WO2014156313A1 - Air conditioner and method for operating air conditioner - Google Patents

Air conditioner and method for operating air conditioner Download PDF

Info

Publication number
WO2014156313A1
WO2014156313A1 PCT/JP2014/052612 JP2014052612W WO2014156313A1 WO 2014156313 A1 WO2014156313 A1 WO 2014156313A1 JP 2014052612 W JP2014052612 W JP 2014052612W WO 2014156313 A1 WO2014156313 A1 WO 2014156313A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
pressure
air conditioner
discharge
Prior art date
Application number
PCT/JP2014/052612
Other languages
French (fr)
Japanese (ja)
Inventor
横関 敦彦
坪江 宏明
修平 多田
野中 正之
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to CN201480009568.8A priority Critical patent/CN105074353B/en
Publication of WO2014156313A1 publication Critical patent/WO2014156313A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0272Compressor control by controlling pressure the suction pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner and an operation method of the air conditioner.
  • Patent Document 1 states that “the compressor (1) has an R32 refrigerant with a dryness of 0.65 or more and 0.85 or less, or a dryness containing at least 70% by weight of R32 is 0.65 or more and 0.00. "It sucks in and compresses a mixed refrigerant of 85 or less” (see claims).
  • the latent heat of vaporization is maximized by controlling the refrigerant state at the outlet of the heat exchanger acting as an evaporator to the vicinity of the saturated gas, thereby improving the operation efficiency.
  • R32 HFC32: difluoromethane
  • R410A R32 + R125: 50 + 50 wt%
  • Patent Document 1 describes an air conditioner (refrigerator) that sets the dryness of the refrigerant (R32) on the compressor inlet side from 0.65 to 0.85.
  • an object of the present invention is to provide an air conditioner that can reduce the load on the compressor by using R32 as a refrigerant, and an operation method of the air conditioner.
  • the present invention has a refrigeration cycle in which a refrigerant containing R32 in an amount of 70 wt% or more circulates, and the compressor has a dryness higher than 0.85 on the inlet side of the compressor.
  • An air conditioner in which an upper limit value for regulating the pressure ratio is set, and an operating method of the air conditioner. And it has the characteristics that it drive
  • an air conditioner that can reduce the load on the compressor by using R32 as a refrigerant, and an operation method of the air conditioner.
  • FIG. 1 is a diagram illustrating a configuration of an air conditioner according to the present embodiment.
  • the air conditioner 1 of the present embodiment includes an outdoor unit 10, an indoor unit 20, and a control device 1a.
  • the outdoor unit 10 includes an outdoor heat exchanger 11 (heat source side heat exchanger), an outdoor fan 12, an outdoor expansion valve 13, a compressor 14, an accumulator 15, and a four-way valve 16.
  • the indoor unit 20 includes an indoor heat exchanger 21 (use side heat exchanger), an indoor fan 22, and an indoor expansion valve 23.
  • the outdoor unit 10 and the indoor unit 20 are connected by pipes 30 and 31.
  • the air conditioner 1 of a present Example is the compressor 14, the outdoor heat exchanger 11 (heat source side heat exchanger), the outdoor expansion valve 13, the indoor heat exchanger 21 (use side heat exchanger), and an indoor expansion valve.
  • a refrigeration cycle is configured at 23, and R32 (difluoromethane) is used as a refrigerant circulating through the refrigeration cycle.
  • Patent Document 1 described above describes that a refrigerant containing at least 70% (70% by weight) or more of R32 can exhibit the same merit as a refrigerant containing 100% of R32. Therefore, the refrigerant used in the air conditioner 1 of the present embodiment is not limited to the refrigerant containing 100% of R32, and may be a refrigerant (mixed refrigerant) containing 70% by weight or more of R32.
  • the control device 1a controls the outdoor unit 10 by starting and stopping the outdoor fan 12 of the outdoor unit 10, adjusting the valve opening degree of the outdoor expansion valve 13, adjusting the rotational speed Fr of the compressor 14, and controlling the four-way valve 16. Control.
  • the control device 1a controls the indoor unit 20 by starting and stopping the indoor fan 22, adjusting the valve opening of the indoor expansion valve 23, and the like.
  • the control device 1 a controls the four-way valve 16 to connect the outlet side of the compressor 14 and the outdoor heat exchanger 11, and connects the accumulator 15 and the pipe 31.
  • the control device 1a drives the compressor 14, the outdoor fan 12, and the indoor fan 22.
  • the refrigerant (gas) compressed by the compressor 14 flows into the outdoor heat exchanger 11 via the four-way valve 16, and is cooled and condensed by heat exchange with the outside air blown by the outdoor fan 12.
  • the refrigerant (liquid) condensed in the outdoor heat exchanger 11 is introduced into the indoor unit 20 through the piping 30 via the outdoor expansion valve 13.
  • the refrigerant (liquid) introduced into the indoor unit 20 is decompressed by the indoor expansion valve 23 and flows into the indoor heat exchanger 21.
  • the refrigerant (liquid or gas-liquid two-phase state) that has flowed into the indoor heat exchanger 21 is vaporized by heat exchange with the indoor air blown by the indoor fan 22.
  • the refrigerant (liquid) vaporized in the indoor heat exchanger 21 takes the heat of vaporization from the indoor air and cools the indoor air.
  • the refrigerant (gas) vaporized in the indoor heat exchanger 21 flows through the pipe 31 and is introduced into the outdoor unit 10, flows through the four-way valve 16, and flows into the accumulator 15.
  • the accumulator 15 functions as a buffer tank that stores the refrigerant (liquid) when the liquid refrigerant excessively flows in, thereby preventing liquid compression in the compressor 14. Accordingly, the dryness of the refrigerant increases in the accumulator 15, and the high dryness refrigerant flows into the compressor 14.
  • the control device 1 a controls the four-way valve 16 to connect the outlet side of the compressor 14 and the pipe 31, and connects the outdoor heat exchanger 11 and the accumulator 15.
  • the control device 1a drives the compressor 14, the outdoor fan 12, and the indoor fan 22.
  • the refrigerant (gas) compressed by the compressor 14 flows through the pipe 31 via the four-way valve 16 and is introduced into the indoor unit 20.
  • the refrigerant (gas) introduced into the indoor unit 20 flows into the indoor heat exchanger 21, and is cooled and condensed by heat exchange with the indoor air blown by the indoor fan 22. At this time, the refrigerant (gas) condensed in the indoor heat exchanger 21 gives condensation heat to the indoor air to heat the indoor air.
  • the refrigerant (liquid) condensed in the indoor heat exchanger 21 flows through the pipe 30 via the indoor expansion valve 23 and is introduced into the outdoor unit 10.
  • the refrigerant (liquid) introduced into the outdoor unit 10 is decompressed by the outdoor expansion valve 13 and flows into the outdoor heat exchanger 11.
  • the refrigerant (liquid) that has flowed into the outdoor heat exchanger 11 is vaporized by heat exchange with the outside air blown by the outdoor fan 12, and flows into the accumulator 15 via the four-way valve 16. Then, the refrigerant (gas or gas-liquid two-phase state) whose dryness is increased by the accumulator 15 flows into the compressor 14.
  • the outdoor unit 10 measures the discharge temperature sensor 10ta that measures the temperature of the refrigerant discharged from the compressor 14 (discharge temperature Td) and the pressure of the refrigerant at the outlet side of the compressor 14 (discharge pressure Pd). And a suction pressure sensor 10pb for measuring the refrigerant pressure (suction pressure Ps) on the inlet side of the compressor 14. Further, the outdoor unit 10 includes a temperature sensor 10tb for measuring the refrigerant condensation temperature Tc (during cooling operation) or the evaporation temperature Te (during heating operation) in the outdoor heat exchanger 11.
  • a temperature sensor 20ta for measuring the refrigerant evaporating temperature Te (during cooling operation) or the condensing temperature Tc (during heating operation) in the indoor heat exchanger 21.
  • the chamber upper temperature of the compressor 14 may be measured and used.
  • FIG. 2 is a Mollier diagram (PH diagram) of an air conditioner using R32 as a refrigerant.
  • the air conditioner 1 see FIG. 1
  • the refrigerant (gas) in the state of the point A1 is compressed by the compressor 14 and the temperature (specific enthalpy) and pressure rise to increase the point A2.
  • the refrigerant (gas) introduced into the indoor unit 20 is condensed at substantially the same pressure in the indoor heat exchanger 21 to be in a state of point A3 (liquid) and introduced into the outdoor unit 10.
  • the refrigerant (liquid) introduced into the outdoor unit 10 in the state of point A3 is decompressed by the outdoor expansion valve 13 to be in the state of point A4, and is vaporized in the outdoor heat exchanger 11 to be in the state of point A1 (gas). .
  • the refrigerant (R32) circulates while changing the states of the points A1 to A4. That is, indoor air is heated when the refrigerant (gas) compressed by the compressor 14 (point A1 ⁇ A2) is condensed (point A2 ⁇ A3) by the indoor heat exchanger 21 of the indoor unit 20.
  • the refrigerant temperature (discharge temperature Td) at the outlet side of the compressor 14 is increased ( Td1).
  • the discharge temperature Td is about 10 to 15 ° C. higher than R410A.
  • the discharge temperature Td of the compressed refrigerant exceeds the allowable upper limit temperature of the compressor 14, and an excessive load may be applied to the compressor 14. Therefore, when R32 is used as the refrigerant, it is required to lower the discharge temperature Td on the outlet side of the compressor 14 (for example, Td1 ⁇ Td2).
  • a refrigerant with a low dryness has a high content of liquid components, and when a refrigerant with a low dryness flows into the compressor 14, the refrigeration oil of the compressor 14 is diluted by the liquid components contained in the refrigerant, and the mechanism portion is worn. Effects such as being promoted occur. That is, when a refrigerant having a low dryness flows into the compressor 14, a load on the compressor 14 increases. Therefore, a state where the dryness of the refrigerant on the inlet side of the compressor 14 is excessively low is not preferable.
  • suction dryness Xs changes in the mechanical performance of the compressor 14 (accelerated wear state, etc.), the dryness of the refrigerant on the inlet side of the compressor 14 (hereinafter referred to as “suction dryness Xs”), and the freezing in the compressor 14
  • suction dryness Xs the boundary value of the suction dryness Xs that does not deteriorate the mechanical performance of the compressor 14 (or the deterioration is within an allowable range) was set to 0.85.
  • Xs> 0.85 the influence on the compressor 14 is in an allowable range, and the load on the compressor 14 can be reduced.
  • the air conditioner 1 of this embodiment is configured to be operated in a state where the suction dryness Xs is higher than 0.85.
  • the two-dot chain line shown in FIG. 2 indicates an “iso-dryness line C85” where the dryness becomes 0.85.
  • FIG. 3 is a Mollier diagram in the case where the refrigerant pressure (suction pressure Ps) on the inlet side of the compressor and the refrigerant pressure (discharge pressure Pd) on the outlet side change.
  • suction pressure Ps suction pressure
  • discharge pressure Pd discharge pressure
  • the saturation line C100 is a line where the dryness becomes 1.00, and the “isodryness line C85” indicating the dryness 0.85 has a lower specific enthalpy than the saturation line C100 (illustrated by a two-dot chain line).
  • the temperature of the refrigerant (specific enthalpy) at the inlet of the compressor 14 becomes the suction pressure Ps on the equal dryness line C85 indicating the dryness 0.85.
  • the pressure ratio ⁇ (discharge pressure Pd / suction pressure Ps) of the compressor 14 is determined from the points A1-n and A2-n determined in this manner. That is, the pressure ratio ⁇ with respect to the suction pressure Ps is determined. As shown in FIG. 3, the higher the suction pressure Ps (Ps1 ⁇ Ps2 ⁇ Ps3), the higher the discharge pressure Pd (Pd1 ⁇ Pd2 ⁇ Pd3), but the discharge pressure is higher than the rate at which the suction pressure Ps increases. The rate at which Pd rises decreases. That is, the higher the suction pressure Ps, the smaller the pressure ratio ⁇ needs to be.
  • FIG. 4 is a graph showing the relationship between the suction pressure and the pressure ratio at which the suction dryness is 0.85, where the horizontal axis represents the suction pressure Ps and the vertical axis represents the pressure ratio ⁇ (discharge pressure Pd / suction pressure Ps). .
  • “ ⁇ U” shown in FIG. 4 is the maximum value of the pressure ratio ⁇ .
  • the solid line indicates the upper limit value of the pressure ratio ⁇ (pressure ratio upper limit ⁇ max) at which the suction dryness Xs is higher than 0.85.
  • the pressure ratio upper limit ⁇ max is an upper limit value that regulates the pressure ratio ⁇ so that the suction dryness Xs becomes higher than 0.85.
  • the refrigerant is compressed (compressor 14) so that the pressure ratio ⁇ is equal to or lower than the pressure ratio upper limit ⁇ max.
  • the rotation speed Fr) is limited, whereby the suction dryness Xs becomes higher than 0.85.
  • “PsL” is the suction pressure Ps at which the pressure ratio ⁇ for setting the suction dryness Xs to 0.85 becomes the maximum value “ ⁇ U”. That is, the region where the suction pressure Ps is equal to or lower than “PsL” is a region where the pressure ratio ⁇ for setting the suction dryness Xs to 0.85 exceeds the maximum value “ ⁇ U”.
  • PsU is an upper limit value of the suction pressure Ps in the air conditioner 1.
  • the lower limit value “PsL” and upper limit value “PsU” of the suction pressure Ps and the maximum value “ ⁇ U” of the pressure ratio ⁇ shown in FIG. 4 are characteristic values of the air conditioner 1 and are determined for each air conditioner 1. It is a design value.
  • ⁇ max ⁇ U ⁇ ( ⁇ U ⁇ L) / (PsU ⁇ PsL) ⁇ (Ps ⁇ PsL) ... (1)
  • the higher the suction pressure Ps the smaller the pressure ratio ⁇ . Therefore, as shown in FIG. 4, the higher the suction pressure Ps, the lower the pressure ratio upper limit ⁇ max.
  • the control apparatus 1a (refer FIG. 1) is a refrigerant
  • coolant so that the pressure ratio (epsilon) may become smaller than the pressure ratio upper limit (epsilon) max shown by Formula (1).
  • the compressor 14 (see FIG. 1) is operated at the rotational speed Fr for compressing R32). That is, the control device 1a adjusts the rotational speed Fr of the compressor 14 so that the pressure ratio ⁇ is smaller than the pressure ratio upper limit ⁇ max. Thereby, the suction dryness Xs of the air conditioner 1 is maintained higher than 0.85.
  • control device 1a may be configured to adjust the rotational speed Fr of the compressor 14 so that the pressure ratio ⁇ approaches the pressure ratio upper limit ⁇ max. For example, when the pressure ratio ⁇ is smaller than the pressure ratio upper limit ⁇ max and an increase in air conditioning capacity is required, the control device 1a may increase the pressure ratio ⁇ by increasing the rotational speed Fr of the compressor 14. Good.
  • the air conditioner 1 (see FIG. 1) is operated in a state where the suction dryness Xs is close to 0.85.
  • the discharge pressure sensor 10pa measures the discharge pressure Pd
  • the suction pressure sensor 10pb measures the suction pressure Ps.
  • the control device 1a calculates the pressure ratio ⁇ (discharge pressure Pd (measured value) /) calculated from the measured value of the suction pressure Ps measured by the suction pressure sensor 10pb and the measured value of the discharge pressure Pd measured by the discharge pressure sensor 10pa.
  • the air conditioner 1 is heated by adjusting the rotational speed Fr of the compressor 14 so that the suction pressure Ps (measured value) becomes the pressure ratio upper limit ⁇ max calculated by the equation (1).
  • a configuration may be provided in which a sensor (temperature sensor) for measuring the condensation temperature Tc and the evaporation temperature Te is provided.
  • the condensation temperature Tc can be measured by a temperature sensor 20ta (see FIG. 1) provided in the indoor heat exchanger 21, and the evaporation temperature Te is measured by a temperature sensor 10tb (see FIG. 1) provided in the outdoor heat exchanger 11. It can be measured.
  • a temperature sensor is less expensive than a pressure sensor, and inexpensive air conditioning is achieved by using a temperature sensor (temperature sensor 10tb, temperature sensor 20ta) instead of a pressure sensor (discharge pressure sensor 10pa, suction pressure sensor 10pb).
  • Machine 1 can be used.
  • the air conditioner 1 (see FIG. 1) of the present embodiment may be configured such that the control device 1a (see FIG. 1) estimates the suction dryness Xs by calculation.
  • the control apparatus 1a may be the structure which controls the compressor 14 (refer FIG. 1) so that the estimated suction dryness Xs may become higher than 0.85.
  • FIG. 5 is a diagram showing variables used for estimating the suction dryness
  • FIG. 6 is a flowchart showing a procedure for the controller to estimate the suction dryness by calculation.
  • the control device 1a When estimating the suction dryness Xs, the control device 1a provided in the air conditioner 1 of the present embodiment performs the discharge temperature Td, the discharge pressure Pd, the suction pressure Ps, and the rotation of the compressor 14 according to the procedure shown in FIG.
  • the suction dryness Xs is estimated by calculation based on the speed Fr and the physical property value of the refrigerant (R32). Then, the control device 1a operates the air conditioner 1 (for example, heating operation) so that the estimated suction dryness Xs becomes higher than 0.85.
  • the control device 1a is configured to estimate (calculate) the suction dryness Xs in a predetermined cycle when the air conditioner 1 is operated.
  • the control device 1a includes a measured value of the discharge temperature Td measured by the discharge temperature sensor 10ta, a measured value of the discharge pressure Pd measured by the discharge pressure sensor 10pa, a measured value of the suction pressure Ps measured by the suction pressure sensor 10pb, Based on the measured value of the rotational speed Fr measured by a tachometer (not shown) provided in the compressor 14, the discharge temperature Td, the discharge pressure Pd, the suction pressure Ps, and the rotational speed Fr of the compressor 14 are determined. Obtain (step S1).
  • the control device 1a calculates the discharge gas ratio enthalpy hd based on the acquired discharge temperature Td and the discharge pressure Pd (step S2). As shown in FIG. 5, the discharge gas specific enthalpy hd indicates the specific enthalpy of the refrigerant on the outlet side of the compressor 14.
  • control device 1a assumes the suction dryness Xs (step S3), and further, based on the suction pressure Ps and the physical property value of the refrigerant (the physical property value of R32), the saturated liquid ratio enthalpy hsL at the suction pressure Ps, and A saturated gas ratio enthalpy hsG at the suction pressure Ps is calculated (step S4). For example, in step S3, the control device 1a sets the estimated value of the suction dryness Xs calculated in the previous cycle as the assumed value of the suction dryness Xs.
  • control device 1a calculates the saturated liquid ratio enthalpy hsL and the saturated gas ratio enthalpy hsG at the suction pressure Ps based on an approximate expression set in advance (step S4).
  • This approximate expression is preferably set in advance as a characteristic expression of R32.
  • control device 1a uses the assumed suction dryness Xs, the calculated saturated liquid ratio enthalpy hsL, and the calculated saturated gas ratio enthalpy hsG, and based on the following expression (2), the suction ratio enthalpy hs is calculated (step S5).
  • Xs (hs ⁇ hsL) / (hsG ⁇ hsL) (2)
  • control device 1a calculates the suction ratio entropy Ss based on the suction pressure Ps, the calculated suction ratio enthalpy hs, and the physical property value of R32 (step S6), and further calculates the calculated suction ratio entropy Ss. Based on the discharge pressure Pd and the physical property value of R32, the adiabatic compression discharge gas ratio enthalpy hd ′ is calculated (step S7).
  • the control device 1a is configured to calculate the suction ratio entropy Ss at the suction pressure Ps and the suction ratio enthalpy hs based on a preset approximate expression. This approximate expression is preferably set in advance as a characteristic expression of R32.
  • the adiabatic compression discharge gas ratio enthalpy hd ′ calculated by the control device 1a in step S7 is the refrigerant having the suction dryness Xs assumed by the control device 1a in step S3 as shown in FIG.
  • isentropic compression is indicated by a broken line.
  • the compressor efficiency (temporary efficiency) ⁇ t real ′ of the compressor 14 with respect to the suction dryness Xs assumed by the control device 1a in step S3 is expressed by the following equation (3).
  • ⁇ t real ' (hd′ ⁇ hs) / (hd ⁇ hs) (3)
  • the control device 1a calculates a temporary The efficiency ⁇ t real 'is calculated (step S8 ).
  • ⁇ t real f (Xs, Pd, Ps, Fr) (4)
  • f (Xs, Pd, Ps, Fr) is a function that represents the characteristics of the compressor 14 using the suction dryness Xs, the discharge pressure Pd, the suction pressure Ps, and the rotational speed Fr of the compressor 14 as variables.
  • the function is preset for each type of compressor 14.
  • the control device 1a calculates the actual efficiency from the equation (4) based on the suction dryness Xs assumed in step S3, the discharge pressure Pd, the suction pressure Ps, and the rotational speed Fr of the compressor 14 acquired in step S1.
  • ⁇ t real is calculated (step S9).
  • the control device 1a calculates a ratio ( ⁇ t real '/ ⁇ t real ) obtained by dividing the temporary efficiency ⁇ t real ' calculated in step S8 by the actual efficiency ⁇ t real calculated in step S9 (step S10), and this value is predetermined. If it is greater than or equal to the lower limit value and less than or equal to the predetermined upper limit value (step S10 ⁇ Yes), the suction dryness Xs assumed in step S3 is determined as the estimated value of the suction dryness Xs.
  • step S10 determines whether the value of the ratio ( ⁇ t real '/ ⁇ t real ) calculated in step S10 is less than a predetermined lower limit value or greater than a predetermined upper limit value (step S10 ⁇ No).
  • the control device 1a performs the procedure step Returning to S3, the procedure from step S3 to step S10 is executed assuming a new suction dryness Xs.
  • the control device 1a changes the suction dryness Xs in the direction in which the temporary efficiency ⁇ t real ' increases. The value is assumed to be a new value of the suction dryness Xs.
  • the predetermined lower limit value and upper limit value that the control device 1a compares with “ ⁇ t real '/ ⁇ t real ” in step S10 are preferably set as appropriate based on the required calculation accuracy of the suction dryness Xs. . For example, if the lower limit value is “0.999” and the upper limit value is “1.001”, the control device 1a can estimate (calculate) the suction dryness Xs with an error of “ ⁇ 0.1%”. .
  • the control device 1a (see FIG. 1) operates the air conditioner 1 (see FIG. 1) while estimating (calculating) the suction dryness Xs according to the procedure shown in FIG. 6 (for example, heating operation). At this time, the control device 1a controls the air conditioner 1 so that the estimated suction dryness Xs becomes higher than 0.85. Specifically, the control device 1a adjusts the pressure ratio ⁇ by adjusting the rotational speed Fr of the compressor 14 so that the suction dryness Xs estimated by the calculation becomes higher than 0.85. When the suction dryness Xs estimated by the calculation decreases and approaches 0.85, the control device 1a decreases the rotation speed Fr of the compressor 14 and decreases the pressure ratio ⁇ .
  • control device 1a controls the compressor 14 so as to decrease the rotational speed Fr of the compressor 14 that is operated at the rotational speed Fr that becomes the pressure ratio upper limit ⁇ max.
  • the discharge pressure Pd is reduced, the refrigerant on the inlet side of the compressor 14 is less likely to be wet, and the suction dryness Xs is increased.
  • control device 1a estimates the suction dryness Xs and operates the air conditioner 1 (see FIG. 1) so that the estimated suction dryness Xs becomes higher than 0.85.
  • the suction dryness Xs can be more reliably maintained higher than 0.85.
  • the air conditioner 1 may be configured to perform a heating operation.
  • FIG. 7 is a graph showing the relationship between the discharge temperature, the condensation temperature, and the discharge superheat degree.
  • the vertical axis represents temperature (discharge temperature Td, condensation temperature Tc, discharge superheat degree TdSH), and the horizontal axis represents discharge pressure Pd.
  • the solid line in FIG. 7 indicates the condensation temperature Tc
  • the alternate long and short dash line indicates the discharge temperature Td.
  • a broken line indicates a target value (target superheat degree SHtgt) of the discharge superheat degree TdSH for each discharge pressure Pd.
  • the discharge superheat degree TdSH is the difference (Td ⁇ Tc) between the discharge temperature Td and the condensation temperature Tc at the same discharge pressure Pd, and the target superheat degree SHtgt is, for example, as shown by the broken line in FIG. Is set.
  • the condensing temperature Tc is a refrigerant-specific value (physical property value) determined corresponding to the discharge pressure Pd, and the control device 1a is based on the measured value of the discharge pressure Pd measured by the discharge pressure sensor 10pa (see FIG. 1).
  • the condensation temperature Tc can be calculated.
  • the control device 1a can calculate the condensing temperature Tc from an approximate expression indicating the relationship between the discharging pressure Pd and the condensing temperature Tc based on the discharging pressure Pd measured by the discharging pressure sensor 10pa. This approximate expression is preferably set in advance as a characteristic expression of R32.
  • the discharge pressure Pd is a predetermined value (boundary discharge pressure: Pda)
  • the discharge temperature Td becomes the upper limit temperature (Tdmax) of the compressor 14, so the discharge pressure Pd is the boundary discharge pressure ( In a region higher than Pda)
  • the target superheat degree SHtgt is set so that the discharge temperature Td becomes the upper limit temperature (Tdmax).
  • the control device 1a calculates the discharge superheat degree TdSH from the discharge temperature Td measured by the discharge temperature sensor 10ta (see FIG. 1) and the condensation temperature Tc calculated based on the measured value of the discharge pressure Pd. . And the control apparatus 1a carries out heating operation of the air conditioner 1 (refer FIG. 1) so that the discharge superheat degree TdSH calculated may approach the target superheat degree SHtgt shown with the broken line in FIG. For example, when the discharge superheat degree TdSH to be calculated becomes lower than the target superheat degree SHtgt, the control device 1a decreases the valve opening degree of the outdoor expansion valve 13.
  • the temperature drop of the refrigerant in the outdoor expansion valve 13 is suppressed, and the discharge temperature Td rises.
  • the suction pressure Ps and the discharge pressure Pd do not change so much, the change in the condensation temperature Tc is small. Therefore, the discharge superheat degree TdSH (Td ⁇ Tc) increases and approaches the target superheat degree SHtgt.
  • the control device 1a controls the outdoor expansion valve 13 so as to maintain the calculated discharge superheat degree TdSH in the vicinity of the target superheat degree SHtgt, and adjusts the valve opening degree.
  • the control device 1a adjusts the discharge pressure Pd and the discharge temperature Td in an integrated manner, and the air conditioner 1 (FIG. 1). Control) is complicated.
  • the control device 1a may adjust the valve opening degree of the outdoor expansion valve 13 so as to maintain the suction dryness Xs higher than 0.85, and the air conditioner 1 (see FIG. 1). Control is simplified.
  • the control device 1a adjusts the rotational speed Fr of the compressor 14 so that the pressure ratio ⁇ approaches the pressure ratio upper limit ⁇ max, and the discharge superheat degree TdSH is the target superheat.
  • the structure which adjusts the valve opening degree of the outdoor expansion valve 13 may be sufficient as the control apparatus 1a so that it may approach degree SHtgt.
  • the control device 1a increases the rotational speed Fr of the compressor 14 to increase the pressure ratio ⁇ ,
  • the valve opening degree of the outdoor expansion valve 13 is decreased to increase the discharge superheat degree TdSH.
  • the control device 1a can maintain the suction dryness Xs of the air conditioner 1 (see FIG. 1) close to 0.85, and can set the discharge temperature Td high.
  • the air conditioner 1 is operated in a state where the discharge temperature Td is as high as possible, and the latent heat of vaporization is utilized to the maximum, thereby realizing an efficient operation state.
  • the control device 1a of the present embodiment shown in FIG. 1 controls the compressor 14 and the outdoor expansion valve 13 to perform the discharge temperature Td, the discharge pressure Pd, and the suction when the air conditioner 1 is heated.
  • the pressure Ps and the rotational speed fr of the compressor 14 are adjusted to maintain the suction dryness Xs higher than 0.85.
  • the discharge temperature Td can be maintained below the upper limit temperature (Tdmax) of the compressor 14. Further, the load applied to the compressor 14 by the liquid component contained in the refrigerant can be reduced.
  • this invention is not limited to an above-described Example.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • the control device 1a (see FIG. 1) is also used for the air conditioner when the air conditioner 1 is operated for cooling. 1 is controlled similarly.
  • the control device 1a adjusts the rotational speed Fr of the compressor 14 and the valve opening degree of the indoor expansion valve 23 to maintain the suction dryness Xs higher than 0.85.
  • the discharge superheat degree TdSH is maintained in the vicinity of the upper limit value. That is, the control device 1a adjusts the rotational speed Fr of the compressor 14 so that the pressure ratio ⁇ becomes the pressure ratio upper limit ⁇ max calculated based on the equation (1).
  • control device 1a calculates and estimates the suction dryness Xs by the procedure shown in FIG. 6, and controls the air conditioner 1 so that the estimated suction dryness Xs becomes higher than 0.85. Furthermore, the control device 1a adjusts the valve opening degree of the indoor expansion valve 23 so that the discharge superheat degree TdSH approaches the preset target superheat degree SHtgt. In this way, the control device 1a controls the compressor 14 and the indoor expansion valve 23 to perform the cooling operation of the air conditioner 1.
  • control device 1a (see FIG. 1) of the present embodiment is configured to calculate the saturated liquid ratio enthalpy hsL by a preset approximate expression in step S4 shown in FIG.
  • storage part which is not shown in figure may be sufficient.
  • the control device 1a can calculate the saturated liquid ratio enthalpy hsL with reference to the map based on the suction pressure Ps in step S4 shown in FIG. Thereby, the load when the control device 1a calculates the saturated liquid ratio enthalpy hsL can be reduced.
  • a map showing the relationship between the suction pressure Ps and the saturated gas ratio enthalpy hsG may be stored in a storage unit (not shown), or a map showing the relationship between the suction pressure Ps and the suction ratio entropy Ss is shown.
  • storage part not to be sufficient may be sufficient.
  • storage part which is not shown in figure may be sufficient.
  • the present invention is not limited to the above-described embodiments, and appropriate design changes can be made without departing from the spirit of the invention.
  • the compressor 14 is disposed in the outdoor unit 10, but the compressor 14 may be disposed in the indoor unit 20. Good.
  • it may replace with the four-way valve 16 and the structure provided with a some on-off valve (not shown) may be sufficient.
  • an on-off valve for opening and closing a pipe connecting the outlet side of the compressor 14 and the outdoor heat exchanger 11 an on-off valve for opening and closing a pipe connecting the accumulator 15 and the pipe 31, and a compression
  • the on / off valve that opens and closes the pipe that connects the outlet side of the machine 14 and the pipe 31 and the on / off valve that opens and closes the pipe that connects the outdoor heat exchanger 11 and the accumulator 15 are provided. Good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

The present invention addresses the problem of providing an air conditioner that uses R32 as a refrigerant and that can reduce the load on a compressor, and a method for operating an air conditioner. Provided is an air conditioner (1), having: a refrigeration cycle in which at least a compressor (14), an outdoor heat exchanger (11), an indoor heat exchanger (21), an outdoor expansion valve (13), and an indoor expansion valve (23) are connected, and refrigerant containing 70 wt% or more of R32 is circulated; and a controller (1a). An upper limit, which regulates the pressure ratio of the compressor (14) so that the dryness fraction of the refrigerant in the intake side of the compressor (14) during operation is higher than 0.85, is set so as to decrease as the intake pressure of refrigerant in the compressor (14) increases. A method for operating the air conditioner (1) is also provided. When the air conditioner (1) is operating, the controller (1a) has the characteristic of adjusting the rotational speed of the compressor (14) so that the pressure ratio is less than the upper limit.

Description

空気調和機、および空気調和機の運転方法Air conditioner and method of operating air conditioner
 本発明は、空気調和機、および空気調和機の運転方法に関する。 The present invention relates to an air conditioner and an operation method of the air conditioner.
 例えば特許文献1には、「圧縮機(1)が、乾き度0.65以上かつ0.85以下のR32冷媒、もしくは、R32を少なくとも70重量%以上含む乾き度が0.65以上かつ0.85以下の混合冷媒を吸入して圧縮する」と記載されている(特許請求の範囲参照)。 For example, Patent Document 1 states that “the compressor (1) has an R32 refrigerant with a dryness of 0.65 or more and 0.85 or less, or a dryness containing at least 70% by weight of R32 is 0.65 or more and 0.00. "It sucks in and compresses a mixed refrigerant of 85 or less" (see claims).
特許第3956589号公報Japanese Patent No. 3956589
 空気調和機の冷凍サイクルでは、蒸発器として作用する熱交換器出口での冷媒状態を飽和ガス付近に制御することによって蒸発潜熱を最大限に活用し、運転効率を高めている。一方、R410A(R32+R125:50+50wt%)などに比べて地球温暖化係数GWPが低いR32(HFC32:ジフルオロメタン)を冷媒として使用する場合、R32は比熱比が大きいため、蒸発器出口での冷媒状態が飽和ガス付近になるように冷凍サイクルを運転すると、圧縮機吐出の冷媒温度がR410Aに比べて10~15℃程度高くなる。したがって、R32を冷媒として使用する場合、圧縮機入口側で冷媒の乾き度をR410Aを使用するときよりも小さくすることが必要になる。
 特許文献1には、圧縮機入口側における冷媒(R32)の乾き度を0.65から0.85に設定する空気調和機(冷凍機)が記載されている。
In the refrigeration cycle of the air conditioner, the latent heat of vaporization is maximized by controlling the refrigerant state at the outlet of the heat exchanger acting as an evaporator to the vicinity of the saturated gas, thereby improving the operation efficiency. On the other hand, when R32 (HFC32: difluoromethane) having a lower global warming potential GWP than R410A (R32 + R125: 50 + 50 wt%) is used as a refrigerant, since the specific heat ratio of R32 is large, the refrigerant state at the outlet of the evaporator is When the refrigeration cycle is operated so as to be in the vicinity of the saturated gas, the refrigerant temperature discharged from the compressor becomes higher by about 10 to 15 ° C. than R410A. Therefore, when using R32 as a refrigerant, it is necessary to make the dryness of the refrigerant on the compressor inlet side smaller than when using R410A.
Patent Document 1 describes an air conditioner (refrigerator) that sets the dryness of the refrigerant (R32) on the compressor inlet side from 0.65 to 0.85.
 しかしながら、圧縮機入口側における乾き度を小さくすると吐出温度の上昇を抑えることはできるが、圧縮機入口側から吸い込まれる冷媒の液体成分が多くなる。そして、圧縮機内の冷凍機油が冷媒の液体成分で希釈されて粘度が低下し、潤滑性能が劣化して機構部の磨耗が促進されるなど、圧縮機の寿命が短くなるという問題が生じる。 However, if the degree of dryness on the compressor inlet side is reduced, an increase in discharge temperature can be suppressed, but the liquid component of the refrigerant sucked from the compressor inlet side increases. And the refrigerator oil in a compressor is diluted with the liquid component of a refrigerant | coolant, a viscosity falls, the lubrication performance deteriorates, the problem that the lifetime of a compressor becomes short, such as the abrasion of a mechanism part arises arises.
 そこで本発明は、R32を冷媒に使用して、圧縮機に対する負荷を小さくできる空気調和機、および空気調和機の運転方法を提供することを課題とする。 Therefore, an object of the present invention is to provide an air conditioner that can reduce the load on the compressor by using R32 as a refrigerant, and an operation method of the air conditioner.
 前記課題を解決するため本発明は、R32が70重量%以上含まれる冷媒が循環する冷凍サイクルを有し、圧縮機の入口側における冷媒の乾き度が0.85より高くなるように圧縮機の圧力比を規制する上限値が設定されている空気調和機、および空気調和機の運転方法とする。そして、圧力比が上限値よりも小さくなるように運転されるという特徴を有する。 In order to solve the above problems, the present invention has a refrigeration cycle in which a refrigerant containing R32 in an amount of 70 wt% or more circulates, and the compressor has a dryness higher than 0.85 on the inlet side of the compressor. An air conditioner in which an upper limit value for regulating the pressure ratio is set, and an operating method of the air conditioner. And it has the characteristics that it drive | operates so that a pressure ratio may become smaller than an upper limit.
 本発明によると、R32を冷媒に使用して、圧縮機に対する負荷を小さくできる空気調和機、および空気調和機の運転方法を提供できる。 According to the present invention, it is possible to provide an air conditioner that can reduce the load on the compressor by using R32 as a refrigerant, and an operation method of the air conditioner.
本実施例に係る空気調和機の構成を示す図である。It is a figure which shows the structure of the air conditioner which concerns on a present Example. R32を冷媒に使用する空気調和機のモリエル線図(P-H線図)である。It is a Mollier diagram (PH diagram) of an air conditioner using R32 as a refrigerant. 圧縮機の入口側での冷媒の圧力と出口側での冷媒の圧力と、が変化する場合のモリエル線図である。It is a Mollier diagram in the case where the pressure of the refrigerant on the inlet side of the compressor and the pressure of the refrigerant on the outlet side change. 吸入乾き度が0.85となる吸入圧力と圧力比の関係を示すグラフである。It is a graph which shows the relationship between the suction pressure and pressure ratio in which the suction dryness will be 0.85. 吸入乾き度の推定に使用される変数を示す図である。It is a figure which shows the variable used for estimation of inhalation dryness. 制御装置が演算によって吸入乾き度を推定する手順を示すフローチャートである。It is a flowchart which shows the procedure in which a control apparatus estimates the suction dryness by calculation. 吐出温度と凝縮温度と吐出過熱度の関係を示すグラフである。It is a graph which shows the relationship between discharge temperature, condensation temperature, and discharge superheat degree.
 以下、適宜図面を参照しながら、本発明の実施例を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
 図1は、本実施例に係る空気調和機の構成を示す図である。
 本実施例の空気調和機1は、室外機10、室内機20、および制御装置1aを含んで構成される。室外機10は、室外熱交換器11(熱源側熱交換器)、室外ファン12、室外膨張弁13、圧縮機14、アキュムレータ15、および四方弁16を含んで構成される。一方、室内機20は、室内熱交換器21(利用側熱交換器)、室内ファン22、室内膨張弁23を含んで構成される。
 そして、室外機10と室内機20は、配管30,31で接続される。
 また、本実施例の空気調和機1は、圧縮機14、室外熱交換器11(熱源側熱交換器)、室外膨張弁13、室内熱交換器21(利用側熱交換器)、室内膨張弁23で冷凍サイクルが構成され、この冷凍サイクルを循環する冷媒としてR32(ジフルオロメタン)が使用される。
FIG. 1 is a diagram illustrating a configuration of an air conditioner according to the present embodiment.
The air conditioner 1 of the present embodiment includes an outdoor unit 10, an indoor unit 20, and a control device 1a. The outdoor unit 10 includes an outdoor heat exchanger 11 (heat source side heat exchanger), an outdoor fan 12, an outdoor expansion valve 13, a compressor 14, an accumulator 15, and a four-way valve 16. On the other hand, the indoor unit 20 includes an indoor heat exchanger 21 (use side heat exchanger), an indoor fan 22, and an indoor expansion valve 23.
The outdoor unit 10 and the indoor unit 20 are connected by pipes 30 and 31.
Moreover, the air conditioner 1 of a present Example is the compressor 14, the outdoor heat exchanger 11 (heat source side heat exchanger), the outdoor expansion valve 13, the indoor heat exchanger 21 (use side heat exchanger), and an indoor expansion valve. A refrigeration cycle is configured at 23, and R32 (difluoromethane) is used as a refrigerant circulating through the refrigeration cycle.
 なお、例えば前記した特許文献1には、R32を少なくとも70%(70重量%)以上含んだ冷媒であれば、R32が100%含まれる冷媒と同様のメリットを発揮できる旨が記載されている。したがって、本実施例の空気調和機1に使用される冷媒は、R32が100%含まれるものに限定されず、R32が70重量%以上含まれる冷媒(混合冷媒)であってもよい。 For example, Patent Document 1 described above describes that a refrigerant containing at least 70% (70% by weight) or more of R32 can exhibit the same merit as a refrigerant containing 100% of R32. Therefore, the refrigerant used in the air conditioner 1 of the present embodiment is not limited to the refrigerant containing 100% of R32, and may be a refrigerant (mixed refrigerant) containing 70% by weight or more of R32.
 制御装置1aは、室外機10の室外ファン12の起動や停止、室外膨張弁13の弁開度の調節、圧縮機14の回転速度Frの調節、四方弁16の制御、などによって室外機10を制御する。また、制御装置1aは、室内ファン22の起動や停止、室内膨張弁23の弁開度の調節、などによって室内機20を制御する。 The control device 1a controls the outdoor unit 10 by starting and stopping the outdoor fan 12 of the outdoor unit 10, adjusting the valve opening degree of the outdoor expansion valve 13, adjusting the rotational speed Fr of the compressor 14, and controlling the four-way valve 16. Control. The control device 1a controls the indoor unit 20 by starting and stopping the indoor fan 22, adjusting the valve opening of the indoor expansion valve 23, and the like.
 冷房運転時、制御装置1aは四方弁16を制御して、圧縮機14の出口側と室外熱交換器11を接続するとともに、アキュムレータ15と配管31を接続する。そして、制御装置1aは圧縮機14、室外ファン12、室内ファン22を駆動する。
 圧縮機14で圧縮された冷媒(気体)は、四方弁16を経由して室外熱交換器11に流入し、室外ファン12で送風される外気との熱交換で冷却されて凝縮する。室外熱交換器11で凝縮した冷媒(液体)は、室外膨張弁13を経由し配管30を流通して室内機20に導入される。
During the cooling operation, the control device 1 a controls the four-way valve 16 to connect the outlet side of the compressor 14 and the outdoor heat exchanger 11, and connects the accumulator 15 and the pipe 31. The control device 1a drives the compressor 14, the outdoor fan 12, and the indoor fan 22.
The refrigerant (gas) compressed by the compressor 14 flows into the outdoor heat exchanger 11 via the four-way valve 16, and is cooled and condensed by heat exchange with the outside air blown by the outdoor fan 12. The refrigerant (liquid) condensed in the outdoor heat exchanger 11 is introduced into the indoor unit 20 through the piping 30 via the outdoor expansion valve 13.
 室内機20に導入された冷媒(液体)は室内膨張弁23で減圧されて室内熱交換器21に流入する。室内熱交換器21に流入した冷媒(液体、または気液二相状態)は、室内ファン22で送風される室内空気との熱交換で気化する。このとき、室内熱交換器21で気化する冷媒(液体)が室内空気から気化熱を奪って室内空気を冷却する。
 室内熱交換器21で気化した冷媒(気体)は、配管31を流通して室外機10に導入され、四方弁16を流通してアキュムレータ15に流入する。アキュムレータ15は、過渡的に液冷媒が過剰に流入した際に冷媒(液体)を貯留するバッファタンクとして機能し、これによって圧縮機14での液圧縮が防止される。したがって、アキュムレータ15において冷媒の乾き度が高まり、圧縮機14には乾き度の高い冷媒が流入する。
The refrigerant (liquid) introduced into the indoor unit 20 is decompressed by the indoor expansion valve 23 and flows into the indoor heat exchanger 21. The refrigerant (liquid or gas-liquid two-phase state) that has flowed into the indoor heat exchanger 21 is vaporized by heat exchange with the indoor air blown by the indoor fan 22. At this time, the refrigerant (liquid) vaporized in the indoor heat exchanger 21 takes the heat of vaporization from the indoor air and cools the indoor air.
The refrigerant (gas) vaporized in the indoor heat exchanger 21 flows through the pipe 31 and is introduced into the outdoor unit 10, flows through the four-way valve 16, and flows into the accumulator 15. The accumulator 15 functions as a buffer tank that stores the refrigerant (liquid) when the liquid refrigerant excessively flows in, thereby preventing liquid compression in the compressor 14. Accordingly, the dryness of the refrigerant increases in the accumulator 15, and the high dryness refrigerant flows into the compressor 14.
 暖房運転時、制御装置1aは四方弁16を制御して、圧縮機14の出口側と配管31を接続するとともに、室外熱交換器11とアキュムレータ15を接続する。そして、制御装置1aは圧縮機14、室外ファン12、室内ファン22を駆動する。
 圧縮機14で圧縮された冷媒(気体)は、四方弁16を経由して配管31を流通し、室内機20に導入される。室内機20に導入された冷媒(気体)は室内熱交換器21に流入し、室内ファン22で送風される室内空気との熱交換で冷却されて凝縮する。このとき、室内熱交換器21で凝縮する冷媒(気体)が凝縮熱を室内空気に与えて室内空気を加熱する。室内熱交換器21で凝縮した冷媒(液体)は室内膨張弁23を経由して配管30を流通し、室外機10に導入される。室外機10に導入された冷媒(液体)は、室外膨張弁13で減圧されて室外熱交換器11に流入する。室外熱交換器11に流入した冷媒(液体)は、室外ファン12で送風される外気との熱交換で気化し、四方弁16を経由してアキュムレータ15に流入する。そして、アキュムレータ15で乾き度が高まった冷媒(気体、または気液二相状態)が圧縮機14に流入する。
During the heating operation, the control device 1 a controls the four-way valve 16 to connect the outlet side of the compressor 14 and the pipe 31, and connects the outdoor heat exchanger 11 and the accumulator 15. The control device 1a drives the compressor 14, the outdoor fan 12, and the indoor fan 22.
The refrigerant (gas) compressed by the compressor 14 flows through the pipe 31 via the four-way valve 16 and is introduced into the indoor unit 20. The refrigerant (gas) introduced into the indoor unit 20 flows into the indoor heat exchanger 21, and is cooled and condensed by heat exchange with the indoor air blown by the indoor fan 22. At this time, the refrigerant (gas) condensed in the indoor heat exchanger 21 gives condensation heat to the indoor air to heat the indoor air. The refrigerant (liquid) condensed in the indoor heat exchanger 21 flows through the pipe 30 via the indoor expansion valve 23 and is introduced into the outdoor unit 10. The refrigerant (liquid) introduced into the outdoor unit 10 is decompressed by the outdoor expansion valve 13 and flows into the outdoor heat exchanger 11. The refrigerant (liquid) that has flowed into the outdoor heat exchanger 11 is vaporized by heat exchange with the outside air blown by the outdoor fan 12, and flows into the accumulator 15 via the four-way valve 16. Then, the refrigerant (gas or gas-liquid two-phase state) whose dryness is increased by the accumulator 15 flows into the compressor 14.
 なお、室外機10には、圧縮機14で吐出される冷媒の温度(吐出温度Td)を計測する吐出温度センサ10taと、圧縮機14の出口側での冷媒の圧力(吐出圧力Pd)を計測する吐出圧力センサ10paと、圧縮機14の入口側での冷媒の圧力(吸入圧力Ps)を計測する吸入圧力センサ10pbと、が備わっている。
 また、室外機10には、室外熱交換器11での冷媒の凝縮温度Tc(冷房運転時)、または蒸発温度Te(暖房運転時)を計測するための温度センサ10tbが備わり、室内機20には、室内熱交換器21での冷媒の蒸発温度Te(冷房運転時)、または凝縮温度Tc(暖房運転時)を計測するための温度センサ20taが備わっている。
 なお、吐出温度Tdに替えて、圧縮機14のチャンバー上部温度を計測して使用する構成としてもよい。
The outdoor unit 10 measures the discharge temperature sensor 10ta that measures the temperature of the refrigerant discharged from the compressor 14 (discharge temperature Td) and the pressure of the refrigerant at the outlet side of the compressor 14 (discharge pressure Pd). And a suction pressure sensor 10pb for measuring the refrigerant pressure (suction pressure Ps) on the inlet side of the compressor 14.
Further, the outdoor unit 10 includes a temperature sensor 10tb for measuring the refrigerant condensation temperature Tc (during cooling operation) or the evaporation temperature Te (during heating operation) in the outdoor heat exchanger 11. Is provided with a temperature sensor 20ta for measuring the refrigerant evaporating temperature Te (during cooling operation) or the condensing temperature Tc (during heating operation) in the indoor heat exchanger 21.
Instead of the discharge temperature Td, the chamber upper temperature of the compressor 14 may be measured and used.
 図2はR32を冷媒に使用する空気調和機のモリエル線図(P-H線図)である。
 例えば、空気調和機1(図1参照)が暖房運転されるとき、点A1の状態にある冷媒(気体)は、圧縮機14で圧縮されて温度(比エンタルピ)と圧力が上昇して点A2の状態になり室内機20に導入される。室内機20に導入された冷媒(気体)は、室内熱交換器21においてほぼ等圧で凝縮して点A3の状態(液体)になり、室外機10に導入される。点A3の状態で室外機10に導入された冷媒(液体)は室外膨張弁13で減圧されて点A4の状態になり、室外熱交換器11で気化して点A1の状態(気体)になる。このように、暖房運転する空気調和機1では、冷媒(R32)が点A1~A4の状態を遷移しながら循環する。つまり、圧縮機14で圧縮(点A1→A2)された冷媒(気体)が室内機20の室内熱交換器21で凝縮(点A2→A3)するときに室内空気を加熱する。
FIG. 2 is a Mollier diagram (PH diagram) of an air conditioner using R32 as a refrigerant.
For example, when the air conditioner 1 (see FIG. 1) is operated for heating, the refrigerant (gas) in the state of the point A1 is compressed by the compressor 14 and the temperature (specific enthalpy) and pressure rise to increase the point A2. And is introduced into the indoor unit 20. The refrigerant (gas) introduced into the indoor unit 20 is condensed at substantially the same pressure in the indoor heat exchanger 21 to be in a state of point A3 (liquid) and introduced into the outdoor unit 10. The refrigerant (liquid) introduced into the outdoor unit 10 in the state of point A3 is decompressed by the outdoor expansion valve 13 to be in the state of point A4, and is vaporized in the outdoor heat exchanger 11 to be in the state of point A1 (gas). . Thus, in the air conditioner 1 that performs heating operation, the refrigerant (R32) circulates while changing the states of the points A1 to A4. That is, indoor air is heated when the refrigerant (gas) compressed by the compressor 14 (point A1 → A2) is condensed (point A2 → A3) by the indoor heat exchanger 21 of the indoor unit 20.
 このとき、R32はR410Aに比べて比熱比が大きいため、圧縮機14で圧縮されるときに(点A1→A2)、圧縮機14の出口側における冷媒の温度(吐出温度Td)が高くなる(Td1)。例えば、吐出温度TdはR410Aに比べて、10~15℃程度高くなる。このことによって、圧縮された冷媒の吐出温度Tdが圧縮機14の許容上限温度を超えて、圧縮機14に過大な負荷がかかってしまう場合がある。そこで、冷媒にR32を使用するときには、圧縮機14の出口側での吐出温度Tdを低くすることが要求される(例えば、Td1→Td2)。 At this time, since the specific heat ratio of R32 is larger than that of R410A, when it is compressed by the compressor 14 (point A1 → A2), the refrigerant temperature (discharge temperature Td) at the outlet side of the compressor 14 is increased ( Td1). For example, the discharge temperature Td is about 10 to 15 ° C. higher than R410A. As a result, the discharge temperature Td of the compressed refrigerant exceeds the allowable upper limit temperature of the compressor 14, and an excessive load may be applied to the compressor 14. Therefore, when R32 is used as the refrigerant, it is required to lower the discharge temperature Td on the outlet side of the compressor 14 (for example, Td1 → Td2).
 例えば、室外膨張弁13の弁開度が大きくなると、室外膨張弁13における温度低下が促進され、図2に破線で示すように、圧縮機14の入口側での冷媒の温度または乾き度を低くすることができる(点A1’)。これによって、圧縮機14の出口側における冷媒の吐出温度Tdが低くなる(点A2→A2’)。
 しかしながら、圧縮機14の入口側における冷媒の状態(点A1’)が飽和線C100よりも低い温度(または比エンタルピ)になると圧縮機14の入口側における冷媒の乾き度が1.00よりも低くなる。
For example, when the valve opening degree of the outdoor expansion valve 13 is increased, the temperature drop in the outdoor expansion valve 13 is promoted, and the refrigerant temperature or dryness at the inlet side of the compressor 14 is lowered as shown by the broken line in FIG. (Point A1 ′). As a result, the refrigerant discharge temperature Td at the outlet side of the compressor 14 is lowered (point A2 → A2 ′).
However, when the refrigerant state (point A1 ′) on the inlet side of the compressor 14 becomes a temperature (or specific enthalpy) lower than the saturation line C100, the dryness of the refrigerant on the inlet side of the compressor 14 is lower than 1.00. Become.
 乾き度が低い冷媒は液体成分の含有率が多く、乾き度の低い冷媒が圧縮機14に流入すると、この冷媒に含まれる液体成分によって圧縮機14の冷凍機油が希釈され、機構部の磨耗が促進されるなどの影響が生じる。つまり、乾き度の低い冷媒が圧縮機14に流入すると、圧縮機14に対する負荷が大きくなる。よって、圧縮機14の入口側における冷媒の乾き度が過剰に低い状態は好ましくない。 A refrigerant with a low dryness has a high content of liquid components, and when a refrigerant with a low dryness flows into the compressor 14, the refrigeration oil of the compressor 14 is diluted by the liquid components contained in the refrigerant, and the mechanism portion is worn. Effects such as being promoted occur. That is, when a refrigerant having a low dryness flows into the compressor 14, a load on the compressor 14 increases. Therefore, a state where the dryness of the refrigerant on the inlet side of the compressor 14 is excessively low is not preferable.
 そこで、圧縮機14の機械的性能の変化(磨耗の促進状態など)と、圧縮機14の入口側における冷媒の乾き度(以下、「吸入乾き度Xs」と称する)と、圧縮機14における冷凍機油の粘度低下と、の相関関係を調べる実験により、圧縮機14の機械的性能を劣化させない(あるいは、劣化が許容範囲になる)吸入乾き度Xsの境界値を0.85とした。換言すると、吸入乾き度Xsが0.85より高ければ(Xs>0.85)、圧縮機14に与える影響が許容できる範囲になり、圧縮機14に対する負荷を小さくできることが分かった。
 そこで、本実施例の空気調和機1は、吸入乾き度Xsが0.85より高い状態で運転される構成とする。なお、図2に示す二点鎖線は、乾き度が0.85になる「等乾き度線C85」を示す。
Therefore, changes in the mechanical performance of the compressor 14 (accelerated wear state, etc.), the dryness of the refrigerant on the inlet side of the compressor 14 (hereinafter referred to as “suction dryness Xs”), and the freezing in the compressor 14 In an experiment for examining the correlation between the decrease in the viscosity of the machine oil, the boundary value of the suction dryness Xs that does not deteriorate the mechanical performance of the compressor 14 (or the deterioration is within an allowable range) was set to 0.85. In other words, it has been found that if the suction dryness Xs is higher than 0.85 (Xs> 0.85), the influence on the compressor 14 is in an allowable range, and the load on the compressor 14 can be reduced.
Therefore, the air conditioner 1 of this embodiment is configured to be operated in a state where the suction dryness Xs is higher than 0.85. The two-dot chain line shown in FIG. 2 indicates an “iso-dryness line C85” where the dryness becomes 0.85.
 図3は、圧縮機の入口側での冷媒の圧力(吸入圧力Ps)と出口側での冷媒の圧力(吐出圧力Pd)と、が変化する場合のモリエル線図である。
 例えば、図3に示すように、圧縮機14の出口側における冷媒の吐出温度Tdを圧縮機14の許容上限温度以下の上限温度(Tdmax)に維持する場合、圧縮機14の出口側における冷媒の状態を示す点(点A2-n:n=1,2,3,・・・)が、吐出温度Tdが上限温度(Tdmax)を示す等温線上(一点鎖線)になるように状態変化させる。
 例えば、圧縮機14の許容上限温度が120℃の場合、冷媒の吐出温度Tdの上限温度を100℃程度に設定する(「Tdmax=100[℃]」とする)。
FIG. 3 is a Mollier diagram in the case where the refrigerant pressure (suction pressure Ps) on the inlet side of the compressor and the refrigerant pressure (discharge pressure Pd) on the outlet side change.
For example, as shown in FIG. 3, when the refrigerant discharge temperature Td on the outlet side of the compressor 14 is maintained at an upper limit temperature (Tdmax) that is equal to or lower than the allowable upper limit temperature of the compressor 14, The state is changed so that the point indicating the state (point A2-n: n = 1, 2, 3,...) Is on an isothermal line (one-dot chain line) where the discharge temperature Td indicates the upper limit temperature (Tdmax).
For example, when the allowable upper limit temperature of the compressor 14 is 120 ° C., the upper limit temperature of the refrigerant discharge temperature Td is set to about 100 ° C. (“Tdmax = 100 [° C.]”).
 また、飽和線C100は乾き度が1.00になる線であり、乾き度0.85を示す「等乾き度線C85」は飽和線C100よりも比エンタルピが低くなる(二点鎖線で図示)。そして、吸入乾き度Xsを0.85とするには、圧縮機14の入口における冷媒の温度(比エンタルピ)が、乾き度0.85を示す等乾き度線C85上で吸入圧力Psとなる点(点A1-n:n=1,2,3,・・・)が示す温度になるようにすればよい。
 このようにして決定される点A1-nと、点A2-nから圧縮機14の圧力比ε(吐出圧力Pd/吸入圧力Ps)が決定される。つまり、吸入圧力Psに対する圧力比εが決定される。
 図3に示すように、吸入圧力Psが高いほど(Ps1→Ps2→Ps3)、吐出圧力Pdを高くすることができるが(Pd1→Pd2→Pd3)、吸入圧力Psが上昇する割合よりも吐出圧力Pdが上昇する割合が小さくなる。つまり、吸入圧力Psが高いほど圧力比εを小さくする必要がある。
Further, the saturation line C100 is a line where the dryness becomes 1.00, and the “isodryness line C85” indicating the dryness 0.85 has a lower specific enthalpy than the saturation line C100 (illustrated by a two-dot chain line). . In order to set the suction dryness Xs to 0.85, the temperature of the refrigerant (specific enthalpy) at the inlet of the compressor 14 becomes the suction pressure Ps on the equal dryness line C85 indicating the dryness 0.85. The temperature indicated by (point A1-n: n = 1, 2, 3,...) May be set.
The pressure ratio ε (discharge pressure Pd / suction pressure Ps) of the compressor 14 is determined from the points A1-n and A2-n determined in this manner. That is, the pressure ratio ε with respect to the suction pressure Ps is determined.
As shown in FIG. 3, the higher the suction pressure Ps (Ps1 → Ps2 → Ps3), the higher the discharge pressure Pd (Pd1 → Pd2 → Pd3), but the discharge pressure is higher than the rate at which the suction pressure Ps increases. The rate at which Pd rises decreases. That is, the higher the suction pressure Ps, the smaller the pressure ratio ε needs to be.
 図4は、吸入乾き度が0.85となる吸入圧力と圧力比の関係を示すグラフであり、横軸が吸入圧力Ps、縦軸が圧力比ε(吐出圧力Pd/吸入圧力Ps)を示す。
 なお、図4に示される「εU」は圧力比εの最大値である。また、実線は、吸入乾き度Xsが0.85より高くなる圧力比εの上限値(圧力比上限εmax)を示している。圧力比上限εmaxは、吸入乾き度Xsが0.85より高くなるように圧力比εを規制する上限値であり、圧力比εが圧力比上限εmax以下となるように冷媒の圧縮(圧縮機14の回転速度Fr)が制限されることによって、吸入乾き度Xsが0.85より高くなる。
 そして「PsL」は、吸入乾き度Xsを0.85にする圧力比εが最大値「εU」となる吸入圧力Psである。つまり、吸入圧力Psが「PsL」以下の領域は、吸入乾き度Xsを0.85にするための圧力比εが最大値「εU」を超える領域である。
 また、「PsU」は空気調和機1における吸入圧力Psの上限値である。そして、図4に示す吸入圧力Psの下限値「PsL」および上限値「PsU」、圧力比εの最大値「εU」は空気調和機1の特性値であり、空気調和機1ごとに決定されている設計値である。
FIG. 4 is a graph showing the relationship between the suction pressure and the pressure ratio at which the suction dryness is 0.85, where the horizontal axis represents the suction pressure Ps and the vertical axis represents the pressure ratio ε (discharge pressure Pd / suction pressure Ps). .
Note that “εU” shown in FIG. 4 is the maximum value of the pressure ratio ε. The solid line indicates the upper limit value of the pressure ratio ε (pressure ratio upper limit εmax) at which the suction dryness Xs is higher than 0.85. The pressure ratio upper limit εmax is an upper limit value that regulates the pressure ratio ε so that the suction dryness Xs becomes higher than 0.85. The refrigerant is compressed (compressor 14) so that the pressure ratio ε is equal to or lower than the pressure ratio upper limit εmax. The rotation speed Fr) is limited, whereby the suction dryness Xs becomes higher than 0.85.
“PsL” is the suction pressure Ps at which the pressure ratio ε for setting the suction dryness Xs to 0.85 becomes the maximum value “εU”. That is, the region where the suction pressure Ps is equal to or lower than “PsL” is a region where the pressure ratio ε for setting the suction dryness Xs to 0.85 exceeds the maximum value “εU”.
“PsU” is an upper limit value of the suction pressure Ps in the air conditioner 1. The lower limit value “PsL” and upper limit value “PsU” of the suction pressure Ps and the maximum value “εU” of the pressure ratio ε shown in FIG. 4 are characteristic values of the air conditioner 1 and are determined for each air conditioner 1. It is a design value.
 図4に示すように、圧力比上限εmaxは、吸入圧力Psが下限値「PsL」以下の領域(Ps≦PsL)では圧力比の最大値「εU」となり(εmax=εU)、吸入圧力Psが下限値「PsL」より高い領域(Ps>PsL)では次式(1)で示される。
 
 εmax=εU-(εU-εL)/(PsU-PsL)×(Ps-PsL)
                                 ・・・(1)
 
 図3に示すように、吸入圧力Psが高いほど圧力比εは小さくなるため、図4に示すように、圧力比上限εmaxも吸入圧力Psが高いほど低くなる。
As shown in FIG. 4, the pressure ratio upper limit εmax is the maximum pressure ratio value “εU” (εmax = εU) in the region where the suction pressure Ps is lower than the lower limit value “PsL” (Ps ≦ PsL) (εmax = εU). In a region higher than the lower limit “PsL” (Ps> PsL), it is expressed by the following equation (1).

εmax = εU− (εU−εL) / (PsU−PsL) × (Ps−PsL)
... (1)

As shown in FIG. 3, the higher the suction pressure Ps, the smaller the pressure ratio ε. Therefore, as shown in FIG. 4, the higher the suction pressure Ps, the lower the pressure ratio upper limit εmax.
 そして、本実施例の空気調和機1(図1参照)において、制御装置1a(図1参照)は、圧力比εが式(1)で示される圧力比上限εmaxよりも小さくなるように冷媒(R32)を圧縮する回転速度Frで圧縮機14(図1参照)を運転する。つまり、制御装置1aは、圧力比εが圧力比上限εmaxよりも小さくなるように圧縮機14の回転速度Frを調節する。これによって、空気調和機1の吸入乾き度Xsが0.85より高く維持される。 And in the air conditioner 1 (refer FIG. 1) of a present Example, the control apparatus 1a (refer FIG. 1) is a refrigerant | coolant (so that the pressure ratio (epsilon) may become smaller than the pressure ratio upper limit (epsilon) max shown by Formula (1). The compressor 14 (see FIG. 1) is operated at the rotational speed Fr for compressing R32). That is, the control device 1a adjusts the rotational speed Fr of the compressor 14 so that the pressure ratio ε is smaller than the pressure ratio upper limit εmax. Thereby, the suction dryness Xs of the air conditioner 1 is maintained higher than 0.85.
 また、制御装置1a(図1参照)は、圧力比εが圧力比上限εmaxに近づくように圧縮機14の回転速度Frを調節する構成であってもよい。例えば、圧力比εが圧力比上限εmaxより小さく、かつ、空調能力の増加を要求されるとき、制御装置1aは圧縮機14の回転速度Frを上昇して圧力比εを高める構成であってもよい。制御装置1aがこのように構成される場合、空気調和機1(図1参照)は、吸入乾き度Xsが0.85に近い状態で運転される。 Further, the control device 1a (see FIG. 1) may be configured to adjust the rotational speed Fr of the compressor 14 so that the pressure ratio ε approaches the pressure ratio upper limit εmax. For example, when the pressure ratio ε is smaller than the pressure ratio upper limit εmax and an increase in air conditioning capacity is required, the control device 1a may increase the pressure ratio ε by increasing the rotational speed Fr of the compressor 14. Good. When the control device 1a is configured in this way, the air conditioner 1 (see FIG. 1) is operated in a state where the suction dryness Xs is close to 0.85.
 図1に示す空気調和機1では、吐出圧力センサ10paが吐出圧力Pdを計測するとともに、吸入圧力センサ10pbが吸入圧力Psを計測する。そして、制御装置1aは、吸入圧力センサ10pbが計測する吸入圧力Psの計測値と、吐出圧力センサ10paが計測する吐出圧力Pdの計測値から演算する圧力比ε(吐出圧力Pd(計測値)/吸入圧力Ps(計測値))が、式(1)で演算される圧力比上限εmaxとなるように、圧縮機14の回転速度Frを調節して空気調和機1を暖房運転する。 In the air conditioner 1 shown in FIG. 1, the discharge pressure sensor 10pa measures the discharge pressure Pd, and the suction pressure sensor 10pb measures the suction pressure Ps. The control device 1a then calculates the pressure ratio ε (discharge pressure Pd (measured value) /) calculated from the measured value of the suction pressure Ps measured by the suction pressure sensor 10pb and the measured value of the discharge pressure Pd measured by the discharge pressure sensor 10pa. The air conditioner 1 is heated by adjusting the rotational speed Fr of the compressor 14 so that the suction pressure Ps (measured value) becomes the pressure ratio upper limit εmax calculated by the equation (1).
 ここで、吐出圧力センサ10paおよび吸入圧力センサ10pbの一方あるいは双方に替えて、凝縮温度Tcおよび蒸発温度Teを計測するセンサ(温度センサ)が備わる構成であってもよい。
 暖房運転時に凝縮温度Tcは、室内熱交換器21に備わる温度センサ20ta(図1参照)で計測可能であり、蒸発温度Teは、室外熱交換器11に備わる温度センサ10tb(図1参照)で計測可能である。
 一般的に、温度センサは圧力センサよりも安価であり、圧力センサ(吐出圧力センサ10pa,吸入圧力センサ10pb)に替えて温度センサ(温度センサ10tb,温度センサ20ta)を用いることで安価な空気調和機1とすることができる。
Here, instead of one or both of the discharge pressure sensor 10pa and the suction pressure sensor 10pb, a configuration may be provided in which a sensor (temperature sensor) for measuring the condensation temperature Tc and the evaporation temperature Te is provided.
During the heating operation, the condensation temperature Tc can be measured by a temperature sensor 20ta (see FIG. 1) provided in the indoor heat exchanger 21, and the evaporation temperature Te is measured by a temperature sensor 10tb (see FIG. 1) provided in the outdoor heat exchanger 11. It can be measured.
In general, a temperature sensor is less expensive than a pressure sensor, and inexpensive air conditioning is achieved by using a temperature sensor (temperature sensor 10tb, temperature sensor 20ta) instead of a pressure sensor (discharge pressure sensor 10pa, suction pressure sensor 10pb). Machine 1 can be used.
 また、本実施例の空気調和機1(図1参照)は、制御装置1a(図1参照)が吸入乾き度Xsを演算によって推定するように構成されていてもよい。そして、制御装置1aは、推定した吸入乾き度Xsが0.85より高くなるように圧縮機14(図1参照)を制御する構成であってもよい。
 図5は吸入乾き度の推定に使用される変数を示す図、図6は制御装置が演算によって吸入乾き度を推定する手順を示すフローチャートである。
Further, the air conditioner 1 (see FIG. 1) of the present embodiment may be configured such that the control device 1a (see FIG. 1) estimates the suction dryness Xs by calculation. And the control apparatus 1a may be the structure which controls the compressor 14 (refer FIG. 1) so that the estimated suction dryness Xs may become higher than 0.85.
FIG. 5 is a diagram showing variables used for estimating the suction dryness, and FIG. 6 is a flowchart showing a procedure for the controller to estimate the suction dryness by calculation.
 本実施例の空気調和機1に備わる制御装置1aは吸入乾き度Xsを推定する場合、図6に示す手順で、吐出温度Tdと、吐出圧力Pdと、吸入圧力Psと、圧縮機14の回転速度Frと、冷媒(R32)の物性値と、に基づいた演算によって吸入乾き度Xsを推定する。そして、制御装置1aは、推定した吸入乾き度Xsが0.85より高くなるように空気調和機1を運転(例えば暖房運転)する。なお、制御装置1aは、空気調和機1を運転するときに、所定のサイクルで吸入乾き度Xsを推定(演算)するように構成される。 When estimating the suction dryness Xs, the control device 1a provided in the air conditioner 1 of the present embodiment performs the discharge temperature Td, the discharge pressure Pd, the suction pressure Ps, and the rotation of the compressor 14 according to the procedure shown in FIG. The suction dryness Xs is estimated by calculation based on the speed Fr and the physical property value of the refrigerant (R32). Then, the control device 1a operates the air conditioner 1 (for example, heating operation) so that the estimated suction dryness Xs becomes higher than 0.85. The control device 1a is configured to estimate (calculate) the suction dryness Xs in a predetermined cycle when the air conditioner 1 is operated.
 図6を参照して、制御装置1aが演算によって吸入乾き度Xsを推定する手順を説明する(適宜、図1~5参照)。
 制御装置1aは、吐出温度センサ10taが計測する吐出温度Tdの計測値と、吐出圧力センサ10paが計測する吐出圧力Pdの計測値と、吸入圧力センサ10pbが計測する吸入圧力Psの計測値と、圧縮機14に備わる図示しない回転速度計が計測する回転速度Frの計測値と、に基づいて、吐出温度Tdと、吐出圧力Pdと、吸入圧力Psと、圧縮機14の回転速度Frと、を取得する(ステップS1)。
 そして、制御装置1aは取得した吐出温度Tdと、吐出圧力Pdに基づいて、吐出ガス比エンタルピhdを演算する(ステップS2)。
 図5に示すように、吐出ガス比エンタルピhdは、圧縮機14の出口側における冷媒の比エンタルピを示す。
With reference to FIG. 6, the procedure by which the control device 1a estimates the suction dryness Xs by calculation will be described (see FIGS. 1 to 5 as appropriate).
The control device 1a includes a measured value of the discharge temperature Td measured by the discharge temperature sensor 10ta, a measured value of the discharge pressure Pd measured by the discharge pressure sensor 10pa, a measured value of the suction pressure Ps measured by the suction pressure sensor 10pb, Based on the measured value of the rotational speed Fr measured by a tachometer (not shown) provided in the compressor 14, the discharge temperature Td, the discharge pressure Pd, the suction pressure Ps, and the rotational speed Fr of the compressor 14 are determined. Obtain (step S1).
Then, the control device 1a calculates the discharge gas ratio enthalpy hd based on the acquired discharge temperature Td and the discharge pressure Pd (step S2).
As shown in FIG. 5, the discharge gas specific enthalpy hd indicates the specific enthalpy of the refrigerant on the outlet side of the compressor 14.
 また、制御装置1aは、吸入乾き度Xsを仮定し(ステップS3)、さらに、吸入圧力Psと冷媒の物性値(R32の物性値)に基づいて、吸入圧力Psにおける飽和液比エンタルピhsL、および吸入圧力Psにおける飽和ガス比エンタルピhsGを演算する(ステップS4)。
 例えばステップS3で、制御装置1aは、前のサイクルで演算した吸入乾き度Xsの推定値を吸入乾き度Xsの仮定値とする。
 また、制御装置1aは、あらかじめ設定されている近似式に基づいて、吸入圧力Psにおける飽和液比エンタルピhsL、および飽和ガス比エンタルピhsGを算出する(ステップS4)。この近似式は、R32の特性式として予め設定されているものであることが好ましい。
Further, the control device 1a assumes the suction dryness Xs (step S3), and further, based on the suction pressure Ps and the physical property value of the refrigerant (the physical property value of R32), the saturated liquid ratio enthalpy hsL at the suction pressure Ps, and A saturated gas ratio enthalpy hsG at the suction pressure Ps is calculated (step S4).
For example, in step S3, the control device 1a sets the estimated value of the suction dryness Xs calculated in the previous cycle as the assumed value of the suction dryness Xs.
Further, the control device 1a calculates the saturated liquid ratio enthalpy hsL and the saturated gas ratio enthalpy hsG at the suction pressure Ps based on an approximate expression set in advance (step S4). This approximate expression is preferably set in advance as a characteristic expression of R32.
 そして、制御装置1aは、仮定した吸入乾き度Xsと、演算した飽和液比エンタルピhsLと、演算した飽和ガス比エンタルピhsGと、を使用して、下式(2)に基づいて、吸入比エンタルピhsを演算する(ステップS5)。
 
 Xs=(hs-hsL)/(hsG-hsL)          ・・・(2)
 
Then, the control device 1a uses the assumed suction dryness Xs, the calculated saturated liquid ratio enthalpy hsL, and the calculated saturated gas ratio enthalpy hsG, and based on the following expression (2), the suction ratio enthalpy hs is calculated (step S5).

Xs = (hs−hsL) / (hsG−hsL) (2)
 また、制御装置1aは、吸入圧力Psと、演算した吸入比エンタルピhsと、R32の物性値と、に基づいて吸入比エントロピSsを演算し(ステップS6)、さらに、演算した吸入比エントロピSsと、吐出圧力Pdと、R32の物性値と、に基づいて、断熱圧縮吐出ガス比エンタルピhd’を演算する(ステップS7)。
 ステップS6で制御装置1aは、予め設定されている近似式に基づいて、吸入圧力Psと吸入比エンタルピhsにおける吸入比エントロピSsを演算するように構成される。この近似式は、R32の特性式として予め設定されているものであることが好ましい。
Further, the control device 1a calculates the suction ratio entropy Ss based on the suction pressure Ps, the calculated suction ratio enthalpy hs, and the physical property value of R32 (step S6), and further calculates the calculated suction ratio entropy Ss. Based on the discharge pressure Pd and the physical property value of R32, the adiabatic compression discharge gas ratio enthalpy hd ′ is calculated (step S7).
In step S6, the control device 1a is configured to calculate the suction ratio entropy Ss at the suction pressure Ps and the suction ratio enthalpy hs based on a preset approximate expression. This approximate expression is preferably set in advance as a characteristic expression of R32.
 また、制御装置1aがステップS7で演算する断熱圧縮吐出ガス比エンタルピhd’は、図5に示すように、制御装置1aがステップS3で仮定した吸入乾き度Xsの冷媒を、圧縮機14の効率(圧縮機効率ηt)を「1」とする等エントロピ圧縮(ηt=1)した場合の、吐出圧力Pdにおける比エンタルピを示す。図5には、等エントロピ圧縮を破線で示している。 Further, the adiabatic compression discharge gas ratio enthalpy hd ′ calculated by the control device 1a in step S7 is the refrigerant having the suction dryness Xs assumed by the control device 1a in step S3 as shown in FIG. The specific enthalpy at the discharge pressure Pd in the case of isentropic compression (ηt = 1) with (compressor efficiency ηt) being “1” is shown. In FIG. 5, isentropic compression is indicated by a broken line.
 この場合、制御装置1aがステップS3で仮定した吸入乾き度Xsに対する、圧縮機14の圧縮機効率(仮効率)ηtreal’は次式(3)で示される。
 
 ηtreal’=(hd’-hs)/(hd-hs)         ・・・(3)
 
 制御装置1aは、ステップS2で演算した吐出ガス比エンタルピhd、ステップS5で演算した吸入比エンタルピhs、およびステップS7で演算した断熱圧縮吐出ガス比エンタルピhd’に基づいて式(3)から、仮効率ηtreal’を演算する(ステップS8
)。
 
In this case, the compressor efficiency (temporary efficiency) ηt real ′ of the compressor 14 with respect to the suction dryness Xs assumed by the control device 1a in step S3 is expressed by the following equation (3).

ηt real '= (hd′−hs) / (hd−hs) (3)

Based on the discharge gas ratio enthalpy hd calculated in step S2, the suction ratio enthalpy hs calculated in step S5, and the adiabatic compression discharge gas ratio enthalpy hd ′ calculated in step S7, the control device 1a calculates a temporary The efficiency ηt real 'is calculated (step S8
).
 また、圧縮機14の実際の効率(実効率)ηtrealは、次式(4)で示される。
 
 ηtreal=f(Xs,Pd,Ps,Fr)            ・・・(4)
 
 なお、「f(Xs,Pd,Ps,Fr)」は、吸入乾き度Xs、吐出圧力Pd、吸入圧力Ps、および圧縮機14の回転速度Frを変数として圧縮機14の特性を表す関数であり、圧縮機14の形式ごとに予め設定されている関数である。
 そして、制御装置1aは、ステップS3で仮定した吸入乾き度Xs、ステップS1で取得した、吐出圧力Pd、吸入圧力Ps、および圧縮機14の回転速度Frに基づいて式(4)から、実効率ηtrealを演算する(ステップS9)。
Further, the actual efficiency (actual efficiency) ηt real of the compressor 14 is expressed by the following equation (4).

ηt real = f (Xs, Pd, Ps, Fr) (4)

Note that “f (Xs, Pd, Ps, Fr)” is a function that represents the characteristics of the compressor 14 using the suction dryness Xs, the discharge pressure Pd, the suction pressure Ps, and the rotational speed Fr of the compressor 14 as variables. The function is preset for each type of compressor 14.
Then, the control device 1a calculates the actual efficiency from the equation (4) based on the suction dryness Xs assumed in step S3, the discharge pressure Pd, the suction pressure Ps, and the rotational speed Fr of the compressor 14 acquired in step S1. ηt real is calculated (step S9).
 制御装置1aは、ステップS8で演算した仮効率ηtreal’を、ステップS9で演
算した実効率ηtrealで除した比(ηtreal’/ηtreal)を演算し(ステ
ップS10)、この値が所定の下限値以上、かつ、所定の上限値以下であれば(ステップS10→Yes)、ステップS3で仮定した吸入乾き度Xsを吸入乾き度Xsの推定値に決定する。
The control device 1a calculates a ratio (ηt real '/ ηt real ) obtained by dividing the temporary efficiency ηt real ' calculated in step S8 by the actual efficiency ηt real calculated in step S9 (step S10), and this value is predetermined. If it is greater than or equal to the lower limit value and less than or equal to the predetermined upper limit value (step S10 → Yes), the suction dryness Xs assumed in step S3 is determined as the estimated value of the suction dryness Xs.
 一方、ステップS10で演算した比(ηtreal’/ηtreal)の値が所定の下
限値未満であるか、所定の上限値より大きい場合(ステップS10→No)、制御装置1aは、手順をステップS3に戻し、新たに吸入乾き度Xsを仮定してステップS3~ステップS10の手順を実行する。
 例えば、ステップS10で演算した比(ηtreal’/ηtreal)の値が所定の
下限値未満の場合、制御装置1aは、仮効率ηtreal’が大きくなる方向に吸入乾き
度Xsを変化させた値を、新たな吸入乾き度Xsの仮定値とする。
On the other hand, if the value of the ratio (ηt real '/ ηt real ) calculated in step S10 is less than a predetermined lower limit value or greater than a predetermined upper limit value (step S10 → No), the control device 1a performs the procedure step Returning to S3, the procedure from step S3 to step S10 is executed assuming a new suction dryness Xs.
For example, when the value of the ratio (ηt real '/ ηt real ) calculated in step S10 is less than a predetermined lower limit value, the control device 1a changes the suction dryness Xs in the direction in which the temporary efficiency ηt real ' increases. The value is assumed to be a new value of the suction dryness Xs.
 なお、ステップS10で制御装置1aが「ηtreal’/ηtreal」と比較する
所定の下限値および上限値は、要求される吸入乾き度Xsの演算精度等に基づいて適宜設定されることが好ましい。例えば、下限値を「0.999」、上限値を「1.001」とすれば、制御装置1aは、「±0.1%」の誤差で吸入乾き度Xsを推定(演算)可能になる。
The predetermined lower limit value and upper limit value that the control device 1a compares with “ηt real '/ ηt real ” in step S10 are preferably set as appropriate based on the required calculation accuracy of the suction dryness Xs. . For example, if the lower limit value is “0.999” and the upper limit value is “1.001”, the control device 1a can estimate (calculate) the suction dryness Xs with an error of “± 0.1%”. .
 そして、制御装置1a(図1参照)は、図6に示す手順で吸入乾き度Xsを推定(演算)しながら空気調和機1(図1参照)を運転する(例えば暖房運転する)。このとき、制御装置1aは、推定した吸入乾き度Xsが0.85より高くなるように空気調和機1を制御する。具体的に制御装置1aは、演算によって推定した吸入乾き度Xsが0.85より高くなるように圧縮機14の回転速度Frを調節して圧力比εを調節する。
 制御装置1aは、演算によって推定した吸入乾き度Xsが下がって0.85に近づいたときには、圧縮機14の回転速度Frを低下して圧力比εを低くする。例えば、制御装置1aは、圧力比上限εmaxとなる回転速度Frで運転されている圧縮機14の回転速度Frを低下するように圧縮機14を制御する。これによって吐出圧力Pdが低下し、圧縮機14の入口側における冷媒は湿りにくくなって吸入乾き度Xsが上昇する。
Then, the control device 1a (see FIG. 1) operates the air conditioner 1 (see FIG. 1) while estimating (calculating) the suction dryness Xs according to the procedure shown in FIG. 6 (for example, heating operation). At this time, the control device 1a controls the air conditioner 1 so that the estimated suction dryness Xs becomes higher than 0.85. Specifically, the control device 1a adjusts the pressure ratio ε by adjusting the rotational speed Fr of the compressor 14 so that the suction dryness Xs estimated by the calculation becomes higher than 0.85.
When the suction dryness Xs estimated by the calculation decreases and approaches 0.85, the control device 1a decreases the rotation speed Fr of the compressor 14 and decreases the pressure ratio ε. For example, the control device 1a controls the compressor 14 so as to decrease the rotational speed Fr of the compressor 14 that is operated at the rotational speed Fr that becomes the pressure ratio upper limit εmax. As a result, the discharge pressure Pd is reduced, the refrigerant on the inlet side of the compressor 14 is less likely to be wet, and the suction dryness Xs is increased.
 このように制御装置1a(図1参照)が吸入乾き度Xsを推定するとともに、推定した吸入乾き度Xsが0.85より高くなるように空気調和機1(図1参照)を運転することによって、より確実に吸入乾き度Xsを0.85より高く維持できる。 As described above, the control device 1a (see FIG. 1) estimates the suction dryness Xs and operates the air conditioner 1 (see FIG. 1) so that the estimated suction dryness Xs becomes higher than 0.85. Thus, the suction dryness Xs can be more reliably maintained higher than 0.85.
 また、本実施例の制御装置1a(図1参照)は、凝縮温度Tcと吐出温度Tdの差である吐出過熱度TdSH(=Td-Tc)が、予め設定される目標値を超えないように空気調和機1(図1参照)を暖房運転する構成であってもよい。 Further, the control device 1a (see FIG. 1) of the present embodiment prevents the discharge superheat degree TdSH (= Td−Tc), which is the difference between the condensation temperature Tc and the discharge temperature Td, from exceeding a preset target value. The air conditioner 1 (see FIG. 1) may be configured to perform a heating operation.
 図7は、吐出温度と凝縮温度と吐出過熱度の関係を示すグラフであり、縦軸を温度(吐出温度Td,凝縮温度Tc,吐出過熱度TdSH)、横軸を吐出圧力Pdとする。
 また、図7の実線は凝縮温度Tcを示し、一点鎖線は吐出温度Tdを示す。そして、破線は、吐出圧力Pdごとの吐出過熱度TdSHの目標値(目標過熱度SHtgt)を示す。前記したように、吐出過熱度TdSHは、同じ吐出圧力Pdにおける吐出温度Tdと凝縮温度Tcの差(Td-Tc)であり、その目標過熱度SHtgtは、例えば、図7に破線で示すように設定される。
FIG. 7 is a graph showing the relationship between the discharge temperature, the condensation temperature, and the discharge superheat degree. The vertical axis represents temperature (discharge temperature Td, condensation temperature Tc, discharge superheat degree TdSH), and the horizontal axis represents discharge pressure Pd.
Further, the solid line in FIG. 7 indicates the condensation temperature Tc, and the alternate long and short dash line indicates the discharge temperature Td. A broken line indicates a target value (target superheat degree SHtgt) of the discharge superheat degree TdSH for each discharge pressure Pd. As described above, the discharge superheat degree TdSH is the difference (Td−Tc) between the discharge temperature Td and the condensation temperature Tc at the same discharge pressure Pd, and the target superheat degree SHtgt is, for example, as shown by the broken line in FIG. Is set.
 凝縮温度Tcは吐出圧力Pdに対応して決定される冷媒固有の値(物性値)であり、制御装置1aは吐出圧力センサ10pa(図1参照)が計測する吐出圧力Pdの計測値に基づいて凝縮温度Tcを演算可能である。
 例えば、制御装置1aは、吐出圧力センサ10paが計測する吐出圧力Pdに基づいて、吐出圧力Pdと凝縮温度Tcの関係を示す近似式から凝縮温度Tcを演算できる。この近似式は、R32の特性式として予め設定されているものであることが好ましい。
The condensing temperature Tc is a refrigerant-specific value (physical property value) determined corresponding to the discharge pressure Pd, and the control device 1a is based on the measured value of the discharge pressure Pd measured by the discharge pressure sensor 10pa (see FIG. 1). The condensation temperature Tc can be calculated.
For example, the control device 1a can calculate the condensing temperature Tc from an approximate expression indicating the relationship between the discharging pressure Pd and the condensing temperature Tc based on the discharging pressure Pd measured by the discharging pressure sensor 10pa. This approximate expression is preferably set in advance as a characteristic expression of R32.
 また、図7に示す一例では、吐出圧力Pdが所定値(境界吐出圧:Pda)のときに吐出温度Tdが圧縮機14の上限温度(Tdmax)となるため、吐出圧力Pdが境界吐出圧(Pda)より高い領域では、吐出温度Tdが上限温度(Tdmax)となるように、目標過熱度SHtgtが設定されている。 In the example shown in FIG. 7, when the discharge pressure Pd is a predetermined value (boundary discharge pressure: Pda), the discharge temperature Td becomes the upper limit temperature (Tdmax) of the compressor 14, so the discharge pressure Pd is the boundary discharge pressure ( In a region higher than Pda), the target superheat degree SHtgt is set so that the discharge temperature Td becomes the upper limit temperature (Tdmax).
 制御装置1a(図1参照)は吐出温度センサ10ta(図1参照)が計測する吐出温度Tdと、吐出圧力Pdの計測値に基づいて演算する凝縮温度Tcと、から吐出過熱度TdSHを演算する。そして、制御装置1aは、演算する吐出過熱度TdSHが、図7に破線で示す目標過熱度SHtgtに近づくように空気調和機1(図1参照)を暖房運転する。 例えば、演算する吐出過熱度TdSHが目標過熱度SHtgtより低くなった場合、制御装置1aは、室外膨張弁13の弁開度を小さくする。室外膨張弁13における冷媒の温度低下が抑制されて吐出温度Tdは上昇する。一方、吸入圧力Psおよび吐出圧力Pdはそれほど変化しないため凝縮温度Tcの変化は小さい。よって、吐出過熱度TdSH(Td-Tc)は上昇して目標過熱度SHtgtに近づく。
 このように、制御装置1aは、演算する吐出過熱度TdSHが目標過熱度SHtgtの近傍に維持されるように室外膨張弁13を制御して、その弁開度を調節する。
The control device 1a (see FIG. 1) calculates the discharge superheat degree TdSH from the discharge temperature Td measured by the discharge temperature sensor 10ta (see FIG. 1) and the condensation temperature Tc calculated based on the measured value of the discharge pressure Pd. . And the control apparatus 1a carries out heating operation of the air conditioner 1 (refer FIG. 1) so that the discharge superheat degree TdSH calculated may approach the target superheat degree SHtgt shown with the broken line in FIG. For example, when the discharge superheat degree TdSH to be calculated becomes lower than the target superheat degree SHtgt, the control device 1a decreases the valve opening degree of the outdoor expansion valve 13. The temperature drop of the refrigerant in the outdoor expansion valve 13 is suppressed, and the discharge temperature Td rises. On the other hand, since the suction pressure Ps and the discharge pressure Pd do not change so much, the change in the condensation temperature Tc is small. Therefore, the discharge superheat degree TdSH (Td−Tc) increases and approaches the target superheat degree SHtgt.
Thus, the control device 1a controls the outdoor expansion valve 13 so as to maintain the calculated discharge superheat degree TdSH in the vicinity of the target superheat degree SHtgt, and adjusts the valve opening degree.
 例えば、吐出温度Tdの上限(上限温度)が設定され、吐出温度Tdが上限温度になるように圧縮機14(図1参照)の回転速度Frが調節される場合、圧縮機14の回転速度Frの変化にともなって吐出圧力Pdと吐出温度Tdが変化する。そして、吸入乾き度Xsは、吐出圧力Pdと吐出温度Tdの両方に対応して変化する。よって、吸入乾き度Xsを0.85より高く維持するために、制御装置1a(図1参照)は、吐出圧力Pdと吐出温度Tdを統合的に調整することになり空気調和機1(図1参照)の制御が複雑になる。 For example, when the upper limit (upper limit temperature) of the discharge temperature Td is set and the rotation speed Fr of the compressor 14 (see FIG. 1) is adjusted so that the discharge temperature Td becomes the upper limit temperature, the rotation speed Fr of the compressor 14 is adjusted. As the pressure changes, the discharge pressure Pd and the discharge temperature Td change. The suction dryness Xs changes corresponding to both the discharge pressure Pd and the discharge temperature Td. Therefore, in order to maintain the suction dryness Xs higher than 0.85, the control device 1a (see FIG. 1) adjusts the discharge pressure Pd and the discharge temperature Td in an integrated manner, and the air conditioner 1 (FIG. 1). Control) is complicated.
 これに対し、目標過熱度SHtgtが設定されて、吐出過熱度TdSHが目標過熱度SHtgtに近づくように室外膨張弁13(図1参照)の弁開度が調節される場合、吐出圧力Pdはそれほど変化せずに吐出温度Tdが変化する。したがって、吸入乾き度Xsは吐出圧力Pdに対応して変化する。
 よって、制御装置1a(図1参照)は、吸入乾き度Xsを0.85より高く維持するように室外膨張弁13の弁開度を調節すればよく、空気調和機1(図1参照)の制御が簡単になる。
On the other hand, when the target superheat degree SHtgt is set and the valve opening degree of the outdoor expansion valve 13 (see FIG. 1) is adjusted so that the discharge superheat degree TdSH approaches the target superheat degree SHtgt, the discharge pressure Pd is not so much. The discharge temperature Td changes without changing. Therefore, the suction dryness Xs changes corresponding to the discharge pressure Pd.
Therefore, the control device 1a (see FIG. 1) may adjust the valve opening degree of the outdoor expansion valve 13 so as to maintain the suction dryness Xs higher than 0.85, and the air conditioner 1 (see FIG. 1). Control is simplified.
 なお、前記したように、圧力比εが圧力比上限εmaxに近づくように制御装置1a(図1参照)が圧縮機14の回転速度Frを調節する構成とし、さらに、吐出過熱度TdSHが目標過熱度SHtgtに近づくように、制御装置1aが室外膨張弁13の弁開度を調節する構成であってもよい。
 例えば、圧力比εが圧力比上限εmaxより小さく、演算する吐出過熱度TdSHが目標過熱度SHtgtより小さいとき、制御装置1aは圧縮機14の回転速度Frを上昇して圧力比εを高めるとともに、室外膨張弁13の弁開度を小さくして吐出過熱度TdSHを上昇させる。
 この構成によると、圧力比εは圧力比上限εmaxの近傍に維持され、吐出過熱度TdSHは目標過熱度SHtgtの近傍に維持される。このことによって、制御装置1a(図1参照)は、空気調和機1(図1参照)の吸入乾き度Xsを0.85に近い状態で維持することができ、吐出温度Tdを高く設定できる。これによって、空気調和機1は、吐出温度Tdが可能な限り高い状態で運転されることになり、蒸発潜熱が最大限に活用され、効率の高い運転状態を実現できる。
As described above, the control device 1a (see FIG. 1) adjusts the rotational speed Fr of the compressor 14 so that the pressure ratio ε approaches the pressure ratio upper limit εmax, and the discharge superheat degree TdSH is the target superheat. The structure which adjusts the valve opening degree of the outdoor expansion valve 13 may be sufficient as the control apparatus 1a so that it may approach degree SHtgt.
For example, when the pressure ratio ε is smaller than the pressure ratio upper limit εmax and the calculated discharge superheat degree TdSH is smaller than the target superheat degree SHtgt, the control device 1a increases the rotational speed Fr of the compressor 14 to increase the pressure ratio ε, The valve opening degree of the outdoor expansion valve 13 is decreased to increase the discharge superheat degree TdSH.
According to this configuration, the pressure ratio ε is maintained in the vicinity of the pressure ratio upper limit εmax, and the discharge superheat degree TdSH is maintained in the vicinity of the target superheat degree SHtgt. Thus, the control device 1a (see FIG. 1) can maintain the suction dryness Xs of the air conditioner 1 (see FIG. 1) close to 0.85, and can set the discharge temperature Td high. As a result, the air conditioner 1 is operated in a state where the discharge temperature Td is as high as possible, and the latent heat of vaporization is utilized to the maximum, thereby realizing an efficient operation state.
 以上のように、図1に示す本実施例の制御装置1aは、空気調和機1を暖房運転するとき、圧縮機14および室外膨張弁13を制御して、吐出温度Td、吐出圧力Pd、吸入圧力Ps、圧縮機14の回転速度frを調節し、吸入乾き度Xsを0.85より高く維持する。これによって、冷媒としてR32が使用される場合においても吐出温度Tdを圧縮機14の上限温度(Tdmax)以下に維持することができる。また、冷媒に含まれる液体成分が圧縮機14に与える負荷を小さくできる。 As described above, the control device 1a of the present embodiment shown in FIG. 1 controls the compressor 14 and the outdoor expansion valve 13 to perform the discharge temperature Td, the discharge pressure Pd, and the suction when the air conditioner 1 is heated. The pressure Ps and the rotational speed fr of the compressor 14 are adjusted to maintain the suction dryness Xs higher than 0.85. Thereby, even when R32 is used as the refrigerant, the discharge temperature Td can be maintained below the upper limit temperature (Tdmax) of the compressor 14. Further, the load applied to the compressor 14 by the liquid component contained in the refrigerant can be reduced.
 なお、本発明は前記した実施例に限定されるものではない。例えば、前記した実施例は本発明をわかりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
In addition, this invention is not limited to an above-described Example. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
 例えば、以上の説明は、空気調和機1(図1参照)が暖房運転される場合であるが、空気調和機1が冷房運転される場合も、制御装置1a(図1参照)は空気調和機1を同様に制御する。
 制御装置1aは、空気調和機1を冷房運転する場合、圧縮機14の回転速度Frおよび室内膨張弁23の弁開度を調節して、吸入乾き度Xsを0.85より高く維持し、さらに、吐出過熱度TdSHを上限値近傍に維持する。
 つまり、制御装置1aは、圧力比εが、式(1)に基づいて算出する圧力比上限εmaxとなるように圧縮機14の回転速度Frを調節する。
 また、制御装置1aは、図6に示す手順で吸入乾き度Xsを演算して推定し、推定した吸入乾き度Xsが0.85より高くなるように空気調和機1を制御する。
 さらに制御装置1aは、吐出過熱度TdSHが予め設定される目標過熱度SHtgtに近づくように室内膨張弁23の弁開度を調節する。
 このように制御装置1aは、圧縮機14および室内膨張弁23を制御して空気調和機1を冷房運転する。
For example, although the above description is a case where the air conditioner 1 (see FIG. 1) is operated for heating, the control device 1a (see FIG. 1) is also used for the air conditioner when the air conditioner 1 is operated for cooling. 1 is controlled similarly.
When the air conditioner 1 is in cooling operation, the control device 1a adjusts the rotational speed Fr of the compressor 14 and the valve opening degree of the indoor expansion valve 23 to maintain the suction dryness Xs higher than 0.85. The discharge superheat degree TdSH is maintained in the vicinity of the upper limit value.
That is, the control device 1a adjusts the rotational speed Fr of the compressor 14 so that the pressure ratio ε becomes the pressure ratio upper limit εmax calculated based on the equation (1).
Further, the control device 1a calculates and estimates the suction dryness Xs by the procedure shown in FIG. 6, and controls the air conditioner 1 so that the estimated suction dryness Xs becomes higher than 0.85.
Furthermore, the control device 1a adjusts the valve opening degree of the indoor expansion valve 23 so that the discharge superheat degree TdSH approaches the preset target superheat degree SHtgt.
In this way, the control device 1a controls the compressor 14 and the indoor expansion valve 23 to perform the cooling operation of the air conditioner 1.
 また、本実施例の制御装置1a(図1参照)は、図6に示すステップS4で、予め設定されている近似式によって飽和液比エンタルピhsLを演算する構成であるが、例えば、吸入圧力Psと飽和液比エンタルピhsLとの関係を示すマップが図示しない記憶部に記憶されている構成であってもよい。
 このような構成にすると、制御装置1aは図6に示すステップS4で、吸入圧力Psに基づいて当該マップを参照して飽和液比エンタルピhsLを演算できる。これによって、制御装置1aが飽和液比エンタルピhsLを演算するときの負荷を軽減できる。
Further, the control device 1a (see FIG. 1) of the present embodiment is configured to calculate the saturated liquid ratio enthalpy hsL by a preset approximate expression in step S4 shown in FIG. The map which shows the relationship between saturated liquid ratio enthalpy hsL and the memory | storage part which is not shown in figure may be sufficient.
With this configuration, the control device 1a can calculate the saturated liquid ratio enthalpy hsL with reference to the map based on the suction pressure Ps in step S4 shown in FIG. Thereby, the load when the control device 1a calculates the saturated liquid ratio enthalpy hsL can be reduced.
 同様に、吸入圧力Psと飽和ガス比エンタルピhsGの関係を示すマップが図示しない記憶部に記憶されている構成であってもよいし、吸入圧力Psと吸入比エントロピSsの関係を示すマップが図示しない記憶部に記憶されている構成であってもよい。
 また、吐出圧力Pdと凝縮温度Tcの関係を示すマップが図示しない記憶部に記憶されている構成であってもよい。
Similarly, a map showing the relationship between the suction pressure Ps and the saturated gas ratio enthalpy hsG may be stored in a storage unit (not shown), or a map showing the relationship between the suction pressure Ps and the suction ratio entropy Ss is shown. The structure memorize | stored in the memory | storage part not to be sufficient may be sufficient.
Moreover, the structure by which the map which shows the relationship between discharge pressure Pd and the condensation temperature Tc is memorize | stored in the memory | storage part which is not shown in figure may be sufficient.
 この他、本発明は、前記した実施例に限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜設計変更が可能である。
 例えば、図1に示すように、本実施例の空気調和機1は圧縮機14が室外機10に配設されているが、圧縮機14が室内機20に配設される構成であってもよい。
 また、四方弁16に替えて、複数の開閉弁(図示せず)が備わる構成であってもよい。複数の開閉弁が備わる構成の場合、圧縮機14の出口側と室外熱交換器11を接続する配管を開閉する開閉弁と、アキュムレータ15と配管31を接続する配管を開閉する開閉弁と、圧縮機14の出口側と配管31を接続する配管を開閉する開閉弁と、室外熱交換器11とアキュムレータ15を接続する配管を開閉する開閉弁と、の少なくとも4つの開閉弁が備わる構成とすればよい。
In addition, the present invention is not limited to the above-described embodiments, and appropriate design changes can be made without departing from the spirit of the invention.
For example, as shown in FIG. 1, in the air conditioner 1 of the present embodiment, the compressor 14 is disposed in the outdoor unit 10, but the compressor 14 may be disposed in the indoor unit 20. Good.
Moreover, it may replace with the four-way valve 16 and the structure provided with a some on-off valve (not shown) may be sufficient. In the case of a configuration including a plurality of on-off valves, an on-off valve for opening and closing a pipe connecting the outlet side of the compressor 14 and the outdoor heat exchanger 11, an on-off valve for opening and closing a pipe connecting the accumulator 15 and the pipe 31, and a compression The on / off valve that opens and closes the pipe that connects the outlet side of the machine 14 and the pipe 31 and the on / off valve that opens and closes the pipe that connects the outdoor heat exchanger 11 and the accumulator 15 are provided. Good.
 1   空気調和機
 1a  制御装置
 11  室外熱交換器(熱源側熱交換器)
 13  室外膨張弁(膨張弁)
 14  圧縮機
 21  室内熱交換器(利用側熱交換器)
 23  室内膨張弁(膨張弁)
 Fr  回転速度
 Pd  吐出圧力
 Ps  吸入圧力
 SHtgt 目標過熱度(吐出過熱度の目標値)
 Tc  凝縮温度
 Td  吐出温度
 TdSH 吐出過熱度
 Xs  吸入乾き度(圧縮機の入口側における冷媒の乾き度)
 ε   圧力比
 εmax 圧力比上限(圧力比の上限値)
DESCRIPTION OF SYMBOLS 1 Air conditioner 1a Control apparatus 11 Outdoor heat exchanger (heat source side heat exchanger)
13 Outdoor expansion valve (expansion valve)
14 Compressor 21 Indoor heat exchanger (use side heat exchanger)
23 Indoor expansion valve (expansion valve)
Fr Rotational speed Pd Discharge pressure Ps Suction pressure SHtgt Target superheat (target value of discharge superheat)
Tc Condensation temperature Td Discharge temperature TdSH Discharge superheat degree Xs Suction dryness (dryness of refrigerant on the inlet side of the compressor)
ε Pressure ratio εmax Pressure ratio upper limit (pressure ratio upper limit)

Claims (5)

  1.  少なくとも圧縮機と熱源側熱交換器と利用側熱交換器と膨張弁が接続されてR32が70重量%以上含まれる冷媒が循環する冷凍サイクルと、
     制御装置と、を有し、
     前記圧縮機の入口側における前記冷媒の乾き度が0.85より高くなるように当該圧縮機の圧力比を規制する上限値が、前記圧縮機における前記冷媒の吸入圧力が高いほど低くなるように設定され、
     運転時に、前記制御装置は、
     前記圧力比が前記上限値よりも小さくなるように前記圧縮機の回転速度を調節することを特徴とする空気調和機。
    A refrigeration cycle in which at least a compressor, a heat source side heat exchanger, a use side heat exchanger, and an expansion valve are connected to circulate a refrigerant containing R32 in an amount of 70% by weight or more;
    A control device,
    The upper limit value that regulates the pressure ratio of the compressor so that the dryness of the refrigerant on the inlet side of the compressor becomes higher than 0.85, so that it becomes lower as the suction pressure of the refrigerant in the compressor is higher. Set,
    During operation, the control device
    The air conditioner characterized by adjusting the rotational speed of the compressor so that the pressure ratio becomes smaller than the upper limit value.
  2.  前記圧縮機における前記冷媒の吐出温度から、前記圧縮機における前記冷媒の吐出圧力に対応する凝縮温度を減算した吐出過熱度の目標値が設定され、
     運転時に、前記制御装置は、
     前記圧力比が前記上限値に近づくように前記圧縮機の回転速度を調節するとともに、前記吐出過熱度が前記目標値に近づくように前記膨張弁の弁開度を調節することを特徴とする請求項1に記載の空気調和機。
    A target value of the discharge superheat degree is set by subtracting the condensation temperature corresponding to the discharge pressure of the refrigerant in the compressor from the discharge temperature of the refrigerant in the compressor,
    During operation, the control device
    The rotation speed of the compressor is adjusted so that the pressure ratio approaches the upper limit value, and the valve opening degree of the expansion valve is adjusted so that the discharge superheat degree approaches the target value. Item 2. An air conditioner according to Item 1.
  3.  運転時に、前記制御装置は、
     少なくとも、前記圧縮機における前記冷媒の吐出温度と、
     前記圧縮機における前記冷媒の吐出圧力と、
     前記圧縮機における前記吸入圧力と、
     前記圧縮機の回転速度と、
     に基づいた演算で前記乾き度を推定し、
     さらに、推定した前記乾き度が0.85より高くなるように、前記圧縮機の回転速度を調節することを特徴とする請求項1または請求項2に記載の空気調和機。
    During operation, the control device
    At least the discharge temperature of the refrigerant in the compressor;
    A discharge pressure of the refrigerant in the compressor;
    The suction pressure in the compressor;
    The rotational speed of the compressor;
    The dryness is estimated by calculation based on
    The air conditioner according to claim 1 or 2, wherein the rotation speed of the compressor is adjusted so that the estimated dryness is higher than 0.85.
  4.  少なくとも圧縮機と熱源側熱交換器と利用側熱交換器と膨張弁が接続されてR32が70重量%以上含まれる冷媒が循環する冷凍サイクルを有し、前記圧縮機の入口側における前記冷媒の乾き度が0.85より高くなるように当該圧縮機の圧力比を規制する上限値が、前記圧縮機における前記冷媒の吸入圧力が高いほど低くなるように設定されている空気調和機の制御装置が実行し、
     前記圧縮機における前記冷媒の吐出圧力と、前記圧縮機における前記冷媒の吸入圧力と、に基づいて圧力比を演算する手順と、
     演算した前記圧力比が前記上限値よりも小さくなるように前記圧縮機の回転速度を調節する手順と、を有することを特徴する空気調和機の運転方法。
    At least a compressor, a heat source side heat exchanger, a use side heat exchanger, and an expansion valve are connected to each other, and has a refrigeration cycle in which a refrigerant containing R32 in an amount of 70% by weight or more circulates. An air conditioner control device in which an upper limit value that regulates the pressure ratio of the compressor is set to be lower as the suction pressure of the refrigerant in the compressor is higher so that the dryness is higher than 0.85 Runs and
    A procedure for calculating a pressure ratio based on a discharge pressure of the refrigerant in the compressor and an intake pressure of the refrigerant in the compressor;
    And a procedure for adjusting the rotational speed of the compressor so that the calculated pressure ratio becomes smaller than the upper limit value.
  5.  少なくとも、前記圧縮機における前記冷媒の吐出温度と、前記圧縮機における前記冷媒の吐出圧力と、前記圧縮機における前記吸入圧力と、前記圧縮機の回転速度と、に基づいた演算で前記冷媒の乾き度を推定する手順と、
     推定した前記冷媒の乾き度が0.85より高くなるように前記圧縮機の回転速度を調節する手順と、をさらに有することを特徴とする請求項4に記載の空気調和機の運転方法。
    The refrigerant is dried by a calculation based on at least the discharge temperature of the refrigerant in the compressor, the discharge pressure of the refrigerant in the compressor, the suction pressure in the compressor, and the rotational speed of the compressor. A procedure to estimate the degree,
    The method of operating an air conditioner according to claim 4, further comprising a step of adjusting the rotational speed of the compressor so that the estimated dryness of the refrigerant is higher than 0.85.
PCT/JP2014/052612 2013-03-27 2014-02-05 Air conditioner and method for operating air conditioner WO2014156313A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480009568.8A CN105074353B (en) 2013-03-27 2014-02-05 Air conditioner and the method for operation of air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-067133 2013-03-27
JP2013067133A JP5981376B2 (en) 2013-03-27 2013-03-27 Air conditioner and method of operating air conditioner

Publications (1)

Publication Number Publication Date
WO2014156313A1 true WO2014156313A1 (en) 2014-10-02

Family

ID=51623314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052612 WO2014156313A1 (en) 2013-03-27 2014-02-05 Air conditioner and method for operating air conditioner

Country Status (3)

Country Link
JP (1) JP5981376B2 (en)
CN (2) CN106839499B (en)
WO (1) WO2014156313A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152552A1 (en) * 2015-03-26 2016-09-29 三菱重工業株式会社 Air conditioning system control device, air conditioning system, air conditioning control program, and air conditioning system control method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6266942B2 (en) * 2013-10-10 2018-01-24 日立ジョンソンコントロールズ空調株式会社 Air conditioner
WO2017017767A1 (en) * 2015-07-27 2017-02-02 三菱電機株式会社 Air conditioning device
JP6594698B2 (en) 2015-08-10 2019-10-23 三菱重工サーマルシステムズ株式会社 Refrigeration and air conditioning equipment
CN106403334A (en) * 2016-09-13 2017-02-15 克莱门特捷联制冷设备(上海)有限公司 Refrigerating system capable of performing optimizing control on pressure ratio of water chilling unit
CN108168146A (en) * 2018-02-02 2018-06-15 韩军 A kind of refrigeration and discharge superheat control method in heat pump unit
JP6975850B2 (en) * 2019-01-17 2021-12-01 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP7172664B2 (en) * 2019-01-30 2022-11-16 株式会社富士通ゼネラル AIR CONDITIONER, CONTROL DEVICE FOR AIR CONDITIONER, CONTROL METHOD AND PROGRAM THEREOF
JP6886129B2 (en) * 2019-03-26 2021-06-16 株式会社富士通ゼネラル Air conditioner
CN111059683B (en) * 2019-12-03 2021-04-02 珠海格力电器股份有限公司 Control method for preventing liquid impact of suction belt liquid of compressor and air conditioner
CN112066463A (en) * 2020-09-18 2020-12-11 广东积微科技有限公司 Control method and heat control device for chassis heater of air conditioner outdoor unit and air conditioner
CN112228972B (en) * 2020-10-21 2022-04-19 青岛海信日立空调系统有限公司 Multi-split air conditioning system
CN113654223B (en) * 2021-07-19 2022-09-06 青岛海尔空调器有限总公司 Method for determining target exhaust gas temperature
CN115930392A (en) * 2022-12-22 2023-04-07 珠海格力电器股份有限公司 Control method of air conditioning system, air conditioning system and medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222962A (en) * 1985-07-23 1987-01-31 三菱電機株式会社 Refrigerator
JPH07286761A (en) * 1994-04-18 1995-10-31 Hitachi Ltd Air conditioner
JPH08313070A (en) * 1995-05-22 1996-11-29 Daikin Ind Ltd Refrigerating apparatus
JP2001194015A (en) * 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
JP2001227822A (en) * 2000-02-17 2001-08-24 Mitsubishi Electric Corp Refrigerating air conditioner
JP2003240310A (en) * 2002-02-20 2003-08-27 Hitachi Ltd Air conditioner and outdoor machine used in the same
JP2003262385A (en) * 2002-03-12 2003-09-19 Hitachi Ltd Air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4750092B2 (en) * 2007-10-09 2011-08-17 株式会社神戸製鋼所 Refrigeration apparatus and method of operating refrigeration apparatus
WO2011037012A1 (en) * 2009-09-28 2011-03-31 東芝キヤリア株式会社 Air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222962A (en) * 1985-07-23 1987-01-31 三菱電機株式会社 Refrigerator
JPH07286761A (en) * 1994-04-18 1995-10-31 Hitachi Ltd Air conditioner
JPH08313070A (en) * 1995-05-22 1996-11-29 Daikin Ind Ltd Refrigerating apparatus
JP2001194015A (en) * 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
JP2001227822A (en) * 2000-02-17 2001-08-24 Mitsubishi Electric Corp Refrigerating air conditioner
JP2003240310A (en) * 2002-02-20 2003-08-27 Hitachi Ltd Air conditioner and outdoor machine used in the same
JP2003262385A (en) * 2002-03-12 2003-09-19 Hitachi Ltd Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152552A1 (en) * 2015-03-26 2016-09-29 三菱重工業株式会社 Air conditioning system control device, air conditioning system, air conditioning control program, and air conditioning system control method
JP2016183817A (en) * 2015-03-26 2016-10-20 三菱重工業株式会社 Controller of air conditioning system, air conditioning system, control program of air conditioning system, and control method of air conditioning system
EP3260792A4 (en) * 2015-03-26 2018-03-14 Mitsubishi Heavy Industries Thermal Systems, Ltd. Air conditioning system control device, air conditioning system, air conditioning control program, and air conditioning system control method

Also Published As

Publication number Publication date
CN106839499A (en) 2017-06-13
CN106839499B (en) 2019-05-21
JP5981376B2 (en) 2016-08-31
CN105074353A (en) 2015-11-18
CN105074353B (en) 2017-03-15
JP2014190632A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
JP5981376B2 (en) Air conditioner and method of operating air conditioner
JP5318099B2 (en) Refrigeration cycle apparatus and control method thereof
JP4651627B2 (en) Refrigeration air conditioner
JP5543689B2 (en) Air conditioner with electric expansion valve
JP6493432B2 (en) Air conditioner
US20050217292A1 (en) Refrigeration system
JP5132708B2 (en) Refrigeration air conditioner
JP5518102B2 (en) Air conditioning and hot water supply complex system
JP6187514B2 (en) Refrigeration equipment
WO2016204194A1 (en) Air conditioner
JP6080939B2 (en) Air conditioner
CN110741211A (en) Refrigerating machine
JP5871723B2 (en) Air conditioner and control method thereof
JP6758506B2 (en) Air conditioner
JP6590768B2 (en) Air conditioner
JP5672290B2 (en) Air conditioner
JP6537629B2 (en) Air conditioner
JP2015087020A (en) Refrigeration cycle device
JPWO2016207992A1 (en) Air conditioner
JP6350824B2 (en) Air conditioner
TWI568984B (en) Gas - liquid heat exchange type refrigeration device
WO2015140950A1 (en) Air conditioner
JP3945523B2 (en) Refrigeration equipment
WO2018163346A1 (en) Air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480009568.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775965

Country of ref document: EP

Kind code of ref document: A1