WO2016152552A1 - Air conditioning system control device, air conditioning system, air conditioning control program, and air conditioning system control method - Google Patents

Air conditioning system control device, air conditioning system, air conditioning control program, and air conditioning system control method Download PDF

Info

Publication number
WO2016152552A1
WO2016152552A1 PCT/JP2016/057550 JP2016057550W WO2016152552A1 WO 2016152552 A1 WO2016152552 A1 WO 2016152552A1 JP 2016057550 W JP2016057550 W JP 2016057550W WO 2016152552 A1 WO2016152552 A1 WO 2016152552A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
compressor
air conditioning
refrigerant
conditioning system
Prior art date
Application number
PCT/JP2016/057550
Other languages
French (fr)
Japanese (ja)
Inventor
隆博 加藤
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP16768455.4A priority Critical patent/EP3260792B1/en
Priority to ES16768455T priority patent/ES2745753T3/en
Priority to CN201680017419.5A priority patent/CN107614984A/en
Publication of WO2016152552A1 publication Critical patent/WO2016152552A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator

Definitions

  • the present invention relates to a control device of an air conditioning system, an air conditioning system, a control program of the air conditioning system, and a control method of the air conditioning system.
  • the operating pressure of the refrigerant is made constant regardless of the indoor load, and each load in the plurality of indoor units.
  • pressure constant control Some controls (hereinafter referred to as "pressure constant control") are performed to secure the necessary capacity according to the above.
  • Patent Document 1 one end is connected between the expansion valve and the indoor heat exchanger as a refrigeration cycle that supplies the air conditioning capacity according to the required operating capacity without reducing the compressor operating efficiency
  • the refrigerant circuit includes an injection circuit whose other end is connected to the compressor, and the number of rotations of the compressor falls within the rotation speed range of the down slope in the compressor performance curve, the gas refrigerant is injected into the compressor, and the rotation speed of the compressor is compressed.
  • An air conditioning system is disclosed that does not inject the gas refrigerant into the compressor within the range of the upslope rotational speed in the machine performance curve.
  • control for adjusting the target pressure may be performed in response to the decrease in the indoor load, as opposed to the pressure constant control.
  • the case where the indoor load decreases is, for example, when the indoor suction temperature approaches the set temperature.
  • the adjustment of the target pressure is performed by controlling the number of revolutions of the compressor, and for example, the target low pressure is increased during cooling and the target high pressure is reduced during heating to suppress the necessary capacity. Thereby, reduction of the power consumption of the compressor is realized.
  • Patent Document 1 requires an injection circuit, which complicates the structure of the refrigerant circuit.
  • the compressor may be operated at an operating point deviated from the efficient operating point for the compressor.
  • the present invention has been made in view of such circumstances, and is a control device for an air conditioning system, an air conditioning system, and an air conditioning system that reduce power consumption of the compressor and enable the compressor to operate more efficiently. It is an object of the present invention to provide a control program for a control method of an air conditioning system.
  • a control device of an air conditioning system of the present invention an air conditioning system, a control program of an air conditioning system, and a control method of an air conditioning system adopt the following means.
  • a control device of an air conditioning system includes pressure control means for controlling the number of rotations of a compressor such that the operating pressure of the refrigerant becomes a predetermined target pressure, and control by the pressure control means.
  • pressure ratio control means for controlling a pressure ratio, which is a ratio of the high pressure to the low pressure of the refrigerant, so as to become an operating point to improve the efficiency of the compressor after that.
  • the control device of the air conditioning system according to the present configuration performs, for example, control to make the operating pressure of the refrigerant constant regardless of the indoor load.
  • the number of rotations of the compressor is controlled by the pressure control means so that the operating pressure of the refrigerant becomes a predetermined target pressure. This reduces the power consumption.
  • the control by the pressure control means may cause the compressor to be operated at an operating point deviated from the efficient operating point for the compressor.
  • the pressure ratio control means controls the pressure ratio which is the ratio of the high pressure to the low pressure of the refrigerant so as to be an operating point for improving the efficiency of the compressor compared to that before. Ru.
  • the present configuration reduces the power consumption of the compressor and enables the compressor to be operated more efficiently.
  • the pressure control unit may reduce the number of rotations of the compressor such that the operating pressure becomes the target pressure.
  • the capacity of the air conditioning system is suppressed, and the power consumption of the air conditioning system is further reduced.
  • the pressure ratio control means may control the pressure ratio without changing the rotational speed of the compressor.
  • the pressure ratio is controlled without changing the number of revolutions of the compressor, that is, without performing control on the compressor, and the operating point of the compressor can be easily changed to a desired value.
  • the pressure ratio control means may control the pressure ratio by controlling the rotational speed of a fan provided in the outdoor unit.
  • the operating point of the compressor can be easily changed to a desired value.
  • the pressure ratio control means may control the pressure ratio by controlling the opening degree of the expansion valve provided in the outdoor unit.
  • the operating point of the compressor can be easily changed to a desired value.
  • An air conditioning system includes an outdoor unit, an indoor unit, and the control device described above.
  • a control program of an air conditioning system is a computer comprising: pressure control means for controlling the number of rotations of a compressor such that the operating pressure of the refrigerant becomes a predetermined target pressure; Function as pressure ratio control means for controlling the pressure ratio which is the ratio of the high pressure to the low pressure of the refrigerant so as to become an operating point to improve the efficiency of the compressor compared to that before, after control by means
  • a control method of an air conditioning system in a fourth aspect of the present invention, there is provided a first step of controlling the number of revolutions of a compressor such that the operating pressure of the refrigerant becomes a predetermined target pressure; And a second step of controlling a pressure ratio, which is a ratio of the high pressure to the low pressure of the refrigerant, to become an operating point that improves the efficiency of the compressor compared to that of the former.
  • the power consumption of the compressor can be reduced, and the compressor can be operated more efficiently.
  • FIG. 1 is a refrigerant circuit diagram of a multi-type air conditioning system in which a plurality of indoor units are connected to a single outdoor unit according to an embodiment of the present invention.
  • a plurality of indoor units 3A and 3B are connected in parallel to one outdoor unit 2.
  • the plurality of indoor units 3A, 3B are connected in parallel with each other between the gas side pipe 4 connected to the outdoor unit 2 and the liquid side pipe 5 via the branching unit 6.
  • the outdoor unit 2 includes an inverter-driven compressor 10 for compressing a refrigerant, a four-way switching valve 12 for switching the circulation direction of the refrigerant, an outdoor heat exchanger 13 for heat exchange between the refrigerant and the outside air, and an outdoor heat exchanger 13 A supercooling coil 14 integrally formed, an outdoor expansion valve (EEVH) 15, a receiver 16 for storing liquid refrigerant, a subcooling heat exchanger 17 for supercooling the liquid refrigerant, and supercooling heat exchange A supercooling expansion valve (EEVSC) 18 for controlling the amount of refrigerant diverted to the compressor 17 and an accumulator for separating a liquid component from the refrigerant gas sucked into the compressor 10 and attracting only the gas component to the compressor 10 side A gas side operation valve 20 and a liquid side operation valve 21 are provided.
  • EVH outdoor expansion valve
  • EVSC supercooling expansion valve
  • the above-described devices on the outdoor unit 2 side are sequentially connected via the refrigerant pipe 22 to constitute a known outdoor-side refrigerant circuit 23. Further, the outdoor unit 2 is provided with an outdoor fan 24 for blowing the outside air to the outdoor heat exchanger 13.
  • the gas side pipe 4 and the liquid side pipe 5 are refrigerant pipes connected to the gas side operation valve 20 and the liquid side operation valve 21 of the outdoor unit 2, and are connected to the outdoor unit 2 at the time of installation and construction at the site
  • the pipe length is appropriately set in accordance with the distance between the plurality of indoor units 3A and 3B.
  • a plurality of branching devices 6 are provided in the middle of the gas side piping 4 and the liquid side piping 5, and an appropriate number of indoor units 3A and 3B are connected via the branching devices 6.
  • a closed refrigeration cycle (refrigerant circuit) 7 is configured.
  • the indoor units 3A and 3B heat exchange the indoor air with the refrigerant, cool or heat them, and provide the indoor air conditioning with the indoor heat exchanger 30, the indoor expansion valve (EEVC) 31, and the indoor heat exchanger 30.
  • An indoor fan 32 for circulating indoor air and an indoor controller 33 are provided, and are connected to the branching unit 6 via the branch gas side pipes 4A, 4B and the branch liquid side pipes 5A, 5B on the indoor side.
  • the cooling operation is performed as follows.
  • the high-temperature, high-pressure refrigerant gas compressed and discharged by the compressor 10 is circulated to the outdoor heat exchanger 13 by the four-way switching valve 12 and is heat exchanged with the outside air blown by the outdoor fan 24 by the outdoor heat exchanger 13 It is condensed and liquefied.
  • the liquid refrigerant is further cooled by the subcooling coil 14, passes through the outdoor expansion valve 15, and is temporarily stored in the receiver 16.
  • the liquid refrigerant whose circulation amount has been adjusted by the receiver 16 is partially flowed from the liquid refrigerant piping in the process of being circulated through the liquid refrigerant piping side through the subcooling heat exchanger 17 and adiabatically expanded by the subcooling expansion valve 18
  • the heat is exchanged with the refrigerant to give a degree of subcooling.
  • the liquid refrigerant is led from the outdoor unit 2 to the liquid side pipe 5 through the liquid side operation valve 21 and is branched to the branched liquid side pipes 5A, 5B of the indoor units 3A, 3B through the branching unit 6. .
  • the liquid refrigerant divided into the branched liquid side pipes 5A, 5B flows into the indoor units 3A, 3B, is adiabatically expanded by the indoor expansion valve 31, and flows into the indoor heat exchanger 30 as a gas-liquid two-phase flow. Ru.
  • the indoor heat exchanger 30 the indoor air and the refrigerant circulated by the indoor fan 32 exchange heat, and the indoor air is cooled and provided for indoor cooling.
  • the refrigerant is gasified, passes through the branch gas side pipes 4A, 4B, and reaches the branch 6, and is merged with the refrigerant gas from other indoor units by the gas side pipe 4.
  • the refrigerant gas joined in the gas side pipe 4 returns to the outdoor unit 2 again, passes through the gas side operation valve 20 and the four-way switching valve 12 and is joined with the refrigerant gas from the subcooling heat exchanger 17. Introduced to In the accumulator 19, the liquid contained in the refrigerant gas is separated, and only the gas is drawn into the compressor 10. The refrigerant is compressed again in the compressor 10, and the cooling operation is performed by repeating the above cycle.
  • the heating operation is performed as follows.
  • the high-temperature, high-pressure refrigerant gas compressed and discharged by the compressor 10 is circulated to the gas-side operation valve 20 via the four-way switching valve 12.
  • the high pressure gas refrigerant is led from the outdoor unit 2 through the gas side operation valve 20 and the gas side pipe 4 and passes through the branching unit 6 and the branch gas side pipes 4A and 4B on the indoor side to a plurality of indoor units 3A and 3B. be introduced.
  • the high temperature / high pressure refrigerant gas introduced into the indoor units 3A, 3B is heat exchanged with the indoor air circulated through the indoor fan 32 by the indoor heat exchanger 30, and the indoor air heated by this is blown out into the room It is served for heating.
  • the refrigerant condensed and liquefied by the indoor heat exchanger 30 passes through the indoor expansion valve 31 and the branch liquid side pipes 5A and 5B to reach the branch 6, and is merged with the refrigerant from the other indoor units. And return to the outdoor unit 2.
  • the degree of opening of the indoor expansion valve 31 is the indoor controller so that the refrigerant outlet temperature or the degree of refrigerant supercooling of the indoor heat exchanger 30 functioning as a condenser becomes the control target value. It is controlled via 33.
  • the refrigerant returned to the outdoor unit 2 passes through the liquid side operation valve 21 to reach the subcooling heat exchanger 17, and after being subcooled as in the case of cooling, flows into the receiver 16 and is temporarily stored. Thus, the circulation amount is adjusted.
  • the liquid refrigerant is supplied to the outdoor expansion valve 15 and adiabatically expanded, and then flows into the outdoor heat exchanger 13 through the subcooling coil 14.
  • the refrigerant exchanges heat with the outside air blown from the outdoor fan 24, and the refrigerant absorbs heat from the outside air to be vaporized and gasified.
  • the refrigerant is introduced from the outdoor heat exchanger 13 through the four-way switching valve 12 to the refrigerant gas from the subcooling heat exchanger 17 and then introduced into the accumulator 19.
  • the liquid contained in the refrigerant gas is separated, and only the gas is drawn into the compressor 10 and compressed again in the compressor 10.
  • the heating operation is performed by repeating the above cycle.
  • FIG. 2 is a block diagram showing an electrical configuration of the air conditioner control device 40 that controls the multi-type air conditioning system 1 according to the present embodiment.
  • the air conditioner control device 40 is configured of, for example, a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), a computer readable storage medium, and the like. Then, a series of processes for realizing various functions are stored in the form of a program, for example, in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing and arithmetic processing. Thus, various functions are realized.
  • CPU central processing unit
  • RAM random access memory
  • ROM read only memory
  • the program may be installed in advance in a ROM or other storage medium, may be provided as stored in a computer-readable storage medium, or may be distributed via a wired or wireless communication means. Etc. may be applied.
  • the computer readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory or the like. Further, the air conditioner control device 40 is provided in the outdoor unit 2.
  • the air conditioner controller 40 includes a pressure control unit 42, a pressure ratio control unit 44, and a storage unit 46.
  • the pressure control unit 42 performs constant pressure control to keep the operating pressure of the refrigerant constant regardless of the indoor load.
  • the constant pressure control secures the necessary capacity of the compressor 10 by controlling the rotational speed of the compressor 10 such that the operating pressure of the refrigerant becomes a predetermined target pressure. More specifically, in the constant pressure control, when the initial number of revolutions of the compressor 10 is determined, the target pressure is set by the model capacity, the number of revolutions (operating frequency), etc. During heating (low pressure) and heating, the discharge pressure (high pressure) is detected as a pressure detection value by a pressure sensor. And pressure fixed control compares this target pressure and a pressure detection value, and controls the number of rotations of compressor 10. FIG.
  • constant pressure control reduces the rotational speed of the compressor 10 when target pressure> pressure detection value during cooling, and raises the rotational speed of the compressor 10 when target pressure ⁇ pressure detection value.
  • constant pressure control raises the rotational speed of the compressor 10 when the target pressure is higher than the detected pressure value during heating, and lowers the rotational speed of the compressor 10 when the target pressure is lower than the detected pressure value.
  • the rotational speed of the compressor 10 is constant, so that the suction pressure is constant during cooling and the discharge pressure is constant during heating.
  • the pressure ratio control unit 44 sets the pressure ratio (high pressure to high pressure to low pressure) of the refrigerant so as to be an operation point that improves the efficiency of the compressor 10 compared to that after the control by the pressure control unit 42. Control (hereinafter referred to as "pressure ratio control").
  • the storage unit 46 stores compressor efficiency distribution information indicating the efficiency distribution of the compressor 10 obtained from the rotational speed and pressure ratio of the compressor 10.
  • FIG. 3 is an efficiency map showing an example of compressor efficiency distribution information, in which the horizontal axis is the number of revolutions of the compressor 10, the vertical axis is the pressure ratio, and the efficiency of the compressor 10 is shown by a solid line Is represented. That is, the efficiency of the compressor 10 is higher as the center of the efficiency map shown in FIG. 3 (inner side of the contour line).
  • the compressor efficiency distribution information is not limited to the efficiency map as shown in FIG. 3 but may be stored in the storage unit 46 in the form of a function or a table.
  • constant pressure control and pressure ratio control executed by the air conditioner control device 40 according to the present embodiment will be described in detail.
  • constant pressure control and pressure ratio control are collectively referred to as high efficiency control.
  • the constant pressure control is to make the operating pressure of the refrigerant constant regardless of the indoor load. Furthermore, the constant pressure control according to the present embodiment, for example, reduces the rotational speed of the compressor 10 so that the pressure of the refrigerant reaches the newly adjusted target pressure when the indoor load decreases. Energy saving control to reduce the ability of
  • the decrease in indoor load is when the indoor suction temperature and the set temperature approach a predetermined range.
  • the difference between the indoor suction temperature and the set temperature of half or more of the indoor units 3 is within 1 ° C.
  • Indoor load is reduced.
  • the pressure control unit 42 decreases the rotational speed of the compressor 10 by raising the target pressure (target low pressure) until then.
  • target pressure target high pressure
  • the target pressure is adjusted stepwise, and in each case, the difference between the indoor suction temperature and the set temperature is detected. And if this difference becomes large, the capacity of the compressor 10 becomes insufficient with respect to the indoor load, so the adjustment of the target pressure ends.
  • the change of the operating point of the compressor 10 when the energy saving control according to the present embodiment is performed will be described with reference to FIG. 3.
  • the operating point indicated by point A is the operating point during normal control before the target pressure is adjusted, that is, before energy saving control is performed.
  • point B is an operating point after energy saving control is performed.
  • the operating point B of the energy saving control is not necessarily an efficient operating point for the compressor 10.
  • a region where the pressure ratio is high is a more efficient operating point.
  • an operating point (the point C in the example of FIG. 3 and hereinafter referred to as “optimum optimum operating point”) which improves the efficiency of the compressor 10 compared to that before.
  • the pressure ratio is controlled.
  • Table 1 shows the adjustment of the operating point of the compressor 10 during cooling and heating.
  • pressure ratio control is performed by controlling the high pressure
  • energy saving control is performed by controlling high pressure during heating
  • pressure ratio control is performed by controlling low pressure.
  • the control purpose is different between the high pressure and the low pressure of the refrigerant between the cooling time and the heating time.
  • the pressure ratio control part 44 which concerns on this embodiment performs pressure ratio control by changing the rotation speed of the outdoor fan 24 as an example. Specifically, when the pressure ratio after the energy saving control is lower than the efficiency optimum operating point, the rotational speed of the outdoor fan 24 is reduced. As a result, while the high pressure of the refrigerant rises during cooling, the low pressure of the refrigerant falls during heating. Therefore, the pressure ratio is increased, and the operating point approaches the efficiency optimum operating point. On the other hand, when the pressure ratio after the energy saving control is higher than the efficiency optimum operating point, the rotational speed of the outdoor fan 24 is increased. As a result, while the high pressure of the refrigerant drops during cooling, the low pressure of the refrigerant rises during heating. Therefore, the pressure ratio is lowered, and the operating point approaches the efficiency optimum operating point.
  • pressure ratio control performs pressure ratio control without changing the rotation speed of the compressor 10. That is, the pressure ratio control is to control the pressure ratio without controlling the compressor 10, and it is easy to change the operating point of the compressor 10 to a desired value.
  • the efficiency optimum operating point is, for example, predetermined as a pressure ratio that provides the best efficiency with respect to the rotational speed of the compressor 10, and may have a certain width with respect to the pressure ratio increase / decrease direction .
  • FIG. 4 is a flowchart showing the flow of the high efficiency control process executed by the air conditioner control device 40.
  • a program (high efficiency control program) for executing this process is stored in advance in a predetermined area of the storage unit 46. It is memorized. Note that, before the high efficiency control process is performed, the air conditioner control device 40 performs constant pressure control (normal control) without energy saving control.
  • step 100 it is determined whether or not the indoor load has decreased to a level at which the energy saving control can be started. If the determination is positive, the process proceeds to step 102. In the case of a negative determination, normal control is continued.
  • step 102 normal control is ended, and setting is made to start energy saving control.
  • the target pressure is adjusted to perform energy saving control.
  • the target pressure target low pressure
  • the target pressure target high pressure
  • step 106 it is determined whether or not the operating pressure matches the adjusted target pressure, and in the case of a positive determination, the process proceeds to step 110, and in the case of a negative determination, the process proceeds to step 108.
  • step 108 the rotational speed of the compressor 10 is controlled so that the operating pressure matches the target pressure, and the process returns to step 106 to compare the operating pressure with the adjusted target pressure. Specifically, when the low pressure is lower than the target low pressure during cooling, or when the high pressure is higher than the target high pressure during heating, the rotational speed of the compressor 10 is reduced. On the other hand, when the low pressure is higher than the target low pressure during cooling, or when the high pressure is lower than the target high pressure during heating, the rotational speed of the compressor 10 is increased.
  • step 110 the efficiency optimum operating point is set according to the rotational speed of the compressor 10.
  • step 112 it is determined whether the actual pressure ratio and the pressure ratio of the efficiency optimum operating point coincide with each other. If the determination is negative, the process proceeds to step 114. If the determination is affirmative, the process returns to step 106, and the energy saving control and the pressure ratio control are repeatedly continued.
  • step 114 the rotational speed of the outdoor fan 24 is controlled so that the actual pressure ratio and the pressure ratio at the efficiency optimum operating point coincide with each other, and the process returns to step 112 again, and the pressure ratio at the actual pressure ratio and the efficiency optimum operating point Compare with.
  • the actual pressure ratio is lower than the pressure ratio at the efficiency optimum operating point, the number of rotations of the outdoor fan 24 is reduced. As a result, the high pressure is increased during cooling, the low pressure is decreased during heating, and the actual pressure ratio is increased.
  • the actual pressure ratio is higher than the pressure ratio at the efficiency optimum operating point, the rotation speed of the outdoor fan 24 is increased. As a result, the high pressure is lowered at the time of cooling, the low pressure is raised at the time of heating, and the actual pressure ratio is lowered.
  • the air conditioner control device 40 controls the number of rotations of the compressor 10 so that the operating pressure of the refrigerant becomes a predetermined target pressure, and after this control, the compression is performed.
  • the pressure ratio which is the ratio of the high pressure to the low pressure of the refrigerant, is controlled so as to be an operating point that improves the efficiency of the machine 10 compared to that of the past.
  • the air conditioner control device 40 reduces the power consumption of the compressor 10 and enables the compressor 10 to operate more efficiently.
  • the present invention is not limited to this.
  • the opening degree of the expansion valve 15 may be controlled.
  • the outdoor expansion valve 15 is throttled.
  • the high pressure is increased during cooling, the low pressure is decreased during heating, and the actual pressure ratio is increased.
  • the outdoor expansion valve 15 is opened.
  • the high pressure is lowered at the time of cooling, the low pressure is raised at the time of heating, and the actual pressure ratio is lowered.
  • both the rotation speed of the outdoor fan 24 and the opening degree of the outdoor expansion valve 15 may be controlled.
  • a plurality of refrigerant circuits each provided with a throttle and a solenoid valve are provided in parallel, and by changing the flow path of the refrigerant by opening and closing the solenoid valve to change the throttle amount, pressure The ratio may be controlled.
  • the pressure ratio may be controlled by providing a plurality of outdoor heat exchangers 13 and changing the number (capacity) of the outdoor heat exchangers 13 through which the refrigerant flows.
  • pressure ratio control may be performed after energy saving control
  • pressure ratio control may be performed without energy saving control. Also good.
  • pressure ratio control may be performed after the normal control (operating point A) so that the operating point of the compressor 10 becomes the more efficient operating point C. .
  • the air-conditioner controller 40 performs constant pressure control to keep the operating pressure of the refrigerant constant regardless of the indoor load
  • the present invention is not limited to this. Energy saving control may be performed without performing pressure constant control.
  • the present invention is not limited to this, and the present invention is not limited to the case where the indoor load decreases. Even when the setting change by the user (administrator) of the air conditioning system 1, for example, the reduction setting of the rotational speed of the compressor 10, the change setting of the target pressure of the refrigerant, etc., energy saving control is performed. Good.

Abstract

An air conditioning control device controls a multi-split air conditioning system so that the operating pressure of refrigerant remains constant regardless of the indoor load. This air conditioning control device controls the rotational speed of a compressor so that the operating pressure of the refrigerant reaches a predetermined target pressure, and then after this control, controls a pressure ratio, which is the ratio of the high pressure of the refrigerant to the low pressure of the refrigerant, so that compressor efficiency is at an operating point where the efficiency is improved. Thus, the air conditioning control device can reduce compressor power consumption and allow the compressor to operate more efficiently.

Description

空調システムの制御装置、空調システム、空調システムの制御プログラム、及び空調システムの制御方法Control device for air conditioning system, air conditioning system, control program for air conditioning system, and control method for air conditioning system
 本発明は、空調システムの制御装置、空調システム、空調システムの制御プログラム、及び空調システムの制御方法に関するものである。 The present invention relates to a control device of an air conditioning system, an air conditioning system, a control program of the air conditioning system, and a control method of the air conditioning system.
 例えば、1台の室外機に複数台の室内機が接続される空調システムである所謂、マルチ型空調システムでは、室内負荷に関わらず冷媒の運転圧力を一定にし、複数の室内機におけるそれぞれの負荷に応じた必要能力を確保するような制御(以下「圧力一定制御」という。)が行われているものがある。 For example, in a so-called multi-type air conditioning system, which is an air conditioning system in which a plurality of indoor units are connected to one outdoor unit, the operating pressure of the refrigerant is made constant regardless of the indoor load, and each load in the plurality of indoor units Some controls (hereinafter referred to as "pressure constant control") are performed to secure the necessary capacity according to the above.
 ここで、特許文献1には、圧縮機運転効率を低下させずに必要な運転容量に応じた空調能力を供給する冷凍サイクルとして、膨張弁及び室内熱交換器との間に一端が接続され、他端が圧縮機に接続されたインジェクション回路を備え、圧縮機の回転数が圧縮機性能曲線における下がり勾配の回転数範囲内では、圧縮機にガス冷媒をインジェクションし、圧縮機の回転数が圧縮機性能曲線における上がり勾配の回転数範囲内では、圧縮機にガス冷媒をインジェクションさせない空調システムが開示されている。 Here, in Patent Document 1, one end is connected between the expansion valve and the indoor heat exchanger as a refrigeration cycle that supplies the air conditioning capacity according to the required operating capacity without reducing the compressor operating efficiency, The refrigerant circuit includes an injection circuit whose other end is connected to the compressor, and the number of rotations of the compressor falls within the rotation speed range of the down slope in the compressor performance curve, the gas refrigerant is injected into the compressor, and the rotation speed of the compressor is compressed. An air conditioning system is disclosed that does not inject the gas refrigerant into the compressor within the range of the upslope rotational speed in the machine performance curve.
 さらに、圧力一定制御に対して、室内負荷の低下に伴い目標圧力を調整する制御(以下「省エネ制御」という。)が行われる場合もある。この室内負荷が低下する場合とは、室内吸込み温度が設定温度に近づいた場合等である。そして、目標圧力の調整は圧縮機の回転数を制御することで行われ、例えば、冷房時には目標低圧圧力を上げ、暖房時には目標高圧圧力を下げることで必要能力を抑制する。これにより、圧縮機の消費電力の低減が実現される。 Furthermore, control for adjusting the target pressure (hereinafter referred to as "energy saving control") may be performed in response to the decrease in the indoor load, as opposed to the pressure constant control. The case where the indoor load decreases is, for example, when the indoor suction temperature approaches the set temperature. The adjustment of the target pressure is performed by controlling the number of revolutions of the compressor, and for example, the target low pressure is increased during cooling and the target high pressure is reduced during heating to suppress the necessary capacity. Thereby, reduction of the power consumption of the compressor is realized.
特開2013-119957号公報JP, 2013-119957, A
 しかしながら、特許文献1に開示されている空調システムでは、インジェクション回路を必要とするため、冷媒回路の構造が複雑化する。
 また、省エネ制御では、目標圧力を調整することによって、圧縮機にとって効率の良い運転点からずれた運転点で圧縮機を運転することとなる場合がある。
However, the air conditioning system disclosed in Patent Document 1 requires an injection circuit, which complicates the structure of the refrigerant circuit.
In the energy saving control, by adjusting the target pressure, the compressor may be operated at an operating point deviated from the efficient operating point for the compressor.
 本発明は、このような事情に鑑みてなされたものであって、圧縮機の消費電力を低減し、かつ圧縮機をより効率良く運転可能とする、空調システムの制御装置、空調システム、空調システムの制御プログラム、及び空調システムの制御方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a control device for an air conditioning system, an air conditioning system, and an air conditioning system that reduce power consumption of the compressor and enable the compressor to operate more efficiently. It is an object of the present invention to provide a control program for a control method of an air conditioning system.
 上記課題を解決するために、本発明の空調システムの制御装置、空調システム、空調システムの制御プログラム、及び空調システムの制御方法は以下の手段を採用する。 In order to solve the above-mentioned subject, a control device of an air conditioning system of the present invention, an air conditioning system, a control program of an air conditioning system, and a control method of an air conditioning system adopt the following means.
 本発明の第一態様に係る空調システムの制御装置は、冷媒の運転圧力が予め定められた目標圧力となるように、圧縮機の回転数を制御する圧力制御手段と、前記圧力制御手段による制御の後に、前記圧縮機の効率をそれまでに比べて向上させる運転点となるように、冷媒の高圧と低圧との比である圧力比を制御する圧力比制御手段と、を備える。 A control device of an air conditioning system according to a first aspect of the present invention includes pressure control means for controlling the number of rotations of a compressor such that the operating pressure of the refrigerant becomes a predetermined target pressure, and control by the pressure control means. And pressure ratio control means for controlling a pressure ratio, which is a ratio of the high pressure to the low pressure of the refrigerant, so as to become an operating point to improve the efficiency of the compressor after that.
 本構成に係る空調システムの制御装置は、例えば、室内負荷に関わらず冷媒の運転圧力を一定とする制御を行う。 The control device of the air conditioning system according to the present configuration performs, for example, control to make the operating pressure of the refrigerant constant regardless of the indoor load.
 そして、圧力制御手段によって、冷媒の運転圧力を予め定められた目標圧力となるように、圧縮機の回転数が制御される。これにより、消費電力の低減が実現される。
 しかしながら、圧力制御手段による制御によって、圧縮機にとって効率の良い運転点からずれた運転点で圧縮機を運転することとなる場合がある。
Then, the number of rotations of the compressor is controlled by the pressure control means so that the operating pressure of the refrigerant becomes a predetermined target pressure. This reduces the power consumption.
However, the control by the pressure control means may cause the compressor to be operated at an operating point deviated from the efficient operating point for the compressor.
 そこで、圧力制御手段による制御の後に、圧力比制御手段によって、圧縮機の効率をそれまでに比べて向上させる運転点となるように、冷媒の高圧と低圧との比である圧力比が制御される。 Therefore, after the control by the pressure control means, the pressure ratio control means controls the pressure ratio which is the ratio of the high pressure to the low pressure of the refrigerant so as to be an operating point for improving the efficiency of the compressor compared to that before. Ru.
 これにより、本構成は、圧縮機の消費電力を低減し、かつ圧縮機をより効率良く運転可能とする。 Thus, the present configuration reduces the power consumption of the compressor and enables the compressor to be operated more efficiently.
 上記第一態様では、前記圧力制御手段が、前記運転圧力が前記目標圧力となるように前記圧縮機の回転数を下げてもよい。 In the first aspect, the pressure control unit may reduce the number of rotations of the compressor such that the operating pressure becomes the target pressure.
 本構成によれば、空調システムの能力が抑制され、空調システムの消費電力がより低減する。 According to this configuration, the capacity of the air conditioning system is suppressed, and the power consumption of the air conditioning system is further reduced.
 上記第一態様では、前記圧力比制御手段が、前記圧縮機の回転数を変えることなく、前記圧力比を制御してもよい。 In the first aspect, the pressure ratio control means may control the pressure ratio without changing the rotational speed of the compressor.
 本構成によれば、圧縮機の回転数を変化させない、すなわち、圧縮機に対する制御を行うことなく圧力比を制御することとなり、圧縮機の運転点を所望の値に変化させやすい。 According to this configuration, the pressure ratio is controlled without changing the number of revolutions of the compressor, that is, without performing control on the compressor, and the operating point of the compressor can be easily changed to a desired value.
 上記第一態様では、前記圧力比制御手段が、室外機に設けられるファンの回転数を制御することによって前記圧力比を制御してもよい。 In the first aspect, the pressure ratio control means may control the pressure ratio by controlling the rotational speed of a fan provided in the outdoor unit.
 本構成によれば、簡易に圧縮機の運転点を所望の値に変化させることができる。 According to this configuration, the operating point of the compressor can be easily changed to a desired value.
 上記第一態様では、前記圧力比制御手段が、室外機に設けられる膨張弁の開度を制御することによって前記圧力比を制御してもよい。 In the first aspect, the pressure ratio control means may control the pressure ratio by controlling the opening degree of the expansion valve provided in the outdoor unit.
 本構成によれば、簡易に圧縮機の運転点を所望の値に変化させることができる。 According to this configuration, the operating point of the compressor can be easily changed to a desired value.
 本発明の第二態様に係る空調システムは、室外機と、室内機と、上記記載の制御装置と、を備える。 An air conditioning system according to a second aspect of the present invention includes an outdoor unit, an indoor unit, and the control device described above.
 本発明の第三態様に係る空調システムの制御プログラムは、コンピュータを、冷媒の運転圧力が予め定められた目標圧力となるように、圧縮機の回転数を制御する圧力制御手段と、前記圧力制御手段による制御の後に、前記圧縮機の効率をそれまでに比べて向上させる運転点となるように、冷媒の高圧と低圧との比である圧力比を制御する圧力比制御手段と、して機能させる。 A control program of an air conditioning system according to a third aspect of the present invention is a computer comprising: pressure control means for controlling the number of rotations of a compressor such that the operating pressure of the refrigerant becomes a predetermined target pressure; Function as pressure ratio control means for controlling the pressure ratio which is the ratio of the high pressure to the low pressure of the refrigerant so as to become an operating point to improve the efficiency of the compressor compared to that before, after control by means Let
 本発明の第四態様に係る空調システムの制御方法は、冷媒の運転圧力が予め定められた目標圧力となるように、圧縮機の回転数を制御する第1工程と、前記第1工程による制御の後に、前記圧縮機の効率をそれまでに比べて向上させる運転点となるように、冷媒の高圧と低圧との比である圧力比を制御する第2工程と、を有する。 In a control method of an air conditioning system according to a fourth aspect of the present invention, there is provided a first step of controlling the number of revolutions of a compressor such that the operating pressure of the refrigerant becomes a predetermined target pressure; And a second step of controlling a pressure ratio, which is a ratio of the high pressure to the low pressure of the refrigerant, to become an operating point that improves the efficiency of the compressor compared to that of the former.
 本発明によれば、消圧縮機の消費電力を低減し、かつ圧縮機をより効率良く運転可できる、という優れた効果を有する。 According to the present invention, the power consumption of the compressor can be reduced, and the compressor can be operated more efficiently.
本発明の実施形態に係るマルチ型空調システムの冷媒回路図である。It is a refrigerant circuit figure of the multi type air conditioning system concerning an embodiment of the present invention. 本発明の実施形態に係る空調機制御装置の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the air conditioner control device which concerns on embodiment of this invention. 本発明の実施形態に係る圧縮機の効率マップである。It is an efficiency map of the compressor concerning the embodiment of the present invention. 本発明の実施形態に係る高効率化制御処理の流れを示すフローチャートである。It is a flow chart which shows the flow of the efficiency improvement control processing concerning the embodiment of the present invention. 本発明の実施形態に係る圧縮機の効率マップである。It is an efficiency map of the compressor concerning the embodiment of the present invention.
 以下に、本発明に係る空調システムの制御装置、空調システム、空調システムの制御プログラム、及び空調システムの制御方法の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of a control device of an air conditioning system, an air conditioning system, a control program of an air conditioning system, and a control method of an air conditioning system according to the present invention will be described with reference to the drawings.
 図1は、本発明の実施形態に係る1台の室外機に複数台の室内機が接続されるマルチ型空調システムの冷媒回路図が示されている。
 マルチ型空調システム1は、1台の室外機2に、複数台の室内機3A,3Bが並列に接続されたものである。複数台の室内機3A,3Bは、室外機2に接続されているガス側配管4と液側配管5との間に分岐器6を介して互いに並列に接続されている。
FIG. 1 is a refrigerant circuit diagram of a multi-type air conditioning system in which a plurality of indoor units are connected to a single outdoor unit according to an embodiment of the present invention.
In the multi-type air conditioning system 1, a plurality of indoor units 3A and 3B are connected in parallel to one outdoor unit 2. The plurality of indoor units 3A, 3B are connected in parallel with each other between the gas side pipe 4 connected to the outdoor unit 2 and the liquid side pipe 5 via the branching unit 6.
 室外機2は、冷媒を圧縮するインバータ駆動の圧縮機10と、冷媒の循環方向を切換える四方切換弁12と、冷媒と外気とを熱交換させる室外熱交換器13と、室外熱交換器13と一体的に構成されている過冷却コイル14と、室外膨張弁(EEVH)15と、液冷媒を貯留するレシーバ16と、液冷媒に過冷却を与える過冷却熱交換器17と、過冷却熱交換器17に分流される冷媒量を制御する過冷却用膨張弁(EEVSC)18と、圧縮機10に吸入される冷媒ガスから液分を分離し、ガス分のみを圧縮機10側に吸入させるアキュームレータ19と、ガス側操作弁20と、液側操作弁21とを備えている。 The outdoor unit 2 includes an inverter-driven compressor 10 for compressing a refrigerant, a four-way switching valve 12 for switching the circulation direction of the refrigerant, an outdoor heat exchanger 13 for heat exchange between the refrigerant and the outside air, and an outdoor heat exchanger 13 A supercooling coil 14 integrally formed, an outdoor expansion valve (EEVH) 15, a receiver 16 for storing liquid refrigerant, a subcooling heat exchanger 17 for supercooling the liquid refrigerant, and supercooling heat exchange A supercooling expansion valve (EEVSC) 18 for controlling the amount of refrigerant diverted to the compressor 17 and an accumulator for separating a liquid component from the refrigerant gas sucked into the compressor 10 and attracting only the gas component to the compressor 10 side A gas side operation valve 20 and a liquid side operation valve 21 are provided.
 室外機2側の上記各機器は、冷媒配管22を介して順次接続され、公知の室外側冷媒回路23を構成している。また、室外機2には、室外熱交換器13に対して外気を送風する室外ファン24が設けられている。 The above-described devices on the outdoor unit 2 side are sequentially connected via the refrigerant pipe 22 to constitute a known outdoor-side refrigerant circuit 23. Further, the outdoor unit 2 is provided with an outdoor fan 24 for blowing the outside air to the outdoor heat exchanger 13.
 ガス側配管4及び液側配管5は、室外機2のガス側操作弁20及び液側操作弁21に接続される冷媒配管であり、現場での据え付け施工時に、室外機2とそれに接続される複数台の室内機3A,3Bとの間の距離に応じて、その配管長が適宜設定されるようになっている。ガス側配管4及び液側配管5の途中には、複数の分岐器6が設けられ、該分岐器6を介して適宜台数の室内機3A,3Bが接続されている。これによって、密閉された1系統の冷凍サイクル(冷媒回路)7が構成されている。 The gas side pipe 4 and the liquid side pipe 5 are refrigerant pipes connected to the gas side operation valve 20 and the liquid side operation valve 21 of the outdoor unit 2, and are connected to the outdoor unit 2 at the time of installation and construction at the site The pipe length is appropriately set in accordance with the distance between the plurality of indoor units 3A and 3B. A plurality of branching devices 6 are provided in the middle of the gas side piping 4 and the liquid side piping 5, and an appropriate number of indoor units 3A and 3B are connected via the branching devices 6. Thus, a closed refrigeration cycle (refrigerant circuit) 7 is configured.
 室内機3A,3Bは、室内空気を冷媒と熱交換させて冷却又は加熱し、室内の空調に供する室内熱交換器30と、室内膨張弁(EEVC)31と、室内熱交換器30を介して室内空気を循環させる室内ファン32と、室内コントローラ33とを備えており、室内側の分岐ガス側配管4A,4B及び分岐液側配管5A,5Bを介して分岐器6に接続されている。 The indoor units 3A and 3B heat exchange the indoor air with the refrigerant, cool or heat them, and provide the indoor air conditioning with the indoor heat exchanger 30, the indoor expansion valve (EEVC) 31, and the indoor heat exchanger 30. An indoor fan 32 for circulating indoor air and an indoor controller 33 are provided, and are connected to the branching unit 6 via the branch gas side pipes 4A, 4B and the branch liquid side pipes 5A, 5B on the indoor side.
 上記のマルチ型空調システム1において、冷房運転は、以下のように行われる。
 圧縮機10で圧縮され、吐出された高温高圧の冷媒ガスは、四方切換弁12により室外熱交換器13側に循環され、室外熱交換器13で室外ファン24により送風される外気と熱交換されて凝縮液化される。この液冷媒は、過冷却コイル14で更に冷却された後、室外膨張弁15を通過し、レシーバ16内にいったん貯留される。
In the multi-type air conditioning system 1 described above, the cooling operation is performed as follows.
The high-temperature, high-pressure refrigerant gas compressed and discharged by the compressor 10 is circulated to the outdoor heat exchanger 13 by the four-way switching valve 12 and is heat exchanged with the outside air blown by the outdoor fan 24 by the outdoor heat exchanger 13 It is condensed and liquefied. The liquid refrigerant is further cooled by the subcooling coil 14, passes through the outdoor expansion valve 15, and is temporarily stored in the receiver 16.
 レシーバ16で循環量が調整された液冷媒は、過冷却熱交換器17を経て液冷媒配管側を流通される過程で、液冷媒配管から一部分流され、過冷却用膨張弁18で断熱膨張された冷媒と熱交換されて過冷却度が付与される。この液冷媒は、液側操作弁21を経て室外機2から液側配管5へと導かれ、分岐器6を介して各室内機3A,3Bの分岐液側配管5A,5Bへと分流される。 The liquid refrigerant whose circulation amount has been adjusted by the receiver 16 is partially flowed from the liquid refrigerant piping in the process of being circulated through the liquid refrigerant piping side through the subcooling heat exchanger 17 and adiabatically expanded by the subcooling expansion valve 18 The heat is exchanged with the refrigerant to give a degree of subcooling. The liquid refrigerant is led from the outdoor unit 2 to the liquid side pipe 5 through the liquid side operation valve 21 and is branched to the branched liquid side pipes 5A, 5B of the indoor units 3A, 3B through the branching unit 6. .
 分岐液側配管5A,5Bに分流された液冷媒は、各室内機3A,3Bに流入し、室内膨張弁31で断熱膨張され、気液二相流となって室内熱交換器30に流入される。室内熱交換器30では、室内ファン32により循環される室内空気と冷媒とが熱交換され、室内空気は冷却されて室内の冷房に供される。一方、冷媒はガス化され、分岐ガス側配管4A,4Bを経て分岐器6に至り、他の室内機からの冷媒ガスとガス側配管4で合流される。 The liquid refrigerant divided into the branched liquid side pipes 5A, 5B flows into the indoor units 3A, 3B, is adiabatically expanded by the indoor expansion valve 31, and flows into the indoor heat exchanger 30 as a gas-liquid two-phase flow. Ru. In the indoor heat exchanger 30, the indoor air and the refrigerant circulated by the indoor fan 32 exchange heat, and the indoor air is cooled and provided for indoor cooling. On the other hand, the refrigerant is gasified, passes through the branch gas side pipes 4A, 4B, and reaches the branch 6, and is merged with the refrigerant gas from other indoor units by the gas side pipe 4.
 ガス側配管4で合流された冷媒ガスは、再び室外機2に戻り、ガス側操作弁20、四方切換弁12を経て、過冷却熱交換器17からの冷媒ガスと合流された後、アキュームレータ19に導入される。アキュームレータ19では、冷媒ガス中に含まれている液分が分離され、ガス分のみが圧縮機10に吸入される。この冷媒は、圧縮機10において再び圧縮され、以上のサイクルを繰り返すことによって冷房運転が行われる。 The refrigerant gas joined in the gas side pipe 4 returns to the outdoor unit 2 again, passes through the gas side operation valve 20 and the four-way switching valve 12 and is joined with the refrigerant gas from the subcooling heat exchanger 17. Introduced to In the accumulator 19, the liquid contained in the refrigerant gas is separated, and only the gas is drawn into the compressor 10. The refrigerant is compressed again in the compressor 10, and the cooling operation is performed by repeating the above cycle.
 一方、暖房運転は、以下のように行われる。
 圧縮機10により圧縮され、吐出された高温高圧の冷媒ガスは、四方切換弁12を介してガス側操作弁20側に循環される。この高圧ガス冷媒は、ガス側操作弁20、ガス側配管4を経て室外機2から導出され、分岐器6、室内側の分岐ガス側配管4A,4Bを経て複数台の室内機3A,3Bに導入される。
On the other hand, the heating operation is performed as follows.
The high-temperature, high-pressure refrigerant gas compressed and discharged by the compressor 10 is circulated to the gas-side operation valve 20 via the four-way switching valve 12. The high pressure gas refrigerant is led from the outdoor unit 2 through the gas side operation valve 20 and the gas side pipe 4 and passes through the branching unit 6 and the branch gas side pipes 4A and 4B on the indoor side to a plurality of indoor units 3A and 3B. be introduced.
 室内機3A,3Bに導入された高温高圧の冷媒ガスは、室内熱交換器30で室内ファン32を介して循環される室内空気と熱交換され、これにより加熱された室内空気は室内に吹出されて暖房に供される。一方、室内熱交換器30で凝縮液化された冷媒は、室内膨張弁31、分岐液側配管5A,5Bを経て分岐器6に至り、他の室内機からの冷媒と合流され、液側配管5を経て室外機2に戻る。なお、暖房時、室内機3A,3Bでは、凝縮器として機能する室内熱交換器30の冷媒出口温度又は冷媒過冷却度が制御目標値となるように、室内膨張弁31の開度が室内コントローラ33を介して制御される。 The high temperature / high pressure refrigerant gas introduced into the indoor units 3A, 3B is heat exchanged with the indoor air circulated through the indoor fan 32 by the indoor heat exchanger 30, and the indoor air heated by this is blown out into the room It is served for heating. On the other hand, the refrigerant condensed and liquefied by the indoor heat exchanger 30 passes through the indoor expansion valve 31 and the branch liquid side pipes 5A and 5B to reach the branch 6, and is merged with the refrigerant from the other indoor units. And return to the outdoor unit 2. During heating, in the indoor units 3A and 3B, the degree of opening of the indoor expansion valve 31 is the indoor controller so that the refrigerant outlet temperature or the degree of refrigerant supercooling of the indoor heat exchanger 30 functioning as a condenser becomes the control target value. It is controlled via 33.
 室外機2に戻った冷媒は、液側操作弁21を経て過冷却熱交換器17に至り、冷房時の場合と同様に過冷却が付与された後、レシーバ16に流入され、いったん貯留されることにより循環量が調整される。この液冷媒は、室外膨張弁15に供給されて断熱膨張された後、過冷却コイル14を経て室外熱交換器13に流入される。 The refrigerant returned to the outdoor unit 2 passes through the liquid side operation valve 21 to reach the subcooling heat exchanger 17, and after being subcooled as in the case of cooling, flows into the receiver 16 and is temporarily stored. Thus, the circulation amount is adjusted. The liquid refrigerant is supplied to the outdoor expansion valve 15 and adiabatically expanded, and then flows into the outdoor heat exchanger 13 through the subcooling coil 14.
 室外熱交換器13では、室外ファン24から送風される外気と冷媒とが熱交換され、冷媒は外気から吸熱して蒸発ガス化される。この冷媒は、室外熱交換器13から四方切換弁12を経て、過冷却熱交換器17からの冷媒ガスと合流された後、アキュームレータ19に導入される。アキュームレータ19では、冷媒ガス中に含まれている液分が分離されてガス分のみが圧縮機10に吸入され、圧縮機10において再び圧縮される。以上のサイクルを繰り返すことによって暖房運転が行われる。 In the outdoor heat exchanger 13, the refrigerant exchanges heat with the outside air blown from the outdoor fan 24, and the refrigerant absorbs heat from the outside air to be vaporized and gasified. The refrigerant is introduced from the outdoor heat exchanger 13 through the four-way switching valve 12 to the refrigerant gas from the subcooling heat exchanger 17 and then introduced into the accumulator 19. In the accumulator 19, the liquid contained in the refrigerant gas is separated, and only the gas is drawn into the compressor 10 and compressed again in the compressor 10. The heating operation is performed by repeating the above cycle.
 図2は、本実施形態に係るマルチ型空調システム1の制御を司る空調機制御装置40の電気的構成を示すブロック図である。なお、図2では、詳細を後述する圧力一定制御及び圧力比制御に関する機能を示す。
 空調機制御装置40は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。また、空調機制御装置40は、室外機2に備えられている。
FIG. 2 is a block diagram showing an electrical configuration of the air conditioner control device 40 that controls the multi-type air conditioning system 1 according to the present embodiment. In addition, in FIG. 2, the function regarding the pressure fixed control and pressure ratio control which mentions a detail later is shown.
The air conditioner control device 40 is configured of, for example, a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), a computer readable storage medium, and the like. Then, a series of processes for realizing various functions are stored in the form of a program, for example, in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing and arithmetic processing. Thus, various functions are realized. The program may be installed in advance in a ROM or other storage medium, may be provided as stored in a computer-readable storage medium, or may be distributed via a wired or wireless communication means. Etc. may be applied. The computer readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory or the like. Further, the air conditioner control device 40 is provided in the outdoor unit 2.
 空調機制御装置40は、圧力制御部42、圧力比制御部44、及び記憶部46を備える。 The air conditioner controller 40 includes a pressure control unit 42, a pressure ratio control unit 44, and a storage unit 46.
 圧力制御部42は、一例として、室内負荷に関わらず冷媒の運転圧力を一定とする圧力一定制御を行う。圧力一定制御は、冷媒の運転圧力が予め定められた目標圧力となるように、圧縮機10の回転数を制御することで、圧縮機10の必要能力を確保する。
 より詳細には、圧力一定制御は、圧縮機10の初期回転数が決定されると、機種容量や回転数(運転周波数)等により目標圧力を設定すると共に、冷房時には、圧力センサにより吸入圧(低圧)、暖房時には、圧力センサにより吐出圧(高圧)をそれぞれ圧力検出値として検出する。そして、圧力一定制御は、この目標圧力と圧力検出値とを比較し、圧縮機10の回転数を制御する。具体的には、圧力一定制御は冷房時において、目標圧力>圧力検出値の場合、圧縮機10の回転数を低下させ、目標圧力<圧力検出値の場合、圧縮機10の回転数を上昇させる。一方、圧力一定制御は暖房時において、目標圧力>圧力検出値の場合、圧縮機10の回転数を上昇させ、目標圧力<圧力検出値の場合、圧縮機10の回転数を下降させる。そして、目標圧力=圧力検出値の場合に、圧縮機10の回転数は一定とされることで、冷房時には吸入圧が一定、暖房時には吐出圧が一定となる。
As an example, the pressure control unit 42 performs constant pressure control to keep the operating pressure of the refrigerant constant regardless of the indoor load. The constant pressure control secures the necessary capacity of the compressor 10 by controlling the rotational speed of the compressor 10 such that the operating pressure of the refrigerant becomes a predetermined target pressure.
More specifically, in the constant pressure control, when the initial number of revolutions of the compressor 10 is determined, the target pressure is set by the model capacity, the number of revolutions (operating frequency), etc. During heating (low pressure) and heating, the discharge pressure (high pressure) is detected as a pressure detection value by a pressure sensor. And pressure fixed control compares this target pressure and a pressure detection value, and controls the number of rotations of compressor 10. FIG. Specifically, constant pressure control reduces the rotational speed of the compressor 10 when target pressure> pressure detection value during cooling, and raises the rotational speed of the compressor 10 when target pressure <pressure detection value. . On the other hand, constant pressure control raises the rotational speed of the compressor 10 when the target pressure is higher than the detected pressure value during heating, and lowers the rotational speed of the compressor 10 when the target pressure is lower than the detected pressure value. When the target pressure = the pressure detection value, the rotational speed of the compressor 10 is constant, so that the suction pressure is constant during cooling and the discharge pressure is constant during heating.
 圧力比制御部44は、圧力制御部42による制御の後に、圧縮機10の効率をそれまでに比べて向上させる運転点となるように、冷媒の高圧と低圧との比である圧力比(高圧/低圧)を制御する(以下「圧力比制御」という。)。 The pressure ratio control unit 44 sets the pressure ratio (high pressure to high pressure to low pressure) of the refrigerant so as to be an operation point that improves the efficiency of the compressor 10 compared to that after the control by the pressure control unit 42. Control (hereinafter referred to as "pressure ratio control").
 記憶部46は、圧縮機10の回転数と圧力比とから得られる圧縮機10の効率分布を示した圧縮機効率分布情報を記憶する。
 図3は、圧縮機効率分布情報の一例を示した効率マップであり、横軸が圧縮機10の回転数とされ、縦軸が圧力比とされ、圧縮機10の効率が実線で等高線状に表されている。すなわち、図3に示される効率マップの略中央(等高線の内側)ほど圧縮機10の効率が高い。なお、圧縮機効率分布情報は、図3のような効率マップに限らず、関数や表形式等で記憶部46に記憶されてもよい。
The storage unit 46 stores compressor efficiency distribution information indicating the efficiency distribution of the compressor 10 obtained from the rotational speed and pressure ratio of the compressor 10.
FIG. 3 is an efficiency map showing an example of compressor efficiency distribution information, in which the horizontal axis is the number of revolutions of the compressor 10, the vertical axis is the pressure ratio, and the efficiency of the compressor 10 is shown by a solid line Is represented. That is, the efficiency of the compressor 10 is higher as the center of the efficiency map shown in FIG. 3 (inner side of the contour line). The compressor efficiency distribution information is not limited to the efficiency map as shown in FIG. 3 but may be stored in the storage unit 46 in the form of a function or a table.
 次に、本実施形態に係る空調機制御装置40によって実行される圧力一定制御及び圧力比制御について詳細に説明する。なお、以下の説明において、圧力一定制御及び圧力比制御を総称して高効率化制御という。 Next, constant pressure control and pressure ratio control executed by the air conditioner control device 40 according to the present embodiment will be described in detail. In the following description, constant pressure control and pressure ratio control are collectively referred to as high efficiency control.
 圧力一定制御は、上述した様に、室内負荷にかかわらず冷媒の運転圧力を一定にするものである。さらに、本実施形態に係る圧力一定制御は、例えば、室内負荷が低下した場合に、冷媒の圧力が新たに調整した目標圧力となるように圧縮機10の回転数を下げることで、圧縮機10の能力を抑制する省エネ制御を行う。 As described above, the constant pressure control is to make the operating pressure of the refrigerant constant regardless of the indoor load. Furthermore, the constant pressure control according to the present embodiment, for example, reduces the rotational speed of the compressor 10 so that the pressure of the refrigerant reaches the newly adjusted target pressure when the indoor load decreases. Energy saving control to reduce the ability of
 室内負荷の低下とは、室内吸込み温度と設定温度とが所定範囲内に近づいた場合である。本実施形態に係るマルチ型空調システム1のように、室内機3が複数接続されている場合は、例えば、半数以上の室内機3の室内吸込み温度と設定温度との差が1℃以内となった場合に、室内負荷が低下したとされる。
 そして、圧力制御部42は、冷房時において室内負荷が低下すると、それまでの目標圧力(目標低圧)を上げることで、圧縮機10の回転数を下げる。一方、暖房時において室内負荷が低下すると、圧力制御部42は、それまでの目標圧力(目標高圧)を下げることで、圧縮機10の回転数を下げる。
 なお、目標圧力は、段階的に調整され、その都度、室内吸込み温度と設定温度との差が検知される。そして、この差が大きくなると、圧縮機10の能力が室内負荷に対して不十分となるため、目標圧力の調整は終了する。
The decrease in indoor load is when the indoor suction temperature and the set temperature approach a predetermined range. When a plurality of indoor units 3 are connected as in the multi-type air conditioning system 1 according to the present embodiment, for example, the difference between the indoor suction temperature and the set temperature of half or more of the indoor units 3 is within 1 ° C. Indoor load is reduced.
Then, when the indoor load decreases during cooling, the pressure control unit 42 decreases the rotational speed of the compressor 10 by raising the target pressure (target low pressure) until then. On the other hand, when the indoor load decreases during heating, the pressure control unit 42 reduces the rotational speed of the compressor 10 by lowering the target pressure (target high pressure) until then.
The target pressure is adjusted stepwise, and in each case, the difference between the indoor suction temperature and the set temperature is detected. And if this difference becomes large, the capacity of the compressor 10 becomes insufficient with respect to the indoor load, so the adjustment of the target pressure ends.
 図3を参照して、本実施形態に係る省エネ制御を行った場合における圧縮機10の運転点の変化を説明する。
 点Aで示される運転点は、目標圧力が調整される前、すなわち省エネ制御が行われる前の通常制御時の運転点である。そして、点Bは、省エネ制御が行われた後の運転点である。
The change of the operating point of the compressor 10 when the energy saving control according to the present embodiment is performed will be described with reference to FIG. 3.
The operating point indicated by point A is the operating point during normal control before the target pressure is adjusted, that is, before energy saving control is performed. And point B is an operating point after energy saving control is performed.
 しかしながら、省エネ制御の運転点Bは、必ずしも圧縮機10にとって効率の良い運転点ではない。図3の例では、運転点Bと同じ回転数であっても、圧力比が高い領域(例えば点Cを含む領域)がより効率の良い運転点となる。 However, the operating point B of the energy saving control is not necessarily an efficient operating point for the compressor 10. In the example of FIG. 3, even if the rotation speed is the same as the operating point B, a region where the pressure ratio is high (for example, a region including the point C) is a more efficient operating point.
 そこで、本実施形態に係る圧力比制御によって、圧縮機10の効率をそれまでに比べて向上させる運転点(図3の例では点Cであり、以下「効率最適運転点」という。)となるように圧力比が制御される。 Therefore, by the pressure ratio control according to the present embodiment, an operating point (the point C in the example of FIG. 3 and hereinafter referred to as “optimum optimum operating point”) which improves the efficiency of the compressor 10 compared to that before. As such, the pressure ratio is controlled.
 表1は、冷房時及び暖房時における圧縮機10の運転点の調整について示したものである。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the adjustment of the operating point of the compressor 10 during cooling and heating.
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、冷房時には高圧を制御することで圧力比制御が行われ、低圧を制御することで省エネ制御が行われる。一方、暖房時には高圧を制御することで省エネ制御が行われ、低圧を制御することで圧力比制御が行われる。このように、冷房時と暖房時とでは、冷媒の高圧と低圧とで制御の目的が異なる。 As shown in Table 1, at the time of cooling, pressure ratio control is performed by controlling the high pressure, and energy saving control is performed by controlling the low pressure. On the other hand, energy saving control is performed by controlling high pressure during heating, and pressure ratio control is performed by controlling low pressure. As described above, the control purpose is different between the high pressure and the low pressure of the refrigerant between the cooling time and the heating time.
 そして、本実施形態に係る圧力比制御部44は、一例として、室外ファン24の回転数を変化させることによって圧力比制御を行う。
 具体的には、省エネ制御後の圧力比が効率最適運転点に比べて低い場合、室外ファン24の回転数を低下させる。これにより、冷房時では冷媒の高圧が上昇する一方、暖房時では冷媒の低圧が下降する。従って、圧力比が上昇することとなり、運転点が効率最適運転点に近づく。
 他方、省エネ制御後の圧力比が効率最適運転点に比べて高い場合、室外ファン24の回転数を上昇させる。これにより、冷房時では冷媒の高圧が下降する一方、暖房時では冷媒の低圧が上昇する。従って、圧力比が下降することとなり、運転点が効率最適運転点に近づく。
And the pressure ratio control part 44 which concerns on this embodiment performs pressure ratio control by changing the rotation speed of the outdoor fan 24 as an example.
Specifically, when the pressure ratio after the energy saving control is lower than the efficiency optimum operating point, the rotational speed of the outdoor fan 24 is reduced. As a result, while the high pressure of the refrigerant rises during cooling, the low pressure of the refrigerant falls during heating. Therefore, the pressure ratio is increased, and the operating point approaches the efficiency optimum operating point.
On the other hand, when the pressure ratio after the energy saving control is higher than the efficiency optimum operating point, the rotational speed of the outdoor fan 24 is increased. As a result, while the high pressure of the refrigerant drops during cooling, the low pressure of the refrigerant rises during heating. Therefore, the pressure ratio is lowered, and the operating point approaches the efficiency optimum operating point.
 このように、圧力比制御は、圧縮機10の回転数を変えることなく、圧力比制御を行う。すなわち、圧力比制御は、圧縮機10に対する制御を行うことなく圧力比を制御することとなり、圧縮機10の運転点を所望の値に変化させやすい。 Thus, pressure ratio control performs pressure ratio control without changing the rotation speed of the compressor 10. That is, the pressure ratio control is to control the pressure ratio without controlling the compressor 10, and it is easy to change the operating point of the compressor 10 to a desired value.
 また、効率最適運転点は、例えば、圧縮機10の回転数に対して最良の効率となる圧力比として予め定められており、圧力比の増減方向に対してある程度の幅を有してもよい。 Further, the efficiency optimum operating point is, for example, predetermined as a pressure ratio that provides the best efficiency with respect to the rotational speed of the compressor 10, and may have a certain width with respect to the pressure ratio increase / decrease direction .
 図4は、空調機制御装置40によって実行される高効率化制御処理の流れを示すフローチャートであり、本処理を実行するためのプログラム(高効率化制御プログラム)は記憶部46の所定領域に予め記憶されている。なお、高効率化制御処理が行われる前、空調機制御装置40は、省エネ制御を伴わない圧力一定制御(通常制御)が行われている。 FIG. 4 is a flowchart showing the flow of the high efficiency control process executed by the air conditioner control device 40. A program (high efficiency control program) for executing this process is stored in advance in a predetermined area of the storage unit 46. It is memorized. Note that, before the high efficiency control process is performed, the air conditioner control device 40 performs constant pressure control (normal control) without energy saving control.
 まず、ステップ100では、室内負荷が省エネ制御の開始が可能な程度まで低下したか否かを判定し、肯定判定の場合はステップ102へ移行する。否定判定の場合は、通常制御を継続する。 First, in step 100, it is determined whether or not the indoor load has decreased to a level at which the energy saving control can be started. If the determination is positive, the process proceeds to step 102. In the case of a negative determination, normal control is continued.
 ステップ102では、通常制御を終了し、省エネ制御を開始するように設定する。 In step 102, normal control is ended, and setting is made to start energy saving control.
 次のステップ104では、省エネ制御を行うために目標圧力を調整する。なお、冷房時は目標圧力(目標低圧)を上げ、暖房時には目標圧力(目標高圧)を下げる。 In the next step 104, the target pressure is adjusted to perform energy saving control. At the time of cooling, the target pressure (target low pressure) is increased, and at the time of heating, the target pressure (target high pressure) is decreased.
 次のステップ106では、運転圧力と調整した目標圧力とが一致しているか否かを判定し、肯定判定の場合はステップ110へ移行する一方、否定判定の場合はステップ108へ移行する。 In the next step 106, it is determined whether or not the operating pressure matches the adjusted target pressure, and in the case of a positive determination, the process proceeds to step 110, and in the case of a negative determination, the process proceeds to step 108.
 ステップ108では、運転圧力と目標圧力とが一致するように圧縮機10の回転数を制御し、ステップ106へ戻り、運転圧力と調整した目標圧力とを比較する。
 具体的には、冷房時において低圧が目標低圧よりも低い場合、又は暖房時において高圧が目標高圧よりも高い場合には、圧縮機10の回転数が下げられる。一方、冷房時において低圧が目標低圧よりも高い場合、又は暖房時において高圧が目標高圧よりも低い場合には、圧縮機10の回転数が上げられる。
In step 108, the rotational speed of the compressor 10 is controlled so that the operating pressure matches the target pressure, and the process returns to step 106 to compare the operating pressure with the adjusted target pressure.
Specifically, when the low pressure is lower than the target low pressure during cooling, or when the high pressure is higher than the target high pressure during heating, the rotational speed of the compressor 10 is reduced. On the other hand, when the low pressure is higher than the target low pressure during cooling, or when the high pressure is lower than the target high pressure during heating, the rotational speed of the compressor 10 is increased.
 ステップ110では、圧縮機10の回転数に応じた効率最適運転点を設定する。 In step 110, the efficiency optimum operating point is set according to the rotational speed of the compressor 10.
 次のステップ112では、実際の圧力比と効率最適運転点の圧力比とが一致しているか否かを判定し、否定判定の場合はステップ114へ移行する。肯定判定の場合はステップ106へ戻り、省エネ制御及び圧力比制御を繰り返し継続する。 In the next step 112, it is determined whether the actual pressure ratio and the pressure ratio of the efficiency optimum operating point coincide with each other. If the determination is negative, the process proceeds to step 114. If the determination is affirmative, the process returns to step 106, and the energy saving control and the pressure ratio control are repeatedly continued.
 ステップ114では、実際の圧力比と効率最適運転点の圧力比とが一致するように室外ファン24の回転数を制御し、再びステップ112へ戻り、実際の圧力比と効率最適運転点の圧力比とを比較する。
 具体的には、実際の圧力比が効率最適運転点の圧力比よりも低い場合、室外ファン24の回転数が下げられる。これにより、冷房時には高圧を上げることとなり、暖房時には低圧を下げることとなり、実際の圧力比が上昇する。一方、実際の圧力比が効率最適運転点の圧力比よりも高い場合、室外ファン24の回転数が上げられる。これにより、冷房時には高圧を下げることとなり、暖房時には低圧を上げることとなり、実際の圧力比が下降する。
In step 114, the rotational speed of the outdoor fan 24 is controlled so that the actual pressure ratio and the pressure ratio at the efficiency optimum operating point coincide with each other, and the process returns to step 112 again, and the pressure ratio at the actual pressure ratio and the efficiency optimum operating point Compare with.
Specifically, when the actual pressure ratio is lower than the pressure ratio at the efficiency optimum operating point, the number of rotations of the outdoor fan 24 is reduced. As a result, the high pressure is increased during cooling, the low pressure is decreased during heating, and the actual pressure ratio is increased. On the other hand, when the actual pressure ratio is higher than the pressure ratio at the efficiency optimum operating point, the rotation speed of the outdoor fan 24 is increased. As a result, the high pressure is lowered at the time of cooling, the low pressure is raised at the time of heating, and the actual pressure ratio is lowered.
 以上説明したように、本実施形態に係る空調機制御装置40は、冷媒の運転圧力が予め定められた目標圧力となるように、圧縮機10の回転数を制御し、この制御の後に、圧縮機10の効率をそれまでに比べて向上させる運転点となるように、冷媒の高圧と低圧との比である圧力比を制御する。
 これにより、空調機制御装置40は、圧縮機10の消費電力を低減し、かつ圧縮機10をより効率良く運転可能とする。
As described above, the air conditioner control device 40 according to the present embodiment controls the number of rotations of the compressor 10 so that the operating pressure of the refrigerant becomes a predetermined target pressure, and after this control, the compression is performed. The pressure ratio, which is the ratio of the high pressure to the low pressure of the refrigerant, is controlled so as to be an operating point that improves the efficiency of the machine 10 compared to that of the past.
Thus, the air conditioner control device 40 reduces the power consumption of the compressor 10 and enables the compressor 10 to operate more efficiently.
 以上、本発明を、上記実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。また、上記実施形態を適宜組み合わせてもよい。 As mentioned above, although this invention was demonstrated using the said embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. Various changes or improvements can be added to the above-described embodiment without departing from the scope of the invention, and a form to which the changes or improvements are added is also included in the technical scope of the present invention. Also, the above embodiments may be combined as appropriate.
 例えば、上記実施形態では、圧力比を制御するために室外ファン24の回転数を制御する形態について説明したが、本発明は、これに限定されるものではなく、圧力比を制御するために室外膨張弁15の開度を制御する形態としてもよい。
 この形態の場合、上述したステップ114において、実際の圧力比が効率最適運転点の圧力比よりも低い場合、室外膨張弁15が絞られる。これにより、冷房時には高圧を上げることとなり、暖房時には低圧を下げることとなり、実際の圧力比が上昇する。一方、実際の圧力比が効率最適運転点の圧力比よりも高い場合、室外膨張弁15が開かれる。これにより、冷房時には高圧を下げることとなり、暖房時には低圧を上げることとなり、実際の圧力比が下降する。
For example, in the above embodiment, although the embodiment has been described in which the number of rotations of the outdoor fan 24 is controlled to control the pressure ratio, the present invention is not limited to this. The opening degree of the expansion valve 15 may be controlled.
In the case of this mode, when the actual pressure ratio is lower than the pressure ratio at the efficiency optimum operating point in step 114 described above, the outdoor expansion valve 15 is throttled. As a result, the high pressure is increased during cooling, the low pressure is decreased during heating, and the actual pressure ratio is increased. On the other hand, when the actual pressure ratio is higher than the pressure ratio at the efficiency optimum operating point, the outdoor expansion valve 15 is opened. As a result, the high pressure is lowered at the time of cooling, the low pressure is raised at the time of heating, and the actual pressure ratio is lowered.
 また、圧力比を制御するために室外ファン24の回転数と室外膨張弁15の開度の両方を制御してもよい。
 また、室外膨張弁15の代わりに、各々に絞りと電磁弁を備えた複数の冷媒回路が並列に設けられ、電磁弁の開閉によって冷媒の流路を変えて絞り量を変化させることで、圧力比が制御されてもよい。
 さらに、室外熱交換器13を複数とし、冷媒が流通する室外熱交換器13の数(容量)を変化させることで、圧力比が制御されてもよい。
Further, in order to control the pressure ratio, both the rotation speed of the outdoor fan 24 and the opening degree of the outdoor expansion valve 15 may be controlled.
Also, instead of the outdoor expansion valve 15, a plurality of refrigerant circuits each provided with a throttle and a solenoid valve are provided in parallel, and by changing the flow path of the refrigerant by opening and closing the solenoid valve to change the throttle amount, pressure The ratio may be controlled.
Furthermore, the pressure ratio may be controlled by providing a plurality of outdoor heat exchangers 13 and changing the number (capacity) of the outdoor heat exchangers 13 through which the refrigerant flows.
 また、上記実施形態では、省エネ制御を行った後に圧力比制御を行う形態について説明したが、本発明は、これに限定されるものではなく、省エネ制御を行うことなく圧力比制御を行う形態としてもよい。
 この形態の場合、図5の例に示すように、通常制御(運転点A)の後に、圧縮機10の運転点がより効率の良い運転点Cとなるように圧力比制御を行ってもよい。
In the above embodiment, although the embodiment has been described in which pressure ratio control is performed after energy saving control, the present invention is not limited to this, and pressure ratio control may be performed without energy saving control. Also good.
In the case of this embodiment, as shown in the example of FIG. 5, pressure ratio control may be performed after the normal control (operating point A) so that the operating point of the compressor 10 becomes the more efficient operating point C. .
 また、上記実施形態では、空調機制御装置40が室内負荷に関わらず冷媒の運転圧力を一定とする圧力一定制御を行う形態について説明したが、本発明は、これに限定されるものではなく、圧力一定制御を行うことなく省エネ制御を行う形態としてもよい。 In the above embodiment, although the air-conditioner controller 40 performs constant pressure control to keep the operating pressure of the refrigerant constant regardless of the indoor load, the present invention is not limited to this. Energy saving control may be performed without performing pressure constant control.
 また、上記実施形態では、室内負荷が低下した場合に省エネ制御を行う形態について説明したが、本発明は、これに限定されるものではなく、室内負荷が低下した場合だけでなく、例えば、マルチ型空調システム1のユーザー(管理者)による設定の変更、例えば、圧縮機10の回転数の低下設定や、冷媒の目標圧力の変更設定等が行われた場合に、省エネ制御を行う形態としてもよい。 Further, in the above embodiment, although the embodiment has been described in which the energy saving control is performed when the indoor load decreases, the present invention is not limited to this, and the present invention is not limited to the case where the indoor load decreases. Even when the setting change by the user (administrator) of the air conditioning system 1, for example, the reduction setting of the rotational speed of the compressor 10, the change setting of the target pressure of the refrigerant, etc., energy saving control is performed. Good.
 また、上記実施形態で説明した高効率化制御処理の流れも一例であり、本発明の主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。 In addition, the flow of the high efficiency control process described in the above embodiment is also an example, and unnecessary steps may be deleted, new steps may be added, or the process order may be changed without departing from the scope of the present invention. You may
 1  マルチ型空調システム
 2  室外機
 3A,3B 室内機
 10  圧縮機
 15  室外膨張弁
 24  室外ファン
 40  空調機制御装置
 42  圧力制御部
 44  圧力比制御部
1 multi-type air conditioning system 2 outdoor unit 3A, 3B indoor unit 10 compressor 15 outdoor expansion valve 24 outdoor fan 40 air conditioner control device 42 pressure control unit 44 pressure ratio control unit

Claims (8)

  1.  冷媒の運転圧力が予め定められた目標圧力となるように、圧縮機の回転数を制御する圧力制御手段と、
     前記圧力制御手段による制御の後に、前記圧縮機の効率をそれまでに比べて向上させる運転点となるように、冷媒の高圧と低圧との比である圧力比を制御する圧力比制御手段と、
    を備える空調システムの制御装置。
    Pressure control means for controlling the number of revolutions of the compressor such that the operating pressure of the refrigerant becomes a predetermined target pressure;
    Pressure ratio control means for controlling a pressure ratio which is a ratio of high pressure to low pressure of the refrigerant so as to become an operating point which improves the efficiency of the compressor after that by the pressure control means;
    Control device for an air conditioning system comprising:
  2.  前記圧力制御手段は、前記運転圧力が前記目標圧力となるように前記圧縮機の回転数を下げる請求項1記載の空調システムの制御装置。 The control device according to claim 1, wherein the pressure control unit reduces the number of revolutions of the compressor so that the operating pressure becomes the target pressure.
  3.  前記圧力比制御手段は、前記圧縮機の回転数を変えることなく、前記圧力比を制御する請求項1又は請求項2記載の空調システムの制御装置。 The control device of an air conditioning system according to claim 1 or 2, wherein the pressure ratio control means controls the pressure ratio without changing the rotational speed of the compressor.
  4.  前記圧力比制御手段は、室外機に設けられるファンの回転数を制御することによって前記圧力比を制御する請求項1から請求項3の何れか1項記載の空調システムの制御装置。 The control device of an air conditioning system according to any one of claims 1 to 3, wherein the pressure ratio control means controls the pressure ratio by controlling a rotational speed of a fan provided in an outdoor unit.
  5.  前記圧力比制御手段は、室外機に設けられる膨張弁の開度を制御することによって前記圧力比を制御する請求項1から請求項4の何れか1項記載の空調システムの制御装置。 The control device of an air conditioning system according to any one of claims 1 to 4, wherein the pressure ratio control means controls the pressure ratio by controlling an opening degree of an expansion valve provided in an outdoor unit.
  6.  室外機と、
     室内機と、
     請求項1から請求項5の何れか1項記載の制御装置と、
    を備える空調システム。
    Outdoor unit,
    Indoor unit,
    A control device according to any one of claims 1 to 5;
    An air conditioning system comprising
  7.  コンピュータを、
     冷媒の運転圧力が予め定められた目標圧力となるように、圧縮機の回転数を制御する圧力制御手段と、
     前記圧力制御手段による制御の後に、前記圧縮機の効率をそれまでに比べて向上させる運転点となるように、冷媒の高圧と低圧との比である圧力比を制御する圧力比制御手段と、
    して機能させるための空調システムの制御プログラム。
    Computer,
    Pressure control means for controlling the number of revolutions of the compressor such that the operating pressure of the refrigerant becomes a predetermined target pressure;
    Pressure ratio control means for controlling a pressure ratio which is a ratio of high pressure to low pressure of the refrigerant so as to become an operating point which improves the efficiency of the compressor after that by the pressure control means;
    Control program for air conditioning system to function.
  8.  冷媒の運転圧力が予め定められた目標圧力となるように、圧縮機の回転数を制御する第1工程と、
     前記第1工程による制御の後に、前記圧縮機の効率をそれまでに比べて向上させる運転点となるように、冷媒の高圧と低圧との比である圧力比を制御する第2工程と、
    を有する空調システムの制御方法。
    A first step of controlling the number of revolutions of the compressor such that the operating pressure of the refrigerant reaches a predetermined target pressure;
    A second step of controlling a pressure ratio, which is a ratio of a high pressure to a low pressure of the refrigerant, so as to become an operating point that improves the efficiency of the compressor after the control by the first step;
    Method of controlling an air conditioning system having:
PCT/JP2016/057550 2015-03-26 2016-03-10 Air conditioning system control device, air conditioning system, air conditioning control program, and air conditioning system control method WO2016152552A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16768455.4A EP3260792B1 (en) 2015-03-26 2016-03-10 Air conditioning system control device, air conditioning system, air conditioning control program, and air conditioning system control method
ES16768455T ES2745753T3 (en) 2015-03-26 2016-03-10 Control device for an air conditioning system, an air conditioning system, an air conditioning control program and a control method for an air conditioning system
CN201680017419.5A CN107614984A (en) 2015-03-26 2016-03-10 The control device of air-conditioning system, air-conditioning system, the control method of the control program of air-conditioning system and air-conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-064074 2015-03-26
JP2015064074A JP6495064B2 (en) 2015-03-26 2015-03-26 Air conditioning system control device, air conditioning system, air conditioning system control program, and air conditioning system control method

Publications (1)

Publication Number Publication Date
WO2016152552A1 true WO2016152552A1 (en) 2016-09-29

Family

ID=56978404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057550 WO2016152552A1 (en) 2015-03-26 2016-03-10 Air conditioning system control device, air conditioning system, air conditioning control program, and air conditioning system control method

Country Status (5)

Country Link
EP (1) EP3260792B1 (en)
JP (1) JP6495064B2 (en)
CN (1) CN107614984A (en)
ES (1) ES2745753T3 (en)
WO (1) WO2016152552A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179370A (en) * 2017-04-10 2018-11-15 日立ジョンソンコントロールズ空調株式会社 Freezer unit
JP7208063B2 (en) * 2019-03-05 2023-01-18 三菱重工サーマルシステムズ株式会社 transportation refrigeration machinery
CN111076350B (en) * 2019-12-30 2021-09-21 宁波奥克斯电气股份有限公司 Control method and device for starting compressor and air conditioner
CN113446706B (en) * 2020-03-25 2022-08-19 青岛海尔空调电子有限公司 Air conditioner control method and air conditioner
CN111895627B (en) * 2020-07-14 2022-01-04 Tcl空调器(中山)有限公司 Air conditioner outdoor fan rotating speed control method, air conditioner and storage medium
CN112665133B (en) * 2021-01-21 2022-05-17 广东美的暖通设备有限公司 Multi-split air conditioner power consumption detection method, heat recovery multi-split air conditioner, storage medium and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018685A (en) * 1998-07-02 2000-01-18 Matsushita Refrig Co Ltd Multi-room type air conditioner
JP2003254589A (en) * 2002-02-28 2003-09-10 Matsushita Electric Ind Co Ltd Air conditioner
JP2003262385A (en) * 2002-03-12 2003-09-19 Hitachi Ltd Air conditioner
JP2008190759A (en) * 2007-02-02 2008-08-21 Daikin Ind Ltd Air conditioner
WO2014156313A1 (en) * 2013-03-27 2014-10-02 日立アプライアンス株式会社 Air conditioner and method for operating air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3080558B2 (en) * 1995-02-03 2000-08-28 株式会社日立製作所 Heat pump air conditioners for cold regions
JP3495858B2 (en) * 1996-10-31 2004-02-09 東芝キヤリア株式会社 Air conditioner
JP4639413B2 (en) * 1999-12-06 2011-02-23 ダイキン工業株式会社 Scroll compressor and air conditioner
KR101003356B1 (en) * 2003-10-21 2010-12-23 삼성전자주식회사 Air Conditioner And Control Method Thereof
JP5040104B2 (en) * 2005-11-30 2012-10-03 ダイキン工業株式会社 Refrigeration equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018685A (en) * 1998-07-02 2000-01-18 Matsushita Refrig Co Ltd Multi-room type air conditioner
JP2003254589A (en) * 2002-02-28 2003-09-10 Matsushita Electric Ind Co Ltd Air conditioner
JP2003262385A (en) * 2002-03-12 2003-09-19 Hitachi Ltd Air conditioner
JP2008190759A (en) * 2007-02-02 2008-08-21 Daikin Ind Ltd Air conditioner
WO2014156313A1 (en) * 2013-03-27 2014-10-02 日立アプライアンス株式会社 Air conditioner and method for operating air conditioner

Also Published As

Publication number Publication date
JP6495064B2 (en) 2019-04-03
EP3260792A1 (en) 2017-12-27
EP3260792B1 (en) 2019-07-31
CN107614984A (en) 2018-01-19
ES2745753T3 (en) 2020-03-03
JP2016183817A (en) 2016-10-20
EP3260792A4 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
WO2016152552A1 (en) Air conditioning system control device, air conditioning system, air conditioning control program, and air conditioning system control method
US9709304B2 (en) Air-conditioning apparatus
EP2587193A2 (en) Air conditioner
CN110337570B (en) Air conditioner
JP2018109463A (en) Controller of multiple-type air conditioner, multiple-type air conditioner, method of controlling multiple-type air conditioner, and control program for multiple-type air conditioner
JP2018204896A (en) Control device of multiple air conditioner, multiple air conditioner, control method of multiple air conditioner, and control program of multiple air conditioner
JP2020020576A (en) Refrigeration cycle device and air conditioner including the same
JP5180680B2 (en) Refrigeration cycle
WO2018221052A1 (en) Control device, multi-split air conditioning system provided with same, and control method, and control program
JP5872110B1 (en) Air conditioner
WO2019146490A1 (en) Multi-type air conditioner device and multi-type air conditioner device setup method
JP2012202581A (en) Refrigeration cycle device and control method thereof
JP2018021732A (en) Heat pump device and control method thereof
JP7316759B2 (en) Air conditioner and air conditioning system
JP2018071864A (en) Air conditioner
JP2007155143A (en) Refrigerating device
KR20190081837A (en) air-conditioning system
WO2022013980A1 (en) Air conditioning apparatus
JP3760259B2 (en) Air conditioner
JP2018204897A (en) Control device of multiple air conditioning device, multiple air conditioning device including the same, and its control method and control program
JP6010294B2 (en) Air conditioner
WO2017094172A1 (en) Air conditioning device
JP6628972B2 (en) Air conditioning system control device, air conditioning system, air conditioning system control program, and air conditioning system control method
CN112984713A (en) Multi-compressor control method and air conditioning unit
JP2020098079A (en) Control device of air conditioning system, air conditioning system, control method of air conditioning system, and control program of air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768455

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016768455

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE