WO2022013980A1 - Air conditioning apparatus - Google Patents

Air conditioning apparatus Download PDF

Info

Publication number
WO2022013980A1
WO2022013980A1 PCT/JP2020/027541 JP2020027541W WO2022013980A1 WO 2022013980 A1 WO2022013980 A1 WO 2022013980A1 JP 2020027541 W JP2020027541 W JP 2020027541W WO 2022013980 A1 WO2022013980 A1 WO 2022013980A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
air conditioner
outdoor
indoor
indoor unit
Prior art date
Application number
PCT/JP2020/027541
Other languages
French (fr)
Japanese (ja)
Inventor
豊 青山
一輝 大河内
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/027541 priority Critical patent/WO2022013980A1/en
Publication of WO2022013980A1 publication Critical patent/WO2022013980A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • This disclosure relates to an air conditioner that controls operation according to the capacity of electrical equipment.
  • the temperature is raised or lowered by compressing or expanding the refrigerant, and heat is exchanged by the temperature difference between the refrigerant and the air in the heat exchanger. Therefore, the amount of heat exchange in the heat exchanger depends on the temperature difference between the air temperature and the refrigerant temperature or the air volume. Therefore, the outdoor unit controls the blower rotation speed or the compressor frequency while detecting the temperature or pressure in the refrigerant circuit with a sensor or the like (see, for example, Patent Document 1).
  • the compressor or blower is controlled according to the heating / cooling capacity according to the load of the indoor unit.
  • the operation according to the capacity of the on-site wiring and the power breaker in which the air conditioner is installed is not performed.
  • the maximum current value presented by the air conditioner manufacturer is that in the case of a multi-type air conditioner having multiple indoor units, all indoor units operate at the maximum air volume, and the suction temperature range of the outdoor unit and indoor unit is sufficient. It is determined based on the environmental conditions that are the maximum load. Therefore, if the current capacity of the electrical equipment is selected according to the maximum current value presented by the air conditioner manufacturer, the value will be larger than the current capacity in actual normal operation, and the current capacity may be left over. There were many.
  • This disclosure is made in order to solve such a problem, and aims at cost saving and reduction of peak power by performing operation control according to the capacity of the local electric equipment in which the air conditioner is installed.
  • the purpose is to obtain an air conditioner that can be used.
  • the air conditioner according to the present disclosure is an air conditioner including an indoor unit, an outdoor unit, and a control device for controlling the operation of the indoor unit and the outdoor unit, and the control device is from a power source.
  • the control device has a current acquisition unit that acquires a current value supplied to the air conditioner and a storage unit that stores the capacity of the electrical equipment to which the air conditioner is connected.
  • the control device has the current acquisition unit. Based on the current value acquired by the user and the capacity of the electric equipment stored by the storage unit, it is determined whether or not the ratio of the current value to the capacity of the electric equipment is equal to or higher than the first threshold value, and the electric equipment is determined. When the ratio of the current value to the capacity of the above is equal to or more than the first threshold value, the restricted operation for limiting the operation of at least one of the indoor unit and the outdoor unit is performed.
  • cost saving and peak power reduction can be achieved by performing operation control according to the capacity of the local electric equipment in which the air conditioner is installed.
  • FIG. 100 shows the structure of the air conditioner 1001 which concerns on Embodiment 1.
  • FIG. It is a figure which shows the structure of the AC power supply system in the building 500 provided with the air conditioner 1001 which concerns on Embodiment 1.
  • FIG. It is a figure which shows an example of the grouping of the indoor unit 200 of the air conditioner 1001 which concerns on Embodiment 1.
  • FIG. It is a figure which shows the arrangement example of the outdoor unit 100 and the indoor unit 200 of the air conditioner 1001 which concerns on Embodiment 1.
  • FIG. It is a ph diagram which shows the relationship between enthalpy and pressure. It is a figure which shows the relationship between the drive frequency and the applied voltage of the compressor 2 of the air conditioner 1001 which concerns on Embodiment 1.
  • FIG. 1 It is a figure which shows the relationship between the drive frequency of the compressor 2 of the air conditioner 1001 which concerns on Embodiment 1 and the current which flows through a compressor 2. It is a figure which shows typically the structure of the modification of the air conditioner 1001 which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows an example of the case where two or more control methods of control methods A to G are combined in the air conditioner 1001 which concerns on Embodiment 1.
  • FIG. It is a flowchart integrated with FIG. 9 which shows an example of the case where two or more control methods of control methods A to G are combined in the air conditioner 1001 which concerns on Embodiment 1.
  • FIG. 9 shows an example of the case where two or more control methods of control methods A to G are combined in the air conditioner 1001 which concerns on Embodiment 1.
  • FIG. 1 is a diagram showing a configuration of an air conditioner 1001 according to the first embodiment.
  • the air conditioner 1001 includes an outdoor unit 100 and a plurality of indoor units 200.
  • the outdoor unit 100 and the indoor unit 200 are connected by a refrigerant pipe 10a to form a main refrigerant circuit (hereinafter referred to as a main refrigerant circuit 10) to form a refrigerating cycle 300 for circulating the refrigerant.
  • the air conditioner 1001 includes three indoor units 200, but the number of indoor units 200 installed is not limited to three.
  • the subscripts may be omitted.
  • the height of temperature, pressure, etc. is not determined in relation to the absolute value, but is relatively determined in the state, operation, etc. of the system, device, or the like.
  • the outdoor unit 100 includes an outdoor heat exchanger 1, a compressor 2, an accumulator 3, an outdoor fan 4, a fan motor 5, a switching device 6, a double pipe 7, a bypass expansion valve 8, and a first bypass pipe 11. It has an oil separator 15, a second bypass pipe 16, a regulating valve 17, and a capillary pipe 18.
  • the outdoor unit 100 further has an outdoor control device 110.
  • the compressor 2 compresses and discharges the sucked refrigerant.
  • the compressor 2 is, for example, an inverter compressor.
  • the capacity of the compressor 2 (the amount of the refrigerant delivered per unit time) can be finely changed by arbitrarily changing the drive frequency of the compressor 2 by the inverter device.
  • the switching device 6 is, for example, a four-way valve.
  • the switching device 6 switches the flow of the refrigerant between the cooling operation and the heating operation, for example, based on the instruction from the outdoor control device 110.
  • the outdoor heat exchanger 1 exchanges heat between the refrigerant and air (outdoor air). For example, during the heating operation, the outdoor heat exchanger 1 functions as an evaporator, exchanges heat between the inflowing low-pressure refrigerant and air, and evaporates and vaporizes the refrigerant. Further, during the cooling operation, the outdoor heat exchanger 1 functions as a condenser, and heat exchange between the compressed refrigerant and the air in the compressor 2 flowing in from the switching device 6 side to condense and liquefy the refrigerant. Let me.
  • the outdoor heat exchanger 1 is, for example, a fin-and-tube heat exchanger.
  • the outdoor heat exchanger 1 is provided with an outdoor fan 4 serving as a blower in order to efficiently exchange heat between the refrigerant and air.
  • the outdoor fan 4 blows air to the outdoor heat exchanger 1.
  • the outdoor fan 4 is provided with a fan motor 5.
  • the fan motor 5 is a motor for driving the outdoor fan 4.
  • the drive frequency of the fan motor 5 can be arbitrarily changed by the inverter device to finely change the rotation speed of the fan.
  • the rotation direction of the outdoor fan 4 by the fan motor 5 is defined as forward rotation.
  • the double pipe 7 serving as the inter-refrigerant heat exchanger exchanges heat between the refrigerant flowing through the main refrigerant circuit 10 and the refrigerant flowing through the first bypass pipe 11 branched from the main refrigerant circuit 10.
  • the flow rate of the refrigerant flowing through the first bypass pipe 11 is adjusted by the bypass expansion valve 8.
  • the double pipe 7 supercools the refrigerant and supplies it to the indoor unit 200 when it is necessary to supercool the refrigerant, especially during the cooling operation.
  • the liquid flowing through the bypass expansion valve 8 is returned to the accumulator 3 via the first bypass pipe 11.
  • the accumulator 3 is a container for storing, for example, excess liquid refrigerant on the suction side (low pressure side) of the compressor 2.
  • the oil separator 15 is arranged on the discharge side (high pressure side) of the compressor 2.
  • the oil separator 15 separates the refrigerating machine oil contained in the refrigerant discharged from the compressor 2, and the compressor 2 is directly returned via the second bypass pipe 16.
  • the second bypass pipe 16 is a bypass pipe that connects the high pressure side and the low pressure side of the compressor 2.
  • the second bypass pipe 16 is the suction side of the oil separator 15 and the compressor 2. (Low pressure side) is connected, and the oil separator 15 and the accumulator 3 are connected.
  • the amount of refrigerant flowing through the second bypass pipe 16 is controlled by the capillary pipe 18.
  • two or more capillaries 18 may be provided. In that case, it is desirable to provide one between the oil separator 15 and the suction side (low pressure side) of the compressor 2, and one between the oil separator 15 and the accumulator 3.
  • the outdoor unit 100 in the first embodiment has a high pressure pressure sensor 12, a low pressure pressure sensor 13, and an outside air temperature sensor 14.
  • the outside air temperature sensor 14 is provided in the vicinity of the outdoor heat exchanger 1 and detects the outside air temperature (outdoor air temperature).
  • the high pressure pressure sensor 12 detects the pressure (pressure on the high pressure side of the heat pump circuit) in the discharge side (outlet side) piping of the compressor 2.
  • the low pressure pressure sensor 13 detects the pressure in the inlet side piping of the accumulator 3 (the pressure on the low pressure side of the heat pump circuit).
  • the high pressure pressure sensor 12, the low pressure pressure sensor 13, and the outside air temperature sensor 14 each transmit the detected values to the outdoor control device 110.
  • the outdoor control device 110 controls the operation of the outdoor unit 100.
  • the outdoor control device 110 controls, for example, the drive frequency of the compressor 2 and the drive frequency of the fan motor 5 of the outdoor fan 4 by inverter circuit control based on the data detected by each sensor in the air conditioner. Controls the operation of the entire air conditioner. Further, the outdoor control device 110 performs wireless or wired communication with the indoor control device 26 described later. In the restricted operation mode, the outdoor control device 110 performs the restricted operation of the indoor unit 200 by transmitting a command to the indoor control device 26 as needed.
  • the outdoor control device 110 and the indoor control device 26 constitute a "control device" of the air conditioner 1001.
  • the outdoor control device 110 has a storage unit 111 and a current acquisition unit 113.
  • the storage unit 111 stores the capacity of the electrical equipment of the building 500 (see FIG. 2 or 4) in which the air conditioner 1001 is installed. Further, the storage unit 111 stores characteristic data of the compressor 2, the fan motor 5, and the like. Further, the current acquisition unit 113 acquires the value of the current supplied to the air conditioner 1001 from the AC power supply 50 (see FIG. 2).
  • the indoor unit 200 has an indoor heat exchanger 21, an indoor fan 22, a regulating valve 23, a suction temperature sensor 24, a blowout temperature sensor 25, and an indoor control device 26.
  • the blowout temperature sensor 25 does not necessarily have to be provided, and may be provided as needed.
  • the indoor heat exchanger 21 exchanges heat between the refrigerant and the air in the air-conditioned space.
  • the indoor heat exchanger 21 functions as a condenser during heating operation, for example, exchanges heat between air and the refrigerant flowing in from a pipe through which a gaseous refrigerant flows, and condenses the refrigerant to liquefy (or gas-liquid two). (Condensation) and let it flow out.
  • the indoor heat exchanger 21 functions as an evaporator, exchanges heat between the refrigerant put into a low pressure state by the regulating valve 23 and air, and causes the refrigerant to take heat of the air and evaporate. Let it vaporize and let it flow out.
  • the indoor heat exchanger 21 is, for example, a fin-and-tube heat exchanger.
  • the indoor fan 22 is driven by a fan motor and blows air to the indoor heat exchanger 21.
  • the indoor fan 22 regulates the flow of air for heat exchange.
  • the drive speed (air volume) of the indoor fan 22 is determined by the user's setting or by a command from the indoor control device 26.
  • the adjusting valve 23 adjusts the pressure of the refrigerant in the indoor heat exchanger 21 by changing the opening degree.
  • the regulating valve 23 is controlled by the degree of superheat of the refrigerant on the outlet side of the indoor heat exchanger 21 during the cooling operation. Further, the regulating valve 23 is controlled by the degree of supercooling of the refrigerant on the outlet side of the indoor heat exchanger 21 during the heating operation.
  • the suction temperature sensor 24 detects the temperature of the air on the suction port side of the indoor unit 200.
  • the outlet temperature sensor 25 detects the temperature of the air on the outlet side of the indoor unit 200.
  • the indoor control device 26 controls the operation of the indoor unit 200.
  • the outdoor control device 110 and the indoor control device 26 are each composed of a processing circuit.
  • the processing circuit is composed of dedicated hardware or a processor.
  • the dedicated hardware is, for example, an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the processor executes a program stored in memory.
  • the outdoor control device 110 has a storage unit 111 (see FIG. 1), and the indoor control device 26 has a storage unit (not shown). Each of these storage units is composed of a memory.
  • the memory is a non-volatile or volatile semiconductor memory such as RAM (RandomAccessMemory), ROM (ReadOnlyMemory), flash memory, EPROM (ErasableProgrammableROM), or a disk such as a magnetic disk, flexible disk, or optical disk.
  • RAM RandomAccessMemory
  • ROM ReadOnlyMemory
  • flash memory EPROM (ErasableProgrammableROM)
  • disk such as a magnetic disk, flexible disk, or optical disk.
  • the high-temperature, high-pressure gas (gas) refrigerant pressurized and discharged by the compressor 2 flows into the outdoor heat exchanger 1 from the switching device 6.
  • the refrigerant condenses as it passes through the outdoor heat exchanger 1, becomes a liquid refrigerant, and flows out of the outdoor unit 100.
  • the refrigerant passing through the double pipe 7 is supercooled by exchanging heat with the refrigerant passing through the bypass expansion valve 8.
  • the refrigerant that has passed through the bypass expansion valve 8 and the double pipe 7 flows to the accumulator 3.
  • the refrigerant flowing out of the outdoor unit 100 flows into the indoor unit 200 through the main refrigerant circuit 10.
  • the refrigerant becomes a low-temperature low-pressure gas-liquid two-phase refrigerant whose pressure is adjusted by adjusting the opening degree of the adjusting valve 23 in each indoor unit 200, and flows into the indoor heat exchanger 21.
  • the refrigerant evaporates by passing through the indoor heat exchanger 21. Then, it flows into the outdoor unit 100 through the refrigerant pipe 10a, is sucked into the compressor 2 via the switching device 6 and the accumulator 3, is again pressurized and discharged by the compressor 2, and circulates.
  • the high-temperature, high-pressure gas (gas) refrigerant pressurized and discharged by the compressor 2 flows into the indoor heat exchanger 21 from the switching device 6.
  • the refrigerant condenses by passing through the indoor heat exchanger 21, is depressurized by the control valves 23a to 23c, becomes a two-phase refrigerant, and flows out of the indoor unit 200.
  • the refrigerant flowing out of the indoor unit 200 flows into the outdoor unit 100 through the main refrigerant circuit 10.
  • the refrigerant flows into the outdoor heat exchanger 1.
  • the refrigerant evaporates by passing through the outdoor heat exchanger 1. Then, it is sucked into the compressor 2 via the switching device 6 and the accumulator 3, and is circulated by being pressurized and discharged again by the compressor 2.
  • FIG. 2 is a diagram showing a configuration of an AC power supply system in a building 500 (see FIG. 4) provided with an air conditioner 1001 according to the first embodiment.
  • the building 500 is provided with an AC power supply system.
  • the AC power supply system has a plurality of systems. In general, "grid” means the entire facility that supplies and consumes power.
  • the second circuit breaker 61 to the air conditioner 1001 are referred to as a "first system”
  • the third circuit breaker 62 to the second system device 1002 are referred to as a "second system”. ..
  • the first system is provided with the air conditioner 1001 according to the first embodiment.
  • the second system is provided with a second system device 1002 having a second load 72.
  • the second system device 1002 is, for example, any one of the power consumption devices provided in the building 500 such as an elevator device, a lighting facility, and a communication facility.
  • the AC power supply system is connected to the AC power supply 50.
  • the AC power source 50 is, for example, a commercial power source.
  • the AC power supply system is supplied with electric power by an AC voltage from the AC power supply 50.
  • the AC power supply system has a first circuit breaker 60, a second circuit breaker 61, and a third circuit breaker 62.
  • the first circuit breaker 60 is connected to the AC power supply 50.
  • the second circuit breaker 61 is a first system circuit breaker provided for the first system.
  • the second circuit breaker 61 is connected in series between the first circuit breaker 60 and the air conditioner 1001.
  • the third circuit breaker 62 is a second system circuit breaker provided for the second system.
  • the third circuit breaker 62 is connected in series between the first circuit breaker 60 and the second system device 1002.
  • the first circuit breaker 60, the second circuit breaker 61, and the third circuit breaker 62 are overcurrent circuit breakers.
  • the first circuit breaker 60, the second circuit breaker 61, and the third circuit breaker 62 operate when a current exceeding a preset current value flows to cut off the current flow.
  • the first circuit breaker 60 is a higher-level circuit breaker of the second circuit breaker 61 and the third circuit breaker 62. That is, the second circuit breaker 61 and the third circuit breaker 62 are connected to the subsequent stage of the first circuit breaker 60.
  • the first circuit breaker 60 is commonly provided for the second circuit breaker 61 and the third circuit breaker 62.
  • the second circuit breaker 61 and the third circuit breaker 62 are connected in parallel to the AC power supply 50 via the first circuit breaker 60.
  • the positive electrode side of the AC power supply 50 is connected to the positive electrode current path 51, and the negative electrode side of the AC power supply 50 is connected to the negative electrode current path 52.
  • the positive electrode current path 51 is branched into two at the branch point 53.
  • One of the branches is the first positive electrode current path 55, and the other is the second positive electrode current path 57.
  • the negative electrode current path 52 is branched into two at the branch point 54.
  • One of the branches is the first negative electrode current path 56, and the other is the second negative electrode current path 58. Note that FIG. 2 shows a case where two systems are connected to the AC power supply 50.
  • the positive electrode current path 51 and the negative electrode current path 52 are branched into two at the branch points 53 and 54, respectively.
  • the positive electrode current path 51 and the negative electrode current path 52 are branched into N units at the branch points 53 and 54, respectively. Will be done.
  • the "electrical equipment” is equipment that transmits and distributes electric power in order to stably supply the electric power from the AC power source 50 to each system.
  • “Electrical equipment” includes at least one such as a switchboard, a transformer, a power storage device, wiring, an overcurrent circuit breaker, an earth-leakage circuit breaker, and a switch.
  • the air conditioner 1001 has a refrigeration cycle 300 shown in FIG. 1 and a first drive circuit 400 for supplying electric power to the refrigeration cycle 300.
  • the first drive circuit 400 an inverter device for driving the compressor 2 and an inverter device for driving the fan motor 5 of the outdoor fan 4 are provided.
  • the outdoor control device 110 has a storage unit 111.
  • the air conditioner 1001 is provided with a current sensor 112 that detects the current value supplied from the AC power source 50 to the air conditioner 1001.
  • the second system device 1002 has a second load 72 and a second drive circuit 71 that supplies electric power to the second load 72.
  • the second system device 1002 is a variety of devices that are installed in the building 500 in which the air conditioner 1001 is installed and consume electric power. Specifically, as described above, the second system 1002 is a power consumption device other than the air conditioner 1001 provided in the building 500 such as an elevator device.
  • the first circuit breaker 60, the second circuit breaker 61, and the third circuit breaker 62 shown in FIG. 2 constitute the electrical equipment provided in the building 500.
  • the first circuit breaker 60, the second circuit breaker 61, and the third circuit breaker 62 are turned ON / OFF according to the current value flowing therethrough.
  • the air conditioner 1001 has a normal operation mode and a limited operation mode as operation modes.
  • the air conditioner 1001 acquires the value of the current supplied from the power source to the air conditioner 1001.
  • the acquisition may be detected by the current sensor 112 or may be calculated by using a preset mathematical formula.
  • the acquired current value will be referred to as the current value of the air conditioner 1001.
  • the current sensor 112 is arranged between the AC power supply 50 and the refrigeration cycle 300.
  • the current sensor 112 is provided inside the air conditioner 1001 and in front of the first drive circuit 400. However, it is not limited to this case.
  • the current sensor 112 may be provided after the first drive circuit 400 and before the refrigeration cycle 300.
  • the current sensor 112 may be provided inside the air conditioner 1001, but may be provided outside the air conditioner 1001. Further, when the current sensor 112 is provided inside the air conditioner 1001, for example, it is arranged inside the housing of the outdoor unit 100.
  • the "normal operation mode” is based on the set temperature, air volume, wind direction, etc. set for the indoor unit 200 by the building manager or the user of the building 500 by the outdoor control device 110 and the indoor control device 26. , Is an operation mode for controlling the operation of the indoor unit 200 and the outdoor unit 100.
  • the "restricted operation mode” when the ratio of the current value of the air conditioner 1001 to the capacity of the electric equipment of the building 500 is equal to or more than the first threshold value, the outdoor control device 110 of the indoor unit 200 and the outdoor unit 100.
  • This is an operation mode in which restricted operation is performed to limit at least one of the operations. That is, in the "limited operation mode", the control is performed to reduce the current value of the air conditioner 1001 so that the current value of the air conditioner 1001 does not exceed the capacity of the electric equipment.
  • the capacity (current value) of the electrical equipment installed at the site where the air conditioner 1001 is installed is 100%.
  • the air conditioner 1001 switches the operation mode from the normal operation mode to the limited operation mode.
  • the restricted operation mode the restricted operation is performed in at least one of the outdoor unit 100 and the indoor unit 200 so that the current value of the air conditioner 1001 becomes low.
  • the threshold value used for determining the switching from the normal operation mode to the restricted operation mode is set to 80%, but the threshold value is not limited to this case and may be set to any value. Further, the threshold value will be referred to as a first threshold value below. This makes it possible to prevent the first circuit breaker 60 and the second circuit breaker 61 provided in the electrical equipment from operating.
  • the threshold value for restarting the outdoor unit 100 is set to 95%, but the threshold value is not limited to this case and may be set arbitrarily. Further, the threshold value will be referred to as a second threshold value below. This makes it possible to reliably prevent the air conditioner 1001 from reaching the capacity of the electrical equipment.
  • the air conditioner 1001 when the current value of the air conditioner 1001 is less than 80% of the capacity of the electric equipment, there is a margin for the capacity of the electric equipment, so that the air conditioner 1001 is usually used. Operate in the operation mode.
  • the air conditioner 1001 automatically switches from the normal operation mode to the restricted operation mode according to the current value supplied from the power source to the air conditioner 1001.
  • the switching between the normal operation mode and the restricted operation mode is performed by the user operating the switch of the air conditioner 1001 or by a command from the host system provided in the building 500. You may be asked. That is, if there is a margin in the electric power of the entire building 500, the current limiting mode may be canceled by an input from the outside or the user.
  • the outdoor control device 110 controls the operation of the air conditioner 1001 based on the capacity of the electric equipment of the building 500 and the current value of the air conditioner 1001.
  • the capacity for example, current capacity
  • the capacity of the electric equipment will be described as the current capacity of the electric equipment.
  • the air conditioner 1001 controls the operation of at least one of the outdoor unit 100 and the indoor unit 200 so that the current value detected by the current sensor 112 does not exceed the capacity of the electrical equipment stored in the storage unit 111. ..
  • the operation of the outdoor unit 100 is controlled, for example, the drive frequency of the compressor 2 of the outdoor unit 100, the drive frequency of the outdoor fan 4, or the operation of the actuator.
  • the operation control of the indoor unit 200 includes, for example, changing the setting of the air volume of the indoor unit, switching to the thermo-off, changing the target value of the refrigerant superheat degree or the target value of the refrigerant supercooling degree, and the like. Details of these will be described later.
  • the present invention is not limited to that case. That is, as described above, the acquisition of the current value of the air conditioner 1001 may be performed by calculation. In that case, the air conditioner 1001 uses, for example, a current value calculated from the state of the refrigeration cycle 300 possessed by the air conditioner 1001 itself. That is, for example, the outdoor control device 110 stores the characteristic data of the compressor 2 and the characteristic data of the fan motor 5 of the outdoor fan 4 in the storage unit 111 in advance. The outdoor control device 110 obtains the current value of the air conditioner 1001 by a preset arithmetic expression based on the characteristic data.
  • the air conditioner 1001 has the following control methods A to G so that the current value of the air conditioner 1001 does not exceed the capacity of the electric equipment stored in the storage unit 111. Do at least one of them.
  • the control methods A to G will be described.
  • the air conditioner 1001 uses a plurality of indoor units 200 as a first group (hereinafter referred to as a group (I)) for restricting operation and a second group (hereinafter referred to as a group (II)) for which the operation is not restricted. In addition, grouping is done in advance.
  • the group of the plurality of indoor units 200 is stored in, for example, the storage unit 111 of the outdoor control device 110.
  • FIG. 3 is a diagram showing an example of grouping of the indoor unit 200 of the air conditioner 1001 according to the first embodiment. In the example of FIG. 3, the indoor units 200a and 200b belong to the group (I), for example.
  • the indoor units 200a and 200b belonging to the group (I) are indoor units whose operation is restricted in the restricted operation mode.
  • the indoor units 200a and 200b belonging to the group (I) are installed in an indoor space 502 (see FIG. 4) such as an office room, a conference room, a common space, an elevator hall, and a toilet.
  • the indoor unit 200c belonging to the group (II) is an indoor unit in which the operation is not restricted in the restricted operation mode.
  • the indoor unit 200c belonging to the group (II) is installed in an indoor space 503 (see FIG. 4) such as a president's room, an officer's room, a guest room, a reception desk, and a server room.
  • the outdoor control device 110 forcibly and temporarily reduces the air volume of the indoor units 200a and 200b belonging to the group (I) when the preset conditions are satisfied, and the indoor control device 110 is indoors.
  • the capacity per unit of the machine 200 is reduced.
  • the indoor unit 200c belonging to the group (II) is preferentially operated while keeping the air volume as it is. The details will be described below.
  • the outdoor control device 110 calculates the value of the parameter A using the following equation (1).
  • Parameter A is the ratio of the current value of the air conditioner 1001 to the capacity of the electrical equipment installed in the building 500 (see FIG. 4).
  • A (current value of air conditioner 1001) ⁇ (capacity of electrical equipment) (1)
  • the current value of the air conditioner 1001 is a current value detected by the current sensor 112 or a current value calculated based on the characteristic data stored in the storage unit 111, as described above.
  • the outdoor control device 110 determines which of the following (a) to (c) the parameter A obtained by the equation (1) corresponds to.
  • the above-mentioned first threshold value is 80% and the second threshold value is 95%.
  • the outdoor control device 110 determines that the parameter A satisfies the condition of the above (a), that is, when the parameter A becomes equal to or higher than the second threshold value, the outdoor unit 100 is temporarily stopped and restarted.
  • the outdoor control device 110 determines that the parameter A satisfies the above (c), that is, when the parameter A is less than the first threshold value, the operation mode of the outdoor unit 100 is changed from the restricted operation mode to the normal operation mode. Switch to.
  • the outdoor control device 110 determines that the parameter A satisfies the condition of the above (b), that is, when the parameter A is equal to or higher than the first threshold value, the operation mode is switched from the normal operation mode to the restricted operation mode. ..
  • the outdoor control device 110 outputs a command to the indoor control device 26 of the indoor unit 200 belonging to the group (I) to lower the setting of the air volume of the indoor unit 200.
  • the indoor control device 26 forcibly lowers the setting of the air volume of the indoor unit 200 by one step from the current value.
  • the air volume setting of the indoor unit 200 belonging to the group (II) is left as it is.
  • the outdoor control device 110 stands by until the preset set time elapses.
  • the set time at this time is, for example, 15 minutes, but is not limited to this. That is, the set time is preferably about 10 minutes to 20 minutes, but may be appropriately changed in the range of, for example, 5 minutes to 30 minutes.
  • the outdoor control device 110 determines whether the parameter A still corresponds to the above (b). If the outdoor control device 110 determines that the parameter A still satisfies the condition (b), the outdoor control device 110 sets the air volume of the indoor unit 200 belonging to the group (I), and further sets the current air volume. Decrease by one step from the value. Alternatively, the outdoor control device 110 performs at least one of the other control methods B to G. On the other hand, the air volume setting of the indoor unit 200 belonging to the group (II) is left as it is.
  • the outdoor control device 110 determines whether the parameter A does not satisfy the condition (b) above, it determines whether the parameter A corresponds to the following (d). However, at this time, if the parameter A does not satisfy the condition (b) and satisfies the condition (a), the outdoor unit 100 is immediately stopped and restarted.
  • the threshold value used for determining the switching from the restricted operation mode to the normal operation mode is set to 70%, but the threshold value is not limited to this case.
  • the threshold value may be arbitrarily set as long as it is a value smaller than the first threshold value. Further, the threshold value will be referred to as a third threshold value below.
  • the outdoor control device 110 determines that the parameter A satisfies the above (d), that is, when the parameter A is determined to be smaller than the third threshold value, the outdoor control device 110 belongs to the indoor unit (I) in which the air volume is reduced. Restore the air volume of 200.
  • the outdoor control device 110 may return the air volume of the indoor unit 200 to the original value as a result of one determination, but the state in which the parameter A satisfies the above (d) is continuously continued for a certain period of time. Occasionally, the air volume of the indoor unit 200 may be returned.
  • the fixed time is, for example, 15 minutes, but is not particularly limited thereto.
  • the fixed time is preferably about 10 to 20 minutes, but may be appropriately set in the range of, for example, 5 to 60 minutes. As a result, comfort can be maintained even in the indoor space 502 (see FIG. 4) in which the indoor unit 200 belonging to the group (I) is installed.
  • the indoor units 200 are divided into groups, and the air volume of the indoor units 200 belonging to the group (I) for restricting operation is reduced, so that the current value of the air conditioner 1001 can be suppressed. ..
  • This makes it possible to prevent the current value of the air conditioner 1001 from exceeding the capacity of the electrical equipment. As a result, cost saving and peak power reduction can be achieved.
  • the group (II) since the air volume of the indoor unit 200 is left as it is, the necessary air conditioning can be maintained.
  • Control method B In the control method B as well, as in the control method A, the plurality of indoor units 200 are divided into a group (I) for which the operation is restricted and a group (II) for which the operation is not restricted in advance.
  • the outdoor control device 110 determines which of the above (a) to (c) the parameter A corresponds to.
  • the outdoor control device 110 determines that the parameter A satisfies the condition of the above (a)
  • the outdoor unit 100 is temporarily stopped and restarted.
  • the outdoor control device 110 determines that the parameter A satisfies the above (c), the operation of the outdoor unit 100 is continued in the normal operation mode.
  • the outdoor control device 110 determines that the parameter A satisfies the condition of the above (b), the operation mode is switched from the normal operation mode to the restricted operation mode.
  • the outdoor control device 110 forcibly thermo-offs (blows) the indoor unit 200 of the group (I).
  • the outdoor control device 110 forcibly thermo-offs (blows) only the indoor unit 200 determined to have a small load among the indoor units 200 of the group (I).
  • the indoor unit 200 having a small load is an indoor unit having a small difference between the set temperature and the suction temperature as compared with other indoor units 200, an indoor unit whose suction temperature is lower than the threshold value during cooling operation, and a suction temperature during heating operation.
  • the procedure is as follows. First, the difference between the set temperature and the suction temperature of all the indoor units 200 belonging to the group (I) is obtained. A preset number of indoor units 200 are selected in order from the one with the smallest difference. As a result, the indoor unit 200 having a small load is selected.
  • thermo-off is to stop the operation of air conditioning for the target space and blow air. More specifically, thermo-off means that the outdoor unit 100 is operating, but the opening degree of the regulating valve 23 that adjusts the amount of the refrigerant in the indoor heat exchanger 21 in the indoor unit 200 is smaller than a certain standard. Then, the operation of cooling or heating with respect to the target space is stopped, or the operation of cooling or heating with respect to the target space is stopped by stopping the outdoor unit. When the thermostat is off, the air blown by the fan is usually maintained.
  • the outdoor control device 110 stands by until the preset set time elapses.
  • the set time at this time is, for example, 15 minutes, but is not limited to this.
  • the set time is preferably about 10 minutes to 20 minutes, but may be appropriately changed in the range of, for example, 5 minutes to 60 minutes.
  • the outdoor control device 110 determines whether the parameter A still corresponds to the above (b). As a result, when the outdoor control device 110 determines that the parameter A satisfies the condition (b), the outdoor control device 110 is an indoor unit 200 belonging to the group (I) that is not thermo-off. If there is 200, the indoor unit 200 is thermo-off. Alternatively, the outdoor control device 110 performs at least one of the other control methods A, C to G. On the other hand, the indoor unit 200 belonging to the group (II) is left as it is.
  • the outdoor control device 110 determines that the parameter A does not satisfy the condition (b), it determines whether the parameter A corresponds to the above (d).
  • the outdoor control device 110 determines that the parameter A satisfies the above (d)
  • the indoor unit 200 with the thermo-off is returned to the original operating state.
  • the outdoor control device 110 may return the air volume of the indoor unit 200 as a result of one determination, but when the state in which the parameter A satisfies the above (d) continues for a certain period of time, the indoor unit 200 is used as the original. You may return to the operating state of. As a result, comfort can be maintained even in the indoor space 502 (see FIG. 4) in which the indoor unit 200 belonging to the group (I) is installed.
  • the fixed time is, for example, 15 minutes, but the fixed time is not particularly limited to 10 minutes to 20 minutes, but is appropriately set in the range of 5 minutes to 60 minutes, for example. You may.
  • the indoor units 200 are divided into groups, and at least a part of the indoor units 200 belonging to the group (I) for which the operation is restricted is thermo-off, so that the current value of the air conditioner 1001 is suppressed. be able to. This makes it possible to prevent the current value of the air conditioner 1001 from exceeding the capacity of the electrical equipment. As a result, cost saving and peak power reduction can be achieved. Further, in the group (II), since the air volume of the indoor unit 200 is left as it is, the necessary air conditioning can be maintained.
  • Control method C the outdoor control device 110 sets the target evaporation temperature of the outdoor unit 100 to be higher than the current value during the cooling operation, and sets the target condensation temperature of the outdoor unit 100 to be lower than the current value during the heating operation. The details will be described below.
  • the outdoor control device 110 determines which of the above (a) to (c) is applicable.
  • the outdoor control device 110 determines that the parameter A satisfies the condition (b)
  • the operation mode is switched from the normal operation mode to the restricted operation mode, and the target evaporation temperature of the outdoor unit 100 is set to be higher than the current value. Make it high.
  • the outdoor control device 110 stands by until the preset set time elapses.
  • the set time at this time is, for example, 10 minutes, but is not limited to this.
  • the set time is preferably about 5 minutes to 15 minutes, but may be appropriately changed in the range of, for example, 5 minutes to 60 minutes.
  • the outdoor control device 110 determines whether the parameter A still corresponds to the above (b). As a result, when the outdoor control device 110 determines that the parameter A satisfies the condition of the above (b), the outdoor control device 110 raises the target evaporation temperature of the outdoor unit 100 even higher than the current value, or At least one of another control method A, B, D to G is performed.
  • the outdoor control device 110 determines whether or not the above condition (d) is satisfied. If it is determined that the parameter A does not satisfy the condition (b) and satisfies the condition (a), the outdoor unit 100 is immediately stopped and restarted.
  • the outdoor control device 110 determines that the parameter A satisfies the condition of the above (d), the target evaporation temperature of the outdoor unit 100 is restored.
  • the outdoor control device 110 determines whether the state is continuous for a preset set time. When the state in which the condition (d) is not satisfied continues for a set time, the outdoor control device 110 raises the target evaporation temperature of the outdoor unit 100 further than the current value, or uses other control methods A and B. Do at least one of D to G.
  • the set time is set to 15 minutes, but is not limited to this. The set time is preferably about 10 minutes to 20 minutes, but may be appropriately changed in the range of, for example, 5 minutes to 60 minutes.
  • An upper limit and a lower limit are set in advance for the target evaporation temperature.
  • the outdoor control device 110 sets the target evaporation temperature within the range determined by the upper limit and the lower limit.
  • an upper limit and a lower limit are set in advance for the target condensation temperature.
  • the outdoor control device 110 sets the target condensation temperature within the range determined by the upper limit and the lower limit.
  • the target evaporation temperature of the outdoor unit 100 is increased during cooling and the target condensation temperature of the outdoor unit 100 is decreased during heating, so that the current value of the air conditioner 1001 can be suppressed. ..
  • control method D the indoor control device 26 raises the target value of the superheating degree of the refrigerant during the cooling operation and the target value of the supercooling degree of the refrigerant during the heating operation for the refrigerant on the outlet side of the indoor unit 200. increase. The details will be described below.
  • the outdoor control device 110 determines which of the above (a) to (c) is applicable.
  • the outdoor control device 110 determines that the parameter A satisfies the condition of the above (b), the operation mode is switched from the normal operation mode to the restricted operation mode. Further, the outdoor control device 110 transmits a command to the indoor control device 26 to raise the target value of the refrigerant superheat degree of the indoor unit 200.
  • the outdoor control device 110 stands by until the preset set time elapses.
  • the set time at this time is, for example, 10 minutes, but is not limited to this.
  • the set time is preferably about 5 minutes to 15 minutes, but may be appropriately changed in the range of, for example, 5 minutes to 60 minutes.
  • the outdoor control device 110 determines whether the parameter A still corresponds to the above (b). As a result, when the outdoor control device 110 determines that the parameter A satisfies the condition of the above (b), the outdoor control device 110 further raises the target value of the refrigerant superheat degree.
  • the outdoor control device 110 determines whether or not the above condition (d) is satisfied.
  • the outdoor control device 110 determines whether the state is continuous for a preset set time.
  • the outdoor control device 110 further raises the target value of the degree of superheat of the refrigerant when the state satisfying the above condition (d) is continuous for a set time.
  • the set time at this time is, for example, 15 minutes, but is not limited to this.
  • the set time is preferably about 10 minutes to 20 minutes, but may be appropriately changed in the range of, for example, 5 minutes to 60 minutes.
  • the indoor control device 26 raises the target value of the supercooling degree during the cooling operation and raises the target value of the supercooling degree during the heating operation for the refrigerant on the outlet side of the indoor unit 200.
  • the current value of the air conditioner 1001 can be suppressed. This makes it possible to prevent the current value of the air conditioner 1001 from exceeding the capacity of the electrical equipment. As a result, cost saving and peak power reduction can be achieved.
  • the indoor unit 200 may be divided into groups (I) and groups (II), and limited operation may be performed only by the indoor units 200 belonging to the group (I). ..
  • Control method E when the outdoor control device 110 determines that the parameter A satisfies the condition of the above (b), the outdoor control device 110 switches the operation mode to the normal operation mode limited operation mode. Further, the outdoor control device 110 intentionally lowers the target value of the degree of supercooling of the outdoor heat exchanger 1 during the cooling operation. Since the operation when the parameter A satisfies the conditions (a) and (c) is the same as the control methods A and B, the description thereof is omitted here. Further, since the operation when the parameter A satisfies the condition of the above (d) after the control operation is performed is the same as the control methods A and B, the description thereof is omitted here.
  • FIG. 4 is a diagram showing an arrangement example of the outdoor unit 100 and the indoor unit 200 of the air conditioner 1001 according to the first embodiment.
  • the air conditioner 1001 is installed in a building 500 such as a building.
  • the outdoor unit 100 is arranged in the outdoor space 501 outside the building 500.
  • the control method E it is assumed that the outdoor unit 100 is installed on the roof of the building 500. That is, the outdoor unit 100 is arranged above the indoor unit 200 in the vertical direction.
  • the other control methods A to D, F, and G there may be no particular height difference between the installation position of the outdoor unit 100 and the installation position of the indoor unit 200.
  • the indoor unit 200 is installed inside the building 500.
  • the building 500 is provided with a plurality of interior spaces 502 and 503.
  • the indoor units 200a and 200b belonging to the group (I) are arranged with respect to the indoor space 502 and perform cooling or heating of the indoor space 502.
  • the indoor unit 200c belonging to the group (II) is arranged with respect to the indoor space 503, and cools or heats the indoor space 503.
  • the outdoor control device 110 intentionally lowers the target value of the degree of supercooling of the outdoor heat exchanger 1 during the cooling operation. As a result, the pressure on the high pressure side can be reduced by effectively using the outdoor heat exchanger 1.
  • a method of intentionally lowering the target value of the refrigerant supercooling degree of the outdoor heat exchanger 1 for example, there are the following methods. As shown in FIG. 1, a first bypass pipe 11 is provided, and a part of the refrigerant is liquid-backed to the accumulator 3 via the first bypass pipe 11.
  • FIG. 5 is a ph diagram showing the relationship between enthalpy and pressure.
  • the horizontal axis is enthalpy and the vertical axis is pressure.
  • the solid line 600 is a saturated liquid line
  • the broken line 601 indicates a change of state of the refrigerant in the refrigerating cycle 300, which changes depending on the condensation stroke, the expansion stroke, the evaporation stroke, and the compression stroke.
  • a part 601a of the broken line 601 showing the expansion stroke shows the state of the refrigerant in the refrigerant pipe 10a between the outdoor unit 100 and the indoor unit 200 shown in FIG.
  • the arrow P1 indicates the state of the refrigerant on the inlet side of the indoor unit 200 when there is no difference in height between the installation position of the outdoor unit 100 and the installation position of the indoor unit 200.
  • the pressure of the refrigerant drops due to the pressure loss of the refrigerant pipe 10a. Therefore, the degree of supercooling of the refrigerant on the inlet side of the indoor unit 200 is smaller than that on the outlet side of the outdoor unit 100.
  • the arrow P2 indicates the state of the refrigerant on the inlet side of the indoor unit 200 when there is a height difference between the installation position of the outdoor unit 100 and the installation position of the indoor unit 200.
  • the head pressure is applied to the refrigerant because the outdoor unit 100 is installed on the roof of the building 500. Therefore, since the pressure of the refrigerant increases, the degree of supercooling of the refrigerant on the inlet side of the indoor unit 200 is higher than that on the outlet side of the outdoor unit 100. Therefore, a large degree of supercooling is not required at the outlet of the outdoor unit 100.
  • the outdoor control device 110 intentionally lowers the target value of the supercooling degree of the refrigerant on the outlet side of the outdoor heat exchanger 1 during the cooling operation. As a result, the amount of excess refrigerant in the outdoor heat exchanger 1 is reduced, so that the outdoor heat exchanger 1 can be effectively used.
  • the outdoor control device 110 intentionally lowers the target value of the supercooling degree of the refrigerant of the outdoor heat exchanger 1 during the cooling operation. As a result, peak power consumption in summer can be suppressed. Further, it is possible to prevent the current value of the air conditioner 1001 from exceeding the capacity of the electrical equipment. As a result, cost saving and peak power reduction can be achieved.
  • Control method F the outdoor control device 110 determines which of the above (a) to (c) the parameter A corresponds to.
  • the outdoor control device 110 determines that the parameter A satisfies the condition of the above (a)
  • the outdoor unit 100 is temporarily stopped and restarted.
  • the outdoor control device 110 determines that the parameter A satisfies the above (c)
  • the outdoor control device 110 continues the operation while keeping the operation mode of the outdoor unit 100 in the normal operation mode.
  • FIG. 6 is a diagram showing the relationship between the drive frequency of the compressor 2 of the air conditioner 1001 according to the first embodiment and the applied voltage.
  • the horizontal axis represents the drive frequency of the compressor 2
  • the vertical axis represents the applied voltage of the compressor 2.
  • FIG. 7 is a diagram showing the relationship between the drive frequency of the compressor 2 of the air conditioner 1001 according to the first embodiment and the current flowing through the compressor 2.
  • the horizontal axis represents the drive frequency of the compressor 2
  • the vertical axis represents the current of the compressor 2.
  • a range in which the drive frequency of the compressor 2 is higher than the threshold value Th is defined as a saturated region
  • a range in which the drive frequency of the compressor 2 is equal to or lower than the threshold value Th is defined as an unsaturated region.
  • the threshold Th is, for example, 70 Hz, but is not limited thereto.
  • the applied voltage of the compressor 2 increases as the drive frequency of the compressor 2 increases. That is, when the drive frequency of the compressor 2 is low, the applied voltage rises at the same time as the load increases.
  • the applied voltage of the compressor 2 in the saturation region, when the drive frequency of the compressor 2 reaches the threshold value Th, the applied voltage of the compressor 2 becomes saturated and becomes substantially constant. That is, even if the drive frequency of the compressor 2 increases, the applied voltage of the compressor 2 does not increase.
  • the current of the compressor 2 gradually increases as the drive frequency of the compressor 2 increases. That is, when the drive frequency of the compressor 2 is low, the current gradually increases at the same time as the load increases.
  • the saturation region when the drive frequency of the compressor 2 reaches the threshold value Th, the applied voltage of the compressor 2 becomes saturated and becomes almost constant as described with reference to FIG. After the applied voltage is saturated, it is necessary to increase the current value of the compressor 2 in order to increase the drive frequency of the compressor 2. Therefore, as shown in FIG. 7, the current value of the compressor 2 tends to increase, and the current of the compressor 2 rapidly increases as the drive frequency of the compressor 2 increases.
  • the drive frequency of the compressor 2 is in the saturated region, that is, when the applied voltage of the compressor 2 is high, the influence on the current value of the compressor 2 is large.
  • the outdoor control device 110 limits the drive frequency of the compressor 2 so as to be in the unsaturated region, so that the current value of the air conditioner 1001 can be suppressed. As a result, it is possible to prevent the current value of the air conditioner 1001 from exceeding the capacity of the electrical equipment. As a result, cost saving and peak power reduction can be achieved.
  • FIG. 8 is a diagram schematically showing a configuration of a modified example of the air conditioner 1001 according to the first embodiment. As shown in FIG. 8, in the modified example, two outdoor units 100 shown in FIG. 1 are installed in parallel. Further, a total of 6 indoor units 200 are connected to each outdoor unit 100. Further, a separate second circuit breaker 61 is provided for each outdoor unit 100.
  • the number of outdoor units 100 is two, but the number is not limited to this, and three or more may be used. Further, although the number of indoor units 200 is set to 6, the number is not limited to this, and any number may be set.
  • the control method G is performed when two or more outdoor units 100 are combined.
  • each outdoor unit 100 is individually wired, that is, when a separate second circuit breaker 61 is provided for each outdoor unit 100, in general, each outdoor unit 100 is loaded. It will be started sequentially accordingly. That is, when the load of the first outdoor unit 100A reaches a preset upper limit value, the second outdoor unit 100B is started. Further, when the load of the second outdoor unit 100B reaches the upper limit value, the third outdoor unit 100C (not shown) is started.
  • the upper limit value is a preset value such as, for example, 60% of the rated current of the outdoor unit 100.
  • the order of starting each outdoor unit and the upper limit value of the current are set in advance, and when the current value of the first outdoor unit reaches the upper limit value, the second unit is started. Similarly, the third and subsequent units are sequentially started when the current value of the outdoor unit that was started immediately before reaches the upper limit value.
  • a threshold value is set in advance for the current value detected by the current sensor 112A.
  • the threshold value is referred to as a fourth threshold value.
  • the fourth threshold value is set to a value smaller than the above-mentioned upper limit value preset for each outdoor unit. For example, assuming that the preset upper limit value is 90%, the fourth threshold value is determined in a value smaller than 90%, for example, in the range of 80% to 70%.
  • a fourth threshold value is set for the current value detected by the current sensor 112B.
  • the fourth threshold value is set with a margin so that the outdoor unit 100 is not overloaded.
  • the current of the compressor 2 tends to increase. Therefore, in the control method G, the current values in the outdoor units 100A and 100B can be suppressed to low values, respectively, and it is possible to prevent the outdoor units 100A and 100B from being excessively loaded. As a result, the current value of the entire air conditioner 1001 can be suppressed, and the current value of the air conditioner 1001 can be prevented from exceeding the capacity of the electrical equipment.
  • the outdoor control device 110 determines which of the above (a) to (c) the parameter A corresponds to.
  • the outdoor control device 110 determines that the parameter A satisfies the condition of the above (a)
  • the outdoor unit 100 is temporarily stopped and restarted.
  • the outdoor control device 110 determines that the parameter A satisfies the above (c)
  • the outdoor control device 110 continues the operation while keeping the operation mode of the outdoor unit 100 in the normal operation mode. Further, when the outdoor control device 110 determines that the parameter A satisfies the condition of the above (b), the operation mode is switched from the normal operation mode to the restricted operation mode.
  • FIG. 9 is a flowchart showing an example of a case where two or more control methods of the control methods A to G are combined in the air conditioner 1001 according to the first embodiment.
  • FIG. 10 is a flowchart integrated with FIG. 9 showing an example of a case where two or more control methods of the control methods A to G are combined in the air conditioner 1001 according to the first embodiment. 9 and 10 show a case where the control methods A, B, and C are combined.
  • step S1 the air conditioner 1001 is operating in the normal operation mode.
  • step S2 the outdoor control device 110 calculates the value of the parameter A using the above equation (1), and determines which of the above (a) to (c) the parameter A corresponds to. ..
  • step S9 the outdoor unit 100 is temporarily stopped, and the outdoor unit 100 is restarted.
  • step S9 the outdoor unit 100 is temporarily stopped and restarted.
  • the outdoor control device 110 determines that the parameter A satisfies the above (c), it returns to step S1 and the air conditioner 1001 continues the operation in the normal operation mode.
  • the current value of the air conditioner 1001 is lower than the capacity of the electric equipment, and the capacity of the electric equipment has a margin, so that the limited operation is not performed.
  • the outdoor control device 110 switches from the restricted operation mode to the normal operation mode.
  • the outdoor control device 110 determines that the parameter A satisfies the condition (b)
  • the outdoor control device 110 switches the operation mode of the air conditioner 1001 from the normal operation mode to the restricted operation mode. Proceed to step S3. If the operation mode is already set to the restricted operation mode in step S2, the outdoor control device 110 does not switch the operation mode.
  • step S3 the outdoor control device 110 forcibly sets the air volume of the indoor unit 200 belonging to the group (I) among the plurality of indoor units 200 from the current value by 1 via the indoor control device 26. Step down. On the other hand, the air volume setting of the indoor unit 200 belonging to the group (II) is left as it is.
  • step S4 after 15 minutes have elapsed, the outdoor control device 110 determines whether the parameter A still corresponds to the above (b). As a result, if the outdoor control device 110 determines that the parameter A still satisfies the condition (b), the process proceeds to step S5. On the other hand, if the outdoor control device 110 determines that the parameter A does not satisfy the condition (b), the process proceeds to step S16.
  • step S5 the outdoor control device 110 selects indoor units 200 having a small load from the indoor units 200 belonging to the group (I), and forcibly forces those indoor units 200 via the indoor control device 26.
  • the indoor unit 200 having a small load means, as described above, an indoor unit having a small difference between the set temperature and the suction temperature as compared with other indoor units 200, and an indoor unit whose suction temperature is lower than the threshold value during cooling operation. An indoor unit whose suction temperature is higher than the threshold value during heating operation.
  • step S6 after 15 minutes have elapsed, the outdoor control device 110 determines whether the parameter A still corresponds to the above (b). As a result, if the outdoor control device 110 determines that the parameter A still satisfies the condition (b), the process proceeds to step S7. On the other hand, if the outdoor control device 110 determines that the parameter A does not satisfy the condition (b), the process proceeds to step S13.
  • step S7 the outdoor control device 110 sets the target evaporation temperature of the outdoor unit 100 to be higher than the current value during the cooling operation, and sets the target condensation temperature of the outdoor unit 100 to be lower than the current value during the heating operation.
  • step S8 after 10 minutes have elapsed, the outdoor control device 110 determines whether the parameter A still corresponds to the above (b). As a result, if the outdoor control device 110 determines that the parameter A still satisfies the condition (b), the process returns to step S7. On the other hand, if the outdoor control device 110 determines that the parameter A does not satisfy the condition (b), the process proceeds to step S10.
  • step S10 the outdoor control device 110 determines whether the parameter A corresponds to the above (d). If the outdoor control device 110 determines that the parameter A satisfies the above (d), the outdoor control device 110 proceeds to step S11. On the other hand, if the outdoor control device 110 determines that the parameter A does not satisfy the above (d), the process proceeds to step S18.
  • step S11 the outdoor control device 110 returns the target evaporation temperature of the outdoor unit 100 to the original value during the cooling operation, and returns the target condensation temperature of the outdoor unit 100 to the original value during the heating operation, and proceeds to step S12. move on.
  • step S18 the outdoor control device 110 determines whether the state in which the parameter A does not satisfy the above (d) is continued for 15 minutes, and if it is continued, proceeds to step S7.
  • step S12 the outdoor control device 110 waits for 10 minutes and proceeds to step S13.
  • step S13 the outdoor control device 110 determines whether the parameter A corresponds to the above (d). If the outdoor control device 110 determines that the parameter A satisfies the above (d), the outdoor control device 110 proceeds to step S14. On the other hand, if the outdoor control device 110 determines that the parameter A does not satisfy the above (d), the process proceeds to step S19.
  • step S14 the outdoor control device 110 returns the indoor unit 200 whose thermo-off was turned off in step S5 to the thermo-on (cooling operation or heating operation), and proceeds to step S15.
  • step S19 the outdoor control device 110 determines whether the state in which the parameter A does not satisfy the above (d) is continued for 15 minutes, and if it is continued, proceeds to step S7.
  • step S15 the outdoor control device 110 waits for 10 minutes and proceeds to step S16.
  • step S16 the outdoor control device 110 determines whether the parameter A corresponds to the above (d). If the outdoor control device 110 determines that the parameter A satisfies the above (d), the outdoor control device 110 proceeds to step S17. On the other hand, if the outdoor control device 110 determines that the parameter A does not satisfy the above (d), the process proceeds to step S20.
  • step S17 the outdoor control device 110 restores the air volume setting of the indoor unit 200 whose air volume was reduced in step S3, and returns to step S2. Although it is described here as returning to step S2, it is possible to return directly to step S1 without performing the determination in step S2.
  • step S20 the outdoor control device 110 determines whether the state in which the parameter A does not satisfy the above (d) is continued for 15 minutes, and if it is continued, proceeds to step S5.
  • the current sensor 112 detects the current value supplied from the AC power supply 50 to the air conditioner 1001. Further, the storage unit 111 stores in advance the capacity of the electrical equipment of the building 500 in which the air conditioner 1001 is installed.
  • the outdoor control device 110 uses the current value detected by the current sensor 112 to obtain the ratio of the current value to the capacity of the electrical equipment as the parameter A. Then, when the parameter A is equal to or higher than the first threshold value, a restricted operation for limiting the operation of at least one of the indoor unit 200 and the outdoor unit 100 is performed. Thereby, the current value of the air conditioner 1001 can be suppressed, and the current value of the air conditioner 1001 can be prevented from exceeding the capacity of the electric equipment.
  • the operation control is performed according to the capacity of the local electric equipment in which the air conditioner 1001 is installed, it is not necessary to replace the existing local electric equipment.
  • the outdoor control device 110 stops the restricted operation and returns the operation mode to the normal operation mode. ..
  • comfort can be maintained in the indoor space 502 in which the indoor unit 200 of the group (I) that implements the restricted operation is installed.
  • it is possible to realize cost saving and reduction of peak power while maintaining comfort in each of the interior spaces 502 and 503.
  • the indoor unit 200 is divided into a group (I) and a group (II), but the indoor unit 200 is not limited to this case and is referred to as a group (I) and a group (II). It is not necessary to group them into groups. In that case, it is sufficient to assume that all the indoor units 200 belong to the group (I) and perform each of the above controls.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is an air conditioning apparatus comprising indoor equipment, outdoor equipment, and a control device that controls the operation of the indoor equipment and the outdoor equipment. The control device comprises a current acquisition unit that acquires a current value that is supplied to the air conditioning apparatus from the power source, and a memory unit that stores the capacity of electrical equipment to which the air conditioning apparatus is connected. The control device determines whether the ratio of the current value to the electrical equipment capacity is equal to or greater than a first threshold, on the basis of the current value acquired by the current acquisition unit and the electrical equipment capacity stored in the memory unit, and if the ratio of the current value to the electrical equipment capacity is equal to or greater than the first threshold, performs a restrictive operation in which the operation of at least either one of the indoor equipment or the outdoor equipment is restricted.

Description

空気調和装置Air conditioner
 本開示は、電気設備の容量に応じた運転制御を行う空気調和装置に関する。 This disclosure relates to an air conditioner that controls operation according to the capacity of electrical equipment.
 従来の空冷式熱交換器を用いたヒートポンプ式空気調和装置は、冷媒を圧縮もしくは膨張させることにより高温もしくは低温にし、その冷媒と熱交換器における空気との温度差により熱交換を行っている。そのため、熱交換器における熱交換量は空気温度と冷媒温度との温度差または風量に依存する。そのため、室外機では、冷媒回路内の温度または圧力をセンサなどで検知しながら、送風機回転数または圧縮機周波数を制御している(例えば、特許文献1参照)。 In the heat pump type air conditioner using the conventional air-cooled heat exchanger, the temperature is raised or lowered by compressing or expanding the refrigerant, and heat is exchanged by the temperature difference between the refrigerant and the air in the heat exchanger. Therefore, the amount of heat exchange in the heat exchanger depends on the temperature difference between the air temperature and the refrigerant temperature or the air volume. Therefore, the outdoor unit controls the blower rotation speed or the compressor frequency while detecting the temperature or pressure in the refrigerant circuit with a sensor or the like (see, for example, Patent Document 1).
特許第5963539号公報Japanese Patent No. 5963539
 従来の空気調和装置においては、室内機の負荷に応じた冷暖房能力に従って、圧縮機または送風機を制御している。従来の空気調和装置においては、空気調和装置が設置されている現場配線および電源ブレーカの容量に応じた運転は行っていない。 In the conventional air conditioner, the compressor or blower is controlled according to the heating / cooling capacity according to the load of the indoor unit. In the conventional air conditioner, the operation according to the capacity of the on-site wiring and the power breaker in which the air conditioner is installed is not performed.
 そのため、空気調和装置を新たに設置する場合、据え付け工事説明書などで空調機メーカ側が提示する最大電流値に応じて、電気設備の電流容量を選定し、さらに必要に応じて、電源ブレーカを取り替える必要がある。その場合、工事費用がかかるという課題があった。さらに、電気設備の電流容量の変更に伴い、電力会社とのアンペア数の契約内容を変更する必要がある。その結果、毎月の基本電気料金が増加する。これらの理由により、コストアップにつながるという課題があった。 Therefore, when installing a new air conditioner, select the current capacity of the electrical equipment according to the maximum current value presented by the air conditioner manufacturer in the installation work manual, and replace the power breaker if necessary. There is a need. In that case, there is a problem that construction cost is required. Furthermore, it is necessary to change the amperage contract with the electric power company due to the change in the current capacity of the electric equipment. As a result, the monthly basic electricity rate will increase. For these reasons, there is a problem that it leads to an increase in cost.
 また、空調機メーカ側が提示する最大電流値は、室内機を複数台持つマルチタイプの空気調和装置の場合、全室内機が最大風量で動作し、且つ、室外機および室内機の吸込温度範囲において最大負荷となる環境条件に基づいて決定されている。そのため、空調機メーカ側が提示する最大電流値に応じて電気設備の電流容量を選定すると、実際に通常運転する場合の電流容量よりも大きい値となってしまい、電流容量を余していることも多かった。 In addition, the maximum current value presented by the air conditioner manufacturer is that in the case of a multi-type air conditioner having multiple indoor units, all indoor units operate at the maximum air volume, and the suction temperature range of the outdoor unit and indoor unit is sufficient. It is determined based on the environmental conditions that are the maximum load. Therefore, if the current capacity of the electrical equipment is selected according to the maximum current value presented by the air conditioner manufacturer, the value will be larger than the current capacity in actual normal operation, and the current capacity may be left over. There were many.
 また、建物に現在設置されている配管または配線を再利用する既設配管利用タイプの空気調和装置を用いる場合も増えてきているが、電気設備の電流容量が合わない場合、電気設備を更新する必要があった。 In addition, there are increasing cases of using existing piping utilization type air conditioners that reuse the piping or wiring currently installed in the building, but if the current capacity of the electrical equipment does not match, it is necessary to update the electrical equipment. was there.
 本開示は、かかる課題を解決するためになされたものであり、空気調和装置が設置される現地の電気設備の容量に応じた運転制御を行うことで、省コスト化およびピーク電力の低減を図ることが可能な、空気調和装置を得ることを目的としている。 This disclosure is made in order to solve such a problem, and aims at cost saving and reduction of peak power by performing operation control according to the capacity of the local electric equipment in which the air conditioner is installed. The purpose is to obtain an air conditioner that can be used.
 本開示に係る空気調和装置は、室内機と、室外機と、前記室内機および前記室外機の動作の制御を行う制御装置とを備えた空気調和装置であって、前記制御装置は、電源から前記空気調和装置に供給される電流値を取得する電流取得部と、前記空気調和装置が接続された電気設備の容量を記憶した記憶部と、を有し、前記制御装置は、前記電流取得部が取得した前記電流値と前記記憶部が記憶した前記電気設備の容量とに基づいて、前記電気設備の容量に対する前記電流値の比が第1閾値以上か否かの判定を行い、前記電気設備の容量に対する前記電流値の比が前記第1閾値以上の場合に、前記室内機および前記室外機の少なくともいずれか一方の運転を制限する制限運転を行うものである。 The air conditioner according to the present disclosure is an air conditioner including an indoor unit, an outdoor unit, and a control device for controlling the operation of the indoor unit and the outdoor unit, and the control device is from a power source. The control device has a current acquisition unit that acquires a current value supplied to the air conditioner and a storage unit that stores the capacity of the electrical equipment to which the air conditioner is connected. The control device has the current acquisition unit. Based on the current value acquired by the user and the capacity of the electric equipment stored by the storage unit, it is determined whether or not the ratio of the current value to the capacity of the electric equipment is equal to or higher than the first threshold value, and the electric equipment is determined. When the ratio of the current value to the capacity of the above is equal to or more than the first threshold value, the restricted operation for limiting the operation of at least one of the indoor unit and the outdoor unit is performed.
 本開示に係る空気調和装置によれば、当該空気調和装置が設置される現地の電気設備の容量に応じた運転制御を行うことで、省コスト化およびピーク電力の低減を図ることができる。 According to the air conditioner according to the present disclosure, cost saving and peak power reduction can be achieved by performing operation control according to the capacity of the local electric equipment in which the air conditioner is installed.
実施の形態1に係る空気調和装置1001の構成を示す図である。It is a figure which shows the structure of the air conditioner 1001 which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置1001が設けられた建物500における交流給電システムの構成を示す図である。It is a figure which shows the structure of the AC power supply system in the building 500 provided with the air conditioner 1001 which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置1001の室内機200のグループ分けの一例を示す図である。It is a figure which shows an example of the grouping of the indoor unit 200 of the air conditioner 1001 which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置1001の室外機100と室内機200との配置例を示す図である。It is a figure which shows the arrangement example of the outdoor unit 100 and the indoor unit 200 of the air conditioner 1001 which concerns on Embodiment 1. FIG. エンタルピーと圧力との関係を示すp-h線図である。It is a ph diagram which shows the relationship between enthalpy and pressure. 実施の形態1に係る空気調和装置1001の圧縮機2の駆動周波数と印加電圧との関係を示す図である。It is a figure which shows the relationship between the drive frequency and the applied voltage of the compressor 2 of the air conditioner 1001 which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置1001の圧縮機2の駆動周波数と圧縮機2を流れる電流との関係を示す図である。It is a figure which shows the relationship between the drive frequency of the compressor 2 of the air conditioner 1001 which concerns on Embodiment 1 and the current which flows through a compressor 2. 実施の形態1に係る空気調和装置1001の変形例の構成を模式的に示す図である。It is a figure which shows typically the structure of the modification of the air conditioner 1001 which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置1001において制御方法A~Gのうちの2以上の制御方法を組み合わせた場合の一例を示すフローチャートである。It is a flowchart which shows an example of the case where two or more control methods of control methods A to G are combined in the air conditioner 1001 which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置1001において制御方法A~Gのうちの2以上の制御方法を組み合わせた場合の一例を示す図9と一体のフローチャートである。It is a flowchart integrated with FIG. 9 which shows an example of the case where two or more control methods of control methods A to G are combined in the air conditioner 1001 which concerns on Embodiment 1. FIG.
 以下、本開示に係る空気調和装置の実施の形態について図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の実施の形態およびその変形例に示す構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含むものである。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。なお、各図面では、各構成部材の相対的な寸法関係または形状等が実際のものとは異なる場合がある。 Hereinafter, embodiments of the air conditioner according to the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments, and can be variously modified without departing from the gist of the present disclosure. In addition, the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments and modifications thereof. Further, in each figure, those having the same reference numerals are the same or equivalent thereof, which are common to the whole text of the specification. In each drawing, the relative dimensional relationship or shape of each component may differ from the actual one.
 実施の形態1.
 図1は、実施の形態1に係る空気調和装置1001の構成を示す図である。空気調和装置1001は、室外機100と複数の室内機200とを備えている。室外機100と室内機200とは冷媒配管10aで連結され、主となる冷媒回路(以下、主冷媒回路10という)を構成して、冷媒を循環させる冷凍サイクル300を構成している。ここで、空気調和装置1001は、3台の室内機200を備えているが、室内機200の設置台数は、3台に限定されるものではない。また、a、b、cなどの添字で区別している複数の同種の機器等については、特に区別したり、特定したりする必要がない場合には、添字を省略して記載する場合もある。そして、温度、圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム、装置等における状態、動作等において相対的に定まるものとする。
Embodiment 1.
FIG. 1 is a diagram showing a configuration of an air conditioner 1001 according to the first embodiment. The air conditioner 1001 includes an outdoor unit 100 and a plurality of indoor units 200. The outdoor unit 100 and the indoor unit 200 are connected by a refrigerant pipe 10a to form a main refrigerant circuit (hereinafter referred to as a main refrigerant circuit 10) to form a refrigerating cycle 300 for circulating the refrigerant. Here, the air conditioner 1001 includes three indoor units 200, but the number of indoor units 200 installed is not limited to three. Further, when it is not necessary to distinguish or specify a plurality of devices of the same type that are distinguished by subscripts such as a, b, and c, the subscripts may be omitted. The height of temperature, pressure, etc. is not determined in relation to the absolute value, but is relatively determined in the state, operation, etc. of the system, device, or the like.
 図1において、室外機100は、室外熱交換器1、圧縮機2、アキュムレータ3、室外ファン4、ファンモータ5、切替装置6、二重管7、バイパス膨張弁8、第1バイパス配管11、オイルセパレータ15、第2バイパス配管16、調整弁17、および、毛細管18を有している。室外機100は、さらに、室外制御装置110を有している。 In FIG. 1, the outdoor unit 100 includes an outdoor heat exchanger 1, a compressor 2, an accumulator 3, an outdoor fan 4, a fan motor 5, a switching device 6, a double pipe 7, a bypass expansion valve 8, and a first bypass pipe 11. It has an oil separator 15, a second bypass pipe 16, a regulating valve 17, and a capillary pipe 18. The outdoor unit 100 further has an outdoor control device 110.
 圧縮機2は、吸入した冷媒を圧縮して吐出する。圧縮機2は、例えば、インバータ圧縮機である。その場合、インバータ装置により、圧縮機2の駆動周波数を任意に変化させることで、圧縮機2の容量(単位時間あたりの冷媒を送り出す量)を細かく変化させることができる。 The compressor 2 compresses and discharges the sucked refrigerant. The compressor 2 is, for example, an inverter compressor. In that case, the capacity of the compressor 2 (the amount of the refrigerant delivered per unit time) can be finely changed by arbitrarily changing the drive frequency of the compressor 2 by the inverter device.
 切替装置6は、例えば、四方弁である。切替装置6は、室外制御装置110からの指示に基づいて、例えば冷房運転時と暖房運転時とによって冷媒の流れを切り換える。 The switching device 6 is, for example, a four-way valve. The switching device 6 switches the flow of the refrigerant between the cooling operation and the heating operation, for example, based on the instruction from the outdoor control device 110.
 室外熱交換器1は、冷媒と空気(室外の空気)との熱交換を行う。例えば、暖房運転時においては、室外熱交換器1は蒸発器として機能し、流入した低圧の冷媒と空気との熱交換を行い、冷媒を蒸発させ、気化させる。また、冷房運転時においては、室外熱交換器1は凝縮器として機能し、切替装置6側から流入した圧縮機2において圧縮された冷媒と空気との熱交換を行い、冷媒を凝縮して液化させる。室外熱交換器1は、例えば、フィンアンドチューブ型熱交換器である。 The outdoor heat exchanger 1 exchanges heat between the refrigerant and air (outdoor air). For example, during the heating operation, the outdoor heat exchanger 1 functions as an evaporator, exchanges heat between the inflowing low-pressure refrigerant and air, and evaporates and vaporizes the refrigerant. Further, during the cooling operation, the outdoor heat exchanger 1 functions as a condenser, and heat exchange between the compressed refrigerant and the air in the compressor 2 flowing in from the switching device 6 side to condense and liquefy the refrigerant. Let me. The outdoor heat exchanger 1 is, for example, a fin-and-tube heat exchanger.
 室外熱交換器1に対しては、冷媒と空気との熱交換を効率よく行うため、送風機となる室外ファン4が設けられている。室外ファン4は、室外熱交換器1に対して送風を行う。室外ファン4にはファンモータ5が設けられている。ファンモータ5は、室外ファン4を駆動させるためのモータである。室外ファン4についても、インバータ装置によりファンモータ5の駆動周波数を任意に変化させてファンの回転速度を細かく変化させることができる。ここで、ファンモータ5による室外ファン4の回転方向を正回転とする。 The outdoor heat exchanger 1 is provided with an outdoor fan 4 serving as a blower in order to efficiently exchange heat between the refrigerant and air. The outdoor fan 4 blows air to the outdoor heat exchanger 1. The outdoor fan 4 is provided with a fan motor 5. The fan motor 5 is a motor for driving the outdoor fan 4. As for the outdoor fan 4, the drive frequency of the fan motor 5 can be arbitrarily changed by the inverter device to finely change the rotation speed of the fan. Here, the rotation direction of the outdoor fan 4 by the fan motor 5 is defined as forward rotation.
 冷媒間熱交換器となる二重管7は、主冷媒回路10を流れる冷媒と、主冷媒回路10から分岐した第1バイパス配管11を流れる冷媒との間で熱交換を行う。第1バイパス配管11を流れる冷媒は、バイパス膨張弁8により流量調整される。二重管7は、特に冷房運転時において、冷媒を過冷却する必要がある場合に、冷媒を過冷却して、室内機200に供給する。バイパス膨張弁8を介して流れる液体は、第1バイパス配管11を介してアキュムレータ3に戻される。アキュムレータ3は、圧縮機2の吸込み側(低圧側)において、例えば液体の余剰冷媒を溜めておく容器である。 The double pipe 7 serving as the inter-refrigerant heat exchanger exchanges heat between the refrigerant flowing through the main refrigerant circuit 10 and the refrigerant flowing through the first bypass pipe 11 branched from the main refrigerant circuit 10. The flow rate of the refrigerant flowing through the first bypass pipe 11 is adjusted by the bypass expansion valve 8. The double pipe 7 supercools the refrigerant and supplies it to the indoor unit 200 when it is necessary to supercool the refrigerant, especially during the cooling operation. The liquid flowing through the bypass expansion valve 8 is returned to the accumulator 3 via the first bypass pipe 11. The accumulator 3 is a container for storing, for example, excess liquid refrigerant on the suction side (low pressure side) of the compressor 2.
 オイルセパレータ15は、圧縮機2の吐出側(高圧側)に配置されている。オイルセパレータ15は、圧縮機2から吐出された冷媒に含まれる冷凍機油を分離して、第2バイパス配管16を介して、圧縮機2は直接戻す。これにより、圧縮機2の潤滑油を適量に保ち、焼き付き事故を防止し、熱交換器の油膜による効率低下を改善する。なお、第2バイパス配管16は、圧縮機2の高圧側と低圧側とを接続するバイパス配管である、図1の例では、第2バイパス配管16は、オイルセパレータ15と圧縮機2の吸入側(低圧側)とを接続するとともに、オイルセパレータ15とアキュムレータ3とを接続している。第2バイパス配管16を流れる冷媒の量は、毛細管18によって制御される。なお、毛細管18は、2個以上設けてもよい。その場合には、オイルセパレータ15と圧縮機2の吸入側(低圧側)との間に1つ、オイルセパレータ15とアキュムレータ3との間に1つ設けることが望ましい。 The oil separator 15 is arranged on the discharge side (high pressure side) of the compressor 2. The oil separator 15 separates the refrigerating machine oil contained in the refrigerant discharged from the compressor 2, and the compressor 2 is directly returned via the second bypass pipe 16. As a result, the lubricating oil of the compressor 2 is kept in an appropriate amount, seizure accidents are prevented, and the efficiency decrease due to the oil film of the heat exchanger is improved. The second bypass pipe 16 is a bypass pipe that connects the high pressure side and the low pressure side of the compressor 2. In the example of FIG. 1, the second bypass pipe 16 is the suction side of the oil separator 15 and the compressor 2. (Low pressure side) is connected, and the oil separator 15 and the accumulator 3 are connected. The amount of refrigerant flowing through the second bypass pipe 16 is controlled by the capillary pipe 18. In addition, two or more capillaries 18 may be provided. In that case, it is desirable to provide one between the oil separator 15 and the suction side (low pressure side) of the compressor 2, and one between the oil separator 15 and the accumulator 3.
 また、実施の形態1における室外機100は、高圧用圧力センサ12、低圧用圧力センサ13、および、外気温度センサ14を有している。外気温度センサ14は、室外熱交換器1の付近に設けられ、外気温度(屋外の気温)を検出する。また、高圧用圧力センサ12は、圧縮機2の吐出側(出口側)配管における圧力(ヒートポンプ回路の高圧側の圧力)を検出する。低圧用圧力センサ13は、アキュムレータ3の入口側配管における圧力(ヒートポンプ回路の低圧側の圧力)を検出する。高圧用圧力センサ12、低圧用圧力センサ13、および、外気温度センサ14は、それぞれ、検出した値を室外制御装置110に送信する。 Further, the outdoor unit 100 in the first embodiment has a high pressure pressure sensor 12, a low pressure pressure sensor 13, and an outside air temperature sensor 14. The outside air temperature sensor 14 is provided in the vicinity of the outdoor heat exchanger 1 and detects the outside air temperature (outdoor air temperature). Further, the high pressure pressure sensor 12 detects the pressure (pressure on the high pressure side of the heat pump circuit) in the discharge side (outlet side) piping of the compressor 2. The low pressure pressure sensor 13 detects the pressure in the inlet side piping of the accumulator 3 (the pressure on the low pressure side of the heat pump circuit). The high pressure pressure sensor 12, the low pressure pressure sensor 13, and the outside air temperature sensor 14 each transmit the detected values to the outdoor control device 110.
 室外制御装置110は、室外機100の動作の制御を行う。室外制御装置110は、例えば、空気調和装置内の各センサで検出されたデータに基づいて、インバータ回路制御による圧縮機2の駆動周波数および室外ファン4のファンモータ5の駆動周波数を制御して、空気調和装置全体の動作制御を行う。また、室外制御装置110は、後述する室内制御装置26との間で、無線または有線の通信を行う。室外制御装置110は、制限運転モードにおいては、必要に応じて、室内制御装置26に対して指令を送信することで、室内機200の制限運転を行う。なお、室外制御装置110および室内制御装置26は、空気調和装置1001の「制御装置」を構成している。 The outdoor control device 110 controls the operation of the outdoor unit 100. The outdoor control device 110 controls, for example, the drive frequency of the compressor 2 and the drive frequency of the fan motor 5 of the outdoor fan 4 by inverter circuit control based on the data detected by each sensor in the air conditioner. Controls the operation of the entire air conditioner. Further, the outdoor control device 110 performs wireless or wired communication with the indoor control device 26 described later. In the restricted operation mode, the outdoor control device 110 performs the restricted operation of the indoor unit 200 by transmitting a command to the indoor control device 26 as needed. The outdoor control device 110 and the indoor control device 26 constitute a "control device" of the air conditioner 1001.
 室外制御装置110は、記憶部111と電流取得部113とを有している。記憶部111は、空気調和装置1001が設置されている建物500(図2または図4参照)の電気設備の容量を記憶している。また、記憶部111は、圧縮機2およびファンモータ5などの特性データを記憶している。また、電流取得部113は、交流電源50(図2参照)から空気調和装置1001に供給される電流の値を取得する。 The outdoor control device 110 has a storage unit 111 and a current acquisition unit 113. The storage unit 111 stores the capacity of the electrical equipment of the building 500 (see FIG. 2 or 4) in which the air conditioner 1001 is installed. Further, the storage unit 111 stores characteristic data of the compressor 2, the fan motor 5, and the like. Further, the current acquisition unit 113 acquires the value of the current supplied to the air conditioner 1001 from the AC power supply 50 (see FIG. 2).
 一方、室内機200は、室内熱交換器21、室内ファン22、調整弁23、吸込温度センサ24、吹出温度センサ25、および、室内制御装置26を有している。なお、吹出温度センサ25は、必ずしも設ける必要はなく、必要に応じて設けるようにすればよい。室内熱交換器21は冷媒と空調対象空間の空気との熱交換を行う。室内熱交換器21は、例えば、暖房運転時においては凝縮器として機能し、気体の冷媒が流れる配管から流入した冷媒と空気との熱交換を行い、冷媒を凝縮させて液化(又は気液二相化)させて流出させる。一方、冷房運転時においては、室内熱交換器21は、蒸発器として機能し、調整弁23により低圧状態にされた冷媒と空気との熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させて流出させる。室内熱交換器21は、例えば、フィンアンドチューブ式熱交換器である。また、室内ファン22は、ファンモータにより駆動され、室内熱交換器21に対して、送風を行う。室内ファン22は、熱交換を行う空気の流れを調整する。室内ファン22の駆動速度(風量)は、ユーザの設定により決定されるか、あるいは、室内制御装置26からの指令で決定される。調整弁23は、開度を変化させることで、室内熱交換器21内における冷媒の圧力を調整する。調整弁23は、冷房運転時において、室内熱交換器21の出口側の冷媒の過熱度によって制御される。また、調整弁23は、暖房運転時において、室内熱交換器21の出口側の冷媒の過冷却度によって制御される。 On the other hand, the indoor unit 200 has an indoor heat exchanger 21, an indoor fan 22, a regulating valve 23, a suction temperature sensor 24, a blowout temperature sensor 25, and an indoor control device 26. The blowout temperature sensor 25 does not necessarily have to be provided, and may be provided as needed. The indoor heat exchanger 21 exchanges heat between the refrigerant and the air in the air-conditioned space. The indoor heat exchanger 21 functions as a condenser during heating operation, for example, exchanges heat between air and the refrigerant flowing in from a pipe through which a gaseous refrigerant flows, and condenses the refrigerant to liquefy (or gas-liquid two). (Condensation) and let it flow out. On the other hand, during the cooling operation, the indoor heat exchanger 21 functions as an evaporator, exchanges heat between the refrigerant put into a low pressure state by the regulating valve 23 and air, and causes the refrigerant to take heat of the air and evaporate. Let it vaporize and let it flow out. The indoor heat exchanger 21 is, for example, a fin-and-tube heat exchanger. Further, the indoor fan 22 is driven by a fan motor and blows air to the indoor heat exchanger 21. The indoor fan 22 regulates the flow of air for heat exchange. The drive speed (air volume) of the indoor fan 22 is determined by the user's setting or by a command from the indoor control device 26. The adjusting valve 23 adjusts the pressure of the refrigerant in the indoor heat exchanger 21 by changing the opening degree. The regulating valve 23 is controlled by the degree of superheat of the refrigerant on the outlet side of the indoor heat exchanger 21 during the cooling operation. Further, the regulating valve 23 is controlled by the degree of supercooling of the refrigerant on the outlet side of the indoor heat exchanger 21 during the heating operation.
 吸込温度センサ24は、室内機200の吸込口側の空気の温度を検出する。吹出温度センサ25は、室内機200の吹出口側の空気の温度を検出する。室内制御装置26は、室内機200の動作の制御を行う。 The suction temperature sensor 24 detects the temperature of the air on the suction port side of the indoor unit 200. The outlet temperature sensor 25 detects the temperature of the air on the outlet side of the indoor unit 200. The indoor control device 26 controls the operation of the indoor unit 200.
 ここで、室外制御装置110および室内制御装置26のハードウェア構成について説明する。室外制御装置110および室内制御装置26は、それぞれ、処理回路から構成される。処理回路は、専用のハードウェア、または、プロセッサから構成される。専用のハードウェアは、例えば、ASIC(Application Specific Integrated Circuit)またはFPGA(Field Programmable Gate Array)などである。プロセッサは、メモリに記憶されるプログラムを実行する。室外制御装置110は記憶部111(図1参照)を有し、室内制御装置26は、図示しない記憶部を有している。これらの記憶部は、それぞれ、メモリから構成される。メモリは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)などの不揮発性または揮発性の半導体メモリ、もしくは、磁気ディスク、フレキシブルディスク、光ディスクなどのディスクである。 Here, the hardware configuration of the outdoor control device 110 and the indoor control device 26 will be described. The outdoor control device 110 and the indoor control device 26 are each composed of a processing circuit. The processing circuit is composed of dedicated hardware or a processor. The dedicated hardware is, for example, an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array). The processor executes a program stored in memory. The outdoor control device 110 has a storage unit 111 (see FIG. 1), and the indoor control device 26 has a storage unit (not shown). Each of these storage units is composed of a memory. The memory is a non-volatile or volatile semiconductor memory such as RAM (RandomAccessMemory), ROM (ReadOnlyMemory), flash memory, EPROM (ErasableProgrammableROM), or a disk such as a magnetic disk, flexible disk, or optical disk. be.
 次に、空気調和装置の動作について説明する。はじめに、冷房運転時の動作について説明する。まず、冷房運転時の主冷媒回路10における基本的な冷媒循環について説明する。圧縮機2により加圧されて吐出した高温、高圧ガス(気体)の冷媒は、切替装置6から室外熱交換器1に流入される。当該冷媒は、室外熱交換器1内を通過することで凝縮し、液冷媒となって室外機100を流出する。このとき、二重管7を通過する冷媒は、バイパス膨張弁8を通過した冷媒との間で熱交換することで過冷却される。バイパス膨張弁8および二重管7を通過した冷媒は、アキュムレータ3に流れる。 Next, the operation of the air conditioner will be described. First, the operation during the cooling operation will be described. First, the basic refrigerant circulation in the main refrigerant circuit 10 during the cooling operation will be described. The high-temperature, high-pressure gas (gas) refrigerant pressurized and discharged by the compressor 2 flows into the outdoor heat exchanger 1 from the switching device 6. The refrigerant condenses as it passes through the outdoor heat exchanger 1, becomes a liquid refrigerant, and flows out of the outdoor unit 100. At this time, the refrigerant passing through the double pipe 7 is supercooled by exchanging heat with the refrigerant passing through the bypass expansion valve 8. The refrigerant that has passed through the bypass expansion valve 8 and the double pipe 7 flows to the accumulator 3.
 室外機100を流出した冷媒は、主冷媒回路10を通って、室内機200に流入される。当該冷媒は、各室内機200において、調整弁23の開度調整により圧力調整された低温低圧の気液二相冷媒になり、室内熱交換器21に流入される。当該冷媒は、室内熱交換器21内を通過することで、蒸発する。そして、冷媒配管10aを通って、室外機100に流入し、切替装置6およびアキュムレータ3を介して圧縮機2に吸入され、再度、圧縮機2において加圧され吐出することで循環する。 The refrigerant flowing out of the outdoor unit 100 flows into the indoor unit 200 through the main refrigerant circuit 10. The refrigerant becomes a low-temperature low-pressure gas-liquid two-phase refrigerant whose pressure is adjusted by adjusting the opening degree of the adjusting valve 23 in each indoor unit 200, and flows into the indoor heat exchanger 21. The refrigerant evaporates by passing through the indoor heat exchanger 21. Then, it flows into the outdoor unit 100 through the refrigerant pipe 10a, is sucked into the compressor 2 via the switching device 6 and the accumulator 3, is again pressurized and discharged by the compressor 2, and circulates.
 次に、暖房運転時の動作について説明する。圧縮機2により加圧されて吐出した高温、高圧ガス(気体)の冷媒は、切替装置6から室内熱交換器21に流入される。当該冷媒は、室内熱交換器21内を通過することで凝縮し、調節弁23a~cで減圧し、二相冷媒となって室内機200を流出する。 Next, the operation during heating operation will be explained. The high-temperature, high-pressure gas (gas) refrigerant pressurized and discharged by the compressor 2 flows into the indoor heat exchanger 21 from the switching device 6. The refrigerant condenses by passing through the indoor heat exchanger 21, is depressurized by the control valves 23a to 23c, becomes a two-phase refrigerant, and flows out of the indoor unit 200.
 室内機200を流出した冷媒は、主冷媒回路10を通って、室外機100に流入される。当該冷媒は、室外熱交換器1に流入される。当該冷媒は、室外熱交換器1内を通過することで、蒸発する。そして、切替装置6およびアキュムレータ3を介して圧縮機2に吸入され、再度、圧縮機2において加圧され吐出することで循環する。 The refrigerant flowing out of the indoor unit 200 flows into the outdoor unit 100 through the main refrigerant circuit 10. The refrigerant flows into the outdoor heat exchanger 1. The refrigerant evaporates by passing through the outdoor heat exchanger 1. Then, it is sucked into the compressor 2 via the switching device 6 and the accumulator 3, and is circulated by being pressurized and discharged again by the compressor 2.
 図2は、実施の形態1に係る空気調和装置1001が設けられた建物500(図4参照)における交流給電システムの構成を示す図である。図2に示すように、建物500には、交流給電システムが設けられている。交流給電システムは、複数の系統を有している。一般に、「系統」とは、電力の供給から消費までを行う設備全体を意味する。ここでは、図2に示すように、第2遮断器61から空気調和装置1001までを「第1系統」と呼び、第3遮断器62から第2系統機器1002までを「第2系統」と呼ぶ。第1系統には、実施の形態1に係る空気調和装置1001が設けられている。第2系統には、第2負荷72を有する第2系統機器1002が設けられている。ここで、第2系統機器1002は、例えば、エレベータ装置、照明設備、通信設備などの建物500に設けられている電力消費機器のいずれか1つである。 FIG. 2 is a diagram showing a configuration of an AC power supply system in a building 500 (see FIG. 4) provided with an air conditioner 1001 according to the first embodiment. As shown in FIG. 2, the building 500 is provided with an AC power supply system. The AC power supply system has a plurality of systems. In general, "grid" means the entire facility that supplies and consumes power. Here, as shown in FIG. 2, the second circuit breaker 61 to the air conditioner 1001 are referred to as a "first system", and the third circuit breaker 62 to the second system device 1002 are referred to as a "second system". .. The first system is provided with the air conditioner 1001 according to the first embodiment. The second system is provided with a second system device 1002 having a second load 72. Here, the second system device 1002 is, for example, any one of the power consumption devices provided in the building 500 such as an elevator device, a lighting facility, and a communication facility.
 交流給電システムは、交流電源50に接続されている。交流電源50は、例えば商用電源である。交流給電システムは、交流電源50からの交流電圧によって電力が供給される。交流給電システムは、図2に示すように、第1遮断器60と、第2遮断器61と、第3遮断器62とを有している。第1遮断器60は、交流電源50に接続されている。第2遮断器61は、第1系統に対して設けられた第1系統遮断器である。第2遮断器61は、第1遮断器60と空気調和装置1001との間に直列接続されている。一方、第3遮断器62は、第2系統に対して設けられた第2系統遮断器である。第3遮断器62は、第1遮断器60と第2系統機器1002との間に直列接続されている。第1遮断器60、第2遮断器61、および、第3遮断器62は、過電流遮断器である。第1遮断器60、第2遮断器61、および、第3遮断器62は、予め設定された電流値を超える電流が流れた場合に作動して、電流の流れを遮断するものである。 The AC power supply system is connected to the AC power supply 50. The AC power source 50 is, for example, a commercial power source. The AC power supply system is supplied with electric power by an AC voltage from the AC power supply 50. As shown in FIG. 2, the AC power supply system has a first circuit breaker 60, a second circuit breaker 61, and a third circuit breaker 62. The first circuit breaker 60 is connected to the AC power supply 50. The second circuit breaker 61 is a first system circuit breaker provided for the first system. The second circuit breaker 61 is connected in series between the first circuit breaker 60 and the air conditioner 1001. On the other hand, the third circuit breaker 62 is a second system circuit breaker provided for the second system. The third circuit breaker 62 is connected in series between the first circuit breaker 60 and the second system device 1002. The first circuit breaker 60, the second circuit breaker 61, and the third circuit breaker 62 are overcurrent circuit breakers. The first circuit breaker 60, the second circuit breaker 61, and the third circuit breaker 62 operate when a current exceeding a preset current value flows to cut off the current flow.
 第1遮断器60は、第2遮断器61および第3遮断器62の上位遮断器である。即ち、第2遮断器61および第3遮断器62は、第1遮断器60の後段に接続されている。第1遮断器60は、第2遮断器61および第3遮断器62に対して共通に設けられている。第2遮断器61および第3遮断器62は、交流電源50に対して、第1遮断器60を介して、並列に接続されている。 The first circuit breaker 60 is a higher-level circuit breaker of the second circuit breaker 61 and the third circuit breaker 62. That is, the second circuit breaker 61 and the third circuit breaker 62 are connected to the subsequent stage of the first circuit breaker 60. The first circuit breaker 60 is commonly provided for the second circuit breaker 61 and the third circuit breaker 62. The second circuit breaker 61 and the third circuit breaker 62 are connected in parallel to the AC power supply 50 via the first circuit breaker 60.
 また、図2に示すように、交流電源50の正極側は正極電流路51に接続され、交流電源50の負極側は負極電流路52に接続されている。正極電流路51は、分岐点53で2つに分岐されている。分岐された一方は、第1正極電流路55で、他方は、第2正極電流路57である。また、負極電流路52は、分岐点54で2つに分岐されている。分岐された一方は、第1負極電流路56で、他方は、第2負極電流路58である。なお、図2では、交流電源50に2つの系統が接続されている場合を示している。そのため、分岐点53および54で、正極電流路51および負極電流路52が、それぞれ2つに分岐されるとして説明した。しかしながら、その場合に限らず、交流給電システムにN個の系統が設けられている場合には、分岐点53および54で、正極電流路51および負極電流路52が、それぞれ、N個ずつに分岐される。 Further, as shown in FIG. 2, the positive electrode side of the AC power supply 50 is connected to the positive electrode current path 51, and the negative electrode side of the AC power supply 50 is connected to the negative electrode current path 52. The positive electrode current path 51 is branched into two at the branch point 53. One of the branches is the first positive electrode current path 55, and the other is the second positive electrode current path 57. Further, the negative electrode current path 52 is branched into two at the branch point 54. One of the branches is the first negative electrode current path 56, and the other is the second negative electrode current path 58. Note that FIG. 2 shows a case where two systems are connected to the AC power supply 50. Therefore, it has been described that the positive electrode current path 51 and the negative electrode current path 52 are branched into two at the branch points 53 and 54, respectively. However, not limited to this case, when the AC power supply system is provided with N systems, the positive electrode current path 51 and the negative electrode current path 52 are branched into N units at the branch points 53 and 54, respectively. Will be done.
 なお、「電気設備」とは、交流電源50からの電力を各系統に安定して供給するために、送電および配電を行う設備である。「電気設備」には、受配電盤、変圧器、蓄電器、配線、過電流遮断器、漏電遮断器、開閉器などの少なくとも1つが含まれる。図2の例では、正極電流路51、負極電流路52、第1正極電流路55、第1負極電流路56、第2正極電流路57、第2負極電流路58、第1遮断器60、第2遮断器61、および、第3遮断器62のうちの少なくとも1つが、建物500の「電気設備」に含まれる。 The "electrical equipment" is equipment that transmits and distributes electric power in order to stably supply the electric power from the AC power source 50 to each system. "Electrical equipment" includes at least one such as a switchboard, a transformer, a power storage device, wiring, an overcurrent circuit breaker, an earth-leakage circuit breaker, and a switch. In the example of FIG. 2, the positive electrode current path 51, the negative electrode current path 52, the first positive electrode current path 55, the first negative electrode current path 56, the second positive electrode current path 57, the second negative electrode current path 58, the first circuit breaker 60, At least one of the second circuit breaker 61 and the third circuit breaker 62 is included in the "electrical equipment" of the building 500.
 図2に示すように、空気調和装置1001は、図1に示した冷凍サイクル300と、冷凍サイクル300に電力を供給する第1駆動回路400とを有している。第1駆動回路400内には、圧縮機2を駆動するインバータ装置、および、室外ファン4のファンモータ5を駆動するインバータ装置が設けられている。また、図1に示すように、室外制御装置110は、記憶部111を有している。さらに、図2に示すように、空気調和装置1001は、交流電源50から空気調和装置1001に供給される電流値を検出する電流センサ112が設けられている。 As shown in FIG. 2, the air conditioner 1001 has a refrigeration cycle 300 shown in FIG. 1 and a first drive circuit 400 for supplying electric power to the refrigeration cycle 300. In the first drive circuit 400, an inverter device for driving the compressor 2 and an inverter device for driving the fan motor 5 of the outdoor fan 4 are provided. Further, as shown in FIG. 1, the outdoor control device 110 has a storage unit 111. Further, as shown in FIG. 2, the air conditioner 1001 is provided with a current sensor 112 that detects the current value supplied from the AC power source 50 to the air conditioner 1001.
 また、第2系統機器1002は、第2負荷72と、第2負荷72に電力を供給する第2駆動回路71とを有している。第2系統機器1002は、空気調和装置1001が設置された建物500に設置され、電力を消費する各種装置である。具体的には、第2系統1002は、上述したように、例えばエレベータ装置などの建物500に設けられている、空気調和装置1001以外の電力消費機器である。 Further, the second system device 1002 has a second load 72 and a second drive circuit 71 that supplies electric power to the second load 72. The second system device 1002 is a variety of devices that are installed in the building 500 in which the air conditioner 1001 is installed and consume electric power. Specifically, as described above, the second system 1002 is a power consumption device other than the air conditioner 1001 provided in the building 500 such as an elevator device.
 図2に示す第1遮断器60、第2遮断器61、および、第3遮断器62は、建物500に設けられた電気設備を構成している。第1遮断器60、第2遮断器61、および、第3遮断器62は、そこを流れる電流値に応じてON/OFFされる。 The first circuit breaker 60, the second circuit breaker 61, and the third circuit breaker 62 shown in FIG. 2 constitute the electrical equipment provided in the building 500. The first circuit breaker 60, the second circuit breaker 61, and the third circuit breaker 62 are turned ON / OFF according to the current value flowing therethrough.
 実施の形態1では、空気調和装置1001が、運転モードとして、通常運転モードと、制限運転モードとを有している。空気調和装置1001は、電源から空気調和装置1001に供給される電流の値を取得する。当該取得は、電流センサ112による検出でもよいし、予め設定された数式を用いた演算によるものでもよい。以下では、取得された当該電流の値を、空気調和装置1001の電流値と呼ぶこととする。なお、電流センサ112は、交流電源50と冷凍サイクル300との間に配置される。図2の例では、電流センサ112は、空気調和装置1001の内部で、且つ、第1駆動回路400の前段に設けられている。しかしながら、この場合に限定されない。電流センサ112は、第1駆動回路400の後段で、冷凍サイクル300の前段に設けられていてもよい。また、電流センサ112は、空気調和装置1001の内部に設けられていてもよいが、空気調和装置1001の外部に設けられていてもよい。また、電流センサ112は空気調和装置1001の内部に設けられている場合には、例えば、室外機100の筐体内に配置される。 In the first embodiment, the air conditioner 1001 has a normal operation mode and a limited operation mode as operation modes. The air conditioner 1001 acquires the value of the current supplied from the power source to the air conditioner 1001. The acquisition may be detected by the current sensor 112 or may be calculated by using a preset mathematical formula. Hereinafter, the acquired current value will be referred to as the current value of the air conditioner 1001. The current sensor 112 is arranged between the AC power supply 50 and the refrigeration cycle 300. In the example of FIG. 2, the current sensor 112 is provided inside the air conditioner 1001 and in front of the first drive circuit 400. However, it is not limited to this case. The current sensor 112 may be provided after the first drive circuit 400 and before the refrigeration cycle 300. Further, the current sensor 112 may be provided inside the air conditioner 1001, but may be provided outside the air conditioner 1001. Further, when the current sensor 112 is provided inside the air conditioner 1001, for example, it is arranged inside the housing of the outdoor unit 100.
 ここで、「通常運転モード」とは、室外制御装置110および室内制御装置26が、建物500のビル管理者またはユーザによって室内機200に対して設定した、設定温度、風量、風向などに基づいて、室内機200および室外機100の動作を制御する運転モードである。一方、「制限運転モード」とは、室外制御装置110が、建物500の電気設備の容量に対する空気調和装置1001の電流値の比が第1閾値以上の場合に、室内機200および室外機100の少なくともいずれか一方の運転を制限する制限運転を行う運転モードである。すなわち、「制限運転モード」では、空気調和装置1001の電流値が電気設備の容量を超えないように、空気調和装置1001の電流値を低下させる制御を行う。 Here, the "normal operation mode" is based on the set temperature, air volume, wind direction, etc. set for the indoor unit 200 by the building manager or the user of the building 500 by the outdoor control device 110 and the indoor control device 26. , Is an operation mode for controlling the operation of the indoor unit 200 and the outdoor unit 100. On the other hand, in the "restricted operation mode", when the ratio of the current value of the air conditioner 1001 to the capacity of the electric equipment of the building 500 is equal to or more than the first threshold value, the outdoor control device 110 of the indoor unit 200 and the outdoor unit 100. This is an operation mode in which restricted operation is performed to limit at least one of the operations. That is, in the "limited operation mode", the control is performed to reduce the current value of the air conditioner 1001 so that the current value of the air conditioner 1001 does not exceed the capacity of the electric equipment.
 ここで、空気調和装置1001が設置されている現地に設けられている電気設備の容量(電流値)を100%する。このとき、空気調和装置1001の電流値が例えば80%に達した場合に、空気調和装置1001は、運転モードを、通常運転モードから制限運転モードへ切り替える。制限運転モードでは、空気調和装置1001の電流値が低くなるように、室外機100または室内機200の少なくとも一方において制限運転を行う。なお、ここでは、通常運転モードから制限運転モードへの切替の判定で用いる閾値を80%としたが、この場合に限らず、任意の値に設定してよい。また、当該閾値を、以下では、第1閾値と呼ぶ。これにより、電気設備に設けられている第1遮断器60および第2遮断器61が作動することを防止することができる。 Here, the capacity (current value) of the electrical equipment installed at the site where the air conditioner 1001 is installed is 100%. At this time, when the current value of the air conditioner 1001 reaches, for example, 80%, the air conditioner 1001 switches the operation mode from the normal operation mode to the limited operation mode. In the restricted operation mode, the restricted operation is performed in at least one of the outdoor unit 100 and the indoor unit 200 so that the current value of the air conditioner 1001 becomes low. Here, the threshold value used for determining the switching from the normal operation mode to the restricted operation mode is set to 80%, but the threshold value is not limited to this case and may be set to any value. Further, the threshold value will be referred to as a first threshold value below. This makes it possible to prevent the first circuit breaker 60 and the second circuit breaker 61 provided in the electrical equipment from operating.
 また、実施の形態1においては、制限運転の実施の有無にかかわらず、空気調和装置1001の電流値が、電気設備の容量の95%に達した場合には、当該電気設備を保護する目的で、室外機100を一旦停止し、再起動とする。なお、ここでは、室外機100を再起動させる閾値を95%としたが、この場合に限らず、任意に設定してよい。また、当該閾値を、以下では、第2閾値と呼ぶ。これにより、空気調和装置1001が電気設備の容量に達してしまうことを確実に防止できる。 Further, in the first embodiment, regardless of whether or not the restricted operation is performed, when the current value of the air conditioner 1001 reaches 95% of the capacity of the electric equipment, the purpose is to protect the electric equipment. , The outdoor unit 100 is temporarily stopped and restarted. Here, the threshold value for restarting the outdoor unit 100 is set to 95%, but the threshold value is not limited to this case and may be set arbitrarily. Further, the threshold value will be referred to as a second threshold value below. This makes it possible to reliably prevent the air conditioner 1001 from reaching the capacity of the electrical equipment.
 また、実施の形態1においては、空気調和装置1001の電流値が、電気設備の容量の80%未満の場合には、電気設備の容量に対して余裕があるので、空気調和装置1001は、通常運転モードでの運転を行う。 Further, in the first embodiment, when the current value of the air conditioner 1001 is less than 80% of the capacity of the electric equipment, there is a margin for the capacity of the electric equipment, so that the air conditioner 1001 is usually used. Operate in the operation mode.
 このように、実施の形態1では、空気調和装置1001が、電源から空気調和装置1001に供給される電流値によって自動的に通常運転モードから制限運転モードへの切り替えを行う。しかしながら、その場合に限らず、通常運転モードと制限運転モードとの間の切り替えは、ユーザが空気調和装置1001のスイッチを操作するか、あるいは、建物500に設けられた上位システムからの指令によって行われるようにしてもよい。即ち、建物500全体の電力に余裕が有る場合には、外部またはユーザからの入力で、電流制限モードを解除できるようにしてもよい。 As described above, in the first embodiment, the air conditioner 1001 automatically switches from the normal operation mode to the restricted operation mode according to the current value supplied from the power source to the air conditioner 1001. However, not limited to this case, the switching between the normal operation mode and the restricted operation mode is performed by the user operating the switch of the air conditioner 1001 or by a command from the host system provided in the building 500. You may be asked. That is, if there is a margin in the electric power of the entire building 500, the current limiting mode may be canceled by an input from the outside or the user.
 以下、実施の形態1に係る空気調和装置1001の動作について説明する。制限運転モードにおいては、室外制御装置110が、建物500の電気設備の容量と、空気調和装置1001の電流値とに基づいて、空気調和装置1001の動作を制御する。実施の形態1では、室外制御装置110の記憶部111に、建物500の電気設備の容量(例えば、電流容量)が予め記憶されている。ここでは、電気設備の容量を、電気設備の電流容量として説明する。空気調和装置1001は、電流センサ112が検出する電流値が、記憶部111に記憶された電気設備の容量を超えないように、室外機100および室内機200の少なくともいずれか一方の運転を制御する。室外機100の運転の制御としては、例えば、室外機100の圧縮機2の駆動周波数、室外ファン4の駆動周波数、または、アクチュエータの動作を制御する。また、室内機200の運転の制御としては、例えば、室内機の風量の設定変更、サーモオフへの切替、冷媒過熱度の目標値または冷媒過冷却度の目標値の変更などが挙げられる。これらの詳細については、後述する。 Hereinafter, the operation of the air conditioner 1001 according to the first embodiment will be described. In the limited operation mode, the outdoor control device 110 controls the operation of the air conditioner 1001 based on the capacity of the electric equipment of the building 500 and the current value of the air conditioner 1001. In the first embodiment, the capacity (for example, current capacity) of the electrical equipment of the building 500 is stored in advance in the storage unit 111 of the outdoor control device 110. Here, the capacity of the electric equipment will be described as the current capacity of the electric equipment. The air conditioner 1001 controls the operation of at least one of the outdoor unit 100 and the indoor unit 200 so that the current value detected by the current sensor 112 does not exceed the capacity of the electrical equipment stored in the storage unit 111. .. The operation of the outdoor unit 100 is controlled, for example, the drive frequency of the compressor 2 of the outdoor unit 100, the drive frequency of the outdoor fan 4, or the operation of the actuator. The operation control of the indoor unit 200 includes, for example, changing the setting of the air volume of the indoor unit, switching to the thermo-off, changing the target value of the refrigerant superheat degree or the target value of the refrigerant supercooling degree, and the like. Details of these will be described later.
 なお、ここでは、制限運転モードへの切替の判定に、電流センサ112が検出する電流値を用いる場合を例に挙げて説明しているが、その場合に、限定されない。即ち、上述したように、空気調和装置1001の電流値の取得は、演算によって行われてもよい。その場合には、空気調和装置1001が、例えば、空気調和装置1001自身が持つ冷凍サイクル300の状態から演算した電流値を用いる。即ち、例えば、室外制御装置110が、記憶部111に、圧縮機2の特性データ、および、室外ファン4のファンモータ5の特性データを予め記憶させておく。室外制御装置110は、当該特性データに基づいて、予め設定された演算式により、空気調和装置1001の電流値を求める。 Although the case where the current value detected by the current sensor 112 is used for the determination of switching to the limited operation mode is described here as an example, the present invention is not limited to that case. That is, as described above, the acquisition of the current value of the air conditioner 1001 may be performed by calculation. In that case, the air conditioner 1001 uses, for example, a current value calculated from the state of the refrigeration cycle 300 possessed by the air conditioner 1001 itself. That is, for example, the outdoor control device 110 stores the characteristic data of the compressor 2 and the characteristic data of the fan motor 5 of the outdoor fan 4 in the storage unit 111 in advance. The outdoor control device 110 obtains the current value of the air conditioner 1001 by a preset arithmetic expression based on the characteristic data.
 実施の形態1の制限運転モードでは、空気調和装置1001は、空気調和装置1001の電流値が、記憶部111に記憶された電気設備の容量を超えないように、下記の制御方法A~Gのうちの少なくとも1つを行う。以下、制御方法A~Gについて説明する。 In the restricted operation mode of the first embodiment, the air conditioner 1001 has the following control methods A to G so that the current value of the air conditioner 1001 does not exceed the capacity of the electric equipment stored in the storage unit 111. Do at least one of them. Hereinafter, the control methods A to G will be described.
<制御方法A>
 空気調和装置1001は、複数の室内機200を、運転制限を行う第1グループ(以下、グループ(I)と呼ぶ)と、運転制限を行わない第2グループ(以下、グループ(II)と呼ぶ)とに、予めグループ分けをしておく。複数の室内機200のグループは、例えば、室外制御装置110の記憶部111に記憶される。図3は、実施の形態1に係る空気調和装置1001の室内機200のグループ分けの一例を示す図である。図3の例においては、グループ(I)には、例えば、室内機200aおよび200bが属する。グループ(I)に属する室内機200aおよび200bは、制限運転モード時に、運転制限が行われる室内機である。グループ(I)に属する室内機200aおよび200bは、例えば、事務室、会議室、共用スペース、エレベータホール、トイレなどの室内空間502(図4参照)に設置される。一方、グループ(II)に属する室内機200cは、制限運転モード時に、運転制限が行われない室内機である。グループ(II)に属する室内機200cは、例えば、社長室、役員室、来客室、受付、サーバー室などの室内空間503(図4参照)に設置される。
<Control method A>
The air conditioner 1001 uses a plurality of indoor units 200 as a first group (hereinafter referred to as a group (I)) for restricting operation and a second group (hereinafter referred to as a group (II)) for which the operation is not restricted. In addition, grouping is done in advance. The group of the plurality of indoor units 200 is stored in, for example, the storage unit 111 of the outdoor control device 110. FIG. 3 is a diagram showing an example of grouping of the indoor unit 200 of the air conditioner 1001 according to the first embodiment. In the example of FIG. 3, the indoor units 200a and 200b belong to the group (I), for example. The indoor units 200a and 200b belonging to the group (I) are indoor units whose operation is restricted in the restricted operation mode. The indoor units 200a and 200b belonging to the group (I) are installed in an indoor space 502 (see FIG. 4) such as an office room, a conference room, a common space, an elevator hall, and a toilet. On the other hand, the indoor unit 200c belonging to the group (II) is an indoor unit in which the operation is not restricted in the restricted operation mode. The indoor unit 200c belonging to the group (II) is installed in an indoor space 503 (see FIG. 4) such as a president's room, an officer's room, a guest room, a reception desk, and a server room.
 制御方法Aにおいては、室外制御装置110は、予め設定された条件を満たした場合に、グループ(I)に属する室内機200aおよび200bの風量を、強制的に、一時的に低下させて、室内機200の1台あたりの能力を低下させる。グループ(II)に属する室内機200cについては、風量をそのままにして、優先的に運転させる。以下に、具体的に説明する。 In the control method A, the outdoor control device 110 forcibly and temporarily reduces the air volume of the indoor units 200a and 200b belonging to the group (I) when the preset conditions are satisfied, and the indoor control device 110 is indoors. The capacity per unit of the machine 200 is reduced. The indoor unit 200c belonging to the group (II) is preferentially operated while keeping the air volume as it is. The details will be described below.
 室外制御装置110は、下記の式(1)を用いて、パラメータAの値を算出する。パラメータAは、建物500(図4参照)に設置された電気設備の容量に対する、空気調和装置1001の電流値の比である。 The outdoor control device 110 calculates the value of the parameter A using the following equation (1). Parameter A is the ratio of the current value of the air conditioner 1001 to the capacity of the electrical equipment installed in the building 500 (see FIG. 4).
  A=(空気調和装置1001の電流値)÷(電気設備の容量)    (1) A = (current value of air conditioner 1001) ÷ (capacity of electrical equipment) (1)
 ここで、空気調和装置1001の電流値は、上述したように、電流センサ112によって検出された電流値、あるいは、記憶部111に記憶された特性データに基づいて算出された電流値である。 Here, the current value of the air conditioner 1001 is a current value detected by the current sensor 112 or a current value calculated based on the characteristic data stored in the storage unit 111, as described above.
 室外制御装置110は、式(1)で求めたパラメータAが、下記の(a)~(c)のいずれに該当するかを判定する。なお、ここでは、上述した第1閾値を80%、第2閾値を95%としている。 The outdoor control device 110 determines which of the following (a) to (c) the parameter A obtained by the equation (1) corresponds to. Here, the above-mentioned first threshold value is 80% and the second threshold value is 95%.
 (a)A≧95
 (b)95>A≧80
 (c)A<80
(A) A ≧ 95
(B) 95> A ≧ 80
(C) A <80
 室外制御装置110は、パラメータAが上記(a)の条件を満たすと判定した場合、即ち、パラメータAが第2閾値以上になった場合に、室外機100を一旦停止し、再起動とする。 When the outdoor control device 110 determines that the parameter A satisfies the condition of the above (a), that is, when the parameter A becomes equal to or higher than the second threshold value, the outdoor unit 100 is temporarily stopped and restarted.
 一方、室外制御装置110は、パラメータAが上記(c)を満たすと判定した場合、即ち、パラメータAが第1閾値未満の場合に、室外機100の運転モードを、制限運転モードから通常運転モードに切り替える。 On the other hand, when the outdoor control device 110 determines that the parameter A satisfies the above (c), that is, when the parameter A is less than the first threshold value, the operation mode of the outdoor unit 100 is changed from the restricted operation mode to the normal operation mode. Switch to.
 また、室外制御装置110は、パラメータAが上記(b)の条件を満たすと判定した場合、即ち、パラメータAが第1閾値以上の場合に、運転モードを、通常運転モードから制限運転モードに切り替える。制限運転モードでは、室外制御装置110は、グループ(I)に属する室内機200の室内制御装置26に対して、室内機200の風量の設定を下げるように指令を出力する。室内制御装置26は、当該指令を受けて、室内機200の風量の設定を、強制的に、現在の値から1段階低下させる。一方、グループ(II)に属する室内機200の風量設定は、そのままとする。 Further, when the outdoor control device 110 determines that the parameter A satisfies the condition of the above (b), that is, when the parameter A is equal to or higher than the first threshold value, the operation mode is switched from the normal operation mode to the restricted operation mode. .. In the restricted operation mode, the outdoor control device 110 outputs a command to the indoor control device 26 of the indoor unit 200 belonging to the group (I) to lower the setting of the air volume of the indoor unit 200. In response to the command, the indoor control device 26 forcibly lowers the setting of the air volume of the indoor unit 200 by one step from the current value. On the other hand, the air volume setting of the indoor unit 200 belonging to the group (II) is left as it is.
 その後、予め設定された設定時間が経過するまで、室外制御装置110は待機する。このときの設定時間は、例えば15分とするが、これに限定されない。すなわち、当該設定時間は、10分~20分程度が望ましいが、例えば5分~30分の範囲で適宜変更してよい。 After that, the outdoor control device 110 stands by until the preset set time elapses. The set time at this time is, for example, 15 minutes, but is not limited to this. That is, the set time is preferably about 10 minutes to 20 minutes, but may be appropriately changed in the range of, for example, 5 minutes to 30 minutes.
 設定時間の経過後、室外制御装置110は、パラメータAが、依然として、上記の(b)に該当するかを判定する。室外制御装置110は、パラメータAが上記(b)の条件を依然として満たしていると判定した場合、室外制御装置110は、グループ(I)に属する室内機200の風量の設定を、さらに、現在の値から1段階低下させる。あるいは、室外制御装置110は、別の制御方法B~Gの少なくともいずれか1つを行う。一方、グループ(II)に属する室内機200の風量設定は、そのままとする。 After the lapse of the set time, the outdoor control device 110 determines whether the parameter A still corresponds to the above (b). If the outdoor control device 110 determines that the parameter A still satisfies the condition (b), the outdoor control device 110 sets the air volume of the indoor unit 200 belonging to the group (I), and further sets the current air volume. Decrease by one step from the value. Alternatively, the outdoor control device 110 performs at least one of the other control methods B to G. On the other hand, the air volume setting of the indoor unit 200 belonging to the group (II) is left as it is.
 一方、室外制御装置110は、パラメータAが上記(b)の条件を満たしていないと判定した場合、パラメータAが下記の(d)に該当するかを判定する。但し、このとき、パラメータAが上記(b)の条件を満たさずに、上記(a)の条件を満たしている場合には、直ちに、室外機100を一旦停止し、再起動させる。 On the other hand, when the outdoor control device 110 determines that the parameter A does not satisfy the condition (b) above, it determines whether the parameter A corresponds to the following (d). However, at this time, if the parameter A does not satisfy the condition (b) and satisfies the condition (a), the outdoor unit 100 is immediately stopped and restarted.
 (d)A<70 (D) A <70
 なお、ここでは、制限運転モードから通常運転モードへの切替の判定に用いる閾値を70%としたが、この場合に限定されない。当該閾値は、第1閾値よりも小さい値であれば、任意に設定してよい。また、当該閾値を、以下では、第3閾値と呼ぶ。 Here, the threshold value used for determining the switching from the restricted operation mode to the normal operation mode is set to 70%, but the threshold value is not limited to this case. The threshold value may be arbitrarily set as long as it is a value smaller than the first threshold value. Further, the threshold value will be referred to as a third threshold value below.
 室外制御装置110は、パラメータAが上記(d)を満たすと判定した場合、即ち、パラメータAが第3閾値より小さいと判定した場合には、風量を低下させたグループ(I)に属する室内機200の風量を元に戻す。なお、室外制御装置110は、1回の判定の結果で室内機200の風量を元に戻してもよいが、パラメータAが上記(d)を満たす状態が、一定時間、連続して継続されたときに、室内機200の風量を戻すようにしてもよい。当該一定時間は、例えば、15分とするが、特に、これに限定されない。当該一定時間は、10分~20分程度が望ましいが、例えば、5分~60分の範囲で適宜設定してもよい。これにより、グループ(I)に属する室内機200が設置された室内空間502(図4参照)においても快適性を維持することができる。 When the outdoor control device 110 determines that the parameter A satisfies the above (d), that is, when the parameter A is determined to be smaller than the third threshold value, the outdoor control device 110 belongs to the indoor unit (I) in which the air volume is reduced. Restore the air volume of 200. The outdoor control device 110 may return the air volume of the indoor unit 200 to the original value as a result of one determination, but the state in which the parameter A satisfies the above (d) is continuously continued for a certain period of time. Occasionally, the air volume of the indoor unit 200 may be returned. The fixed time is, for example, 15 minutes, but is not particularly limited thereto. The fixed time is preferably about 10 to 20 minutes, but may be appropriately set in the range of, for example, 5 to 60 minutes. As a result, comfort can be maintained even in the indoor space 502 (see FIG. 4) in which the indoor unit 200 belonging to the group (I) is installed.
 このように、制御方法Aでは、室内機200をグループ分けしておき、運転制限を行うグループ(I)に属する室内機200の風量を下げるため、空気調和装置1001の電流値を抑えることができる。これにより、空気調和装置1001の電流値が、電気設備の容量を超えることを防止することができる。その結果、省コスト化およびピーク電力の低減を図ることができる。また、グループ(II)においては、室内機200の風量をそのままとするので、必要な冷暖房を維持することができる。 As described above, in the control method A, the indoor units 200 are divided into groups, and the air volume of the indoor units 200 belonging to the group (I) for restricting operation is reduced, so that the current value of the air conditioner 1001 can be suppressed. .. This makes it possible to prevent the current value of the air conditioner 1001 from exceeding the capacity of the electrical equipment. As a result, cost saving and peak power reduction can be achieved. Further, in the group (II), since the air volume of the indoor unit 200 is left as it is, the necessary air conditioning can be maintained.
<制御方法B>
 制御方法Bにおいても、制御方法Aと同様に、複数の室内機200を、運転制限を行うグループ(I)と運転制限を行わないグループ(II)に、予めグループ分けをしておく。
<Control method B>
In the control method B as well, as in the control method A, the plurality of indoor units 200 are divided into a group (I) for which the operation is restricted and a group (II) for which the operation is not restricted in advance.
 室外制御装置110は、パラメータAが上記の(a)~(c)のいずれに該当するかを判定する。 The outdoor control device 110 determines which of the above (a) to (c) the parameter A corresponds to.
 室外制御装置110は、パラメータAが上記(a)の条件を満たすと判定した場合、室外機100を一旦停止し、再起動とする。 When the outdoor control device 110 determines that the parameter A satisfies the condition of the above (a), the outdoor unit 100 is temporarily stopped and restarted.
 一方、室外制御装置110は、パラメータAが上記(c)を満たすと判定した場合、室外機100の運転を通常運転モードのまま継続させる。 On the other hand, when the outdoor control device 110 determines that the parameter A satisfies the above (c), the operation of the outdoor unit 100 is continued in the normal operation mode.
 また、室外制御装置110は、パラメータAが上記(b)の条件を満たすと判定した場合、運転モードを、通常運転モードから制限運転モードに切り替える。室外制御装置110は、グループ(I)の室内機200を強制的にサーモオフ(送風)させる。あるいは、室外制御装置110は、グループ(I)の室内機200のうち、負荷が小さいと判定した室内機200のみを、強制的にサーモオフ(送風)させる。ここで、負荷が小さい室内機200とは、他の室内機200と比較して設定温度と吸込温度の差が小さい室内機、冷房運転時に吸込温度が閾値より低い室内機、暖房運転時に吸込温度が閾値より高い室内機などである。なお、負荷が小さい室内機200として、設定温度と吸込温度の差が小さい室内機を選定する場合には、次のように行う。まず、グループ(I)に属するすべての室内機200の設定温度と吸込温度の差を求める。当該差が小さい方から順に、予め設定された台数の室内機200を選択する。これにより、負荷が小さい室内機200が選定される。 Further, when the outdoor control device 110 determines that the parameter A satisfies the condition of the above (b), the operation mode is switched from the normal operation mode to the restricted operation mode. The outdoor control device 110 forcibly thermo-offs (blows) the indoor unit 200 of the group (I). Alternatively, the outdoor control device 110 forcibly thermo-offs (blows) only the indoor unit 200 determined to have a small load among the indoor units 200 of the group (I). Here, the indoor unit 200 having a small load is an indoor unit having a small difference between the set temperature and the suction temperature as compared with other indoor units 200, an indoor unit whose suction temperature is lower than the threshold value during cooling operation, and a suction temperature during heating operation. Is an indoor unit whose temperature is higher than the threshold value. When selecting an indoor unit having a small difference between the set temperature and the suction temperature as the indoor unit 200 having a small load, the procedure is as follows. First, the difference between the set temperature and the suction temperature of all the indoor units 200 belonging to the group (I) is obtained. A preset number of indoor units 200 are selected in order from the one with the smallest difference. As a result, the indoor unit 200 having a small load is selected.
 また、サーモオフとは、対象空間に対する冷暖房の動作を停止させて、送風を行うことである。詳細に言えば、サーモオフとは、室外機100が稼働しているが、室内機200において室内熱交換器21の冷媒の量を調整する調整弁23の開度が或る定めた基準より小さい状態で、対象空間に対する冷房または暖房の動作を停止すること、または、室外機が停止して、対象空間に対する冷房または暖房の動作を停止することである。なお、サーモオフ時は、通常、ファンによる送風が維持される。 Thermo-off is to stop the operation of air conditioning for the target space and blow air. More specifically, thermo-off means that the outdoor unit 100 is operating, but the opening degree of the regulating valve 23 that adjusts the amount of the refrigerant in the indoor heat exchanger 21 in the indoor unit 200 is smaller than a certain standard. Then, the operation of cooling or heating with respect to the target space is stopped, or the operation of cooling or heating with respect to the target space is stopped by stopping the outdoor unit. When the thermostat is off, the air blown by the fan is usually maintained.
 その後、予め設定された設定時間が経過するまで、室外制御装置110は待機する。このときの設定時間は、例えば15分とするが、これに限定されない。当該設定時間は、10分~20分程度が望ましいが、例えば5分~60分の範囲で適宜変更してよい。 After that, the outdoor control device 110 stands by until the preset set time elapses. The set time at this time is, for example, 15 minutes, but is not limited to this. The set time is preferably about 10 minutes to 20 minutes, but may be appropriately changed in the range of, for example, 5 minutes to 60 minutes.
 設定時間の経過後、室外制御装置110は、パラメータAが、依然として、上記の(b)に該当するかを判定する。その結果、室外制御装置110は、パラメータAが上記(b)の条件を満たすと判定した場合、室外制御装置110は、グループ(I)に属する室内機200のうち、サーモオフになっていない室内機200があれば、当該室内機200をサーモオフにする。あるいは、室外制御装置110は、別の制御方法A、C~Gの少なくともいずれか1つを行う。一方、グループ(II)に属する室内機200は、そのままとする。 After the lapse of the set time, the outdoor control device 110 determines whether the parameter A still corresponds to the above (b). As a result, when the outdoor control device 110 determines that the parameter A satisfies the condition (b), the outdoor control device 110 is an indoor unit 200 belonging to the group (I) that is not thermo-off. If there is 200, the indoor unit 200 is thermo-off. Alternatively, the outdoor control device 110 performs at least one of the other control methods A, C to G. On the other hand, the indoor unit 200 belonging to the group (II) is left as it is.
 一方、室外制御装置110は、パラメータAが上記(b)の条件を満たしていないと判定した場合、パラメータAが上記の(d)に該当するかを判定する。 On the other hand, when the outdoor control device 110 determines that the parameter A does not satisfy the condition (b), it determines whether the parameter A corresponds to the above (d).
 室外制御装置110は、パラメータAが上記(d)を満たすと判定した場合、サーモオフにした室内機200を、元の運転状態に戻す。なお、室外制御装置110は、1回の判定の結果で室内機200の風量を戻してもよいが、パラメータAが上記(d)を満たす状態が一定時間継続したときに、室内機200を元の運転状態に戻すようにしてもよい。これにより、グループ(I)に属する室内機200が設置された室内空間502(図4参照)においても快適性を維持することができる。また、当該一定時間は、例えば、15分とするが、特に、これに限定されない、当該一定時間は、10分~20分程度が望ましいが、例えば、5分~60分の範囲で適宜設定してもよい。 When the outdoor control device 110 determines that the parameter A satisfies the above (d), the indoor unit 200 with the thermo-off is returned to the original operating state. The outdoor control device 110 may return the air volume of the indoor unit 200 as a result of one determination, but when the state in which the parameter A satisfies the above (d) continues for a certain period of time, the indoor unit 200 is used as the original. You may return to the operating state of. As a result, comfort can be maintained even in the indoor space 502 (see FIG. 4) in which the indoor unit 200 belonging to the group (I) is installed. The fixed time is, for example, 15 minutes, but the fixed time is not particularly limited to 10 minutes to 20 minutes, but is appropriately set in the range of 5 minutes to 60 minutes, for example. You may.
 このように、制御方法Bでは、室内機200をグループ分けしておき、運転制限を行うグループ(I)に属する室内機200の少なくとも一部分をサーモオフにするため、空気調和装置1001の電流値を抑えることができる。これにより、空気調和装置1001の電流値が、電気設備の容量を超えることを防止することができる。その結果、省コスト化およびピーク電力の低減を図ることができる。また、グループ(II)においては、室内機200の風量をそのままとするので、必要な冷暖房を維持することができる。 As described above, in the control method B, the indoor units 200 are divided into groups, and at least a part of the indoor units 200 belonging to the group (I) for which the operation is restricted is thermo-off, so that the current value of the air conditioner 1001 is suppressed. be able to. This makes it possible to prevent the current value of the air conditioner 1001 from exceeding the capacity of the electrical equipment. As a result, cost saving and peak power reduction can be achieved. Further, in the group (II), since the air volume of the indoor unit 200 is left as it is, the necessary air conditioning can be maintained.
<制御方法C>
 制御方法Cにおいては、室外制御装置110は、冷房運転時には室外機100の目標蒸発温度を現在値よりも高くし、暖房運転時には室外機100の目標凝縮温度を現在値よりも低く設定する。以下に、具体的に説明する。
<Control method C>
In the control method C, the outdoor control device 110 sets the target evaporation temperature of the outdoor unit 100 to be higher than the current value during the cooling operation, and sets the target condensation temperature of the outdoor unit 100 to be lower than the current value during the heating operation. The details will be described below.
 ここでは、説明を簡略化するために、冷房運転時について説明し、暖房時についての説明を省略する。まず、室外制御装置110は、上記の(a)~(c)のいずれに該当するかを判定する。 Here, in order to simplify the explanation, the cooling operation is described and the heating operation is omitted. First, the outdoor control device 110 determines which of the above (a) to (c) is applicable.
 室外制御装置110が、パラメータAが上記(a)または(c)の条件を満たしていると判定した場合の動作は、上記制御方法AおよびBと同様であるため、ここでは、その説明を省略する。 Since the operation when the outdoor control device 110 determines that the parameter A satisfies the condition (a) or (c) is the same as the control methods A and B, the description thereof is omitted here. do.
 一方、室外制御装置110は、パラメータAが上記(b)の条件を満たすと判定した場合、運転モードを通常運転モードから制限運転モードに切り替えて、室外機100の目標蒸発温度を現在値よりも高くする。 On the other hand, when the outdoor control device 110 determines that the parameter A satisfies the condition (b), the operation mode is switched from the normal operation mode to the restricted operation mode, and the target evaporation temperature of the outdoor unit 100 is set to be higher than the current value. Make it high.
 その後、予め設定された設定時間が経過するまで、室外制御装置110は待機する。このときの設定時間は、例えば10分とするが、これに限定されない。当該設定時間は、5分~15分程度が望ましいが、例えば、5分~60分の範囲で適宜変更してよい。 After that, the outdoor control device 110 stands by until the preset set time elapses. The set time at this time is, for example, 10 minutes, but is not limited to this. The set time is preferably about 5 minutes to 15 minutes, but may be appropriately changed in the range of, for example, 5 minutes to 60 minutes.
 設定時間の経過後、室外制御装置110は、パラメータAが、依然として、上記の(b)に該当するかを判定する。その結果、室外制御装置110は、パラメータAが上記(b)の条件を満たすと判定した場合、室外制御装置110は、室外機100の目標蒸発温度を現在値よりもさらに高くするか、あるいは、別の制御方法A、B、D~Gの少なくともいずれか1つを行う。 After the lapse of the set time, the outdoor control device 110 determines whether the parameter A still corresponds to the above (b). As a result, when the outdoor control device 110 determines that the parameter A satisfies the condition of the above (b), the outdoor control device 110 raises the target evaporation temperature of the outdoor unit 100 even higher than the current value, or At least one of another control method A, B, D to G is performed.
 一方、室外制御装置110は、パラメータAが上記(b)の条件を満たさないと判定した場合、上記の(d)の条件を満たすか否かを判定する。なお、ここで、パラメータAが上記(b)の条件を満たさずに、上記(a)の条件を満たしていると判定した場合には、直ちに、室外機100を一旦停止し、再起動させる。 On the other hand, when the outdoor control device 110 determines that the parameter A does not satisfy the above condition (b), the outdoor control device 110 determines whether or not the above condition (d) is satisfied. If it is determined that the parameter A does not satisfy the condition (b) and satisfies the condition (a), the outdoor unit 100 is immediately stopped and restarted.
 一方、室外制御装置110は、パラメータAが上記(d)の条件を満たすと判定した場合、室外機100の目標蒸発温度を元に戻す。 On the other hand, when the outdoor control device 110 determines that the parameter A satisfies the condition of the above (d), the target evaporation temperature of the outdoor unit 100 is restored.
 また、室外制御装置110は、パラメータAが上記(d)の条件を満たさないと判定した場合、その状態が予め設定された設定時間だけ連続するかを判定する。室外制御装置110は、上記(d)の条件を満たさない状態が設定時間だけ連続した場合、室外機100の目標蒸発温度を現在値よりさらに高くするか、あるいは、他の制御方法A、B、D~Gの少なくともいずれか1つを行う。なお、当該設定時間は、15分とするが、これに限定されない。当該設定時間は、10分~20分程度が望ましいが、例えば5分~60分の範囲で適宜変更してよい。 Further, when the outdoor control device 110 determines that the parameter A does not satisfy the condition (d), it determines whether the state is continuous for a preset set time. When the state in which the condition (d) is not satisfied continues for a set time, the outdoor control device 110 raises the target evaporation temperature of the outdoor unit 100 further than the current value, or uses other control methods A and B. Do at least one of D to G. The set time is set to 15 minutes, but is not limited to this. The set time is preferably about 10 minutes to 20 minutes, but may be appropriately changed in the range of, for example, 5 minutes to 60 minutes.
 なお、目標蒸発温度に対しては、予め、上限および下限を設けておく。室外制御装置110は、上限および下限で決定される範囲内で、目標蒸発温度の設定を行う。同様に、目標凝縮温度に対しては、予め、上限および下限を設けておく。室外制御装置110は、上限および下限で決定される範囲内で、目標凝縮温度の設定を行う。 An upper limit and a lower limit are set in advance for the target evaporation temperature. The outdoor control device 110 sets the target evaporation temperature within the range determined by the upper limit and the lower limit. Similarly, an upper limit and a lower limit are set in advance for the target condensation temperature. The outdoor control device 110 sets the target condensation temperature within the range determined by the upper limit and the lower limit.
 このように、制御方法Cでは、冷房時には室外機100の目標蒸発温度を高くし、暖房時には室外機100の目標凝縮温度を低くするようにしたため、空気調和装置1001の電流値を抑えることができる。これにより、空気調和装置1001の電流値が、電気設備の容量を超えることを防止することができる。その結果、省コスト化およびピーク電力の低減を図ることができる。 As described above, in the control method C, the target evaporation temperature of the outdoor unit 100 is increased during cooling and the target condensation temperature of the outdoor unit 100 is decreased during heating, so that the current value of the air conditioner 1001 can be suppressed. .. This makes it possible to prevent the current value of the air conditioner 1001 from exceeding the capacity of the electrical equipment. As a result, cost saving and peak power reduction can be achieved.
<制御方法D>
 制御方法Dにおいては、室内制御装置26は、室内機200の出口側の冷媒について、冷房運転時には、当該冷媒の過熱度の目標値を上げ、暖房運転時には当該冷媒の過冷却度の目標値を上げる。以下に、具体的に説明する。
<Control method D>
In the control method D, the indoor control device 26 raises the target value of the superheating degree of the refrigerant during the cooling operation and the target value of the supercooling degree of the refrigerant during the heating operation for the refrigerant on the outlet side of the indoor unit 200. increase. The details will be described below.
 ここでは、説明を簡略化するために、冷房時について説明し、暖房時についての説明を省略する。制限運転モードにおいて、室外制御装置110は、上記の(a)~(c)のいずれに該当するかを判定する。 Here, in order to simplify the explanation, the cooling time will be described and the heating time will be omitted. In the restricted operation mode, the outdoor control device 110 determines which of the above (a) to (c) is applicable.
 室外制御装置110が、パラメータAが上記(a)または(c)の条件を満たしていると判定した場合の動作は、上記制御方法AおよびBと同様であるため、ここでは、その説明を省略する。 Since the operation when the outdoor control device 110 determines that the parameter A satisfies the condition (a) or (c) is the same as the control methods A and B, the description thereof is omitted here. do.
 一方、室外制御装置110は、パラメータAが上記(b)の条件を満たすと判定した場合、運転モードを通常運転モードから制限運転モードに切り替える。また、室外制御装置110は、室内制御装置26に指令を送信して、室内機200の冷媒過熱度の目標値を上げる。 On the other hand, when the outdoor control device 110 determines that the parameter A satisfies the condition of the above (b), the operation mode is switched from the normal operation mode to the restricted operation mode. Further, the outdoor control device 110 transmits a command to the indoor control device 26 to raise the target value of the refrigerant superheat degree of the indoor unit 200.
 その後、予め設定された設定時間が経過するまで、室外制御装置110は待機する。このときの設定時間は、例えば10分とするが、これに限定されない。当該設定時間は、5分~15分程度が望ましいが、例えば5分~60分の範囲で適宜変更してよい。 After that, the outdoor control device 110 stands by until the preset set time elapses. The set time at this time is, for example, 10 minutes, but is not limited to this. The set time is preferably about 5 minutes to 15 minutes, but may be appropriately changed in the range of, for example, 5 minutes to 60 minutes.
 設定時間の経過後、室外制御装置110は、パラメータAが、依然として、上記の(b)に該当するかを判定する。その結果、室外制御装置110は、パラメータAが上記(b)の条件を満たすと判定した場合、室外制御装置110は、冷媒過熱度の目標値をさらに上げる。 After the lapse of the set time, the outdoor control device 110 determines whether the parameter A still corresponds to the above (b). As a result, when the outdoor control device 110 determines that the parameter A satisfies the condition of the above (b), the outdoor control device 110 further raises the target value of the refrigerant superheat degree.
 一方、室外制御装置110は、パラメータAが上記(b)の条件を満たさないと判定した場合、上記の(d)の条件を満たすか否かを判定する。 On the other hand, when the outdoor control device 110 determines that the parameter A does not satisfy the above condition (b), the outdoor control device 110 determines whether or not the above condition (d) is satisfied.
 その結果、室外制御装置110は、パラメータAが上記(d)の条件を満たすと判定した場合、冷媒過熱度の目標値を元に戻す。 As a result, when the outdoor control device 110 determines that the parameter A satisfies the condition of the above (d), the target value of the refrigerant superheat degree is restored.
 一方、室外制御装置110は、パラメータAが上記(d)の条件を満たさないと判定した場合、その状態が予め設定された設定時間だけ連続するかを判定する。室外制御装置110は、上記(d)の条件を満たす状態が設定時間だけ連続した場合、冷媒の過熱度の目標値をさらに上げる。このときの設定時間は、例えば15分とするが、これに限定されない。当該設定時間は、10分~20分程度が望ましいが、例えば5分~60分の範囲で適宜変更してよい。 On the other hand, when the outdoor control device 110 determines that the parameter A does not satisfy the condition (d), it determines whether the state is continuous for a preset set time. The outdoor control device 110 further raises the target value of the degree of superheat of the refrigerant when the state satisfying the above condition (d) is continuous for a set time. The set time at this time is, for example, 15 minutes, but is not limited to this. The set time is preferably about 10 minutes to 20 minutes, but may be appropriately changed in the range of, for example, 5 minutes to 60 minutes.
 このように、制御方法Dでは、室内制御装置26は、室内機200の出口側の冷媒について、冷房運転時には過熱度の目標値を上げ、暖房運転時には過冷却度の目標値を上げるようにしたため、空気調和装置1001の電流値を抑えることができる。これにより、空気調和装置1001の電流値が、電気設備の容量を超えることを防止することができる。その結果、省コスト化およびピーク電力の低減を図ることができる。 As described above, in the control method D, the indoor control device 26 raises the target value of the supercooling degree during the cooling operation and raises the target value of the supercooling degree during the heating operation for the refrigerant on the outlet side of the indoor unit 200. , The current value of the air conditioner 1001 can be suppressed. This makes it possible to prevent the current value of the air conditioner 1001 from exceeding the capacity of the electrical equipment. As a result, cost saving and peak power reduction can be achieved.
 なお、制御方法Dにおいても、室内機200をグループ(I)とグループ(II)とにグループ分けをしておき、グループ(I)に属する室内機200のみで制限運転を行うようにしてもよい。 In the control method D as well, the indoor unit 200 may be divided into groups (I) and groups (II), and limited operation may be performed only by the indoor units 200 belonging to the group (I). ..
<制御方法E>
 制御方法Eでは、室外制御装置110は、パラメータAが上記(b)の条件を満たすと判定した場合、運転モードを通常運転モード制限運転モードに切り替える。また、室外制御装置110は、冷房運転時に室外熱交換器1の過冷却度の目標値を意図的に低下させる。なお、パラメータAが、上記(a)および(c)の条件を満たしている場合の動作については、制御方法AおよびB等と同じであるため、ここでは、説明を省略する。また、制御運転を実施した後に、パラメータAが上記(d)の条件を満たすようになった場合の動作についても、制御方法AおよびB等と同じであるため、ここでは、説明を省略する。
<Control method E>
In the control method E, when the outdoor control device 110 determines that the parameter A satisfies the condition of the above (b), the outdoor control device 110 switches the operation mode to the normal operation mode limited operation mode. Further, the outdoor control device 110 intentionally lowers the target value of the degree of supercooling of the outdoor heat exchanger 1 during the cooling operation. Since the operation when the parameter A satisfies the conditions (a) and (c) is the same as the control methods A and B, the description thereof is omitted here. Further, since the operation when the parameter A satisfies the condition of the above (d) after the control operation is performed is the same as the control methods A and B, the description thereof is omitted here.
 図4は、実施の形態1に係る空気調和装置1001の室外機100と室内機200との配置例を示す図である。図4に示すように、空気調和装置1001は、例えばビルなどの建物500に設置される。図4に示すように、室外機100は、建物500の外部にあたる室外空間501に配置されている。このとき、制御方法Eにおいては、室外機100が、建物500の屋上に設置されていると仮定して説明を行う。すなわち、室外機100は、室内機200に対して、鉛直方向において、上方に配置されている。但し、他の制御方法A~D、F、Gにおいては、室外機100の設置位置と室内機200の設置位置との間に特に高低差はなくてよい。 FIG. 4 is a diagram showing an arrangement example of the outdoor unit 100 and the indoor unit 200 of the air conditioner 1001 according to the first embodiment. As shown in FIG. 4, the air conditioner 1001 is installed in a building 500 such as a building. As shown in FIG. 4, the outdoor unit 100 is arranged in the outdoor space 501 outside the building 500. At this time, in the control method E, it is assumed that the outdoor unit 100 is installed on the roof of the building 500. That is, the outdoor unit 100 is arranged above the indoor unit 200 in the vertical direction. However, in the other control methods A to D, F, and G, there may be no particular height difference between the installation position of the outdoor unit 100 and the installation position of the indoor unit 200.
 室内機200は、建物500の内部に設置される。図4の例では、建物500に、複数の室内空間502および503が設けられている。グループ(I)に属する室内機200aおよび200bは、室内空間502に対して配置され、室内空間502の冷房または暖房を行う。グループ(II)に属する室内機200cは、室内空間503に対して配置され、室内空間503の冷房または暖房を行う。 The indoor unit 200 is installed inside the building 500. In the example of FIG. 4, the building 500 is provided with a plurality of interior spaces 502 and 503. The indoor units 200a and 200b belonging to the group (I) are arranged with respect to the indoor space 502 and perform cooling or heating of the indoor space 502. The indoor unit 200c belonging to the group (II) is arranged with respect to the indoor space 503, and cools or heats the indoor space 503.
 図4に示すように、室外機100の設置位置と室内機200の設置位置に高低差があるとする。このとき、室外制御装置110は、冷房運転時に室外熱交換器1の過冷却度の目標値を意図的に低下させる。これにより、室外熱交換器1を有効に利用することで、高圧側圧力を下げることができる。なお、室外熱交換器1の冷媒過冷却度の目標値を意図的に低下させる方法としては、例えば、以下の方法がある。図1に示すように、第1バイパス配管11を設けておき、第1バイパス配管11を介して、冷媒の一部をアキュムレータ3に液バックさせる。 As shown in FIG. 4, it is assumed that there is a height difference between the installation position of the outdoor unit 100 and the installation position of the indoor unit 200. At this time, the outdoor control device 110 intentionally lowers the target value of the degree of supercooling of the outdoor heat exchanger 1 during the cooling operation. As a result, the pressure on the high pressure side can be reduced by effectively using the outdoor heat exchanger 1. As a method of intentionally lowering the target value of the refrigerant supercooling degree of the outdoor heat exchanger 1, for example, there are the following methods. As shown in FIG. 1, a first bypass pipe 11 is provided, and a part of the refrigerant is liquid-backed to the accumulator 3 via the first bypass pipe 11.
 制御方法Eの原理について説明する。図5は、エンタルピーと圧力との関係を示すp-h線図である。図5において、横軸はエンタルピーであり、縦軸は圧力である。また、図5において、実線600は飽和液線であり、破線601は、凝縮行程、膨張行程、蒸発行程、および、圧縮行程によって変化する冷凍サイクル300内の冷媒の状態変化を示している。図5において、破線601のうちの膨張行程を示す一部分601aは、図1に示す室外機100と室内機200との間の冷媒配管10a内の冷媒の状態を示している。 The principle of control method E will be explained. FIG. 5 is a ph diagram showing the relationship between enthalpy and pressure. In FIG. 5, the horizontal axis is enthalpy and the vertical axis is pressure. Further, in FIG. 5, the solid line 600 is a saturated liquid line, and the broken line 601 indicates a change of state of the refrigerant in the refrigerating cycle 300, which changes depending on the condensation stroke, the expansion stroke, the evaporation stroke, and the compression stroke. In FIG. 5, a part 601a of the broken line 601 showing the expansion stroke shows the state of the refrigerant in the refrigerant pipe 10a between the outdoor unit 100 and the indoor unit 200 shown in FIG.
 また、図5において、矢印P1は、室外機100の設置位置と室内機200の設置位置に高低差がない場合の室内機200の入口側の冷媒の状態を示す。冷媒配管10aの圧力損失で、冷媒の圧力が低下する。そのため、室内機200の入口側の冷媒の過冷却度は、室外機100の出口側よりも小さくなっている。 Further, in FIG. 5, the arrow P1 indicates the state of the refrigerant on the inlet side of the indoor unit 200 when there is no difference in height between the installation position of the outdoor unit 100 and the installation position of the indoor unit 200. The pressure of the refrigerant drops due to the pressure loss of the refrigerant pipe 10a. Therefore, the degree of supercooling of the refrigerant on the inlet side of the indoor unit 200 is smaller than that on the outlet side of the outdoor unit 100.
 一方、図5において、矢印P2は、室外機100の設置位置と室内機200の設置位置に高低差がある場合の室内機200の入口側の冷媒の状態を示す。この場合も、冷媒配管10aの圧力損失はあるが、室外機100が建物500の屋上に設置されているため、冷媒にヘッド圧がかかる。そのため、冷媒の圧力が上がるため、室内機200の入口側の冷媒の過冷却度は、室外機100の出口側よりも大きくなる。そのため、室外機100の出口において大きな過冷却度は不要である。そこで、制御方法Eにおいては、室外制御装置110が、冷房運転時に、室外熱交換器1の出口側の冷媒の過冷却度の目標値を意図的に低下させる。これにより、室外熱交換器1内に余剰な冷媒が少なくなるため、室外熱交換器1を有効に利用することができる。 On the other hand, in FIG. 5, the arrow P2 indicates the state of the refrigerant on the inlet side of the indoor unit 200 when there is a height difference between the installation position of the outdoor unit 100 and the installation position of the indoor unit 200. In this case as well, although there is a pressure loss in the refrigerant pipe 10a, the head pressure is applied to the refrigerant because the outdoor unit 100 is installed on the roof of the building 500. Therefore, since the pressure of the refrigerant increases, the degree of supercooling of the refrigerant on the inlet side of the indoor unit 200 is higher than that on the outlet side of the outdoor unit 100. Therefore, a large degree of supercooling is not required at the outlet of the outdoor unit 100. Therefore, in the control method E, the outdoor control device 110 intentionally lowers the target value of the supercooling degree of the refrigerant on the outlet side of the outdoor heat exchanger 1 during the cooling operation. As a result, the amount of excess refrigerant in the outdoor heat exchanger 1 is reduced, so that the outdoor heat exchanger 1 can be effectively used.
 このように、制御方法Eでは、室外制御装置110が、冷房運転時に室外熱交換器1の冷媒の過冷却度の目標値を意図的に低下させる。これにより、夏場のピーク電力を抑えることができる。また、空気調和装置1001の電流値が、電気設備の容量を超えることを防止することができる。その結果、省コスト化およびピーク電力の低減を図ることができる。 As described above, in the control method E, the outdoor control device 110 intentionally lowers the target value of the supercooling degree of the refrigerant of the outdoor heat exchanger 1 during the cooling operation. As a result, peak power consumption in summer can be suppressed. Further, it is possible to prevent the current value of the air conditioner 1001 from exceeding the capacity of the electrical equipment. As a result, cost saving and peak power reduction can be achieved.
<制御方法F>
 制御方法Fでは、室外制御装置110は、パラメータAが上記の(a)~(c)のいずれに該当するかを判定する。
<Control method F>
In the control method F, the outdoor control device 110 determines which of the above (a) to (c) the parameter A corresponds to.
 室外制御装置110は、パラメータAが上記(a)の条件を満たすと判定した場合、室外機100を一旦停止し、再起動とする。 When the outdoor control device 110 determines that the parameter A satisfies the condition of the above (a), the outdoor unit 100 is temporarily stopped and restarted.
 一方、室外制御装置110は、パラメータAが上記(c)を満たすと判定した場合、室外機100の運転モードを通常運転モードにしたまま、運転を継続させる。 On the other hand, when the outdoor control device 110 determines that the parameter A satisfies the above (c), the outdoor control device 110 continues the operation while keeping the operation mode of the outdoor unit 100 in the normal operation mode.
 また、室外制御装置110は、パラメータAが上記(b)の条件を満たすと判定した場合、運転モードを通常運転モードから制限運転モードに切り替える。また、室外制御装置110は、圧縮機2の駆動周波数を、電圧が飽和しない非飽和領域に制限する。図6は、実施の形態1に係る空気調和装置1001の圧縮機2の駆動周波数と印加電圧との関係を示す図である。図6において、横軸は圧縮機2の駆動周波数、縦軸は圧縮機2の印加電圧を示す。また、図7は、実施の形態1に係る空気調和装置1001の圧縮機2の駆動周波数と圧縮機2を流れる電流との関係を示す図である。図7において、横軸は圧縮機2の駆動周波数を示し、縦軸は圧縮機2の電流を示す。図6および図7において、圧縮機2の駆動周波数が閾値Thより大きい範囲を飽和領域とし、圧縮機2の駆動周波数が閾値Th以下の範囲を非飽和領域とする。閾値Thは、例えば、70Hzであるが、これに限定されない。 Further, when the outdoor control device 110 determines that the parameter A satisfies the condition of the above (b), the operation mode is switched from the normal operation mode to the restricted operation mode. Further, the outdoor control device 110 limits the drive frequency of the compressor 2 to an unsaturated region where the voltage is not saturated. FIG. 6 is a diagram showing the relationship between the drive frequency of the compressor 2 of the air conditioner 1001 according to the first embodiment and the applied voltage. In FIG. 6, the horizontal axis represents the drive frequency of the compressor 2, and the vertical axis represents the applied voltage of the compressor 2. Further, FIG. 7 is a diagram showing the relationship between the drive frequency of the compressor 2 of the air conditioner 1001 according to the first embodiment and the current flowing through the compressor 2. In FIG. 7, the horizontal axis represents the drive frequency of the compressor 2, and the vertical axis represents the current of the compressor 2. In FIGS. 6 and 7, a range in which the drive frequency of the compressor 2 is higher than the threshold value Th is defined as a saturated region, and a range in which the drive frequency of the compressor 2 is equal to or lower than the threshold value Th is defined as an unsaturated region. The threshold Th is, for example, 70 Hz, but is not limited thereto.
 図6に示すように、非飽和領域においては、圧縮機2の駆動周波数の増加に伴って、圧縮機2の印加電圧も増加する。即ち、圧縮機2の駆動周波数が低い場合は、負荷の増大と同時に、印加電圧も上昇する。一方、図6に示すように、飽和領域においては、圧縮機2の駆動周波数が閾値Thに到達すると、圧縮機2の印加電圧は飽和状態となり、ほぼ一定となる。即ち、圧縮機2の駆動周波数が増加しても、圧縮機2の印加電圧は増加しない。 As shown in FIG. 6, in the unsaturated region, the applied voltage of the compressor 2 increases as the drive frequency of the compressor 2 increases. That is, when the drive frequency of the compressor 2 is low, the applied voltage rises at the same time as the load increases. On the other hand, as shown in FIG. 6, in the saturation region, when the drive frequency of the compressor 2 reaches the threshold value Th, the applied voltage of the compressor 2 becomes saturated and becomes substantially constant. That is, even if the drive frequency of the compressor 2 increases, the applied voltage of the compressor 2 does not increase.
 また、図7に示すように、非飽和領域においては、圧縮機2の駆動周波数の増加に伴って、圧縮機2の電流は緩やかに増加する。即ち、圧縮機2の駆動周波数が低い場合は、負荷の増大と同時に、電流が緩やかに上昇する。一方、飽和領域においては、圧縮機2の駆動周波数が閾値Thに到達すると、図6で説明したように、圧縮機2の印加電圧は飽和状態となり、ほぼ一定となる。印加電圧が飽和状態になった後は、圧縮機2の駆動周波数を上げるためには、圧縮機2の電流値を上げる必要がある。そのため、図7に示すように、圧縮機2の電流値が上がりやすくなり、圧縮機2の駆動周波数の増加に伴って、圧縮機2の電流が急激に増加する。このように、圧縮機2の駆動周波数が飽和領域の場合、即ち、圧縮機2の印加電圧が高い場合には、圧縮機2の電流値に与える影響が大きい。 Further, as shown in FIG. 7, in the unsaturated region, the current of the compressor 2 gradually increases as the drive frequency of the compressor 2 increases. That is, when the drive frequency of the compressor 2 is low, the current gradually increases at the same time as the load increases. On the other hand, in the saturation region, when the drive frequency of the compressor 2 reaches the threshold value Th, the applied voltage of the compressor 2 becomes saturated and becomes almost constant as described with reference to FIG. After the applied voltage is saturated, it is necessary to increase the current value of the compressor 2 in order to increase the drive frequency of the compressor 2. Therefore, as shown in FIG. 7, the current value of the compressor 2 tends to increase, and the current of the compressor 2 rapidly increases as the drive frequency of the compressor 2 increases. As described above, when the drive frequency of the compressor 2 is in the saturated region, that is, when the applied voltage of the compressor 2 is high, the influence on the current value of the compressor 2 is large.
 従って、圧縮機2の電流値を下げるためには、圧縮機2の駆動周波数を非飽和領域内になるように制限することが有効である。 Therefore, in order to reduce the current value of the compressor 2, it is effective to limit the drive frequency of the compressor 2 so that it is within the unsaturated region.
 制御方法Fでは、室外制御装置110が、圧縮機2の駆動周波数を非飽和領域になるように制限するため、空気調和装置1001の電流値を抑えることができる。その結果、空気調和装置1001の電流値が、電気設備の容量を超えることを防止することができる。その結果、省コスト化およびピーク電力の低減を図ることができる。 In the control method F, the outdoor control device 110 limits the drive frequency of the compressor 2 so as to be in the unsaturated region, so that the current value of the air conditioner 1001 can be suppressed. As a result, it is possible to prevent the current value of the air conditioner 1001 from exceeding the capacity of the electrical equipment. As a result, cost saving and peak power reduction can be achieved.
 なお、パラメータAが、制限運転を実施した後に、上記(d)の条件を満たすようになった場合の動作については、制御方法AおよびB等と同じであるため、ここでは、説明を省略する。 Since the operation when the parameter A meets the condition of the above (d) after the restricted operation is performed is the same as the control methods A and B, the description thereof is omitted here. ..
<制御方法G>
 図8は、実施の形態1に係る空気調和装置1001の変形例の構成を模式的に示す図である。図8に示すように、当該変形例では、図1に示した室外機100が2つ並列に設置されている。また、各室外機100には、のべ6台の室内機200が接続されている。また、各室外機100に対して、それぞれ、別個の第2遮断器61が設けられている。
<Control method G>
FIG. 8 is a diagram schematically showing a configuration of a modified example of the air conditioner 1001 according to the first embodiment. As shown in FIG. 8, in the modified example, two outdoor units 100 shown in FIG. 1 are installed in parallel. Further, a total of 6 indoor units 200 are connected to each outdoor unit 100. Further, a separate second circuit breaker 61 is provided for each outdoor unit 100.
 なお、ここでは、室外機100の台数を2台としているが、その場合に限らず、3台以上であってもよい。また、室内機200の台数を6台としているが、その場合に限らず、任意の台数に設定してよい。 Here, the number of outdoor units 100 is two, but the number is not limited to this, and three or more may be used. Further, although the number of indoor units 200 is set to 6, the number is not limited to this, and any number may be set.
 制御方法Gは、図8に示すように、室外機100が2台以上組み合わされる場合に行われる。ここでは、各室外機100が個別配線されている場合、即ち、各室外機100に対して別個の第2遮断器61が設けられている場合、一般的に、各室外機100は、負荷に応じて順次起動される。即ち、1台目の室外機100Aの負荷が、予め設定された上限値に達した場合に、2台目の室外機100Bを起動させる。また、2台目の室外機100Bの負荷が上限値に達した場合に、3台目の室外機100C(図示省略)を起動させる。ここで、上限値とは、室外機100の定格電流の例えば60%というように予め設定された値である。このように、各室外機は、起動する順序および電流の上限値が予め設定されており、1台目の室外機の電流値が上限値に達したときに、2台目が起動する。3台目以降も、同様に、1つ前に起動した室外機の電流値が上限値に達したときに、順次、起動する。 As shown in FIG. 8, the control method G is performed when two or more outdoor units 100 are combined. Here, when each outdoor unit 100 is individually wired, that is, when a separate second circuit breaker 61 is provided for each outdoor unit 100, in general, each outdoor unit 100 is loaded. It will be started sequentially accordingly. That is, when the load of the first outdoor unit 100A reaches a preset upper limit value, the second outdoor unit 100B is started. Further, when the load of the second outdoor unit 100B reaches the upper limit value, the third outdoor unit 100C (not shown) is started. Here, the upper limit value is a preset value such as, for example, 60% of the rated current of the outdoor unit 100. In this way, the order of starting each outdoor unit and the upper limit value of the current are set in advance, and when the current value of the first outdoor unit reaches the upper limit value, the second unit is started. Similarly, the third and subsequent units are sequentially started when the current value of the outdoor unit that was started immediately before reaches the upper limit value.
 制御方法Gでは、電流センサ112Aが検出する電流値に対して、予め閾値を設けておく。ここでは、当該閾値を第4閾値と呼ぶ。第4閾値は、各室外機に対して予め設定されている上記の上限値よりも小さい値に設定されている。例えば、予め設定された上限値が90%とすると、第4閾値は、90%よりも小さい値、例えば、80%~70%の範囲で決定される。同様に、電流センサ112Bが検出する電流値に対しても第4閾値を設けておく。1台目の室外機100Aに対して設けられている電流センサ112Aが検出する電流値が第4閾値に達した場合に、2台目の室外機100Bを起動させる。また、2台目の室外機100Bに対して設けられている電流センサ112Bが検出する電流値が第4閾値に達した場合に、3台目の室外機100Cを起動させる。 In the control method G, a threshold value is set in advance for the current value detected by the current sensor 112A. Here, the threshold value is referred to as a fourth threshold value. The fourth threshold value is set to a value smaller than the above-mentioned upper limit value preset for each outdoor unit. For example, assuming that the preset upper limit value is 90%, the fourth threshold value is determined in a value smaller than 90%, for example, in the range of 80% to 70%. Similarly, a fourth threshold value is set for the current value detected by the current sensor 112B. When the current value detected by the current sensor 112A provided for the first outdoor unit 100A reaches the fourth threshold value, the second outdoor unit 100B is started. Further, when the current value detected by the current sensor 112B provided for the second outdoor unit 100B reaches the fourth threshold value, the third outdoor unit 100C is started.
 このように、制御方法Gにおいては、各室外機100に過剰に負荷がかからないように、第4閾値を余裕を持たせて設定する。図7を用いて説明したように、圧縮機2の駆動周波数が飽和領域にある場合には、圧縮機2の電流が上昇しやすい傾向にある。従って、制御方法Gにおいては、各室外機100Aおよび100Bにおける電流値をそれぞれ低い値に抑えることができ、各室外機100Aおよび100Bに過剰に負荷がかかることを防止できる。その結果、空気調和装置1001全体の電流値を抑えることができ、空気調和装置1001の電流値が、電気設備の容量を超えることを防止することができる。 As described above, in the control method G, the fourth threshold value is set with a margin so that the outdoor unit 100 is not overloaded. As described with reference to FIG. 7, when the drive frequency of the compressor 2 is in the saturation region, the current of the compressor 2 tends to increase. Therefore, in the control method G, the current values in the outdoor units 100A and 100B can be suppressed to low values, respectively, and it is possible to prevent the outdoor units 100A and 100B from being excessively loaded. As a result, the current value of the entire air conditioner 1001 can be suppressed, and the current value of the air conditioner 1001 can be prevented from exceeding the capacity of the electrical equipment.
 なお、上記においては説明を省略したが、制御方法Gにおいても、室外制御装置110は、パラメータAが上記の(a)~(c)のいずれに該当するかを判定する。室外制御装置110は、パラメータAが上記(a)の条件を満たすと判定した場合、室外機100を一旦停止し、再起動とする。一方、室外制御装置110は、パラメータAが上記(c)を満たすと判定した場合、室外機100の運転モードを通常運転モードにしたまま、運転を継続させる。また、室外制御装置110は、パラメータAが上記(b)の条件を満たすと判定した場合、運転モードを通常運転モードから制限運転モードに切り替える。 Although the description is omitted in the above, also in the control method G, the outdoor control device 110 determines which of the above (a) to (c) the parameter A corresponds to. When the outdoor control device 110 determines that the parameter A satisfies the condition of the above (a), the outdoor unit 100 is temporarily stopped and restarted. On the other hand, when the outdoor control device 110 determines that the parameter A satisfies the above (c), the outdoor control device 110 continues the operation while keeping the operation mode of the outdoor unit 100 in the normal operation mode. Further, when the outdoor control device 110 determines that the parameter A satisfies the condition of the above (b), the operation mode is switched from the normal operation mode to the restricted operation mode.
 上記の説明においては、実施の形態1では、空気調和装置1001が、電流センサ112が検出する電流値が、記憶部111に記憶された電気設備の容量を超えないように、上記の制御方法A~Gのうちの少なくとも1つを行うと説明した。しかしながら、図9および図10に示すフローチャートのように、上記の制御方法A~Gのうちの2以上の制御方法を組み合わせて行ってもよい。図9は、実施の形態1に係る空気調和装置1001において制御方法A~Gのうちの2以上の制御方法を組み合わせた場合の一例を示すフローチャートである。また、図10は、実施の形態1に係る空気調和装置1001において制御方法A~Gのうちの2以上の制御方法を組み合わせた場合の一例を示す図9と一体のフローチャートである。図9および図10では、制御方法A、B、および、Cを組み合わせた場合を示している。 In the above description, in the first embodiment, the control method A described above so that the current value detected by the current sensor 112 by the air conditioner 1001 does not exceed the capacity of the electrical equipment stored in the storage unit 111. It was explained that at least one of ~ G is performed. However, as shown in the flowcharts shown in FIGS. 9 and 10, two or more of the above control methods A to G may be combined. FIG. 9 is a flowchart showing an example of a case where two or more control methods of the control methods A to G are combined in the air conditioner 1001 according to the first embodiment. Further, FIG. 10 is a flowchart integrated with FIG. 9 showing an example of a case where two or more control methods of the control methods A to G are combined in the air conditioner 1001 according to the first embodiment. 9 and 10 show a case where the control methods A, B, and C are combined.
 図9および図10に示すように、まず、ステップS1では、空気調和装置1001が、通常運転モードで動作している。 As shown in FIGS. 9 and 10, first, in step S1, the air conditioner 1001 is operating in the normal operation mode.
 ステップS2では、室外制御装置110は、上記の式(1)を用いて、パラメータAの値を算出し、パラメータAが、上記の(a)~(c)のいずれに該当するかを判定する。 In step S2, the outdoor control device 110 calculates the value of the parameter A using the above equation (1), and determines which of the above (a) to (c) the parameter A corresponds to. ..
 室外制御装置110は、パラメータAが上記(a)の条件を満たすと判定した場合、ステップS9に進み、室外機100を一旦停止し、再起動とする。なお、図9および図10では、図示を省略しているが、他のステップにおいても、室外制御装置110がパラメータAが上記(a)の条件を満たすと判定した場合には、ステップS9に進み、室外機100を一旦停止し、再起動とする。 When the outdoor control device 110 determines that the parameter A satisfies the condition of the above (a), the process proceeds to step S9, the outdoor unit 100 is temporarily stopped, and the outdoor unit 100 is restarted. Although not shown in FIGS. 9 and 10, if the outdoor control device 110 determines that the parameter A satisfies the condition (a) in the other steps, the process proceeds to step S9. , The outdoor unit 100 is temporarily stopped and restarted.
 一方、室外制御装置110は、パラメータAが上記(c)を満たすと判定した場合、ステップS1に戻り、空気調和装置1001が通常運転モードでの動作を継続させる。この場合、電気設備の容量に対して空気調和装置1001の電流値が低く、電気設備の容量に余裕があるため、制限運転は行わない。なお、ステップS1において、運転モードが制限運転モードに設定されている場合には、室外制御装置110は、制限運転モードから通常運転モードへの切り替えを行う。 On the other hand, when the outdoor control device 110 determines that the parameter A satisfies the above (c), it returns to step S1 and the air conditioner 1001 continues the operation in the normal operation mode. In this case, the current value of the air conditioner 1001 is lower than the capacity of the electric equipment, and the capacity of the electric equipment has a margin, so that the limited operation is not performed. When the operation mode is set to the restricted operation mode in step S1, the outdoor control device 110 switches from the restricted operation mode to the normal operation mode.
 また、室外制御装置110は、パラメータAが上記(b)の条件を満たすと判定した場合、室外制御装置110は、空気調和装置1001の運転モードを、通常運転モードから制限運転モードへ切り替えて、ステップS3に進む。なお、ステップS2において、運転モードがすでに制限運転モードに設定されている場合には、室外制御装置110は、運転モードの切り替えは行わない。 Further, when the outdoor control device 110 determines that the parameter A satisfies the condition (b), the outdoor control device 110 switches the operation mode of the air conditioner 1001 from the normal operation mode to the restricted operation mode. Proceed to step S3. If the operation mode is already set to the restricted operation mode in step S2, the outdoor control device 110 does not switch the operation mode.
 ステップS3では、室外制御装置110は、室内制御装置26を介して、複数の室内機200のうち、グループ(I)に属する室内機200の風量の設定を、強制的に、現在の値から1段階低下させる。一方、グループ(II)に属する室内機200の風量設定は、そのままとする。 In step S3, the outdoor control device 110 forcibly sets the air volume of the indoor unit 200 belonging to the group (I) among the plurality of indoor units 200 from the current value by 1 via the indoor control device 26. Step down. On the other hand, the air volume setting of the indoor unit 200 belonging to the group (II) is left as it is.
 次に、ステップS4で、15分経過後、室外制御装置110は、パラメータAが、依然として、上記の(b)に該当するかを判定する。その結果、室外制御装置110は、パラメータAが依然として上記(b)の条件を満たしていると判定した場合、ステップS5に進む。一方、室外制御装置110は、パラメータAが上記(b)の条件を満たしていないと判定した場合、ステップS16に進む。 Next, in step S4, after 15 minutes have elapsed, the outdoor control device 110 determines whether the parameter A still corresponds to the above (b). As a result, if the outdoor control device 110 determines that the parameter A still satisfies the condition (b), the process proceeds to step S5. On the other hand, if the outdoor control device 110 determines that the parameter A does not satisfy the condition (b), the process proceeds to step S16.
 ステップS5で、室外制御装置110は、グループ(I)に属する室内機200のうち、負荷が小さい室内機200を選定して、室内制御装置26を介して、それらの室内機200を強制的にサーモオフ(送風)させる。ここで、負荷が小さい室内機200とは、上述したように、他の室内機200と比較して設定温度と吸込温度の差が小さい室内機、冷房運転時に吸込温度が閾値より低い室内機、暖房運転時に吸込温度が閾値より高い室内機などである。 In step S5, the outdoor control device 110 selects indoor units 200 having a small load from the indoor units 200 belonging to the group (I), and forcibly forces those indoor units 200 via the indoor control device 26. Thermo-off (blower). Here, the indoor unit 200 having a small load means, as described above, an indoor unit having a small difference between the set temperature and the suction temperature as compared with other indoor units 200, and an indoor unit whose suction temperature is lower than the threshold value during cooling operation. An indoor unit whose suction temperature is higher than the threshold value during heating operation.
 次に、ステップS6で、15分経過後、室外制御装置110は、パラメータAが、依然として、上記の(b)に該当するかを判定する。その結果、室外制御装置110は、パラメータAが依然として上記(b)の条件を満たしていると判定した場合、ステップS7に進む。一方、室外制御装置110は、パラメータAが上記(b)の条件を満たしていないと判定した場合、ステップS13に進む。 Next, in step S6, after 15 minutes have elapsed, the outdoor control device 110 determines whether the parameter A still corresponds to the above (b). As a result, if the outdoor control device 110 determines that the parameter A still satisfies the condition (b), the process proceeds to step S7. On the other hand, if the outdoor control device 110 determines that the parameter A does not satisfy the condition (b), the process proceeds to step S13.
 ステップS7では、室外制御装置110は、冷房運転時には室外機100の目標蒸発温度を現在値よりも高くし、暖房運転時には室外機100の目標凝縮温度を現在値よりも低く設定する。 In step S7, the outdoor control device 110 sets the target evaporation temperature of the outdoor unit 100 to be higher than the current value during the cooling operation, and sets the target condensation temperature of the outdoor unit 100 to be lower than the current value during the heating operation.
 次に、ステップS8で、10分経過後、室外制御装置110は、パラメータAが、依然として、上記の(b)に該当するかを判定する。その結果、室外制御装置110は、パラメータAが依然として上記(b)の条件を満たしていると判定した場合、ステップS7に戻る。一方、室外制御装置110は、パラメータAが上記(b)の条件を満たしていないと判定した場合、ステップS10に進む。 Next, in step S8, after 10 minutes have elapsed, the outdoor control device 110 determines whether the parameter A still corresponds to the above (b). As a result, if the outdoor control device 110 determines that the parameter A still satisfies the condition (b), the process returns to step S7. On the other hand, if the outdoor control device 110 determines that the parameter A does not satisfy the condition (b), the process proceeds to step S10.
 ステップS10では、室外制御装置110は、パラメータAが上記の(d)に該当するかを判定する。室外制御装置110は、パラメータAが上記(d)を満たすと判定した場合、ステップS11に進む。一方、室外制御装置110は、パラメータAが上記(d)を満たさないと判定した場合、ステップS18に進む。 In step S10, the outdoor control device 110 determines whether the parameter A corresponds to the above (d). If the outdoor control device 110 determines that the parameter A satisfies the above (d), the outdoor control device 110 proceeds to step S11. On the other hand, if the outdoor control device 110 determines that the parameter A does not satisfy the above (d), the process proceeds to step S18.
 ステップS11では、室外制御装置110は、冷房運転時には、室外機100の目標蒸発温度を元の値に戻し、暖房運転時には、室外機100の目標凝縮温度を元の値に戻して、ステップS12に進む。 In step S11, the outdoor control device 110 returns the target evaporation temperature of the outdoor unit 100 to the original value during the cooling operation, and returns the target condensation temperature of the outdoor unit 100 to the original value during the heating operation, and proceeds to step S12. move on.
 ステップS18では、室外制御装置110は、パラメータAが上記(d)を満たさない状態が15分間継続されたかを判定し、継続された場合に、ステップS7に進む。 In step S18, the outdoor control device 110 determines whether the state in which the parameter A does not satisfy the above (d) is continued for 15 minutes, and if it is continued, proceeds to step S7.
 ステップS12では、室外制御装置110が、10分間待機し、ステップS13に進む。 In step S12, the outdoor control device 110 waits for 10 minutes and proceeds to step S13.
 ステップS13では、室外制御装置110は、パラメータAが上記の(d)に該当するかを判定する。室外制御装置110は、パラメータAが上記(d)を満たすと判定した場合、ステップS14に進む。一方、室外制御装置110は、パラメータAが上記(d)を満たさないと判定した場合、ステップS19に進む。 In step S13, the outdoor control device 110 determines whether the parameter A corresponds to the above (d). If the outdoor control device 110 determines that the parameter A satisfies the above (d), the outdoor control device 110 proceeds to step S14. On the other hand, if the outdoor control device 110 determines that the parameter A does not satisfy the above (d), the process proceeds to step S19.
 ステップS14では、室外制御装置110は、ステップS5でサーモオフにした室内機200を、サーモオン(冷房運転または暖房運転)に戻して、ステップS15に進む。 In step S14, the outdoor control device 110 returns the indoor unit 200 whose thermo-off was turned off in step S5 to the thermo-on (cooling operation or heating operation), and proceeds to step S15.
 ステップS19では、室外制御装置110は、パラメータAが上記(d)を満たさない状態が15分間継続されたかを判定し、継続された場合に、ステップS7に進む。 In step S19, the outdoor control device 110 determines whether the state in which the parameter A does not satisfy the above (d) is continued for 15 minutes, and if it is continued, proceeds to step S7.
 ステップS15では、室外制御装置110が、10分間待機し、ステップS16に進む。 In step S15, the outdoor control device 110 waits for 10 minutes and proceeds to step S16.
 ステップS16では、室外制御装置110は、パラメータAが上記の(d)に該当するかを判定する。室外制御装置110は、パラメータAが上記(d)を満たすと判定した場合、ステップS17に進む。一方、室外制御装置110は、パラメータAが上記(d)を満たさないと判定した場合、ステップS20に進む。 In step S16, the outdoor control device 110 determines whether the parameter A corresponds to the above (d). If the outdoor control device 110 determines that the parameter A satisfies the above (d), the outdoor control device 110 proceeds to step S17. On the other hand, if the outdoor control device 110 determines that the parameter A does not satisfy the above (d), the process proceeds to step S20.
 ステップS17では、室外制御装置110は、ステップS3で風量を低下させた室内機200の風量設定を元に戻して、ステップS2に戻る。なお、ここでは、ステップS2に戻るとして説明するが、ステップS2の判定を行わずに、ステップS1に直接戻るようにしてもよい。 In step S17, the outdoor control device 110 restores the air volume setting of the indoor unit 200 whose air volume was reduced in step S3, and returns to step S2. Although it is described here as returning to step S2, it is possible to return directly to step S1 without performing the determination in step S2.
 ステップS20では、室外制御装置110は、パラメータAが上記(d)を満たさない状態が15分間継続されたかを判定し、継続された場合に、ステップS5に進む。 In step S20, the outdoor control device 110 determines whether the state in which the parameter A does not satisfy the above (d) is continued for 15 minutes, and if it is continued, proceeds to step S5.
 以上のように、実施の形態1では、電流センサ112が、交流電源50から空気調和装置1001に供給される電流値を検出する。また、記憶部111が、空気調和装置1001が設置されている建物500の電気設備の容量を、予め記憶している。室外制御装置110は、電流センサ112が検出した電流値を用いて、電気設備の容量に対する当該電流値の比を、パラメータAとして求める。そして、パラメータAが第1閾値以上の場合に、室内機200および室外機100の少なくともいずれか一方の運転を制限する制限運転を行う。これにより、空気調和装置1001の電流値を抑えることができ、空気調和装置1001の電流値が、電気設備の容量を超えることを防止することができる。このように、実施の形態1においては、空気調和装置1001が設置される現地の電気設備の容量に応じた運転制御を行うようにしたため、現地の既存の電気設備を交換する必要がない。また、現地の電気設備の容量だけでなく、上位のシステムからの電流制限要求に応じた運転制御を行うことも可能である。そのため、電気設備の容量が過大になることが防止でき、既設の電気設備、配管および配線の利用が可能となる。その結果、省コスト化およびピーク電力の低減を図ることができる。 As described above, in the first embodiment, the current sensor 112 detects the current value supplied from the AC power supply 50 to the air conditioner 1001. Further, the storage unit 111 stores in advance the capacity of the electrical equipment of the building 500 in which the air conditioner 1001 is installed. The outdoor control device 110 uses the current value detected by the current sensor 112 to obtain the ratio of the current value to the capacity of the electrical equipment as the parameter A. Then, when the parameter A is equal to or higher than the first threshold value, a restricted operation for limiting the operation of at least one of the indoor unit 200 and the outdoor unit 100 is performed. Thereby, the current value of the air conditioner 1001 can be suppressed, and the current value of the air conditioner 1001 can be prevented from exceeding the capacity of the electric equipment. As described above, in the first embodiment, since the operation control is performed according to the capacity of the local electric equipment in which the air conditioner 1001 is installed, it is not necessary to replace the existing local electric equipment. In addition to the capacity of local electrical equipment, it is also possible to perform operation control according to the current limit request from the higher-level system. Therefore, it is possible to prevent the capacity of the electric equipment from becoming excessive, and it is possible to use the existing electric equipment, piping and wiring. As a result, cost saving and peak power reduction can be achieved.
 また、実施の形態1においては、制限運転を行った後に、パラメータAが第3閾値未満になったときに、室外制御装置110は、制限運転を停止して、運転モードを通常運転モードに戻す。これにより、制限運転を実施するグループ(I)の室内機200が設置された室内空間502において、快適性を維持することができる。このように、実施の形態1においては、各室内空間502および503における快適性を維持しながら、省コスト化およびピーク電力の低減を実現することができる。 Further, in the first embodiment, when the parameter A becomes less than the third threshold value after the restricted operation, the outdoor control device 110 stops the restricted operation and returns the operation mode to the normal operation mode. .. As a result, comfort can be maintained in the indoor space 502 in which the indoor unit 200 of the group (I) that implements the restricted operation is installed. As described above, in the first embodiment, it is possible to realize cost saving and reduction of peak power while maintaining comfort in each of the interior spaces 502 and 503.
 従来において、省エネルギーおよび省コスト化を図るために、外部からの指示で、室外機に設けられた圧縮機を一律制限するような制御はあった。しかしながら、実施の形態1で説明したように、電源から空気調和装置1001に供給される電流値を直接制限するものではなかった。従来のように、圧縮機を一律制限するような制御の場合には、快適性を維持することはできず、快適性に影響が出ていた。実施の形態1では、既存の電気設備を交換することなく、快適性を維持することができる。 In the past, in order to save energy and cost, there was a control to uniformly limit the compressor installed in the outdoor unit by an instruction from the outside. However, as described in the first embodiment, the current value supplied from the power source to the air conditioner 1001 is not directly limited. In the case of control that uniformly limits the compressor as in the past, comfort cannot be maintained, which affects comfort. In Embodiment 1, comfort can be maintained without replacing existing electrical equipment.
 また、既設配管利用タイプの空気調和装置を使用したい、あるいは、空気調和装置の入れ替えのついでに、別の部屋にも室内機を設けたいなどの要望がある。従来においては、新たに導入する空気調和装置に合わせて、電気設備を更新していた。しかしながら、実施の形態1において、既設の電気設備の容量に応じて、室内機及び室外機の運転の制限を行うようにしたため、既存の配管および電気設備をそのまま使用することができる。 In addition, there is a request to use an existing piping type air conditioner, or to install an indoor unit in another room while replacing the air conditioner. In the past, electrical equipment was renewed in line with the newly introduced air conditioner. However, in the first embodiment, since the operation of the indoor unit and the outdoor unit is restricted according to the capacity of the existing electric equipment, the existing piping and the electric equipment can be used as they are.
 また、空気調和装置が設置されている建物全体の電力コストを下げたいという要望がある。具体的に説明すると、建物には、通常、図2に示すように、空気調和装置とともに、電力負荷となる他の機器も設置されている。そのため、空気調和装置および他の機器を総合した建物全体のピーク電流値を下げたいという要望がある。特に、夏場のピーク電力を下げたいという要望が多い。従来においても、外部からの信号で、圧縮機周波数を一律制限する制御はあったが、空気調和装置および他の機器に供給する電流値を直接制御するものではなかった。このように、たとえ空気調和装置が省エネルギーを考慮した設計がなされていた場合においても、上位のシステムから、建物全体の電流値を下げたいという要望があった。実施の形態1では、空気調和装置および他の機器に供給する電流値を、直接、制御することで、上位システムからの電流制限要求に応じて建物全体の消費電力量およびピーク電流値を抑えることができる。 There is also a desire to reduce the power cost of the entire building where the air conditioner is installed. Specifically, as shown in FIG. 2, a building is usually equipped with an air conditioner and other devices that serve as power loads. Therefore, there is a demand to reduce the peak current value of the entire building including the air conditioner and other equipment. In particular, there are many requests to reduce the peak power consumption in the summer. In the past, there was a control to uniformly limit the compressor frequency by an external signal, but it was not a direct control of the current value supplied to the air conditioner and other equipment. In this way, even if the air conditioner is designed in consideration of energy saving, there is a request from a higher-level system to reduce the current value of the entire building. In the first embodiment, the power consumption and the peak current value of the entire building are suppressed in response to the current limit request from the host system by directly controlling the current value supplied to the air conditioner and other devices. Can be done.
 なお、上記の説明においては、室内機200をグループ(I)とグループ(II)とにグループ分けすると説明したが、その場合に限らず、室内機200をグループ(I)とグループ(II)とにグループ分けしなくてもよい。その場合には、すべての室内機200がグループ(I)に属するものとして上記の各制御を行えばよい。 In the above description, the indoor unit 200 is divided into a group (I) and a group (II), but the indoor unit 200 is not limited to this case and is referred to as a group (I) and a group (II). It is not necessary to group them into groups. In that case, it is sufficient to assume that all the indoor units 200 belong to the group (I) and perform each of the above controls.
 1 室外熱交換器、2 圧縮機、3 アキュムレータ、4 室外ファン、5 ファンモータ、6 切替装置、7 二重管、8 バイパス膨張弁、10 主冷媒回路、10a 冷媒配管、11 第1バイパス配管、12 高圧用圧力センサ、13 低圧用圧力センサ、14 外気温度センサ、15 オイルセパレータ、16 第2バイパス配管、17 調整弁、18 毛細管、21 室内熱交換器、22 室内ファン、23 調整弁、24 吸込温度センサ、25 吹出温度センサ、26 室内制御装置、50 交流電源、51 正極電流路、52 負極電流路、53 分岐点、54 分岐点、55 第1正極電流路、56 第1負極電流路、57 第2正極電流路、58 第2負極電流路、60 第1遮断器、61 第2遮断器、62 第3遮断器、71 第2駆動回路、72 第2負荷、100 室外機、100A 室外機、100B 室外機、100C 室外機、110 室外制御装置、111 記憶部、112 電流センサ、112A 電流センサ、112B 電流センサ、113 電流取得部、200 室内機、200Aa 室内機、200Ab 室内機、200Ac 室内機、200Ba 室内機、200Bb 室内機、200Bc 室内機、200a 室内機、200b 室内機、200c 室内機、300 冷凍サイクル、400 第1駆動回路、500 建物、501 室外空間、502 室内空間、503 室内空間、600 実線、601 破線、601a 一部分、1001 空気調和装置、1002 第2系統機器。 1 outdoor heat exchanger, 2 compressor, 3 accumulator, 4 outdoor fan, 5 fan motor, 6 switching device, 7 double pipe, 8 bypass expansion valve, 10 main current refrigerant circuit, 10a refrigerant pipe, 11 first bypass pipe, 12 high pressure sensor, 13 low pressure pressure sensor, 14 outside air temperature sensor, 15 oil separator, 16 second bypass pipe, 17 adjustment valve, 18 capillary tube, 21 indoor heat exchanger, 22 indoor fan, 23 adjustment valve, 24 suction Temperature sensor, 25 outlet temperature sensor, 26 indoor control device, 50 AC power supply, 51 positive current path, 52 negative negative current path, 53 branch point, 54 branch point, 55 first positive current path, 56 first negative current path, 57 2nd positive current path, 58 2nd negative current path, 60 1st breaker, 61 2nd breaker, 62 3rd breaker, 71 2nd drive circuit, 72 2nd load, 100 outdoor unit, 100A outdoor unit, 100B outdoor unit, 100C outdoor unit, 110 outdoor control device, 111 storage unit, 112 current sensor, 112A current sensor, 112B current sensor, 113 current acquisition unit, 200 indoor unit, 200Aa indoor unit, 200Ab indoor unit, 200Ac indoor unit, 200Ba indoor unit, 200Bb indoor unit, 200Bc indoor unit, 200a indoor unit, 200b indoor unit, 200c indoor unit, 300 refrigeration cycle, 400 first drive circuit, 500 building, 501 outdoor space, 502 indoor space, 503 indoor space, 600 Solid line, 601 broken line, 601a part, 1001 air conditioner, 1002 second system equipment.

Claims (14)

  1.  室内機と、
     室外機と、
     前記室内機および前記室外機の動作の制御を行う制御装置と
    を備えた空気調和装置であって、
     前記制御装置は、
     電源から前記空気調和装置に供給される電流値を取得する電流取得部と、
     前記空気調和装置が接続された電気設備の容量を記憶した記憶部と、
    を有し、
     前記制御装置は、前記電流取得部が取得した前記電流値と前記記憶部が記憶した前記電気設備の容量とに基づいて、前記電気設備の容量に対する前記電流値の比が第1閾値以上か否かの判定を行い、前記電気設備の容量に対する前記電流値の比が前記第1閾値以上の場合に、前記室内機および前記室外機の少なくともいずれか一方の運転を制限する制限運転を行う、
     空気調和装置。
    Indoor unit and
    Outdoor unit and
    An air conditioner including a control device for controlling the operation of the indoor unit and the outdoor unit.
    The control device is
    A current acquisition unit that acquires the current value supplied from the power supply to the air conditioner, and
    A storage unit that stores the capacity of the electrical equipment to which the air conditioner is connected, and
    Have,
    In the control device, whether or not the ratio of the current value to the capacity of the electric equipment is equal to or higher than the first threshold value based on the current value acquired by the current acquisition unit and the capacity of the electric equipment stored by the storage unit. When the ratio of the current value to the capacity of the electric equipment is equal to or greater than the first threshold value, a restricted operation for limiting the operation of at least one of the indoor unit and the outdoor unit is performed.
    Air conditioner.
  2.  前記制御装置は、前記電気設備の容量に対する前記電流値の比が、前記第1閾値未満の場合に、前記室内機および前記室外機で前記制限運転を行わずに、通常運転を行う、
     請求項1に記載の空気調和装置。
    When the ratio of the current value to the capacity of the electric equipment is less than the first threshold value, the control device performs normal operation without performing the limited operation in the indoor unit and the outdoor unit.
    The air conditioner according to claim 1.
  3.  前記制御装置は、前記電気設備の容量に対する前記電流値の比が、前記第1閾値よりも大きい第2閾値以上か否かの判定を行い、前記電気設備の容量に対する前記電流値の比が、前記第2閾値以上の場合に、前記室外機を一旦停止し、再起動させる、
     請求項1または2に記載の空気調和装置。
    The control device determines whether or not the ratio of the current value to the capacity of the electric equipment is equal to or greater than the second threshold value larger than the first threshold value, and the ratio of the current value to the capacity of the electric equipment is determined. When the second threshold value or more is reached, the outdoor unit is temporarily stopped and restarted.
    The air conditioner according to claim 1 or 2.
  4.  前記制御装置は、
     前記室内機および前記室外機の少なくともいずれか一方で前記制限運転を行った後に、前記電気設備の容量に対する前記電流値の比が、前記第1閾値よりも小さい第3閾値未満か否かの判定を行い、前記電気設備の容量に対する前記電流値の比が前記第3閾値未満の場合に、前記室内機および前記室外機の前記制限運転を停止して通常運転に戻す、
     請求項1~3のいずれか1項に記載の空気調和装置。
    The control device is
    After performing the limited operation in at least one of the indoor unit and the outdoor unit, it is determined whether or not the ratio of the current value to the capacity of the electric equipment is less than the third threshold value smaller than the first threshold value. When the ratio of the current value to the capacity of the electric equipment is less than the third threshold value, the restricted operation of the indoor unit and the outdoor unit is stopped and returned to the normal operation.
    The air conditioner according to any one of claims 1 to 3.
  5.  前記制御装置は、
     前記室内機および前記室外機の少なくともいずれか一方で前記制限運転を行った後に、前記電気設備の容量に対する前記電流値の比が、前記第1閾値よりも小さい第3閾値未満か否かの判定を行い、前記電気設備の容量に対する前記電流値の比が前記第3閾値未満の状態が連続して一定時間継続した場合に、前記室内機および前記室外機の前記制限運転を停止して通常運転に戻す、
     請求項1~3のいずれか1項に記載の空気調和装置。
    The control device is
    After performing the limited operation in at least one of the indoor unit and the outdoor unit, it is determined whether or not the ratio of the current value to the capacity of the electric equipment is less than the third threshold value smaller than the first threshold value. When the ratio of the current value to the capacity of the electric equipment is less than the third threshold value continuously for a certain period of time, the restricted operation of the indoor unit and the outdoor unit is stopped and normal operation is performed. Return to,
    The air conditioner according to any one of claims 1 to 3.
  6.  前記室外機に対して2以上の前記室内機が配線接続されており、
     前記記憶部は、
     前記2以上の前記室内機のうち、
     前記制限運転を行う第1グループに属する前記室内機と、
     前記制限運転を行わない第2グループに属する前記室内機とを記憶しており、
     前記制御装置は、
     前記電気設備の容量に対する前記電流値の比が第1閾値以上の場合で、且つ、前記室内機に対して前記制限運転を行う場合に、
     前記第1グループに属する前記室内機に対して前記制限運転を行い、
     前記第2グループに属する前記室内機に対しては前記制限運転を行わない、
     請求項1~5のいずれか1項に記載の空気調和装置。
    Two or more indoor units are connected by wiring to the outdoor unit.
    The storage unit is
    Of the two or more indoor units
    The indoor unit belonging to the first group that performs the restricted operation and
    It stores the indoor unit belonging to the second group that does not perform the restricted operation, and stores the indoor unit.
    The control device is
    When the ratio of the current value to the capacity of the electric equipment is equal to or higher than the first threshold value and the limited operation is performed on the indoor unit.
    The restricted operation is performed on the indoor unit belonging to the first group.
    The restricted operation is not performed on the indoor unit belonging to the second group.
    The air conditioner according to any one of claims 1 to 5.
  7.  前記制御装置は、
     前記制限運転として、前記室内機の風量設定を強制的に下げる処理を行う、
     請求項1~6のいずれか1項に記載の空気調和装置。
    The control device is
    As the restricted operation, a process of forcibly lowering the air volume setting of the indoor unit is performed.
    The air conditioner according to any one of claims 1 to 6.
  8.  前記制御装置は、
     前記制限運転として、前記室内機を強制的にサーモオフにする処理を行う、
     請求項1~7のいずれか1項に記載の空気調和装置。
    The control device is
    As the restricted operation, a process of forcibly turning off the indoor unit is performed.
    The air conditioner according to any one of claims 1 to 7.
  9.  前記制御装置は、
     前記室内機の吸込温度、または、前記室内機の設定温度と前記吸込温度との差に基づいて、前記室内機の中から他の前記室内機よりも負荷が小さい室内機を選定し、選定した前記室内機を強制的にサーモオフにする処理を行う、
     請求項8に記載の空気調和装置。
    The control device is
    Based on the suction temperature of the indoor unit or the difference between the set temperature of the indoor unit and the suction temperature, an indoor unit having a smaller load than the other indoor units was selected and selected from the indoor units. A process for forcibly turning off the indoor unit is performed.
    The air conditioner according to claim 8.
  10.  前記制御装置は、
     前記制限運転として、
     前記空気調和装置が冷房運転を行っている場合に、前記室内機に設けられた室内熱交換器の冷媒の蒸発温度の目標値を現在値よりも上げる処理を行い、
     前記空気調和装置が暖房運転を行っている場合に、前記室内機に設けられた室内熱交換器の冷媒の凝縮温度の目標値を現在値よりも下げる処理を行う、
     請求項1~9のいずれか1項に記載の空気調和装置。
    The control device is
    As the limited operation,
    When the air conditioner is in cooling operation, a process is performed in which the target value of the evaporation temperature of the refrigerant of the indoor heat exchanger provided in the indoor unit is raised above the current value.
    When the air conditioner is operating for heating, a process of lowering the target value of the condensation temperature of the refrigerant of the indoor heat exchanger provided in the indoor unit to the current value is performed.
    The air conditioner according to any one of claims 1 to 9.
  11.  前記制御装置は、
     前記制限運転として、
     前記空気調和装置が冷房運転を行っている場合に、前記室内機に設けられた室内熱交換器の出口側の冷媒の過熱度の目標値を現在値よりも上げる処理を行い、
     前記空気調和装置が暖房運転を行っている場合に、前記室内機に設けられた室内熱交換器の出口側の冷媒の過冷却度の目標値を現在値よりも上げる処理を行う、
     請求項1~10のいずれか1項に記載の空気調和装置。
    The control device is
    As the limited operation,
    When the air conditioner is in cooling operation, a process is performed to raise the target value of the degree of superheat of the refrigerant on the outlet side of the indoor heat exchanger provided in the indoor unit to a value higher than the current value.
    When the air conditioner is operating for heating, a process is performed in which the target value of the supercooling degree of the refrigerant on the outlet side of the indoor heat exchanger provided in the indoor unit is raised above the current value.
    The air conditioner according to any one of claims 1 to 10.
  12.  前記室外機の設置位置が前記室内機の設置位置よりも鉛直方向において上方である場合に、
     前記制御装置は、
     前記制限運転として、
     前記空気調和装置が冷房運転を行っている場合に、前記室外機に設けられた室外熱交換器の出口側の冷媒の過冷却度の目標値を現在値よりも下げる処理を行う、
     請求項1~11のいずれか1項に記載の空気調和装置。
    When the installation position of the outdoor unit is above the installation position of the indoor unit in the vertical direction.
    The control device is
    As the limited operation,
    When the air conditioner is in cooling operation, a process of lowering the target value of the supercooling degree of the refrigerant on the outlet side of the outdoor heat exchanger provided in the outdoor unit to the current value is performed.
    The air conditioner according to any one of claims 1 to 11.
  13.  前記室外機に設けられた圧縮機の駆動周波数は、
     前記駆動周波数の増加に応じて前記圧縮機の印加電圧が上昇する非飽和領域と
     前記駆動周波数が増加しても前記印加電圧が変化しない飽和領域と
     を有し、
     前記制御装置は、
     前記制限運転として、
     前記圧縮機の前記駆動周波数を前記非飽和領域内の値に制限する、
     請求項1~12のいずれか1項に記載の空気調和装置。
    The drive frequency of the compressor provided in the outdoor unit is
    It has an unsaturated region in which the applied voltage of the compressor increases as the drive frequency increases, and a saturated region in which the applied voltage does not change even if the drive frequency increases.
    The control device is
    As the limited operation,
    Limiting the drive frequency of the compressor to a value within the unsaturated region.
    The air conditioner according to any one of claims 1 to 12.
  14.  前記室外機は2台以上設けられており、
     前記電流取得部は、前記電源から各室外機に供給される電流値を検出し、
     前記室外機のそれぞれは、起動する順序及び電流の上限値が予め設定されており、且つ、1台目の室外機の電流値が前記上限値に達したときに2台目以降の室外機が順次起動するように設計されているものであるとき、
     前記制御装置は、
     前記1台目の室外機の電流値が前記上限値よりも低い第4閾値に達したときに、前記2台目以降の室外機が順次起動するように制御する、
     請求項1~13のいずれか1項に記載の空気調和装置。
    Two or more outdoor units are provided.
    The current acquisition unit detects the current value supplied from the power supply to each outdoor unit, and detects the current value.
    For each of the outdoor units, the starting order and the upper limit value of the current are set in advance, and when the current value of the first outdoor unit reaches the upper limit value, the second and subsequent outdoor units When it is designed to boot sequentially
    The control device is
    When the current value of the first outdoor unit reaches the fourth threshold value lower than the upper limit value, the second and subsequent outdoor units are controlled to be sequentially started.
    The air conditioner according to any one of claims 1 to 13.
PCT/JP2020/027541 2020-07-15 2020-07-15 Air conditioning apparatus WO2022013980A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/027541 WO2022013980A1 (en) 2020-07-15 2020-07-15 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/027541 WO2022013980A1 (en) 2020-07-15 2020-07-15 Air conditioning apparatus

Publications (1)

Publication Number Publication Date
WO2022013980A1 true WO2022013980A1 (en) 2022-01-20

Family

ID=79555324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027541 WO2022013980A1 (en) 2020-07-15 2020-07-15 Air conditioning apparatus

Country Status (1)

Country Link
WO (1) WO2022013980A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115076940A (en) * 2022-06-27 2022-09-20 宁波奥克斯电气股份有限公司 Electric heating control method and electric heating control device of air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055545A (en) * 1991-04-26 1993-01-14 Toshiba Corp Electrical current control device of air conditioning system
JPH05164376A (en) * 1991-12-17 1993-06-29 Matsushita Electric Ind Co Ltd Electric power demand control system
JP2017172832A (en) * 2016-03-22 2017-09-28 Toto株式会社 Two-room heating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055545A (en) * 1991-04-26 1993-01-14 Toshiba Corp Electrical current control device of air conditioning system
JPH05164376A (en) * 1991-12-17 1993-06-29 Matsushita Electric Ind Co Ltd Electric power demand control system
JP2017172832A (en) * 2016-03-22 2017-09-28 Toto株式会社 Two-room heating system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115076940A (en) * 2022-06-27 2022-09-20 宁波奥克斯电气股份有限公司 Electric heating control method and electric heating control device of air conditioner
CN115076940B (en) * 2022-06-27 2023-08-11 宁波奥克斯电气股份有限公司 Electric heating control method of air conditioner and electric heating control device of air conditioner

Similar Documents

Publication Publication Date Title
US9528713B2 (en) Combined hot water supply and air-conditioning device
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
EP2587193A2 (en) Air conditioner
EP3260792A1 (en) Air conditioning system control device, air conditioning system, air conditioning control program, and air conditioning system control method
AU2014387521B2 (en) Heat source side unit and air-conditioning apparatus
WO2022013980A1 (en) Air conditioning apparatus
EP3104102B1 (en) Air conditioner and operation method of the same
KR20160097566A (en) Air conditioner and a method for controlling the same
KR102210920B1 (en) Capacity control type precision air conditioner capable of partial load dehumidification operation
JPH10185333A (en) Air conditioning equipment
CN111609520A (en) Control method of variable frequency air conditioner
JP2007046896A (en) Operation control device and method for air conditioner equipped with plural compressors
KR102390900B1 (en) Multi-type air conditioner and control method for the same
KR102558826B1 (en) Air conditioner system and control method
KR100524719B1 (en) By-pass device with variable flow rate of multi air-conditioner system
CN112984713A (en) Multi-compressor control method and air conditioning unit
JP6010294B2 (en) Air conditioner
EP3073213A1 (en) Air-conditioning-system control apparatus, air-conditioning system, air-conditioning-system control program, and air-conditioning-system control method
JP6490095B2 (en) Air conditioning system
JP7315059B1 (en) air conditioner
JP7068537B1 (en) Air conditioner and control method
EP3943828B1 (en) Air conditioning device
JP2017122573A (en) Air conditioner using direct expansion coil
KR100666676B1 (en) Air-conditioner having indoor heat exchanger of multi type
KR101369808B1 (en) Heat pump equipped with a constant pressure maintenance unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP