JP2003262385A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2003262385A
JP2003262385A JP2002066284A JP2002066284A JP2003262385A JP 2003262385 A JP2003262385 A JP 2003262385A JP 2002066284 A JP2002066284 A JP 2002066284A JP 2002066284 A JP2002066284 A JP 2002066284A JP 2003262385 A JP2003262385 A JP 2003262385A
Authority
JP
Japan
Prior art keywords
compressor
pressure
condenser
air conditioner
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002066284A
Other languages
Japanese (ja)
Other versions
JP3985092B2 (en
Inventor
Kazumiki Urata
和幹 浦田
Atsuhiko Yokozeki
敦彦 横関
Masayuki Okabe
眞幸 岡部
Fukuji Tsukada
福治 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002066284A priority Critical patent/JP3985092B2/en
Publication of JP2003262385A publication Critical patent/JP2003262385A/en
Application granted granted Critical
Publication of JP3985092B2 publication Critical patent/JP3985092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner inexpensive in manufacturing cost and improved in reliability. <P>SOLUTION: In this air conditioner, a compressor 1, a condenser 4, a pressure reducing device 7, and an evaporator 3 are connected by a pipe. Evaporator inlet temperature and a condenser outlet temperature are detected. The suction pressure and the discharge pressure of the compressor 1 are respectively calculated from the evaporator inlet temperature and the condenser outlet temperature, thereby obtaining an operation pressure ratio that is a ratio between the suction pressure and the discharge pressure of the compressor 1. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は空気調和機に係り、
特に冷凍サイクルの圧縮機吐出圧力と圧縮機吸入圧力の
比である運転圧力比を検出して容量制御するものに好適
である。
TECHNICAL FIELD The present invention relates to an air conditioner,
In particular, it is suitable for the capacity control by detecting the operating pressure ratio which is the ratio of the compressor discharge pressure and the compressor suction pressure of the refrigeration cycle.

【0002】[0002]

【従来の技術】従来、空気調和機において、運転圧力比
を求めるため、冷凍サイクルの高圧側及び低圧側に各々
圧力センサを設け、その圧力センサの値の比から演算す
ることが知られ、特開平5−10608号公報に記載さ
れている。また、温度センサを冷凍サイクルの低圧側冷
媒通路に設け、温度センサ設置部の飽和圧力を温度セン
サの出力信号より演算し、温度センサ設置部から圧縮機
吸入側に至るまでの圧力損失を推定して、圧縮機吸入圧
力を演算することが、特開平8−121916号公報に
記載のように知られている。
2. Description of the Related Art Conventionally, in an air conditioner, in order to obtain an operating pressure ratio, it is known that pressure sensors are provided on the high pressure side and the low pressure side of a refrigeration cycle, and calculation is performed from the ratio of the values of the pressure sensor. It is described in Japanese Patent Laid-Open No. 5-10608. Also, a temperature sensor is installed in the low-pressure side refrigerant passage of the refrigeration cycle, the saturation pressure of the temperature sensor installation part is calculated from the output signal of the temperature sensor, and the pressure loss from the temperature sensor installation part to the compressor suction side is estimated. It is known that the compressor suction pressure is calculated as described in JP-A-8-121916.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術の圧力セ
ンサを用いるものにおいては、圧力センサ自体のコスト
が高く、価格面で不利であり、圧縮機吸入圧力を低圧側
冷媒通路に設けた温度センサで推定するものは、室内機
と室外機を接続する配管長さが長い場合、圧縮機吸入側
の冷媒が過熱状態であるのにも関わらず温度センサ設置
部が低い温度となり、吸入圧力の推定値に誤差が生じ、
運転圧力比の推定精度が低下する恐れがある。さらに、
冷房運転及び暖房運転共に運転圧力比を検出するために
温度センサを増やさなければならず、やはり価格面で不
利であった。
In the case of using the above-mentioned pressure sensor of the prior art, the cost of the pressure sensor itself is high and it is disadvantageous in terms of price, and the temperature sensor provided with the compressor suction pressure in the low pressure side refrigerant passage. It is estimated that when the piping that connects the indoor unit and the outdoor unit is long, the temperature at the temperature sensor installation part becomes low even though the refrigerant on the compressor suction side is overheated, and the suction pressure is estimated. There is an error in the value,
The estimation accuracy of the operating pressure ratio may decrease. further,
In both the cooling operation and the heating operation, the temperature sensor must be increased in order to detect the operating pressure ratio, which is also disadvantageous in terms of price.

【0004】本発明の目的は、上記従来の技術的課題を
解決し、製造コストが安価でかつ運転圧力比を高い精度
で検出し、信頼性の高い空気調和機を提供することにあ
る。
An object of the present invention is to solve the above-mentioned conventional technical problems, to provide an air conditioner which is inexpensive in manufacturing cost, detects an operating pressure ratio with high accuracy, and has high reliability.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、圧縮機、凝縮器、減圧装置、蒸発器と
を配管接続して冷凍サイクルとした空気調和機におい
て、蒸発器入口温度と凝縮器出口温度とを検出し、前記
蒸発器入口温度から前記圧縮機の吸入圧力を、前記凝縮
器出口温度から前記圧縮機の吐出圧力をそれぞれ演算し
て前記圧縮機の吐出圧力と吸入圧力の比である運転圧力
比を求めるものである。
In order to achieve the above object, the present invention provides an evaporator in an air conditioner in which a compressor, a condenser, a pressure reducing device, and an evaporator are connected by piping to form a refrigeration cycle. The inlet temperature and the condenser outlet temperature are detected, the suction pressure of the compressor is calculated from the evaporator inlet temperature, and the discharge pressure of the compressor is calculated from the condenser outlet temperature, and the discharge pressure of the compressor is calculated. The operating pressure ratio, which is the ratio of the suction pressure, is obtained.

【0006】また、上記のものにおいて、吸入圧力は圧
縮機の運転周波数及び凝縮器と蒸発器を接続する配管長
さに関連して求めることが望ましい。
Further, in the above, it is desirable that the suction pressure is obtained in relation to the operating frequency of the compressor and the length of the pipe connecting the condenser and the evaporator.

【0007】さらに、上記のものにおいて、凝縮器出口
側に開度が可変できる膨脹弁と該膨脹弁の出口に余剰冷
媒を貯留する受液器とを設け、膨脹弁を全開して、つま
り膨脹弁での圧力損失を小さくするように開度を大きく
して運転圧力比を求めることが望ましい。
Further, in the above-mentioned apparatus, an expansion valve having a variable opening degree is provided on the condenser outlet side, and a receiver for storing excess refrigerant is provided at the outlet of the expansion valve, and the expansion valve is fully opened, that is, expansion is performed. It is desirable to obtain the operating pressure ratio by increasing the opening so as to reduce the pressure loss in the valve.

【0008】さらに、上記のものにおいて、吸入圧力
は、吸入側の飽和圧力、圧縮機のモータ回転数に比例す
るものに係数を加えた値、凝縮器と蒸発器を接続する配
管長さ、の和となる値のべき乗に関連して求めることが
望ましい。
Further, in the above-mentioned ones, the suction pressure includes a saturation pressure on the suction side, a value proportional to the motor rotation speed of the compressor plus a coefficient, and a pipe length connecting the condenser and the evaporator. It is desirable to find it in relation to the power of the sum value.

【0009】さらに、上記のものにおいて、求めた運転
圧力比が所定の範囲となるように圧縮機の運転周波数を
制御することが望ましい。
Further, in the above, it is desirable to control the operating frequency of the compressor so that the obtained operating pressure ratio falls within a predetermined range.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施の形態を図
1ないし図4を参照して説明する。図1は、冷凍サイク
ル構成を示し、室外機100と室内機200に大別さ
れ、室外機100と室内機200は液側接続配管51及
びガス側接続配管50で接続されている。室外機100
は圧縮機1、四方弁2、室外熱交換器4、室外ファン5
より構成され、室外熱交換器4には凝縮器として作用し
た場合に出口側、蒸発器として作用した場合に入口側と
なる位置に温度センサ21が設けられている。また、室
内機200は室内熱交換器3、室内膨張弁7、室内ファ
ン6より構成され、室内熱交換器3には、室外熱交換器
4と同様に凝縮器として作用した場合に出口側、蒸発器
として作用した場合に入口側となる位置に温度センサ2
2が設けられている。室内熱交換器3及び室外熱交換器
4に設けられている温度センサの信号は、マイクロコン
ピュータ20内に入力されるように配線されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a refrigeration cycle configuration, which is roughly divided into an outdoor unit 100 and an indoor unit 200, and the outdoor unit 100 and the indoor unit 200 are connected by a liquid side connection pipe 51 and a gas side connection pipe 50. Outdoor unit 100
Is a compressor 1, a four-way valve 2, an outdoor heat exchanger 4, an outdoor fan 5
The outdoor heat exchanger 4 is provided with a temperature sensor 21 at a position on the outlet side when acting as a condenser and on the inlet side when acting as an evaporator. In addition, the indoor unit 200 includes an indoor heat exchanger 3, an indoor expansion valve 7, and an indoor fan 6, and the indoor heat exchanger 3 has an outlet side when acting as a condenser like the outdoor heat exchanger 4, When operating as an evaporator, the temperature sensor 2 is placed at the position on the inlet side.
Two are provided. The signals of the temperature sensors provided in the indoor heat exchanger 3 and the outdoor heat exchanger 4 are wired so as to be input into the microcomputer 20.

【0011】次に、冷凍サイクルの運転動作について説
明する。図1において、実線矢印は冷房運転での冷媒の
流れ方向を示し、破線矢印は暖房運転時での冷媒の流れ
方向を示す。冷房運転の場合、圧縮機1で圧縮された高
温高圧のガス冷媒は、四方弁2を通り室外熱交換器4に
流入し、室外ファン5により室外熱交換器4に送られる
空気と熱交換して凝縮液化して室外熱交換器4から流出
する。凝縮液化した冷媒は、液側接続配管51を通り室
内膨張弁7で減圧され気液二相状態の冷媒となり、室内
熱交換器3に流入し、室内ファン6により室内熱交換器
3に送られる空気と熱交換して蒸発ガス化して室内熱交
換器3から流出する。蒸発ガス化した冷媒は、ガス接続
配管50、四方弁2を通り圧縮機1に戻り、再び圧縮機
1で圧縮されることで冷凍サイクルが形成される。
Next, the operation of the refrigeration cycle will be described. In FIG. 1, solid arrows indicate the direction of refrigerant flow during cooling operation, and dashed arrows indicate the direction of refrigerant flow during heating operation. In the cooling operation, the high-temperature high-pressure gas refrigerant compressed by the compressor 1 flows into the outdoor heat exchanger 4 through the four-way valve 2 and exchanges heat with the air sent to the outdoor heat exchanger 4 by the outdoor fan 5. It is condensed and liquefied to flow out from the outdoor heat exchanger 4. The condensed and liquefied refrigerant passes through the liquid side connection pipe 51, is decompressed by the indoor expansion valve 7, becomes a gas-liquid two-phase refrigerant, flows into the indoor heat exchanger 3, and is sent to the indoor heat exchanger 3 by the indoor fan 6. It heat-exchanges with air to be vaporized and gasified, and flows out from the indoor heat exchanger 3. The evaporatively gasified refrigerant returns to the compressor 1 through the gas connection pipe 50 and the four-way valve 2, and is compressed again by the compressor 1 to form a refrigeration cycle.

【0012】図2は、冷凍サイクルモリエル線図を表わ
し、点aは圧縮機1から吐出された状態を示しており、
その圧力である吐出圧力はPdとなる。点bは室外熱交
換器4出口すなわち凝縮器出口の状態であり、点cは室
内膨張弁7で減圧された室内熱交換器3入口すなわち蒸
発器入口の状態を示す。点dは圧縮機1に吸入される状
態を示しており、その圧力である吸入圧力はPsとな
る。冷房運転時の運転圧力比εは、吐出圧力Pdと吸入
圧力Psの比となる。
FIG. 2 shows a refrigeration cycle Mollier diagram, in which point a shows the state of discharge from the compressor 1,
The discharge pressure, which is that pressure, is Pd. Point b shows the state of the outdoor heat exchanger 4 outlet, that is, the condenser outlet, and point c shows the state of the indoor heat exchanger 3 inlet that has been decompressed by the indoor expansion valve 7, that is, the evaporator inlet. A point d shows the state of being sucked into the compressor 1, and the suction pressure which is the pressure is Ps. The operating pressure ratio ε during the cooling operation is the ratio between the discharge pressure Pd and the suction pressure Ps.

【0013】圧縮機の運転可能範囲として運転圧力比ε
は、λ1(例えば、1.8)<ε<λ2(例えば、8.
0)が望ましく、運転圧力比εがλ1以下、あるいはλ
2以上となると圧縮機の運転寿命が極端に減少し、早期
に故障を起こす恐れがある。このため、運転圧力比εが
λ1とλ2の間になるように、圧縮機周波数、室内外フ
ァンや室内外の膨張弁開度を制御して、圧縮機の信頼性
を確保する。つまり、運転圧力比ε<λ1となった場合
は、圧縮機周波数の下限値を通常制御時よりも高くし、
冷房運転であれば室外ファンの風量を減少させ、暖房運
転であれば室内ファンの風量を増加させる。また、運転
圧力比ε>λ2となった場合は、圧縮機周波数の上限値
を通常制御時よりも低くし、冷房運転であれば室外ファ
ンの風量を増加させ、暖房運転であれば室外ファンの風
量を減少させたり、室内膨張弁の開度を開けて凝縮器と
して作用している熱交換器内の冷媒をレシーバ等に回収
させたりする。
As the operable range of the compressor, the operating pressure ratio ε
Is λ1 (eg, 1.8) <ε <λ2 (eg, 8.
0) is desirable, and the operating pressure ratio ε is λ1 or less, or λ
If it is 2 or more, the operating life of the compressor is extremely reduced, and there is a risk of early failure. Therefore, the compressor frequency, the indoor / outdoor fan and the indoor / outdoor expansion valve opening are controlled so that the operating pressure ratio ε is between λ1 and λ2, and the reliability of the compressor is ensured. That is, when the operating pressure ratio ε <λ1, the lower limit value of the compressor frequency is set higher than that during normal control,
The air volume of the outdoor fan is reduced in the cooling operation, and the air volume of the indoor fan is increased in the heating operation. When the operating pressure ratio ε> λ2, the upper limit of the compressor frequency is set lower than in the normal control, the air volume of the outdoor fan is increased during the cooling operation, and the outdoor fan is increased during the heating operation. The air volume is reduced, or the opening of the indoor expansion valve is opened to allow the receiver or the like to recover the refrigerant in the heat exchanger functioning as a condenser.

【0014】次に、冷房運転時の運転圧力比の推定方法
について説明する。運転圧力比の推定は、室内熱交換器
3及び室外熱交換器4に設けた温度センサ21,22及
び圧縮機1のモータ回転数の信号を用いてマイクロコン
ピュータ20で行う。運転圧力比εは、室外熱交換器4
に設けた温度センサ21の検出値Tcから推定した吐出
圧力Pdと、室内熱交換器3に設けた温度センサ22の
検出値Teから推定した吸入圧力Psとの比となる。
Next, a method of estimating the operating pressure ratio during the cooling operation will be described. The estimation of the operating pressure ratio is performed by the microcomputer 20 using the temperature sensors 21 and 22 provided in the indoor heat exchanger 3 and the outdoor heat exchanger 4 and the motor rotation speed signal of the compressor 1. The operating pressure ratio ε is determined by the outdoor heat exchanger 4
It is the ratio of the discharge pressure Pd estimated from the detection value Tc of the temperature sensor 21 provided in the indoor heat exchanger 3 to the suction pressure Ps estimated from the detection value Te of the temperature sensor 22 provided in the indoor heat exchanger 3.

【0015】[0015]

【数1】 [Equation 1]

【0016】推定吐出圧力Pdは自然対数の底eの{α
2×(Tc+α3)}乗に比例するとし、推定吸入圧力
Psは、底eの{β2×(Te+F1+L1)}乗に比
例するとする。
The estimated discharge pressure Pd is {α of the base e of the natural logarithm.
2 * (Tc + α3)} power, and the estimated suction pressure Ps is proportional to the bottom e of {β2 × (Te + F1 + L1)} power.

【0017】[0017]

【数2】 [Equation 2]

【0018】[0018]

【数3】 [Equation 3]

【0019】Tcは、吐出側の飽和圧力、Teは、吸入
側の飽和圧力であり、α1〜α3、β1、β2、は空気
調和機に封入する冷媒の種類に応じて変わる係数であ
る。F1はモータ回転数Hzによる補正値であり、L1
は、凝縮器と蒸発器又は室外機と室内機とを接続する接
続配管長さによる補正係数である。F1は数4に示すよ
うに圧縮機1のモータ回転数の検出値Hzに比例するも
のにγ2を加えたものとする。
Tc is the saturation pressure on the discharge side, Te is the saturation pressure on the suction side, and α1 to α3, β1 and β2 are coefficients that vary depending on the type of refrigerant enclosed in the air conditioner. F1 is a correction value based on the motor speed Hz, and L1
Is a correction coefficient depending on the length of the connecting pipe connecting the condenser and the evaporator or the outdoor unit and the indoor unit. It is assumed that F1 is proportional to the detected value Hz of the motor rotation speed of the compressor 1 and γ2 is added as shown in Formula 4.

【0020】[0020]

【数4】 [Equation 4]

【0021】L1は、室内機200と室外機100を接
続する配管長さによって変わり、マイクロコンピュータ
20に予め入力されているか、ディップスイッチや通信
等による外部信号から入力される。
L1 varies depending on the length of the pipe connecting the indoor unit 200 and the outdoor unit 100, and is input to the microcomputer 20 in advance, or is input from an external signal such as a DIP switch or communication.

【0022】図2に示すモリエル線図で説明すると、室
外熱交換器4に設けられている温度センサ21により飽
和圧力Tcが求められ、Tcを数2により求めて推定吐
出圧力Pdが求められる。推定Pdは、実際の吐出圧力
であるPdと比べて四方弁2や室外熱交換器4の圧力損
失及び凝縮器の冷媒過冷却度により若干低くなるが、冷
媒の状態が高温高圧で密度が大きく圧力損失が小さいこ
と、及び温度センサまでに至る距離が変化しないことか
ら、数1の係数を調整することで推定Pdと実際のPd
を同値とすることができる。
Explaining with the Mollier diagram shown in FIG. 2, the saturation pressure Tc is obtained by the temperature sensor 21 provided in the outdoor heat exchanger 4, and the estimated discharge pressure Pd is obtained by obtaining Tc by Equation 2. The estimated Pd is slightly lower than the actual discharge pressure Pd due to the pressure loss of the four-way valve 2 and the outdoor heat exchanger 4 and the refrigerant supercooling degree of the condenser, but the refrigerant state is high in temperature and pressure and the density is large. Since the pressure loss is small and the distance to the temperature sensor does not change, the estimated Pd and the actual Pd can be adjusted by adjusting the coefficient of Equation 1.
Can be the same value.

【0023】一方、室内熱交換器3に設けられている温
度センサ22により吸入側の飽和圧力Teが求められ
る。飽和圧力Teは、室内熱交換器3やガス接続配管5
0等での圧力損失があるため吸入圧力Psより高くな
る。この圧力損失は、ガス側接続配管50の長さ及び冷
凍サイクルを流れる冷媒循環量で変化するため、数4に
示すように補正する。つまり、冷凍サイクルを流れる冷
媒循環量は圧縮機1のモータ回転数Hzに比例すること
から、推定吸入圧力Psは接続配管長さによる補正係数
L1と圧縮機1のモータ回転数Hzによる補正値F1に
より求める。
On the other hand, the temperature sensor 22 provided in the indoor heat exchanger 3 determines the saturation pressure Te on the suction side. The saturation pressure Te is determined by the indoor heat exchanger 3 and the gas connection pipe 5
Since there is a pressure loss at 0 or the like, it becomes higher than the suction pressure Ps. Since this pressure loss changes depending on the length of the gas side connecting pipe 50 and the amount of circulation of the refrigerant flowing through the refrigeration cycle, it is corrected as shown in Formula 4. That is, since the circulation amount of the refrigerant flowing through the refrigeration cycle is proportional to the motor rotation speed Hz of the compressor 1, the estimated suction pressure Ps is a correction coefficient L1 depending on the connection pipe length and the correction value F1 depending on the motor rotation speed Hz of the compressor 1. Ask by.

【0024】暖房運転の場合、圧縮機1で圧縮された高
温高圧のガス冷媒は、四方弁2、ガス側接続配管50を
通り室内熱交換器3に流入し、室内ファン6により室内
熱交換器3に送られる空気と熱交換して凝縮液化して室
内熱交換器3から流出する。凝縮液化した冷媒は、室内
膨張弁7で減圧され気液二相状態の冷媒となり、液側接
続配管51を通り室外熱交換器4に流入し、室外ファン
5により室外熱交換器4に送られる空気と熱交換して蒸
発ガス化して室外熱交換器4から流出する。蒸発ガス化
した冷媒は、四方弁2を通り圧縮機1に戻り、再び圧縮
機1で圧縮されることで冷凍サイクルが形成される。
In the heating operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 flows into the indoor heat exchanger 3 through the four-way valve 2 and the gas side connecting pipe 50, and the indoor fan 6 heats the indoor heat exchanger. The heat is exchanged with the air sent to the air conditioning unit 3 to condense and liquefy and flow out from the indoor heat exchanger 3. The condensed and liquefied refrigerant is decompressed by the indoor expansion valve 7, becomes a gas-liquid two-phase refrigerant, flows into the outdoor heat exchanger 4 through the liquid side connection pipe 51, and is sent to the outdoor heat exchanger 4 by the outdoor fan 5. It exchanges heat with air to be vaporized and gasified, and flows out from the outdoor heat exchanger 4. The evaporated gasified refrigerant returns to the compressor 1 through the four-way valve 2 and is compressed by the compressor 1 again to form a refrigeration cycle.

【0025】暖房運転の冷凍サイクルをモリエル線図に
示すと、冷房運転と同様に図2となり、暖房運転時の運
転圧力比は、冷房運転時と同様に求めることができる。
また、暖房運転時の運転圧力比の推定は、冷房運転時と
同様に数1ないし4を用いて行う。ただし、数式中のT
cは室内熱交換器3に設けた温度センサ22の検出値、
Teは室外熱交換器4に設けた温度センサ21の検出値
とする。
The refrigeration cycle of the heating operation is shown in the Mollier diagram as shown in FIG. 2 like the cooling operation, and the operating pressure ratio during the heating operation can be obtained in the same manner as during the cooling operation.
Further, the estimation of the operating pressure ratio during the heating operation is performed using the equations 1 to 4 as in the cooling operation. However, T in the formula
c is a detection value of the temperature sensor 22 provided in the indoor heat exchanger 3,
Te is a detection value of the temperature sensor 21 provided in the outdoor heat exchanger 4.

【0026】以上に示すように、凝縮器出口温度及び蒸
発器入口温度を検出することにより空気調和機の運転圧
力比の推定が可能であり、高価な圧力センサを使用せず
に運転圧力比を検出でき、信頼性を向上できる。また、
吐出圧力及び吸入圧力を温度センサ(サーミスタ)で推
定するため、吐出圧力推定値から吐出ガスの飽和温度を
推定することが可能であるため、吐出温度を検出するこ
とで吐出ガス過熱度を推定することが可能であり、吐出
ガス過熱度を膨張弁で制御することができる。さらに、
吸入圧力の推定値を用いて、圧縮機の真空運転を防止す
るように冷凍サイクルの制御機器を制御できるため、圧
縮機の信頼性をより一層向上することができる。
As described above, the operating pressure ratio of the air conditioner can be estimated by detecting the condenser outlet temperature and the evaporator inlet temperature, and the operating pressure ratio can be estimated without using an expensive pressure sensor. It can be detected and reliability can be improved. Also,
Since the discharge pressure and suction pressure are estimated by the temperature sensor (thermistor), the saturation temperature of the discharge gas can be estimated from the discharge pressure estimated value. Therefore, the discharge gas superheat degree is estimated by detecting the discharge temperature. It is possible to control the discharge gas superheat degree with the expansion valve. further,
Since the estimated value of the suction pressure can be used to control the refrigeration cycle control device so as to prevent the vacuum operation of the compressor, the reliability of the compressor can be further improved.

【0027】次に、本発明の他の実施形態について図3
ないし4を参照して説明する。図3は、凝縮器の冷媒過
冷却度制御装置を具備した空気調和機の冷凍サイクルを
示し、冷凍サイクルは、室内膨張弁7と室外熱交換器4
の間に受液器9と室外膨張弁8を配置した構成となって
いる。
Next, another embodiment of the present invention will be described with reference to FIG.
This will be described with reference to Nos. 4 to 4. FIG. 3 shows a refrigeration cycle of an air conditioner equipped with a refrigerant supercooling degree control device for a condenser. The refrigeration cycle includes an indoor expansion valve 7 and an outdoor heat exchanger 4.
The liquid receiver 9 and the outdoor expansion valve 8 are arranged between them.

【0028】受液器9は、余剰冷媒が貯留され、冷房運
転時は室外膨張弁8を全開で、つまり膨脹弁での圧力損
失を小さくするように開度を大きくして使用し、室内膨
張弁7で冷凍サイクルの温度を制御し、暖房運転時は室
内膨張弁7を全開で使用し室外膨張弁8で冷凍サイクル
の温度を制御する。冷凍サイクルの運転をモリエル線図
で示すと図4のようになる。すなわち、凝縮器として作
用している熱交換器の出口に設けられている膨張弁を全
開で使用するため、凝縮器冷媒過冷却度は0となり、凝
縮器出口の温度センサで検知したTcの飽和圧力は吐出
圧力Pdと同値となる。よって、受液器9を設け、凝縮
器として作用している熱交換器の出口に設けられている
膨張弁を全開にして凝縮器冷媒過冷却度を制御すること
で、吐出圧力Pdの推定値の精度を向上することがで
き、空気調和機の運転圧力比をより精度良くして、信頼
性を向上できる。
The receiver 9 stores excess refrigerant, and the outdoor expansion valve 8 is fully opened during the cooling operation, that is, the opening is increased so as to reduce the pressure loss in the expansion valve. The temperature of the refrigerating cycle is controlled by the valve 7, the indoor expansion valve 7 is fully opened during the heating operation, and the temperature of the refrigerating cycle is controlled by the outdoor expansion valve 8. The operation of the refrigeration cycle is shown in the Mollier diagram as shown in FIG. That is, since the expansion valve provided at the outlet of the heat exchanger acting as the condenser is fully opened and used, the degree of supercooling of the condenser refrigerant becomes 0, and the saturation of Tc detected by the temperature sensor at the condenser outlet is reached. The pressure has the same value as the discharge pressure Pd. Therefore, the estimated value of the discharge pressure Pd is obtained by providing the liquid receiver 9 and fully opening the expansion valve provided at the outlet of the heat exchanger functioning as the condenser to control the degree of supercooling of the refrigerant in the condenser. The accuracy can be improved, the operating pressure ratio of the air conditioner can be made more accurate, and the reliability can be improved.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
高価な圧力センサを使用せずに運転圧力比を検出し、空
気調和機の製造コストを大幅に低減できると共に、信頼
性の向上を図ることができる。
As described above, according to the present invention,
By detecting the operating pressure ratio without using an expensive pressure sensor, the manufacturing cost of the air conditioner can be significantly reduced, and the reliability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態を示す空気調和機の冷凍サ
イクル。
FIG. 1 is a refrigeration cycle of an air conditioner showing an embodiment of the present invention.

【図2】図1の冷凍サイクルの運転状態を示したモリエ
ル線図。
FIG. 2 is a Mollier diagram showing an operating state of the refrigeration cycle of FIG.

【図3】他の実施形態を示す空気調和機の冷凍サイク
ル。
FIG. 3 is a refrigeration cycle for an air conditioner according to another embodiment.

【図4】図2の冷凍サイクルの運転状態を示したモリエ
ル線図。
FIG. 4 is a Mollier diagram showing an operating state of the refrigeration cycle in FIG.

【符号の説明】[Explanation of symbols]

1…圧縮機、3…室内熱交換器、4…室外熱交換器、7
…室内膨張弁、8…室外膨張弁、9…受液器、20…マ
イクロコンピュータ、21,22…温度センサ、50…
ガス側接続配管、51…液側接続配管、100…室外
機、200…室内機。
1 ... Compressor, 3 ... Indoor heat exchanger, 4 ... Outdoor heat exchanger, 7
... indoor expansion valve, 8 ... outdoor expansion valve, 9 ... liquid receiver, 20 ... microcomputers 21,22 ... temperature sensor, 50 ...
Gas side connection pipe, 51 ... Liquid side connection pipe, 100 ... Outdoor unit, 200 ... Indoor unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡部 眞幸 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 (72)発明者 塚田 福治 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 Fターム(参考) 3L060 AA08 CC04 DD02 EE02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masayuki Okabe             Hitachi, Ltd. 390 Muramatsu, Shimizu City, Shizuoka Prefecture             Air conditioning system Shimizu Production Headquarters (72) Inventor Fukuji Tsukada             Hitachi, Ltd. 390 Muramatsu, Shimizu City, Shizuoka Prefecture             Air conditioning system Shimizu Production Headquarters F-term (reference) 3L060 AA08 CC04 DD02 EE02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、凝縮器、減圧装置、蒸発器とを配
管接続して冷凍サイクルとした空気調和機において、 蒸発器入口温度と凝縮器出口温度とを検出し、前記蒸発
器入口温度から前記圧縮機の吸入圧力を、前記凝縮器出
口温度から前記圧縮機の吐出圧力をそれぞれ演算して前
記圧縮機の吐出圧力と吸入圧力の比である運転圧力比を
求めることを特徴とする空気調和機。
1. An air conditioner, in which a compressor, a condenser, a decompression device, and an evaporator are connected by piping to form a refrigeration cycle, and an evaporator inlet temperature and a condenser outlet temperature are detected, and the evaporator inlet temperature is detected. From the suction pressure of the compressor and the discharge pressure of the compressor from the outlet temperature of the condenser to obtain an operating pressure ratio, which is the ratio of the discharge pressure of the compressor to the suction pressure. Harmony machine.
【請求項2】請求項1に記載のものにおいて、前記吸入
圧力は前記圧縮機の運転周波数及び前記凝縮器と前記蒸
発器を接続する配管長さに関連して求めることを特徴と
する空気調和機。
2. The air conditioner according to claim 1, wherein the suction pressure is obtained in relation to an operating frequency of the compressor and a length of a pipe connecting the condenser and the evaporator. Machine.
【請求項3】請求項1に記載のものにおいて、前記凝縮
器出口側に開度が可変できる膨脹弁と該膨脹弁の出口に
余剰冷媒を貯留する受液器とを設け、前記膨脹弁を全開
して前記運転圧力比を求めることを特徴とする空気調和
機。
3. The expansion valve according to claim 1, wherein an expansion valve having a variable opening degree is provided on the outlet side of the condenser, and a receiver for storing excess refrigerant is provided at the outlet of the expansion valve. An air conditioner, which is fully opened to obtain the operating pressure ratio.
【請求項4】請求項1に記載のものにおいて、前記吸入
圧力は、吸入側の飽和圧力、前記圧縮機のモータ回転数
に比例するものに係数を加えた値、前記凝縮器と前記蒸
発器を接続する配管長さ、の和となる値のべき乗に関連
して求めることを特徴とする空気調和機。
4. The suction pressure according to claim 1, wherein the suction pressure is a saturation pressure on the suction side, a value proportional to a motor rotation speed of the compressor, and a coefficient is added to the suction pressure, the condenser and the evaporator. An air conditioner characterized by being obtained in relation to a power of a value that is the sum of the lengths of the pipes connecting the.
【請求項5】請求項1に記載のものにおいて、求めた運
転圧力比が所定の範囲となるように前記圧縮機の運転周
波数を制御することを特徴とする空気調和機。
5. The air conditioner according to claim 1, wherein the operating frequency of the compressor is controlled so that the obtained operating pressure ratio falls within a predetermined range.
JP2002066284A 2002-03-12 2002-03-12 Air conditioner Expired - Lifetime JP3985092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002066284A JP3985092B2 (en) 2002-03-12 2002-03-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002066284A JP3985092B2 (en) 2002-03-12 2002-03-12 Air conditioner

Publications (2)

Publication Number Publication Date
JP2003262385A true JP2003262385A (en) 2003-09-19
JP3985092B2 JP3985092B2 (en) 2007-10-03

Family

ID=29198148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002066284A Expired - Lifetime JP3985092B2 (en) 2002-03-12 2002-03-12 Air conditioner

Country Status (1)

Country Link
JP (1) JP3985092B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090241570A1 (en) * 2008-03-27 2009-10-01 Denso Corporation Refrigerant cycle system
JP2013160490A (en) * 2012-02-09 2013-08-19 Hitachi Appliances Inc Heat pump type water heater
CN103807979A (en) * 2014-02-28 2014-05-21 青岛海信日立空调系统有限公司 Multi-union variable frequency air conditioner based on micro-channel heat exchanger and control method thereof
WO2014156313A1 (en) * 2013-03-27 2014-10-02 日立アプライアンス株式会社 Air conditioner and method for operating air conditioner
JP2015230153A (en) * 2014-06-06 2015-12-21 三菱電機株式会社 Air conditioner
WO2016009559A1 (en) * 2014-07-18 2016-01-21 三菱電機株式会社 Refrigeration cycle device
WO2016152552A1 (en) * 2015-03-26 2016-09-29 三菱重工業株式会社 Air conditioning system control device, air conditioning system, air conditioning control program, and air conditioning system control method
CN109210687A (en) * 2018-09-21 2019-01-15 宁波奥克斯电气股份有限公司 A kind of control method of air-conditioning system
CN112944600A (en) * 2021-03-22 2021-06-11 珠海格力电器股份有限公司 Air conditioner operation control method and system, air conditioner and storage medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9835341B2 (en) 2013-01-28 2017-12-05 Daikin Industries, Ltd. Air conditioner
WO2015160428A1 (en) 2014-04-16 2015-10-22 Johnson Controls Technology Company Method for operating a chiller
CN108131805B (en) * 2017-10-31 2020-07-10 宁波奥克斯电气股份有限公司 Multi-split self-adaptive adjustment control method and device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090241570A1 (en) * 2008-03-27 2009-10-01 Denso Corporation Refrigerant cycle system
JP2013160490A (en) * 2012-02-09 2013-08-19 Hitachi Appliances Inc Heat pump type water heater
CN106839499B (en) * 2013-03-27 2019-05-21 日立江森自控空调有限公司 The method of operation of air conditioner and air conditioner
WO2014156313A1 (en) * 2013-03-27 2014-10-02 日立アプライアンス株式会社 Air conditioner and method for operating air conditioner
JP2014190632A (en) * 2013-03-27 2014-10-06 Hitachi Appliances Inc Air conditioner and air conditioner operation method
CN105074353A (en) * 2013-03-27 2015-11-18 日立空调·家用电器株式会社 Air conditioner and method for operating air conditioner
CN106839499A (en) * 2013-03-27 2017-06-13 江森自控日立空调技术(香港)有限公司 The method of operation of air conditioner and air conditioner
CN105074353B (en) * 2013-03-27 2017-03-15 江森自控日立空调技术(香港)有限公司 Air conditioner and the method for operation of air conditioner
CN103807979B (en) * 2014-02-28 2016-08-17 青岛海信日立空调系统有限公司 Variable-frequency multi-connection type air-conditioning based on micro-channel heat exchanger and control method thereof
CN103807979A (en) * 2014-02-28 2014-05-21 青岛海信日立空调系统有限公司 Multi-union variable frequency air conditioner based on micro-channel heat exchanger and control method thereof
JP2015230153A (en) * 2014-06-06 2015-12-21 三菱電機株式会社 Air conditioner
WO2016009559A1 (en) * 2014-07-18 2016-01-21 三菱電機株式会社 Refrigeration cycle device
JPWO2016009559A1 (en) * 2014-07-18 2017-04-27 三菱電機株式会社 Refrigeration cycle equipment
WO2016152552A1 (en) * 2015-03-26 2016-09-29 三菱重工業株式会社 Air conditioning system control device, air conditioning system, air conditioning control program, and air conditioning system control method
JP2016183817A (en) * 2015-03-26 2016-10-20 三菱重工業株式会社 Controller of air conditioning system, air conditioning system, control program of air conditioning system, and control method of air conditioning system
EP3260792A4 (en) * 2015-03-26 2018-03-14 Mitsubishi Heavy Industries Thermal Systems, Ltd. Air conditioning system control device, air conditioning system, air conditioning control program, and air conditioning system control method
CN109210687A (en) * 2018-09-21 2019-01-15 宁波奥克斯电气股份有限公司 A kind of control method of air-conditioning system
CN112944600A (en) * 2021-03-22 2021-06-11 珠海格力电器股份有限公司 Air conditioner operation control method and system, air conditioner and storage medium
CN112944600B (en) * 2021-03-22 2022-03-29 珠海格力电器股份有限公司 Air conditioner operation control method and system, air conditioner and storage medium

Also Published As

Publication number Publication date
JP3985092B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
KR100540808B1 (en) Control method for Superheating of heat pump system
US6973793B2 (en) Estimating evaporator airflow in vapor compression cycle cooling equipment
US7856836B2 (en) Refrigerating air conditioning system
EP1287298B1 (en) Control system of degree of superheat of air conditioner and control method thereof
EP1586836B1 (en) Cooling cycle apparatus and method of controlling linear expansion valve of the same
EP0751356A3 (en) Air conditioning apparatus
CN112050299B (en) Air conditioner
EP1431677B1 (en) Air conditioner
JP2004226006A (en) Controller for multiple indoor unit type air conditioner
JP2003262385A (en) Air conditioner
WO2019207741A1 (en) Air conditioner
JP3596506B2 (en) Refrigeration equipment
CN113175735A (en) Method for calculating capacity energy efficiency of air conditioner, computer storage medium and air conditioner
JP2007101177A (en) Air conditioner or refrigerating cycle device
JP2000161830A (en) Refrigerator and its controlling method
CN112944618B (en) Air conditioner capacity estimation method and air conditioner
JP2001280756A (en) Refrigerating unit
JPH09324955A (en) Refrigerating device
JP4131509B2 (en) Refrigeration cycle controller
JP3661014B2 (en) Refrigeration equipment
JP2003156260A (en) Control method for air-conditioner
JP3511708B2 (en) Operation control unit for air conditioner
JPH11201572A (en) Multiroom air conditioner
JPH10160273A (en) Air conditioner
WO2021229766A1 (en) Refrigerator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

R151 Written notification of patent or utility model registration

Ref document number: 3985092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term