JP2006118732A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2006118732A
JP2006118732A JP2004304105A JP2004304105A JP2006118732A JP 2006118732 A JP2006118732 A JP 2006118732A JP 2004304105 A JP2004304105 A JP 2004304105A JP 2004304105 A JP2004304105 A JP 2004304105A JP 2006118732 A JP2006118732 A JP 2006118732A
Authority
JP
Japan
Prior art keywords
temperature
energy saving
indoor
heat exchanger
required load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004304105A
Other languages
Japanese (ja)
Inventor
Goji Ohira
剛司 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004304105A priority Critical patent/JP2006118732A/en
Publication of JP2006118732A publication Critical patent/JP2006118732A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of conditioning air on the basis of a remote controller set temperature desired by a user and an indoor required load, even if an energy saving mode is set, and providing an energy saving effect. <P>SOLUTION: As the air conditioner is controlled in such a manner that a differential temperature between an indoor suction temperature detection value of an air conditioner indoor unit and the remote controller set temperature is operated, the energy saving mode is executed (S15) when a state that an operated value is less than a prescribed set value is continued for more than a prescribed time (S13, S14), and normal operation is recovered when the operated value is over the prescribed set value (S13), thus both of air conditioning based on the required load and an energy saving effect can be achieved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リモコンからの省エネ設定と、室内吸込み温度とリモコン設定温度の差温から省エネモードに突入し省エネ効果を得る空気調和機に関する。   The present invention relates to an air conditioner that enters an energy saving mode from an energy saving setting from a remote controller and a difference between an indoor suction temperature and a remote control temperature to obtain an energy saving effect.

従来の空気調和機の省エネ方法は、通常モードと省エネモードを切り替えSWで選択し、省エネモードの時に、外気温度と一義的に決められた基準外気温度とを入力とし、これらの偏差から設定温度を決定している(例えば、特許文献1参照)。   The conventional air conditioner energy saving method is to switch between normal mode and energy saving mode with SW, and input the outside air temperature and the standard outside air temperature uniquely determined in the energy saving mode, and set the temperature from these deviations. (For example, refer to Patent Document 1).

図7フローチャートは特許文献1に記載された従来の空気調和機の接続異常制御を示すものである。図7フローチャートに示すように、省エネモード判定手段101と、温度設定手段102と、外気温度入力手段103と、運転モード判定手段104と、一義的に定められた外気温度と現在の外気温度を比較する冷房時比較手段106、暖房時比較手段110と、外気温度より一義的に外気温度−5Kと定める冷房時温度設定手段105、外気温度+5Kと定める暖房時温度設定手段109と、冷房時比較手段106で一義的に定められた外気温度より高いと判断した時温度設定を決定する手段108と、暖房時比較手段110で一義的に定められた外気温度より低いと判断した時温度設定を決定する手段111と、設定温度に応じた圧縮機制御113とから構成されており、省エネモードの突入をSWによって行い、省エネモードの時に、現在の外気温度を入力として設定温度を決定している。
特開平6−74519号公報
FIG. 7 is a flowchart showing connection abnormality control of the conventional air conditioner described in Patent Document 1. As shown in the flowchart of FIG. 7, the energy saving mode determination unit 101, the temperature setting unit 102, the outside air temperature input unit 103, the operation mode determination unit 104, and the uniquely determined outside air temperature and the current outside air temperature are compared. The cooling time comparison means 106, the heating time comparison means 110, the cooling time temperature setting means 105 that uniquely determines the outside air temperature -5K from the outside air temperature, the heating time temperature setting means 109 that is determined as the outside air temperature + 5K, and the cooling time comparison means. A means 108 for determining the temperature setting when it is determined that the temperature is higher than the outside air temperature uniquely determined in 106 and a temperature setting for when it is determined that the temperature setting is lower than the outside air temperature uniquely determined by the heating comparison means 110 are determined. It is comprised from the means 111 and the compressor control 113 according to preset temperature, and the rush of energy-saving mode is performed by SW, and at the time of energy-saving mode, And it determines the set temperature of outside air temperature of standing as an input.
JP-A-6-74519

しかしながら、前記従来の構成では、ユーザーが希望する設定温度や室内の負荷状態に関係なく、一義的に定められた外気温度しきい値より現在の外気温度状態から設定温度を決定していることから、低外気温度で室内負荷の大きい冷房運転時や高外気温度で室内負荷の大きい暖房運転時に、いつまでも希望する設定温度に到達しない、また、要求負荷に応じた空気調和が出来ないという課題を有していた。   However, in the conventional configuration, the set temperature is determined from the current outside air temperature state based on a uniquely defined outside air temperature threshold regardless of the set temperature desired by the user and the indoor load state. During cooling operations with a low outdoor temperature and a large indoor load, and heating operations with a high outdoor temperature and a large indoor load, there is a problem that the desired set temperature is not reached and air conditioning according to the required load cannot be achieved. Was.

本発明は、前記従来の課題を解決するもので、省エネモード設定された時にでも、ユーザーが希望するリモコン設定温度や室内要求負荷に応じた空気調和が行え、かつ、省エネ効果をもたらす空気調和機を提供することを目的とする。   The present invention solves the above-described conventional problems, and even when the energy saving mode is set, an air conditioner that can perform air conditioning according to a remote controller set temperature and a required indoor load desired by a user and has an energy saving effect. The purpose is to provide.

前記従来の課題を解決するために、本発明の空気調和機は、能力可変型圧縮機と室外熱交換器と室外ファンと電動膨張弁を有する室外機と、室内熱交換器と室内ファンを有する室内機とを接続し、省エネ設定SWを有するリモコン操作により運転を行う空気調和機において、室内吸込み温度とリモコン設定温度との差温に基づいて要求負荷を判断し圧縮機の運転周波数を決定する手段を有し、前記リモコンにある省エネ設定SW操作で省エネ監視を開始し、前記室内吸込み温度とリモコン設定温度との差温が所定の設定値以下を所定時間以上継続することで省エネモードに突入し、前記要求負荷を低下させて圧縮機運転周波数を低下することで省エネを行うことを特徴としたものである。   In order to solve the conventional problems, an air conditioner of the present invention includes a variable capacity compressor, an outdoor heat exchanger, an outdoor fan, an outdoor unit having an electric expansion valve, an indoor heat exchanger, and an indoor fan. In an air conditioner that is connected to an indoor unit and is operated by a remote control operation having an energy saving setting SW, a required load is determined based on a temperature difference between the indoor suction temperature and the remote control set temperature, and the operating frequency of the compressor is determined. Energy saving monitoring is started by the energy saving setting SW operation on the remote control, and the energy saving mode is entered by the difference between the indoor suction temperature and the remote control setting temperature being kept below a predetermined set value for a predetermined time or more. The energy saving is performed by lowering the required load and lowering the compressor operating frequency.

これによって、省エネ設定時に、室内の空気調和状態が、ユーザーが希望するリモコン設定温度や室内要求負荷に応じた空気調和が行えているかを判断して省エネモードに突入でき、要求負荷を低下させて圧縮機運転周波数を低下することで省エネ効果をもたらすこ
とができる。
As a result, at the time of energy saving setting, it is possible to enter the energy saving mode by judging whether the air conditioning condition in the room is air conditioning according to the remote controller set temperature desired by the user and the indoor required load, and reduce the required load. Energy saving effect can be brought about by lowering the compressor operating frequency.

また、本発明の空気調和機は、室外熱交換器に装着した熱交換器を検出する温度センサーで冷房運転中凝縮温度を検知する手段を有し、前記冷房運転中前記リモコンにある省エネ設定SW操作で省エネ監視を開始し、前記室内吸込み温度とリモコン設定温度との差温が所定の設定値以下を所定時間以上継続することで省エネモードに突入し、前記室外ファンの回転数制御を、通常の冷房運転中とは独立し前記凝縮温度を入力とした目標凝縮温度一定となる制御手段を有することを特徴としたものである。   The air conditioner of the present invention has means for detecting a condensation temperature during cooling operation with a temperature sensor that detects a heat exchanger attached to the outdoor heat exchanger, and the energy saving setting SW in the remote control during the cooling operation. Energy saving monitoring is started by operation, and when the temperature difference between the indoor suction temperature and the remote control set temperature continues below a predetermined set value for a predetermined time or more, the energy saving mode is entered, and the rotational speed control of the outdoor fan is normally performed. It is characterized by having a control means for making the target condensing temperature constant with the condensing temperature as an input independent of the cooling operation.

これによって、省エネ設定時に、室内の空気調和状態が、ユーザーが希望するリモコン設定温度や室内要求負荷に応じた空気調和が行えているかを判断して省エネモードに突入でき、要求負荷を低下させて圧縮機運転周波数を低下し、更に室外ファン制御を通常の運転中とは独立した制御として冷凍サイクルの凝縮温度を低下させることにより省エネ効果をもたらすことができる。   As a result, at the time of energy saving setting, it is possible to enter the energy saving mode by judging whether the air conditioning condition in the room is air conditioning according to the remote controller set temperature desired by the user and the indoor required load, and reduce the required load. An energy saving effect can be brought about by lowering the compressor operating frequency and lowering the condensation temperature of the refrigeration cycle as a control independent of the outdoor fan control during normal operation.

本発明の空気調和機は、省エネ設定時に、室内の空気調和状態が、ユーザーが希望するリモコン設定温度や室内要求負荷に応じた空気調和が行えているかを判断して省エネモードに突入でき省エネ効果をもたらすことができる。   The air conditioner of the present invention can enter the energy saving mode by judging whether the air conditioning condition in the room can be adjusted according to the remote controller set temperature desired by the user or the indoor required load at the time of energy saving setting. Can bring.

第1の発明は、能力可変型圧縮機と室外熱交換器と室外ファンと電動膨張弁を有する室外機と、室内熱交換器と室内ファンを有する室内機とを接続し、省エネ設定SWを有するリモコン操作により運転を行う空気調和機において、室内吸込み温度とリモコン設定温度との差温に基づいて要求負荷を判断し圧縮機の運転周波数を決定する手段を有し、前記リモコンにある省エネ設定SW操作で省エネ監視を開始し、前記室内吸込み温度とリモコン設定温度との差温が所定の設定値以下を所定時間以上継続することで省エネモードに突入し、前記要求負荷を低下させて圧縮機運転周波数を低下することで、冷房運転の省エネ設定時に、室内の空気調和状態が、ユーザーが希望するリモコン設定温度や室内要求負荷に応じた空気調和が行えているかを判断して省エネモードに突入でき、要求負荷を低下させて圧縮機運転周波数を低下することで省エネ効果をもたらすことができる。   1st invention connects a capacity variable type compressor, an outdoor heat exchanger, an outdoor fan, an outdoor unit having an electric expansion valve, an indoor unit having an indoor heat exchanger and an indoor fan, and has an energy saving setting SW. In an air conditioner that is operated by remote control operation, the air conditioner has means for determining a required load based on a difference between an indoor suction temperature and a remote control set temperature and determining an operation frequency of the compressor, and the energy saving setting SW in the remote control Energy saving monitoring is started by operation, and when the temperature difference between the indoor suction temperature and the remote control set temperature continues for a predetermined time or less for a predetermined time or more, the energy saving mode is entered and the required load is reduced to operate the compressor. By reducing the frequency, whether the indoor air conditioning is in accordance with the remote controller set temperature desired by the user and the indoor required load during energy saving settings for cooling operation Determined to be plunged into the energy saving mode, it is possible to bring the energy saving effect in lowering the compressor operating frequency decreases the required load.

第2の発明は、能力可変型圧縮機と室外熱交換器と室外ファンと電動膨張弁を有する室外機と、室内熱交換器と室内ファンを有する室内機とを接続し、省エネ設定SWを有するリモコン操作により運転を行う空気調和機において、暖房運転中リモコン設定温度と室内吸込み温度との差温に基づいて要求負荷を判断し圧縮機の運転周波数を決定する手段を有し、前記リモコンにある省エネ設定SW操作で省エネ監視を開始し、前記リモコン設定温度と室内吸込み温度との差温が所定の設定値以下を所定時間以上継続することで省エネモードに突入し、前記要求負荷を低下させて圧縮機運転周波数を低下することで、暖房運転の省エネ設定時に、室内の空気調和状態が、ユーザーが希望するリモコン設定温度や室内要求負荷に応じた空気調和が行えているかを判断して省エネモードに突入でき、要求負荷を低下させて圧縮機運転周波数を低下することで省エネ効果をもたらすことができる。   The second invention connects an outdoor unit having a variable capacity compressor, an outdoor heat exchanger, an outdoor fan, and an electric expansion valve, an indoor unit having an indoor heat exchanger and an indoor fan, and has an energy saving setting SW. An air conditioner that is operated by a remote control operation has means for determining a required load and determining an operation frequency of the compressor based on a temperature difference between the remote control set temperature and the indoor suction temperature during heating operation. Energy saving monitoring is started by the energy saving setting SW operation, and when the temperature difference between the remote control set temperature and the room intake temperature continues below a predetermined set value for a predetermined time or more, the energy saving mode is entered and the required load is reduced. By reducing the compressor operating frequency, the indoor air conditioning condition can be adjusted according to the remote controller set temperature desired by the user and the indoor required load during energy saving settings for heating operation. Whether it is possible to rush to the energy-saving mode decision may result in energy savings by reducing the load requirement decreases the compressor operation frequency.

第3の発明は、前記室外熱交換器に装着した熱交換器を検出する温度センサーで冷房運転中凝縮温度を検知する手段を有し、前記冷房運転中前記リモコンにある省エネ設定SW操作で省エネ監視を開始し、前記室内吸込み温度とリモコン設定温度との差温が所定の設定値以下を所定時間以上継続することで省エネモードに突入し、前記室外ファンの回転数制御を、通常の冷房運転中とは独立し前記凝縮温度を入力とした目標凝縮温度一定となる制御手段を有することで、冷房運転の省エネ設定時に、室内の空気調和状態が、ユーザーが希望するリモコン設定温度や室内要求負荷に応じた空気調和が行えているかを判断して
省エネモードに突入でき、要求負荷を低下させて圧縮機運転周波数を低下し、更に室外ファン制御を通常の運転中とは独立した制御として冷凍サイクルの凝縮温度を低下させることにより省エネ効果をもたらすことができる。
3rd invention has a means to detect the condensation temperature during cooling operation with the temperature sensor which detects the heat exchanger with which the said outdoor heat exchanger was mounted | worn, and is energy-saving by the energy-saving setting SW operation in the said remote control during the said cooling operation Start monitoring and enter the energy saving mode when the difference between the indoor suction temperature and the remote control set temperature continues below the set value for a specified time or more, and control the rotation speed of the outdoor fan for normal cooling operation. Independent of the inside, it has a control means that keeps the target condensation temperature constant with the condensation temperature as an input. It is possible to enter into the energy saving mode by determining whether air conditioning according to the air condition can be performed, lowering the required load and lowering the compressor operating frequency, and further controlling the outdoor fan control during normal operation. Condensation temperature of the refrigeration cycle as the control can result in energy savings by reducing the.

第4の発明は、前記室外熱交換器に装着した熱交換器を検出する温度センサーで暖房運転中蒸発温度を検知する手段を有し、前記暖房運転中前記リモコンにある省エネ設定SW操作で省エネ監視を開始し、前記リモコン設定温度と室内吸込み温度との差温が所定の設定値以下を所定時間以上継続することで省エネモードに突入し、前記室外ファンの回転数制御を、通常の暖房運転中とは独立し前記蒸発温度を入力とした目標蒸発温度一定となる制御手段を有することで、暖房運転の省エネ設定時に、室内の空気調和状態が、ユーザーが希望するリモコン設定温度や室内要求負荷に応じた空気調和が行えているかを判断して省エネモードに突入でき、要求負荷を低下させて圧縮機運転周波数を低下し、更に室外ファン制御を通常の運転中とは独立した制御として冷凍サイクルの蒸発能力を低下させることにより省エネ効果をもたらすことができる。   4th invention has a means to detect the evaporation temperature during heating operation with the temperature sensor which detects the heat exchanger with which the said outdoor heat exchanger was mounted | worn, and it is energy-saving by energy-saving setting SW operation in the said remote control during the said heating operation Start monitoring and enter the energy saving mode by maintaining the difference between the remote controller set temperature and the indoor suction temperature below the preset value for a preset time, and control the rotational speed of the outdoor fan in the normal heating operation. By having control means that makes the target evaporation temperature constant with the evaporation temperature as an input independent of the inside, the indoor air-conditioning state can be set to the remote control set temperature and the required indoor load that the user desires when setting energy saving for heating operation. It is possible to enter into the energy saving mode by determining whether air conditioning according to the air condition can be performed, lowering the required load and lowering the compressor operating frequency, and further controlling the outdoor fan control during normal operation. It can result in energy savings by reducing the evaporation capacity of the refrigeration cycle as the control.

第5の発明は、前記室内熱交換器に装着した熱交換器を検出する温度センサーで冷房運転中蒸発温度を検知する手段を有し、前記冷房運転中前記リモコンにある省エネ設定SW操作で省エネ監視を開始し、前記室内吸込み温度とリモコン設定温度との差温が所定の設定値以下を所定時間以上継続することで省エネモードに突入し、前記室内ファンの回転数制御を、リモコンの設定風量とは独立し前記蒸発温度を入力とした目標蒸発温度一定となる制御手段を有することで、冷房運転の省エネ設定時に、室内の空気調和状態が、ユーザーが希望するリモコン設定温度や室内要求負荷に応じた空気調和が行えているかを判断して省エネモードに突入でき、要求負荷を低下させて圧縮機運転周波数を低下し、室外ファン制御を通常の運転中とは独立した制御として冷凍サイクルの凝縮温度を低下させ、更に室内ファン回転数制御を通常の回転数制御とは独立した制御として蒸発能力を低下させることにより省エネ効果をもたらすことができる。   5th invention has a means to detect the evaporating temperature during air_conditionaing | cooling operation with the temperature sensor which detects the heat exchanger with which the said indoor heat exchanger was mounted | worn, and is energy-saving by the energy saving setting SW operation in the said remote control during the air_conditioning | cooling operation Start monitoring and enter the energy saving mode when the difference between the indoor suction temperature and the remote control set temperature continues below the predetermined set value for a predetermined time or longer. Independently from the above, there is a control unit that keeps the target evaporation temperature constant with the evaporation temperature as an input. It is possible to enter the energy saving mode by judging whether the air conditioning is appropriate, reducing the required load and reducing the compressor operating frequency, and the outdoor fan control is independent from normal operation Reduced the condensation temperature of the refrigeration cycle as a control, it is possible to bring the energy saving effect by decreasing the evaporating ability as further independent control to the normal control of engine speed indoor fan speed control.

第6の発明は、前記室内熱交換器に装着した熱交換器を検出する温度センサーで暖房運転中凝縮温度を検知する手段を有し、前記暖房運転中前記リモコンにある省エネ設定SW操作で省エネ監視を開始し、前記リモコン設定温度と室内吸込み温度との差温が所定の設定値以下を所定時間以上継続することで省エネモードに突入し、前記室内ファンの回転数制御を、リモコンの設定風量とは独立し前記凝縮温度を入力とした目標凝縮温度一定となる制御手段を有することで、暖房運転の省エネ設定時に、室内の空気調和状態が、ユーザーが希望するリモコン設定温度や室内要求負荷に応じた空気調和が行えているかを判断して省エネモードに突入でき、要求負荷を低下させて圧縮機運転周波数を低下し、室外ファン制御を通常の運転中とは独立した制御として冷凍サイクルの蒸発能力を低下させ、更に室内ファン回転数制御を通常の回転数制御とは独立した制御として凝縮温度を低下させるることにより省エネ効果をもたらすことができる。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
6th invention has a means to detect the condensation temperature during heating operation with the temperature sensor which detects the heat exchanger with which the said indoor heat exchanger was mounted | worn, and it saves energy by energy-saving setting SW operation in the said remote control during the said heating operation Monitoring is started, and when the temperature difference between the remote control set temperature and the room intake temperature continues below a predetermined set value for a predetermined time or longer, the energy saving mode is entered. Independently, the control means that keeps the target condensing temperature constant with the condensing temperature as an input makes it possible to set the air conditioning condition in the room to the remote control set temperature and the indoor required load desired by the user during energy saving settings for heating operation. It is possible to enter the energy saving mode by judging whether the air conditioning is appropriate, reducing the required load and reducing the compressor operating frequency, and controlling the outdoor fan control during normal operation Reduced the evaporation capacity of the refrigeration cycle as a control, it is possible to bring the energy saving effect by Ruru lowers the condensation temperature as an independent control and further normal rotation speed control indoor fan speed control.
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における空気調和機のフローチャートを示した図である。図1において、冷房運転10の、要求負荷に基づく圧縮機運転周波数の決定17は、リモコン操作による省エネ設定12がされていない時には、吸込温度とリモコン設定温度の差温より判断する要求負荷判定手段11から要求負荷を判断し、省エネ設定12がされているときには、省エネ突入負荷判定13、省エネ突入負荷判定13の継続時間判定14より省エネモード15に突入し、省エネモード要求負荷決定手段16で要求負荷を決定し圧縮機運転周波数の決定17の入力とする構成となっている。
(Embodiment 1)
FIG. 1 is a diagram showing a flowchart of the air conditioner according to the first embodiment of the present invention. In FIG. 1, the compressor operating frequency determination 17 based on the required load of the cooling operation 10 is a required load determining means for determining from the difference between the suction temperature and the remote controller set temperature when the energy saving setting 12 by the remote controller operation is not performed. 11. When the required load is determined from 11 and the energy saving setting 12 is set, the energy saving rush load determination 13 and the energy saving rush load determination 13 continue to enter the energy saving mode 15 from the duration determination 14 and are requested by the energy saving mode required load determining means 16. The load is determined and input to the compressor operating frequency determination 17.

図1より空気調和機の動作、作用について説明する。   The operation and action of the air conditioner will be described with reference to FIG.

冷房運転10において、リモコンの省エネ設定12がされていない通常時、圧縮機の運転周波数17は、室内の吸込温度とリモコンの設定温度の差温に基づき要求負荷判定手段11から要求負荷を判断し決定する。   In the cooling operation 10, when the remote controller energy saving setting 12 is not performed, the compressor operating frequency 17 determines the required load from the required load determining means 11 based on the difference between the indoor suction temperature and the remote controller set temperature. decide.

リモコンの省エネ設定12がユーザーの意思により設定された時は、室内の吸込温度とリモコンの設定温度の差温が1K以下であるかを省エネ突入負荷判定13で判断し、かつ、省エネ突入負荷判定13が30分間以上継続しているかを継続時間判定14で判断し、省エネモード15に突入する。   When the remote control energy saving setting 12 is set by the user's intention, the energy saving inrush load determination 13 determines whether the difference between the indoor suction temperature and the remote controller set temperature is 1K or less, and the energy saving inrush load determination Whether or not 13 has continued for 30 minutes or more is determined by duration determination 14, and the energy saving mode 15 is entered.

省エネモード15に突入した時圧縮機の運転周波数決定17の入力とする室内要求負荷は、通常の要求負荷判定手段で算出される室内の吸込温度とリモコンの設定温度の差温から△0.5K差し引いた要求負荷とする省エネ要求負荷決定手段16の値を用いて圧縮機の運転周波数を決定する。   When entering the energy saving mode 15, the indoor required load that is input to the compressor operating frequency determination 17 is Δ0.5K from the difference between the indoor suction temperature calculated by the normal required load determining means and the set temperature of the remote controller. The operating frequency of the compressor is determined using the value of the energy saving required load determining means 16 as the subtracted required load.

上記のことより、冷房運転の省エネ設定時に、室内の空気調和状態が、ユーザーが希望するリモコン設定温度や室内要求負荷に応じた空気調和が継続して行えているかを判断した上で省エネモードに突入し、要求負荷を低下させて圧縮機運転周波数を低下することで省エネ効果を得て、要求負荷すなわち吸込温度とリモコン設定温度の差温が1K超となれば、要求負荷に応じた通常の圧縮機運転周波数決定をすることにより、要求負荷に応じた空気調和と省エネ効果を両立してもたらす冷房運転をすることができる。   Based on the above, at the time of energy-saving setting for cooling operation, it is determined whether the air-conditioning condition in the room is continuously air-conditioning according to the user-set remote control temperature or the required indoor load. If the required load, that is, the temperature difference between the suction temperature and the remote control set temperature exceeds 1K, the normal load according to the required load is obtained. By determining the compressor operating frequency, it is possible to perform a cooling operation that achieves both air conditioning and energy saving effect according to the required load.

(実施の形態2)
図2は、本発明の第2の実施の形態における空気調和機の風向制御のフローチャートを示した図である。図2において、図1と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 2)
FIG. 2 is a diagram showing a flowchart of air direction control of the air conditioner according to the second embodiment of the present invention. In FIG. 2, the same components as those in FIG.

暖房運転20の、要求負荷に基づく圧縮機運転周波数の決定27は、リモコン操作による省エネ設定12がされていない時には、リモコン設定温度と吸込温度の差温より判断する要求負荷判定手段21から要求負荷を判断し、省エネ設定12がされているときには、省エネ突入負荷判定23、省エネ突入負荷判定23の継続時間判定24より省エネモード25に突入し、省エネモード要求負荷決定手段26で要求負荷を決定し圧縮機運転周波数の決定27の入力とする構成となっている。   The compressor operating frequency determination 27 based on the required load of the heating operation 20 is performed from the required load determining means 21 that determines from the temperature difference between the remote controller set temperature and the suction temperature when the energy saving setting 12 by remote control operation is not performed. When the energy saving setting 12 is made, the energy saving mode 25 is entered from the energy saving inrush load determination 23 and the duration determination 24 of the energy saving inrush load determination 23, and the required load is determined by the energy saving mode required load determining means 26. The compressor operating frequency determination 27 is used as an input.

以上のように構成された空気調和機について、図2より以下その動作、作用を説明する。   About the air conditioner comprised as mentioned above, the operation | movement and an effect | action are demonstrated below from FIG.

暖房運転20において、リモコンの省エネ設定12がされていない通常時、圧縮機の運転周波数27は、室内のリモコンの設定温度と吸込温度の差温に基づき要求負荷判定手段21から要求負荷を判断し決定する。   In the heating operation 20, when the energy saving setting 12 of the remote control is not normally performed, the operating frequency 27 of the compressor determines the required load from the required load determining means 21 based on the difference between the set temperature of the indoor remote control and the suction temperature. decide.

リモコンの省エネ設定12がユーザーの意思により設定された時は、室内のリモコンの設定温度と吸込温度の差温が1K以下であるかを省エネ突入負荷判定23で判断し、かつ、省エネ突入負荷判定23が30分間以上継続しているかを継続時間判定24で判断し、省エネモード25に突入する。省エネモード25に突入した時圧縮機の運転周波数決定27の入力とする室内要求負荷は、通常の要求負荷判定手段で算出される室内の吸込温度とリモコンの設定温度の差温から△0.5K差し引いた要求負荷とする省エネ要求負荷決定手段26の値を用いて圧縮機の運転周波数を決定する。   When the remote control energy saving setting 12 is set by the user's intention, the energy saving inrush load determination 23 determines whether the temperature difference between the set temperature of the indoor remote control and the suction temperature is 1K or less, and the energy saving inrush load determination Whether or not 23 continues for 30 minutes or more is determined by the duration determination 24, and the energy saving mode 25 is entered. When the energy saving mode 25 is entered, the indoor required load that is input to the compressor operating frequency determination 27 is Δ0.5K from the difference between the indoor suction temperature calculated by the normal required load determination means and the set temperature of the remote controller. The operating frequency of the compressor is determined using the value of the energy saving required load determining means 26 as the subtracted required load.

上記のことより、暖房運転の省エネ設定時に、室内の空気調和状態が、ユーザーが希望するリモコン設定温度や室内要求負荷に応じた空気調和が継続して行えているかを判断した上で省エネモードに突入し、要求負荷を低下させて圧縮機運転周波数を低下することで省エネ効果を得て、要求負荷すなわちリモコン設定温度と吸込温度の差温が1K超となれば、要求負荷に応じた通常の圧縮機運転周波数決定をすることにより、要求負荷に応じた空気調和と省エネ効果を両立してもたらす暖房運転をすることができる。   Based on the above, at the time of energy-saving setting for heating operation, the indoor air-conditioning state is determined based on whether the air-conditioning according to the remote controller set temperature desired by the user and the indoor required load is continuously performed or not. When the required load, that is, the temperature difference between the remote control set temperature and the suction temperature exceeds 1K, the normal load according to the required load is obtained. By determining the compressor operating frequency, it is possible to perform a heating operation that provides both air conditioning and energy saving effect according to the required load.

(実施の形態3)
図3は、本発明の第3の実施の形態における空気調和機の風向制御のフローチャートを示した図である。図3において、図1と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 3)
FIG. 3 is a diagram showing a flowchart of the air direction control of the air conditioner according to the third embodiment of the present invention. In FIG. 3, the same components as those in FIG.

冷房運転10の、要求負荷に基づく圧縮機運転周波数の決定17は、省エネ設定12がされているときには、省エネ突入負荷判定13、省エネ突入負荷判定13の継続時間判定14より省エネモード15に突入し、省エネモード要求負荷決定手段16で要求負荷を決定し圧縮機運転周波数の決定17の入力とする。   The compressor operation frequency determination 17 based on the required load of the cooling operation 10 enters the energy saving mode 15 from the energy saving rush load determination 13 and the duration determination 14 of the energy saving rush load determination 13 when the energy saving setting 12 is performed. Then, the required load is determined by the energy saving mode required load determining means 16 and used as the input of the compressor operating frequency determination 17.

また、省エネモード15に突入した時は、通常の室外ファン制御31とは独立する室外熱 交温度検知手段32により検知した凝縮温度と、省エネモード時目標凝縮温度設定33を入力とした室外ファン目標凝縮温度一定制御34を行う構成となっている。   In addition, when the energy saving mode 15 is entered, the outdoor fan target using the condensation temperature detected by the outdoor heat exchanger temperature detection means 32 independent of the normal outdoor fan control 31 and the target condensation temperature setting 33 in the energy saving mode as inputs. The condensing temperature constant control 34 is performed.

以上のように構成された空気調和機について、図3より以下その動作、作用を説明する。   About the air conditioner comprised as mentioned above, the operation | movement and an effect | action are demonstrated below from FIG.

冷房運転10において、リモコンの省エネ設定12がされていない通常時、圧縮機の運転周波数17は、室内の吸込温度とリモコンの設定温度の差温に基づき要求負荷判定手段11から要求負荷を判断して決定し、室外ファンは通常制御する。リモコンの省エネ設定12がユーザーの意思により設定された時は、室内の吸込温度とリモコンの設定温度の差温が1K以下であるかを省エネ突入負荷判定13で判断し、かつ、省エネ突入負荷判定13が30分間以上継続しているかを継続時間判定14で判断し、省エネモード15に突入する。   In the cooling operation 10, when the remote controller energy saving setting 12 is not performed, the compressor operating frequency 17 determines the required load from the required load determining means 11 based on the difference between the indoor suction temperature and the remote controller set temperature. The outdoor fan is normally controlled. When the remote control energy saving setting 12 is set by the user's intention, the energy saving inrush load determination 13 determines whether the difference between the indoor suction temperature and the remote controller set temperature is 1K or less, and the energy saving inrush load determination Whether or not 13 has continued for 30 minutes or more is determined by duration determination 14, and the energy saving mode 15 is entered.

省エネモード15に突入した時圧縮機の運転周波数決定17の入力とする室内要求負荷は、通常の要求負荷判定手段で算出される室内の吸込温度とリモコンの設定温度の差温から△0.5K差し引いた要求負荷とする省エネ要求負荷決定手段16の値を用いて圧縮機の運転周波数を決定する。   When entering the energy saving mode 15, the indoor required load that is input to the compressor operating frequency determination 17 is Δ0.5K from the difference between the indoor suction temperature calculated by the normal required load determining means and the set temperature of the remote controller. The operating frequency of the compressor is determined using the value of the energy saving required load determining means 16 as the subtracted required load.

また、室外ファン制御は通常の室外ファン通常制御とは独立した室外ファン目標凝縮温度一定制御34を、室外熱交温度検知手段32により検知した凝縮温度と、圧縮機の許容凝縮温度の下限値付近に設定した省エネモード時目標凝縮温度設定33を入力として、冷凍サイクルの凝縮温度が一定になるよう室外ファンの回転数を制御する。   Further, in the outdoor fan control, the outdoor fan target condensing temperature constant control 34 independent of the normal outdoor fan normal control, near the lower limit value of the condensing temperature detected by the outdoor heat exchanger temperature detecting means 32 and the allowable condensing temperature of the compressor. The rotational speed of the outdoor fan is controlled so that the condensing temperature of the refrigeration cycle is constant with the target condensing temperature setting 33 set in the energy saving mode as an input.

上記のことより、冷房運転の省エネ設定時に、室内の空気調和状態が、ユーザーが希望するリモコン設定温度や室内要求負荷に応じた空気調和が継続して行えているかを判断した上で省エネモードに突入し、要求負荷を低下させて圧縮機運転周波数を低下することと、冷凍サイクルの凝縮温度を低下させ圧縮機の消費電力を低下することで省エネ効果を得て、要求負荷すなわち吸込温度とリモコン設定温度の差温が1K超となれば、要求負荷に応じた通常の圧縮機運転周波数決定と通常室外ファン制御をすることにより、要求負荷に応じた空気調和と省エネ効果を両立してもたらす冷房運転をすることができる。   Based on the above, at the time of energy-saving setting for cooling operation, it is determined whether the air-conditioning condition in the room is continuously air-conditioning according to the user-set remote control temperature or the required indoor load. By rushing in, reducing the required load to reduce the compressor operating frequency, and reducing the condensing temperature of the refrigeration cycle to reduce the power consumption of the compressor, an energy saving effect is obtained, and the required load, that is, the suction temperature and the remote control If the temperature difference between the set temperatures exceeds 1K, the air conditioning and energy-saving effect according to the required load are achieved by performing normal compressor operation frequency determination according to the required load and normal outdoor fan control. You can drive.

(実施の形態4)
図4は、本発明の第4の実施の形態における空気調和機の風向制御のフローチャートを示した図である。図4において、図2と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 4)
FIG. 4 is a view showing a flowchart of the air direction control of the air conditioner according to the fourth embodiment of the present invention. 4, the same components as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.

暖房運転20の、要求負荷に基づく圧縮機運転周波数の決定27は、省エネ設定12がされているときには、省エネ突入負荷判定23、省エネ突入負荷判定23の継続時間判定24より省エネモード25に突入し、省エネモード要求負荷決定手段26で要求負荷を決定し圧縮機運転周波数の決定27の入力とする。   The compressor operating frequency determination 27 based on the required load of the heating operation 20 enters the energy saving mode 25 from the energy saving inrush load determination 23 and the duration determination 24 of the energy saving inrush load determination 23 when the energy saving setting 12 is performed. Then, the required load is determined by the energy saving mode required load determining means 26 and used as the input of the compressor operating frequency determination 27.

また、省エネモード15に突入した時は、通常の室外ファン制御41とは独立する室外熱交温度検知手段42により検知した蒸発温度と、省エネモード時目標蒸発温度設定43を入力とした室外ファン目標凝縮温度一定制御44を行う構成となっている。   When the energy saving mode 15 is entered, the outdoor fan target having the evaporating temperature detected by the outdoor heat exchanger temperature detecting means 42 independent of the normal outdoor fan control 41 and the target evaporating temperature setting 43 in the energy saving mode as inputs. The condensing temperature constant control 44 is performed.

以上のように構成された空気調和機について、図4より以下その動作、作用を説明する。   About the air conditioner comprised as mentioned above, the operation | movement and an effect | action are demonstrated below from FIG.

暖房運転20において、リモコンの省エネ設定12がされていない通常時、圧縮機の運転周波数27は、室内のリモコンの設定温度と吸込温度の差温に基づき要求負荷判定手段21から要求負荷を判断して決定し、室外ファンは通常制御する。   In the heating operation 20, when the energy saving setting 12 of the remote control is not normally performed, the operating frequency 27 of the compressor determines the required load from the required load determining means 21 based on the difference between the set temperature of the indoor remote control and the suction temperature. The outdoor fan is normally controlled.

リモコンの省エネ設定12がユーザーの意思により設定された時は、室内のリモコンの設定温度と吸込温度の差温が1K以下であるかを省エネ突入負荷判定23で判断し、かつ、省エネ突入負荷判定23が30分間以上継続しているかを継続時間判定24で判断し、省エネモード25に突入する。   When the energy saving setting 12 of the remote control is set by the user's intention, the energy saving inrush load determination 23 determines whether the temperature difference between the set temperature of the indoor remote control and the suction temperature is 1K or less, and the energy saving inrush load determination Whether or not 23 continues for 30 minutes or more is determined by the duration determination 24, and the energy saving mode 25 is entered.

省エネモード25に突入した時圧縮機の運転周波数決定27の入力とする室内要求負荷は、通常の要求負荷判定手段で算出される室内の吸込温度とリモコンの設定温度の差温から△0.5K差し引いた要求負荷とする省エネ要求負荷決定手段26の値を用いて圧縮機の運転周波数を決定する。また、室外ファン制御は通常の室外ファン通常制御とは独立した室外ファン目標蒸発温度一定制御44を、室外熱交温度検知手段42により検知した蒸発温度と、目標蒸発温度と外気温度との差温が低めになるよう設定した省エネモード時目標蒸発温度設定43を入力として、冷凍サイクルの蒸発温度が一定になるよう室外ファンの回転数を制御する。   When the energy saving mode 25 is entered, the indoor required load that is input to the compressor operating frequency determination 27 is Δ0.5K from the difference between the indoor suction temperature calculated by the normal required load determination means and the set temperature of the remote controller. The operating frequency of the compressor is determined using the value of the energy saving required load determining means 26 as the subtracted required load. In addition, the outdoor fan control is a difference between the evaporation temperature detected by the outdoor heat exchanger temperature detecting means 42 and the difference between the target evaporation temperature and the outside air temperature, which is independent of the normal outdoor fan normal control. With the energy saving mode target evaporation temperature setting 43 set so as to be low, the rotational speed of the outdoor fan is controlled so that the evaporation temperature of the refrigeration cycle is constant.

上記のことより、暖房運転の省エネ設定時に、室内の空気調和状態が、ユーザーが希望するリモコン設定温度や室内要求負荷に応じた空気調和が継続して行えているかを判断した上で省エネモードに突入し、要求負荷を低下させて圧縮機運転周波数を低下することと、冷凍サイクルの給熱量を下げ圧縮機の消費電力を低下することで省エネ効果を得て、要求負荷すなわちリモコン設定温度と吸込温度の差温が1K超となれば、要求負荷に応じた通常の圧縮機運転周波数決定をすることにより、要求負荷に応じた空気調和と省エネ効果を両立してもたらす暖房運転をすることができる。   Based on the above, at the time of energy-saving setting for heating operation, the indoor air-conditioning state is determined based on whether the air-conditioning according to the remote controller set temperature desired by the user and the indoor required load is continuously performed or not. By rushing in, reducing the required load to reduce the compressor operating frequency, and reducing the heat supply amount of the refrigeration cycle to reduce the power consumption of the compressor, the energy saving effect is obtained, and the required load, that is, the remote control set temperature and suction If the temperature differential temperature exceeds 1K, it is possible to perform a heating operation that achieves both air conditioning and energy saving effect according to the required load by determining the normal compressor operating frequency according to the required load. .

(実施の形態5)
図5は、本発明の第5の実施の形態における空気調和機の風向制御のフローチャートを示した図である。図5において、図1及び図3と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 5)
FIG. 5 is a view showing a flowchart of the air direction control of the air conditioner in the fifth embodiment of the present invention. 5, the same components as those in FIGS. 1 and 3 are denoted by the same reference numerals, and the description thereof is omitted.

冷房運転10の、要求負荷に基づく圧縮機運転周波数の決定17は、省エネ設定12がされているときには、省エネ突入負荷判定13、省エネ突入負荷判定13の継続時間判定
14より省エネモード15に突入し、省エネモード要求負荷決定手段16で要求負荷を決定し圧縮機運転周波数の決定17の入力とする。
The compressor operation frequency determination 17 based on the required load of the cooling operation 10 enters the energy saving mode 15 from the energy saving inrush load determination 13 and the energy saving inrush load determination 13 duration determination 14 when the energy saving setting 12 is performed. Then, the required load is determined by the energy saving mode required load determining means 16 and used as the input of the compressor operating frequency determination 17.

また、省エネモード15に突入した時は、通常の室外ファン制御31とは独立する室外熱交温度検知手段32により検知した凝縮温度と、省エネモード時目標凝縮温度設定33を入力とした室外ファン目標凝縮温度一定制御34を行い、室内ファンは、通常の室内ファン通常リモコン設定制御50とは独立した室内熱交温度検知手段51により検知した蒸発温度と、省エネモード時室内目標蒸発温度設定52を入力とした室内ファン目標蒸発温度一定制御53を行う構成となっている。   When the energy saving mode 15 is entered, the outdoor fan target having the condensation temperature detected by the outdoor heat exchanger temperature detection means 32 independent of the normal outdoor fan control 31 and the target condensation temperature setting 33 in the energy saving mode as inputs. The constant condensation temperature control 34 is performed, and the indoor fan inputs the evaporation temperature detected by the indoor heat exchanger temperature detecting means 51 independent of the normal indoor fan normal remote controller setting control 50 and the indoor target evaporation temperature setting 52 in the energy saving mode. The indoor fan target evaporation temperature constant control 53 is performed.

以上のように構成された空気調和機について、図5より以下その動作、作用を説明する。   About the air conditioner comprised as mentioned above, the operation | movement and an effect | action are demonstrated below from FIG.

冷房運転10において、リモコンの省エネ設定12がされていない通常時、圧縮機の運転周波数17は、室内の吸込温度とリモコンの設定温度の差温に基づき要求負荷判定手段11から要求負荷を判断して決定し、室外ファンは通常制御する。   In the cooling operation 10, when the remote controller energy saving setting 12 is not performed, the compressor operating frequency 17 determines the required load from the required load determining means 11 based on the difference between the indoor suction temperature and the remote controller set temperature. The outdoor fan is normally controlled.

リモコンの省エネ設定12がユーザーの意思により設定された時は、室内の吸込温度とリモコンの設定温度の差温が1K以下であるかを省エネ突入負荷判定13で判断し、かつ、省エネ突入負荷判定13が30分間以上継続しているかを継続時間判定14で判断し、省エネモード15に突入する。   When the remote control energy saving setting 12 is set by the user's intention, the energy saving inrush load determination 13 determines whether the difference between the indoor suction temperature and the remote controller set temperature is 1K or less, and the energy saving inrush load determination Whether or not 13 has continued for 30 minutes or more is determined by duration determination 14, and the energy saving mode 15 is entered.

省エネモード15に突入した時圧縮機の運転周波数決定17の入力とする室内要求負荷は、通常の要求負荷判定手段で算出される室内の吸込温度とリモコンの設定温度の差温から△0.5K差し引いた要求負荷とする省エネ要求負荷決定手段16の値を用いて圧縮機の運転周波数を決定する。   When entering the energy saving mode 15, the indoor required load that is input to the compressor operating frequency determination 17 is Δ0.5K from the difference between the indoor suction temperature calculated by the normal required load determining means and the set temperature of the remote controller. The operating frequency of the compressor is determined using the value of the energy saving required load determining means 16 as the subtracted required load.

また、室外ファン制御は通常の室外ファン通常制御とは独立した室外ファン目標凝縮温度一定制御34を、室外熱交温度検知手段32により検知した凝縮温度と、圧縮機の許容凝縮温度の下限値付近に設定した省エネモード時目標凝縮温度設定33を入力として、冷凍サイクルの凝縮温度が一定になるよう室外ファンの回転数を制御する。   Further, in the outdoor fan control, the outdoor fan target condensing temperature constant control 34 independent of the normal outdoor fan normal control, near the lower limit value of the condensing temperature detected by the outdoor heat exchanger temperature detecting means 32 and the allowable condensing temperature of the compressor. The rotational speed of the outdoor fan is controlled so that the condensing temperature of the refrigeration cycle is constant with the target condensing temperature setting 33 set in the energy saving mode as input.

また、室内ファン制御は通常の室内ファン通常リモコン設定制御50とは独立した室内ファン目標蒸発温度一定制御53を、室内熱交温度検知手段51により検知した蒸発温度と、目標蒸発温度と室内吸込温度との差温が低めになるよう設定した省エネモード時室内目標蒸発温度設定52を入力とした室内ファン目標蒸発温度一定制御53を行う。   In addition, the indoor fan control is performed by using the indoor fan target evaporation temperature constant control 53 independent of the normal indoor fan normal remote controller setting control 50, the evaporation temperature detected by the indoor heat exchanger temperature detection means 51, the target evaporation temperature, and the indoor suction temperature. The indoor fan target evaporating temperature constant control 53 is performed with the indoor target evaporating temperature setting 52 set in such an energy saving mode that is set so that the temperature difference from the temperature becomes lower.

上記のことより、冷房運転の省エネ設定時に、室内の空気調和状態が、ユーザーが希望するリモコン設定温度や室内要求負荷に応じた空気調和が継続して行えているかを判断した上で省エネモードに突入し、要求負荷を低下させて圧縮機運転周波数を低下することと、冷凍サイクルの凝縮温度を低下させ、蒸発温度を上昇して圧縮機の消費電力を低下することで省エネ効果を得て、要求負荷すなわち吸込温度とリモコン設定温度の差温が1K超となれば、要求負荷に応じた通常の圧縮機運転周波数決定と通常室外ファン制御をすることにより、要求負荷に応じた空気調和と省エネ効果を両立してもたらす冷房運転をすることができる。   Based on the above, at the time of energy-saving setting for cooling operation, it is determined whether the air-conditioning condition in the room is continuously air-conditioning according to the user-set remote control temperature or the required indoor load. Entering, reducing the required load to reduce the compressor operating frequency, reducing the condensation temperature of the refrigeration cycle, increasing the evaporation temperature and reducing the power consumption of the compressor to obtain an energy saving effect, If the required load, that is, the differential temperature between the suction temperature and the remote controller set temperature exceeds 1K, the air conditioning and energy saving according to the required load are performed by determining the normal compressor operating frequency according to the required load and controlling the normal outdoor fan. Cooling operation that brings about both effects can be performed.

(実施の形態6)
図6は、本発明の第6の実施の形態における空気調和機の風向制御のフローチャートを示した図である。図6において、図2及び図4と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 6)
FIG. 6 is a view showing a flowchart of the air direction control of the air conditioner according to the sixth embodiment of the present invention. 6, the same components as those in FIGS. 2 and 4 are denoted by the same reference numerals, and the description thereof is omitted.

暖房運転20の、要求負荷に基づく圧縮機運転周波数の決定27は、省エネ設定12がされているときには、省エネ突入負荷判定23、省エネ突入負荷判定23の継続時間判定24より省エネモード25に突入し、省エネモード要求負荷決定手段26で要求負荷を決定し圧縮機運転周波数の決定27の入力とする。   The compressor operating frequency determination 27 based on the required load of the heating operation 20 enters the energy saving mode 25 from the energy saving inrush load determination 23 and the duration determination 24 of the energy saving inrush load determination 23 when the energy saving setting 12 is performed. Then, the required load is determined by the energy saving mode required load determining means 26 and used as the input of the compressor operating frequency determination 27.

また、省エネモード15に突入した時は、通常の室外ファン制御41とは独立する室外熱交温度検知手段42により検知した蒸発温度と、省エネモード時目標蒸発温度設定43を入力とした室外ファン目標凝縮温度一定制御44を行い、室内ファンは、通常の室内ファン通常リモコン設定制御60とは独立した室内熱交温度検知手段61により検知した凝縮温度と、省エネモード時室内目標凝縮温度設定62を入力とした室内ファン目標蒸発温度一定制御63を行う構成となっている。   When the energy saving mode 15 is entered, the outdoor fan target having the evaporating temperature detected by the outdoor heat exchanger temperature detecting means 42 independent of the normal outdoor fan control 41 and the target evaporating temperature setting 43 in the energy saving mode as inputs. The condensing temperature constant control 44 is performed, and the indoor fan inputs the condensing temperature detected by the indoor heat exchanger temperature detecting means 61 independent of the normal indoor fan normal remote controller setting control 60 and the indoor target condensing temperature setting 62 in the energy saving mode. The indoor fan target evaporation temperature constant control 63 is performed.

以上のように構成された空気調和機について、図6より以下その動作、作用を説明する。   About the air conditioner comprised as mentioned above, the operation | movement and an effect | action are demonstrated below from FIG.

暖房運転20において、リモコンの省エネ設定12がされていない通常時、圧縮機の運転周波数27は、室内のリモコンの設定温度と吸込温度の差温に基づき要求負荷判定手段21から要求負荷を判断して決定し、室外ファンは通常制御する。   In the heating operation 20, when the energy saving setting 12 of the remote control is not normally performed, the operating frequency 27 of the compressor determines the required load from the required load determining means 21 based on the difference between the set temperature of the indoor remote control and the suction temperature. The outdoor fan is normally controlled.

リモコンの省エネ設定12がユーザーの意思により設定された時は、室内のリモコンの設定温度と吸込温度の差温が1K以下であるかを省エネ突入負荷判定23で判断し、かつ、省エネ突入負荷判定23が30分間以上継続しているかを継続時間判定24で判断し、省エネモード25に突入する。   When the energy saving setting 12 of the remote control is set by the user's intention, the energy saving inrush load determination 23 determines whether the temperature difference between the set temperature of the indoor remote control and the suction temperature is 1K or less, and the energy saving inrush load determination Whether or not 23 continues for 30 minutes or more is determined by the duration determination 24, and the energy saving mode 25 is entered.

省エネモード25に突入した時圧縮機の運転周波数決定27の入力とする室内要求負荷は、通常の要求負荷判定手段で算出される室内の吸込温度とリモコンの設定温度の差温から△0.5K差し引いた要求負荷とする省エネ要求負荷決定手段26の値を用いて圧縮機の運転周波数を決定する。   When the energy saving mode 25 is entered, the indoor required load that is input to the compressor operating frequency determination 27 is Δ0.5K from the difference between the indoor suction temperature calculated by the normal required load determination means and the set temperature of the remote controller. The operating frequency of the compressor is determined using the value of the energy saving required load determining means 26 as the subtracted required load.

また、室外ファン制御は通常の室外ファン通常制御とは独立した室外ファン目標蒸発温度一定制御44を、室外熱交温度検知手段42により検知した蒸発温度と、目標蒸発温度と外気温度との差温が低めになるよう設定した省エネモード時目標蒸発温度設定43を入力として、冷凍サイクルの蒸発温度が一定になるよう室外ファンの回転数を制御する。   In addition, the outdoor fan control is a difference between the evaporation temperature detected by the outdoor heat exchanger temperature detecting means 42 and the difference between the target evaporation temperature and the outside air temperature, which is independent of the normal outdoor fan normal control. With the energy saving mode target evaporation temperature setting 43 set so as to be low, the rotational speed of the outdoor fan is controlled so that the evaporation temperature of the refrigeration cycle is constant.

また、室内ファン制御は通常の室内ファン通常リモコン設定制御50とは独立した室内ファン目標凝縮温度一定制御63を、室内熱交温度検知手段61により検知した凝縮温度と、目標凝縮温度と室内吸込温度との差温が低めになるよう設定した省エネモード時室内目標凝縮温度設定62を入力とした室内ファン目標凝縮温度一定制御63を行う。   In addition, the indoor fan control is performed by using the indoor fan target condensation temperature constant control 63 independent of the normal indoor fan normal remote controller setting control 50, the condensation temperature detected by the indoor heat exchanger temperature detection means 61, the target condensation temperature, and the indoor suction temperature. The indoor fan target condensing temperature constant control 63 is performed with the indoor target condensing temperature setting 62 set in such an energy saving mode that is set so that the temperature difference is lower.

上記のことより、暖房運転の省エネ設定時に、室内の空気調和状態が、ユーザーが希望するリモコン設定温度や室内要求負荷に応じた空気調和が継続して行えているかを判断した上で省エネモードに突入し、要求負荷を低下させて圧縮機運転周波数を低下することと、冷凍サイクルの蒸発温度を上昇させ、凝縮温度を低下して圧縮機の消費電力を低下することで省エネ効果を得て、要求負荷すなわちリモコン設定温度と吸込温度の差温が1K超となれば、要求負荷に応じた通常の圧縮機運転周波数決定をすることにより、要求負荷に応じた空気調和と省エネ効果を両立してもたらす暖房運転をすることができる。   Based on the above, at the time of energy-saving setting for heating operation, the indoor air-conditioning state is determined based on whether the air-conditioning according to the remote controller set temperature desired by the user and the indoor required load is continuously performed or not. By rushing in, reducing the required load and lowering the compressor operating frequency, increasing the evaporation temperature of the refrigeration cycle, lowering the condensation temperature and reducing the power consumption of the compressor to obtain an energy saving effect, If the required load, that is, the temperature difference between the remote control set temperature and the suction temperature exceeds 1K, the normal compressor operating frequency is determined according to the required load, thereby achieving both air conditioning and energy saving effect according to the required load. You can do heating operation.

以上のように、本発明にかかる空気調和機は、リモコンの設定温度と吸込温度の差温と
低要求負荷の継続時間で省エネモードに突入できるので、換気扇との連動、省エネ監視システムの省エネ判定等の用途にも適用できる。
As described above, the air conditioner according to the present invention can enter the energy saving mode with the temperature difference between the set temperature of the remote control and the suction temperature and the duration of the low required load. It can also be applied to other uses.

本発明の実施の形態1における空気調和機のフローチャートThe flowchart of the air conditioner in Embodiment 1 of this invention 本発明の実施の形態2における空気調和機のフローチャートFlowchart of the air conditioner in Embodiment 2 of the present invention 本発明の実施の形態3における空気調和機のフローチャートFlowchart of the air conditioner in Embodiment 3 of the present invention 本発明の実施の形態4における空気調和機のフローチャートFlowchart of the air conditioner in Embodiment 4 of the present invention 本発明の実施の形態5における空気調和機のフローチャートFlowchart of the air conditioner in Embodiment 5 of the present invention 本発明の実施の形態6における空気調和機のフローチャートFlowchart of the air conditioner in Embodiment 6 of the present invention 従来の空気調和機のフローチャートConventional air conditioner flowchart

符号の説明Explanation of symbols

11 要求負荷判定手段
12 リモコン省エネ設定
13 省エネ突入負荷判定
14 継続時間判定
15 省エネモード
16 省エネモード要求負荷判定手段
17 要求負荷に基づく圧縮機周波数決定
31 室外ファン通常制御
32 室外熱交温度検知手段
33 省エネモード時目標凝縮温度設定
34 室外ファン目標凝縮温度一定制御
43 省エネモード時目標蒸発温度設定
44 室外ファン目標蒸発温度一定制御
51 室内熱交温度検知手段
52 省エネモード時室内目標蒸発温度設定
53 室内ファン目標蒸発温度一定制御
62 省エネモード時室内目標凝縮温度設定
63 室内ファン目標凝縮温度一定制御
DESCRIPTION OF SYMBOLS 11 Required load determination means 12 Remote control energy saving setting 13 Energy saving inrush load determination 14 Duration determination 15 Energy saving mode 16 Energy saving mode required load determination means 17 Compressor frequency determination based on required load 31 Outdoor fan normal control 32 Outdoor heat exchanger temperature detection means 33 Target condensation temperature setting in energy saving mode 34 Outdoor fan target condensation temperature constant control 43 Target evaporation temperature setting in energy saving mode 44 Outdoor fan target evaporation temperature constant control 51 Indoor heat exchange temperature detection means 52 Indoor target evaporation temperature setting in energy saving mode 53 Indoor fan Target evaporation temperature constant control 62 Indoor target condensation temperature setting in energy saving mode 63 Indoor fan target condensation temperature constant control

Claims (6)

能力可変型圧縮機と室外熱交換器と室外ファンと電動膨張弁を有する室外機と、室内熱交換器と室内ファンを有する室内機とを接続し、省エネ設定SWを有するリモコン操作により運転を行う空気調和機において、冷房運転中室内吸込み温度とリモコン設定温度との差温に基づいて要求負荷を判断し圧縮機の運転周波数を決定する手段を有し、前記リモコンにある省エネ設定SW操作で省エネ監視を開始し、前記室内吸込み温度とリモコン設定温度との差温が所定の設定値以下を所定時間以上継続することで省エネモードに突入し、前記要求負荷を低下させて圧縮機運転周波数を低下することで省エネを行うことを特徴とした空気調和機。 A variable capacity compressor, an outdoor heat exchanger, an outdoor fan, an outdoor unit having an electric expansion valve, and an indoor unit having an indoor heat exchanger and an indoor fan are connected and operated by remote control operation having an energy saving setting SW. The air conditioner has means for determining the required load based on the difference between the indoor suction temperature during cooling operation and the remote control set temperature and determining the operating frequency of the compressor. Start monitoring, enter the energy saving mode by continuing the difference between the indoor suction temperature and the remote control set temperature below the preset value for a preset time, and reduce the required load to reduce the compressor operating frequency An air conditioner that features energy savings. 能力可変型圧縮機と室外熱交換器と室外ファンと電動膨張弁を有する室外機と、室内熱交換器と室内ファンを有する室内機とを接続し、省エネ設定SWを有するリモコン操作により運転を行う空気調和機において、暖房運転中リモコン設定温度と室内吸込み温度との差温に基づいて要求負荷を判断し圧縮機の運転周波数を決定する手段を有し、前記リモコンにある省エネ設定SW操作で省エネ監視を開始し、前記リモコン設定温度と室内吸込み温度との差温が所定の設定値以下を所定時間以上継続することで省エネモードに突入し、前記要求負荷を低下させて圧縮機運転周波数を低下することで省エネを行うことを特徴とした空気調和機。 A variable capacity compressor, an outdoor heat exchanger, an outdoor fan, an outdoor unit having an electric expansion valve, and an indoor unit having an indoor heat exchanger and an indoor fan are connected and operated by remote control operation having an energy saving setting SW. The air conditioner has means for determining a required load based on a difference between a remote control set temperature and an indoor suction temperature during heating operation and determining an operation frequency of the compressor. Start monitoring, enter the energy saving mode by continuing the difference between the remote controller set temperature and the indoor suction temperature below the preset value for a preset time, and reduce the required load to reduce the compressor operating frequency An air conditioner that features energy savings. 室外熱交換器に装着した熱交換器を検出する温度センサーで冷房運転中凝縮温度を検知する手段を有し、前記冷房運転中前記リモコンにある省エネ設定SW操作で省エネ監視を開始し、前記室内吸込み温度とリモコン設定温度との差温が所定の設定値以下を所定時間以上継続することで省エネモードに突入し、前記室外ファンの回転数制御を、通常の冷房運転中とは独立し前記凝縮温度を入力とした目標凝縮温度一定となる制御手段を有することを特徴とした、請求項1に記載の空気調和機。 Means for detecting the condensation temperature during cooling operation with a temperature sensor for detecting a heat exchanger mounted on the outdoor heat exchanger, and during the cooling operation, energy saving monitoring is started by an energy saving setting SW operation on the remote control; When the temperature difference between the suction temperature and the remote control set temperature continues below the preset value for a preset time, the system enters the energy saving mode, and the outdoor fan speed control is performed independently of the normal cooling operation. 2. The air conditioner according to claim 1, further comprising a control unit that makes the target condensing temperature constant with temperature input. 室外熱交換器に装着した熱交換器を検出する温度センサーで暖房運転中蒸発温度を検知する手段を有し、前記暖房運転中前記リモコンにある省エネ設定SW操作で省エネ監視を開始し、前記リモコン設定温度と室内吸込み温度との差温が所定の設定値以下を所定時間以上継続することで省エネモードに突入し、前記室外ファンの回転数制御を、通常の暖房運転中とは独立し前記蒸発温度を入力とした目標蒸発温度一定となる制御手段を有することを特徴とした、請求項2に記載の空気調和機。 Means for detecting an evaporating temperature during heating operation by a temperature sensor for detecting a heat exchanger attached to the outdoor heat exchanger, and starts energy saving monitoring by an energy saving setting SW operation in the remote control during the heating operation; When the temperature difference between the set temperature and the indoor suction temperature continues below a predetermined set value for a predetermined time or more, the energy saving mode is entered, and the rotational speed control of the outdoor fan is controlled independently of the normal heating operation. The air conditioner according to claim 2, further comprising a control unit that makes the target evaporation temperature constant with the temperature as an input. 室内熱交換器に装着した熱交換器を検出する温度センサーで冷房運転中蒸発温度を検知する手段を有し、前記冷房運転中前記リモコンにある省エネ設定SW操作で省エネ監視を開始し、前記室内吸込み温度とリモコン設定温度との差温が所定の設定値以下を所定時間以上継続することで省エネモードに突入し、前記室内ファンの回転数制御を、リモコンの設定風量とは独立し前記蒸発温度を入力とした目標蒸発温度一定となる制御手段を有することを特徴とした、請求項1あるいは3に記載の空気調和機。 Means for detecting the evaporating temperature during cooling operation with a temperature sensor for detecting the heat exchanger attached to the indoor heat exchanger, and starts energy saving monitoring by the energy saving setting SW operation in the remote control during the cooling operation, When the temperature difference between the suction temperature and the remote controller set temperature continues below a predetermined set value for a predetermined time or more, the system enters the energy saving mode and controls the rotation speed of the indoor fan independently of the set air volume of the remote controller. The air conditioner according to claim 1 or 3, further comprising a control unit that inputs a constant target evaporation temperature. 室内熱交換器に装着した熱交換器を検出する温度センサーで暖房運転中凝縮温度を検知する手段を有し、前記暖房運転中前記リモコンにある省エネ設定SW操作で省エネ監視を開始し、前記リモコン設定温度と室内吸込み温度との差温が所定の設定値以下を所定時間以上継続することで省エネモードに突入し、前記室内ファンの回転数制御を、リモコンの設定風量とは独立し前記凝縮温度を入力とした目標凝縮温度一定となる制御手段を有することを特徴とした、請求項2あるいは4に記載の空気調和機。 Means for detecting a condensing temperature during heating operation with a temperature sensor for detecting a heat exchanger attached to the indoor heat exchanger, and starts energy saving monitoring by an energy saving setting SW operation in the remote control during the heating operation; When the temperature difference between the set temperature and the indoor suction temperature continues below the predetermined set value for a predetermined time or more, the system enters the energy saving mode, and the rotation speed control of the indoor fan is performed independently of the set air volume of the remote controller. 5. The air conditioner according to claim 2, further comprising a control unit that makes the target condensing temperature constant as input.
JP2004304105A 2004-10-19 2004-10-19 Air conditioner Pending JP2006118732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304105A JP2006118732A (en) 2004-10-19 2004-10-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304105A JP2006118732A (en) 2004-10-19 2004-10-19 Air conditioner

Publications (1)

Publication Number Publication Date
JP2006118732A true JP2006118732A (en) 2006-05-11

Family

ID=36536781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304105A Pending JP2006118732A (en) 2004-10-19 2004-10-19 Air conditioner

Country Status (1)

Country Link
JP (1) JP2006118732A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309534A (en) * 2006-05-16 2007-11-29 Eisai R & D Management Co Ltd Air supply and exhaust management control device for clean room
JP2010236709A (en) * 2009-03-30 2010-10-21 Japan Climate Systems Corp Air conditioner for vehicle
JP2011144956A (en) * 2010-01-12 2011-07-28 Mitsubishi Electric Corp Control device of air conditioner
JP2011153735A (en) * 2010-01-26 2011-08-11 Mitsubishi Heavy Ind Ltd Air conditioning system, and control method and control program therefor
JP2012112616A (en) * 2010-11-26 2012-06-14 Aisin Seiki Co Ltd Air conditioning device
WO2013108457A1 (en) * 2012-01-17 2013-07-25 ダイキン工業株式会社 Air-conditioning control system
US9416987B2 (en) 2013-07-26 2016-08-16 Honeywell International Inc. HVAC controller having economy and comfort operating modes
JP2020143869A (en) * 2019-03-08 2020-09-10 三菱重工サーマルシステムズ株式会社 Control device, air conditioner, control method and program
CN114353287A (en) * 2021-12-08 2022-04-15 青岛海尔空调电子有限公司 Fan optimization adjusting method and air conditioner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309534A (en) * 2006-05-16 2007-11-29 Eisai R & D Management Co Ltd Air supply and exhaust management control device for clean room
JP2010236709A (en) * 2009-03-30 2010-10-21 Japan Climate Systems Corp Air conditioner for vehicle
JP2011144956A (en) * 2010-01-12 2011-07-28 Mitsubishi Electric Corp Control device of air conditioner
JP2011153735A (en) * 2010-01-26 2011-08-11 Mitsubishi Heavy Ind Ltd Air conditioning system, and control method and control program therefor
JP2012112616A (en) * 2010-11-26 2012-06-14 Aisin Seiki Co Ltd Air conditioning device
WO2013108457A1 (en) * 2012-01-17 2013-07-25 ダイキン工業株式会社 Air-conditioning control system
JP2013148232A (en) * 2012-01-17 2013-08-01 Daikin Industries Ltd Air-conditioning control system
US9416987B2 (en) 2013-07-26 2016-08-16 Honeywell International Inc. HVAC controller having economy and comfort operating modes
JP2020143869A (en) * 2019-03-08 2020-09-10 三菱重工サーマルシステムズ株式会社 Control device, air conditioner, control method and program
JP7378942B2 (en) 2019-03-08 2023-11-14 三菱重工サーマルシステムズ株式会社 Control device, air conditioner, control method and program
CN114353287A (en) * 2021-12-08 2022-04-15 青岛海尔空调电子有限公司 Fan optimization adjusting method and air conditioner

Similar Documents

Publication Publication Date Title
JP4468682B2 (en) Power-saving dehumidifying operation method of air conditioner
WO2014109193A1 (en) Air conditioning system
JP5407342B2 (en) Air conditioner
JPH109683A (en) Air conditioner
KR100327069B1 (en) Air conditioner control device
JP2006118732A (en) Air conditioner
JP2006170528A (en) Air conditioner
JP5950897B2 (en) Air conditioner
JPH10148378A (en) Air conditioner
JP2005221107A (en) Air conditioner
JP4074422B2 (en) Air conditioner and its control method
JP2003056887A (en) Air conditioner and method for controlling the same
JP2002147879A (en) Multi-zone air conditioner and defrosting control method for the same
KR100452771B1 (en) Cotrol method of air-conditioner
JP3526393B2 (en) Air conditioner
JP2006207983A (en) Air conditioner
JP4224918B2 (en) Air conditioner
JP2004069191A (en) Air conditioner control method
JP2005055053A (en) Air conditioner
JPH062918A (en) Controller for air conditioner
JP2878727B2 (en) Air conditioner
JP2001065947A (en) Control method of air conditioner
JP2009109099A (en) Air conditioner
EP4390260A1 (en) Air conditioning device
JP2002071187A (en) Air conditioning apparatus