value at predetermined time intervals.
JP16578496A 1996-06-26 1996-06-26 Air conditioner Expired - Lifetime JP3475014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16578496A JP3475014B2 (en) 1996-06-26 1996-06-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16578496A JP3475014B2 (en) 1996-06-26 1996-06-26 Air conditioner

Publications (2)

Publication Number Publication Date
JPH109683A true JPH109683A (en) 1998-01-16
JP3475014B2 JP3475014B2 (en) 2003-12-08

Family

ID=15818952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16578496A Expired - Lifetime JP3475014B2 (en) 1996-06-26 1996-06-26 Air conditioner

Country Status (1)

Country Link
JP (1) JP3475014B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300371A (en) * 2005-04-18 2006-11-02 Daikin Ind Ltd Air conditioner
JP2008190757A (en) * 2007-02-02 2008-08-21 Daikin Ind Ltd Refrigeration system
JP2009168343A (en) * 2008-01-16 2009-07-30 Sanyo Electric Co Ltd Air conditioner
JP2013083426A (en) * 2011-09-30 2013-05-09 Fujitsu General Ltd Air conditioner
EP2722614A1 (en) 2012-10-18 2014-04-23 Mitsubishi Electric Corporation Heat pump apparatus
US8849613B2 (en) 2007-10-05 2014-09-30 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
WO2015006925A1 (en) * 2013-07-16 2015-01-22 广东美芝制冷设备有限公司 Air-supplying enthalpy-adding air-conditioning system and control method therefor
US8950206B2 (en) 2007-10-05 2015-02-10 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
US9476625B2 (en) 2007-10-08 2016-10-25 Emerson Climate Technologies, Inc. System and method for monitoring compressor floodback
US9494158B2 (en) 2007-10-08 2016-11-15 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US9494354B2 (en) 2007-10-08 2016-11-15 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
US9541907B2 (en) 2007-10-08 2017-01-10 Emerson Climate Technologies, Inc. System and method for calibrating parameters for a refrigeration system with a variable speed compressor
CN106440191A (en) * 2016-09-12 2017-02-22 珠海格力电器股份有限公司 Air conditioner performance automatic matching method and device
CN113294884A (en) * 2021-06-21 2021-08-24 宁波奥克斯电气股份有限公司 Heating control method and device and air conditioner
JP2021139542A (en) * 2020-03-04 2021-09-16 株式会社富士通ゼネラル Air conditioner
US11206743B2 (en) 2019-07-25 2021-12-21 Emerson Climate Technolgies, Inc. Electronics enclosure with heat-transfer element
CN114061112A (en) * 2021-11-26 2022-02-18 珠海格力电器股份有限公司 Air conditioning system and control method thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300371A (en) * 2005-04-18 2006-11-02 Daikin Ind Ltd Air conditioner
JP2008190757A (en) * 2007-02-02 2008-08-21 Daikin Ind Ltd Refrigeration system
JP4730318B2 (en) * 2007-02-02 2011-07-20 ダイキン工業株式会社 Refrigeration equipment
US8950206B2 (en) 2007-10-05 2015-02-10 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
US9683563B2 (en) 2007-10-05 2017-06-20 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US9021823B2 (en) 2007-10-05 2015-05-05 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
US8849613B2 (en) 2007-10-05 2014-09-30 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US9494354B2 (en) 2007-10-08 2016-11-15 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
US10962009B2 (en) 2007-10-08 2021-03-30 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US9476625B2 (en) 2007-10-08 2016-10-25 Emerson Climate Technologies, Inc. System and method for monitoring compressor floodback
US9494158B2 (en) 2007-10-08 2016-11-15 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US10077774B2 (en) 2007-10-08 2018-09-18 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US9541907B2 (en) 2007-10-08 2017-01-10 Emerson Climate Technologies, Inc. System and method for calibrating parameters for a refrigeration system with a variable speed compressor
JP2009168343A (en) * 2008-01-16 2009-07-30 Sanyo Electric Co Ltd Air conditioner
JP2013083426A (en) * 2011-09-30 2013-05-09 Fujitsu General Ltd Air conditioner
US9568224B2 (en) 2012-10-18 2017-02-14 Mitsubishi Electric Corporation Heat pump water heater apparatus and heating and defrost operation, thereof
EP2722614A1 (en) 2012-10-18 2014-04-23 Mitsubishi Electric Corporation Heat pump apparatus
WO2015006925A1 (en) * 2013-07-16 2015-01-22 广东美芝制冷设备有限公司 Air-supplying enthalpy-adding air-conditioning system and control method therefor
CN106440191A (en) * 2016-09-12 2017-02-22 珠海格力电器股份有限公司 Air conditioner performance automatic matching method and device
CN106440191B (en) * 2016-09-12 2019-04-23 珠海格力电器股份有限公司 A kind of air conditioning performance automatic matching method and device
US11206743B2 (en) 2019-07-25 2021-12-21 Emerson Climate Technolgies, Inc. Electronics enclosure with heat-transfer element
US11706899B2 (en) 2019-07-25 2023-07-18 Emerson Climate Technologies, Inc. Electronics enclosure with heat-transfer element
JP2021139542A (en) * 2020-03-04 2021-09-16 株式会社富士通ゼネラル Air conditioner
CN113294884A (en) * 2021-06-21 2021-08-24 宁波奥克斯电气股份有限公司 Heating control method and device and air conditioner
CN113294884B (en) * 2021-06-21 2022-04-19 宁波奥克斯电气股份有限公司 Heating control method and device and air conditioner
CN114061112A (en) * 2021-11-26 2022-02-18 珠海格力电器股份有限公司 Air conditioning system and control method thereof

Also Published As

Publication number Publication date
JP3475014B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
JP3021443B2 (en) Auxiliary heating control device and control method in heat pump system
KR0150812B1 (en) Airconditioner with outdoor air temperature calculating function
JP3475014B2 (en) Air conditioner
JP6071648B2 (en) Air conditioner
KR100327069B1 (en) Air conditioner control device
JP2001248937A (en) Heat pump hot water supply air conditioner
JP2004028429A (en) Air conditioner
JP3213662B2 (en) Air conditioner
JP3377632B2 (en) Air conditioner
JP2006118732A (en) Air conditioner
JPH0650596A (en) Air conditioner
JP2005016884A (en) Air conditioner
JPH0668410B2 (en) Air conditioner
JP3181111B2 (en) Air conditioner
JPH0626689A (en) Multiple type air conditioner
JP2005055053A (en) Air conditioner
JP3526393B2 (en) Air conditioner
JPH11132605A (en) Air conditioner
JPH06317357A (en) Air conditioner
JP3117321B2 (en) Air conditioner
JPH04174B2 (en)
JPH09159285A (en) Expansion valve controller for air conditioner
JP2001235211A (en) Air conditioner
JP2002048382A (en) Air conditioner
JPH04288438A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9