JP2001194015A - Freezing apparatus - Google Patents

Freezing apparatus

Info

Publication number
JP2001194015A
JP2001194015A JP2000222450A JP2000222450A JP2001194015A JP 2001194015 A JP2001194015 A JP 2001194015A JP 2000222450 A JP2000222450 A JP 2000222450A JP 2000222450 A JP2000222450 A JP 2000222450A JP 2001194015 A JP2001194015 A JP 2001194015A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
dryness
temperature
superheat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000222450A
Other languages
Japanese (ja)
Other versions
JP3956589B2 (en
Inventor
Shigeji Taira
繁治 平良
Junichiro Tanaka
順一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000222450A priority Critical patent/JP3956589B2/en
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to AT00966426T priority patent/ATE380987T1/en
Priority to US10/110,930 priority patent/US6581397B1/en
Priority to EP06025814.2A priority patent/EP1762794B1/en
Priority to EP00966426A priority patent/EP1225400B1/en
Priority to KR10-2002-7004959A priority patent/KR100482539B1/en
Priority to PCT/JP2000/007067 priority patent/WO2001029489A1/en
Priority to DE60037445T priority patent/DE60037445T2/en
Priority to ES00966426T priority patent/ES2296645T3/en
Priority to CNB031603777A priority patent/CN100449224C/en
Priority to ES06025814.2T priority patent/ES2620815T3/en
Priority to AU76841/00A priority patent/AU773284B2/en
Priority to CNB008145148A priority patent/CN1149366C/en
Publication of JP2001194015A publication Critical patent/JP2001194015A/en
Application granted granted Critical
Publication of JP3956589B2 publication Critical patent/JP3956589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Abstract

PROBLEM TO BE SOLVED: To provide a freezing apparatus capable of realizing energy saving and low GWP while avoiding deterioration of reliability and performance. SOLUTION: The present freezing apparatus controls in a control section 8 revolutions of a compressor 1 and an opening of an expansion valve 3, and further controls the degree of drying of an R32 refrigerant (superheat SH) on a suction side of the compressor 1 to a range of from 0.75 to 0.85. Hereby, discharge temperature is more lowered than prior art, and hence energy saving and low GWP are realized while avoiding deterioration of reliability and performance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、低GWP(地球
温暖化係数)に対応し、かつ、省エネルギーで低コスト
でオゾン層保護およびリサイクルを達成できる冷凍装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus which can cope with low GWP (global warming potential), and can achieve ozone layer protection and recycling at low cost with energy saving.

【0002】[0002]

【従来の技術】従来、たとえば、R22を使用した装置
では、高圧ドームタイプの圧縮機の吸入側での冷媒乾き
度Xが0.97である場合には、吐出温度が90℃に達
し、低圧ドームタイプの圧縮機では、吸入側での冷媒乾
き度Xが0.97である場合には、吐出温度が70℃に
達する。R32冷媒は、圧損が小さくCOP(成績係数)
向上を図れる一方、冷媒物性上、R22,R410Aや
R407に比して、吐出温度が理論上は15℃上昇、実
測で10〜15℃だけ上昇する。このため、R22,R
410AやR407を使用している装置について、冷媒
をR32に入れ換え、冷凍機油をR32用に変更しただ
けでは、信頼性や性能が低下してしまうという問題があ
る。
2. Description of the Related Art Conventionally, for example, in an apparatus using R22, when the dryness X of refrigerant on the suction side of a high-pressure dome type compressor is 0.97, the discharge temperature reaches 90 ° C. In the dome type compressor, when the dryness X of the refrigerant on the suction side is 0.97, the discharge temperature reaches 70 ° C. R32 refrigerant has small pressure loss and COP (coefficient of performance)
On the other hand, the discharge temperature rises theoretically by 15 ° C. compared to R22, R410A and R407, and rises by 10 to 15 ° C. in actual measurement, due to the physical properties of the refrigerant. Therefore, R22, R
Regarding the apparatus using 410A or R407, there is a problem that the reliability and performance are reduced only by replacing the refrigerant with R32 and changing the refrigerating machine oil for R32.

【0003】信頼性については、圧縮機が高温化する
と、材料劣化および油劣化が進み、長期信頼性が低下す
ることが懸念される。特に、圧縮機モータは、温度によ
る劣化(減磁力の低下)が大きいとされており、使用する
材料によってはDCモータは注意が必要である。
With respect to reliability, when the temperature of the compressor rises, there is a concern that the deterioration of the material and the oil will progress, and the long-term reliability will decrease. In particular, compressor motors are considered to be greatly deteriorated (decrease in demagnetizing force) due to temperature, and care must be taken for DC motors depending on the material used.

【0004】また、性能面については、吐出管温度,各
種センサによる冷媒制御および電流制御が従来と同じな
らば、能力低下や運転エリアが狭まるという問題点があ
る。
[0004] In terms of performance, if the refrigerant control and the current control using the discharge pipe temperature and various sensors are the same as in the past, there is a problem that the capacity is reduced and the operation area is narrowed.

【0005】[0005]

【発明が解決しようとする課題】そこで、この発明の目
的は、信頼性や性能の低下を回避しつつ、省エネルギー
と低GWPを実現できる冷凍装置を提供することにあ
る。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a refrigeration apparatus which can realize energy saving and low GWP while avoiding deterioration in reliability and performance.

【0006】[0006]

【課題を解決するための手段】図4のP-H線図に示す
ように、一般に、冷凍サイクルにおける最高温度は、圧
縮機の吐出側の温度である。
As shown in the PH diagram of FIG. 4, the maximum temperature in the refrigerating cycle is generally the temperature on the discharge side of the compressor.

【0007】本発明者らは、R32冷媒を使用した場合
には、図5のP−H線図における(Td3−Tcu3)ライ
ンのように、従来の(Td1−Tcu1)ラインに比べて、
スーパーヒートSHを小さくして、湿り度を大きくして
も、圧縮機の信頼性を確保できることを実験で確かめる
ことができた。図5に示すように、圧縮機吸込側での湿
り度を大きくすれば、圧縮機の吐出側の温度TdがTd
1からTd3に低下して、信頼性の低下や能力低下を回
避できる。なお、湿り度をxとすると、湿り度x=1.
0のときに完全ガス状態であり、湿り度x=0のときに
液状態であり、x=0.5,0.6,0.9などでは2相域
での流動様式になっていることを表す。また、乾き度を
yとすると、y=1−xである。
The present inventors have found that when the R32 refrigerant is used, as compared with the conventional (Td1-Tcu1) line, as indicated by the (Td3-Tcu3) line in the PH diagram of FIG.
Experiments have confirmed that the reliability of the compressor can be ensured even when the superheat SH is reduced and the wetness is increased. As shown in FIG. 5, if the wetness on the compressor suction side is increased, the temperature Td on the discharge side of the compressor becomes Td.
From 1 to Td3, it is possible to avoid a decrease in reliability and a decrease in performance. When the wetness is x, the wetness x = 1.
When 0, it is in a completely gaseous state, when wetness x = 0, it is in a liquid state, and when x = 0.5, 0.6, 0.9, etc., it should be in a two-phase flow mode. Represents When the dryness is y, y = 1-x.

【0008】図3の信頼性試験結果に示すように、従来
のR22冷媒を使用した場合では、圧縮機吸入側での乾
き度を0.90以上にしないと、圧縮機の信頼性が使用
不可のレベルであったが、R32冷媒では、圧縮機吸入
側での乾き度が0.60以上であれば、圧縮機の信頼性
が使用可能なレベルとなることを実験で確認できた。
As shown in the reliability test results in FIG. 3, when the conventional R22 refrigerant is used, the reliability of the compressor cannot be used unless the dryness on the compressor suction side is set to 0.90 or more. However, it was confirmed by experiments that the reliability of the compressor reached a usable level when the dryness on the compressor suction side was 0.60 or more with the R32 refrigerant.

【0009】したがって、請求項1の発明の冷凍装置
は、圧縮機が、乾き度0.65以上のR32冷媒、もし
くはR32を少なくとも70重量%以上含む乾き度が
0.65以上の混合冷媒を吸入して圧縮することを特徴
としている。
Therefore, in the refrigeration apparatus according to the first aspect of the present invention, the compressor sucks the R32 refrigerant having a dryness of 0.65 or more or the mixed refrigerant containing at least 70% by weight of R32 and having a dryness of 0.65 or more. It is characterized by compression.

【0010】この請求項1の発明では、圧縮機が、乾き
度0.65以上のR32冷媒を吸入して圧縮するように
なっているから、図3の試験結果から分かるように、圧
縮機の信頼性を低下させることなく、R32冷媒の使用
が可能になり、信頼性や性能の低下を回避しつつ、省エ
ネルギーと低GWPを実現できる。なお、圧縮機が、R
32を少なくとも70重量%以上含む乾き度が0.65
以上の混合冷媒を吸入する場合にも、同様の効果が得ら
れる。
According to the first aspect of the present invention, since the compressor sucks and compresses the R32 refrigerant having a dryness of 0.65 or more, as can be seen from the test results of FIG. The use of the R32 refrigerant is possible without lowering the reliability, and energy saving and low GWP can be realized while avoiding deterioration in reliability and performance. Note that the compressor is R
32 containing at least 70% by weight or more and having a dryness of 0.65
Similar effects can be obtained when the above mixed refrigerant is sucked.

【0011】また、請求項2の発明の冷凍装置は、圧縮
機が、乾き度0.70以上のR32冷媒、もしくは、R
32を少なくとも70重量%以上含む乾き度が0.70
以上の混合冷媒を吸入して圧縮することを特徴としてい
る。
Further, in the refrigeration apparatus according to the second aspect of the present invention, the compressor includes an R32 refrigerant having a dryness of 0.70 or more or an R32 refrigerant.
32 containing at least 70% by weight or more and having a dryness of 0.70
The mixed refrigerant is sucked and compressed.

【0012】この請求項2の発明では、圧縮機が、乾き
度0.70以上のR32冷媒を吸入するから、圧縮機の
信頼性を一層向上できる。なお、圧縮機が、R32を少
なくとも70重量%以上含む乾き度が0.70以上の混
合冷媒を吸入する場合にも、同様の効果が得られる。す
なわち、R32を少なくとも70重量%以上含んだ混合
冷媒であれば、擬似共沸となり、R22冷媒に対するR
32冷媒のメリット(省エネルギー,低GWP)を発揮で
きる。
According to the second aspect of the present invention, since the compressor sucks the R32 refrigerant having a dryness of 0.70 or more, the reliability of the compressor can be further improved. The same effect can be obtained when the compressor sucks a mixed refrigerant containing R32 of at least 70% by weight or more and having a dryness of 0.70 or more. That is, if the mixed refrigerant contains at least 70% by weight of R32, it becomes pseudo-azeotropic and the R22 relative to the R22 refrigerant
The advantages of 32 refrigerants (energy saving, low GWP) can be exhibited.

【0013】また、請求項3の発明の冷凍装置は、圧縮
機が、乾き度0.75以上のR32冷媒、もしくは、R
32を少なくとも70重量%以上含む乾き度が0.70
以上の混合冷媒を吸入して圧縮することを特徴としてい
る。
Further, in the refrigeration apparatus according to the third aspect of the present invention, the compressor includes an R32 refrigerant having a dryness of 0.75 or more or an R32 refrigerant.
32 containing at least 70% by weight or more and having a dryness of 0.70
The mixed refrigerant is sucked and compressed.

【0014】この請求項3の発明では、圧縮機が、乾き
度0.75以上のR32冷媒を吸入するから、図3の試
験結果から分かるように、圧縮機の信頼性を最高レベル
まで高めることができる。なお、圧縮機が、R32を少
なくとも70重量%以上含む乾き度が0.75以上の混
合冷媒を吸入する場合にも、同様の効果が得られる。
According to the third aspect of the present invention, since the compressor sucks the R32 refrigerant having a dryness of 0.75 or more, the reliability of the compressor is increased to the highest level as can be seen from the test results of FIG. Can be. The same effect can be obtained when the compressor sucks a mixed refrigerant containing at least 70% by weight of R32 and having a dryness of 0.75 or more.

【0015】また、請求項4の発明は、請求項1乃至3
のいずれか1つに記載の冷凍装置において、上記圧縮機
の吐出管温度を検出し、この吐出管温度に基づいて、圧
縮機が吸入する冷媒の乾き度を制御する制御手段を備え
たことを特徴としている。
[0015] The invention of claim 4 is the invention of claims 1 to 3
The refrigerating apparatus according to any one of the above, further comprising a control unit that detects a discharge pipe temperature of the compressor and controls a dryness of refrigerant sucked by the compressor based on the discharge pipe temperature. Features.

【0016】この請求項4の発明では、圧縮機の吐出管
温度に基づいて、圧縮機吸入冷媒の乾き度を制御するか
ら、簡単な制御手段で乾き度の制御が可能になる。
According to the fourth aspect of the present invention, the dryness of the refrigerant drawn into the compressor is controlled based on the discharge pipe temperature of the compressor. Therefore, the dryness can be controlled by a simple control means.

【0017】また、請求項5の発明は、請求項1乃至3
のいずれか1つに記載の冷凍装置において、スーパーヒ
ートを検出し、このスーパーヒートに基づいて、圧縮機
が吸入する冷媒の乾き度を制御する制御手段を備えたこ
とを特徴としている。
Further, the invention of claim 5 provides the invention according to claims 1 to 3
The refrigerating apparatus according to any one of the above, further comprising control means for detecting superheat and controlling the dryness of the refrigerant drawn by the compressor based on the superheat.

【0018】この請求項5の発明では、スーパーヒート
に基づいて、圧縮機が吸入する冷媒の乾き度を制御する
から、より精度良く吸入側の乾き度を制御でき、信頼性
の向上を図れる。
According to the fifth aspect of the present invention, since the dryness of the refrigerant sucked by the compressor is controlled based on the superheat, the dryness on the suction side can be controlled more accurately, and the reliability can be improved.

【0019】また、請求項6の発明は、請求項1乃至3
のいずれか1つに記載の冷凍装置において、サブクール
度を検出し、このサブクール度に基づいて、圧縮機が吸
入する冷媒の乾き度を制御する制御手段を備えたことを
特徴としている。
Further, the invention of claim 6 is the invention of claims 1 to 3
The refrigerating apparatus according to any one of the above, further comprising a control unit that detects a subcool degree and controls the dryness of the refrigerant sucked by the compressor based on the subcool degree.

【0020】この請求項6の発明では、サブクール度に
基づいて、圧縮機が吸入する冷媒の乾き度を制御するか
ら、より精度良く吸入側の乾き度を制御でき、信頼性の
向上を図れる。
According to the sixth aspect of the present invention, since the dryness of the refrigerant sucked by the compressor is controlled based on the subcool degree, the dryness on the suction side can be controlled more accurately, and the reliability can be improved.

【0021】また、請求項7の発明は、請求項1乃至3
のいずれか1つに記載の冷凍装置において、蒸発器の出
口の過熱度を制御する制御手段を備えたことを特徴とし
ている。
Further, the invention of claim 7 provides the invention according to claims 1 to 3
The refrigerating apparatus according to any one of the above, further comprising control means for controlling the degree of superheat at the outlet of the evaporator.

【0022】この請求項7の発明では、蒸発器の出口の
加熱度を制御して、蒸発器出口での湿り度を増やすこと
によって、蒸発器(室内機)のファンロータが結露するこ
とを防止できる。また、請求項8の発明は、圧縮機が高
圧ドームタイプであり、暖房の低温運転時(例えば、外
気(−5℃)以下)に、この圧縮機は、乾き度0.68以上
のR32冷媒、もしくは、R32を少なくとも70重量
%以上含む乾き度が0.68以上の混合冷媒を吸入して
圧縮し、この圧縮機の吐出温度を、80〜90℃に設定
することを特徴としている。この請求項8の発明では、
高圧ドームタイプの圧縮機の吸入側でのR32冷媒の乾
き度を0.68以上にし、吐出温度を80〜90℃にす
るから、圧縮機の信頼性を低下させることなく、R32
冷媒の使用が可能になり、信頼性や性能の低下を回避し
つつ、省エネルギーと低GWPを実現できる。また、請
求項9の発明は、圧縮機が低圧ドームタイプであり、暖
房の低温運転時(例えば、外気(−5℃)以下)に、この圧
縮機は、乾き度0.65以上のR32冷媒、もしくは、
R32を少なくとも70重量%以上含む乾き度が0.6
5以上の混合冷媒を吸入して圧縮し、この圧縮機の吐出
温度を、60〜70℃に設定することを特徴としてい
る。この請求項9の発明では、低圧ドームタイプの圧縮
機の吸入側でのR32冷媒の乾き度を0.65以上に
し、吐出温度を60〜70℃にするから、圧縮機の信頼
性を低下させることなく、R32冷媒の使用が可能にな
り、信頼性や性能の低下を回避しつつ、省エネルギーと
低GWPを実現できる。
According to the seventh aspect of the present invention, the degree of heating at the outlet of the evaporator is controlled to increase the degree of wetness at the outlet of the evaporator, thereby preventing condensation on the fan rotor of the evaporator (indoor unit). it can. Further, the invention of claim 8 is characterized in that the compressor is a high-pressure dome type, and when the compressor is operated at a low temperature for heating (for example, outside air (-5 ° C) or less), the compressor has an R32 refrigerant having a dryness of 0.68 or more. Alternatively, a mixed refrigerant containing at least 70% by weight or more of R32 and having a dryness of 0.68 or more is sucked and compressed, and the discharge temperature of the compressor is set at 80 to 90 ° C. In the invention of claim 8,
Since the dryness of the R32 refrigerant at the suction side of the high-pressure dome type compressor is 0.68 or more and the discharge temperature is 80 to 90 ° C, the R32 refrigerant can be used without lowering the reliability of the compressor.
The use of a refrigerant becomes possible, and energy saving and low GWP can be realized while avoiding a decrease in reliability and performance. In a ninth aspect of the present invention, the compressor is a low-pressure dome type, and at the time of low-temperature operation of heating (for example, outside air (−5 ° C.) or less), this compressor uses an R32 refrigerant having a dryness of 0.65 or more Or
The dryness containing at least 70% by weight of R32 is 0.6
It is characterized in that five or more mixed refrigerants are sucked and compressed, and the discharge temperature of the compressor is set at 60 to 70 ° C. According to the ninth aspect of the present invention, the dryness of the R32 refrigerant at the suction side of the low-pressure dome type compressor is 0.65 or more, and the discharge temperature is 60 to 70 ° C., thereby lowering the reliability of the compressor. Without the use of the R32 refrigerant, energy saving and low GWP can be realized while avoiding a decrease in reliability and performance.

【0023】[0023]

【発明の実施の形態】以下、この発明を図示の実施の形
態により詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

【0024】図1に、この発明の冷凍装置の実施形態と
しての空気調和機の冷媒回路を示す。この実施形態は、
R32冷媒を使用し、圧縮機1,四路切換弁4,室外熱交
換器2,膨張弁3,バルブ26,室内熱交換器5,バルブ2
5,気液分離器6,アキュムレータ7が順に接続された冷
媒回路を備える。なお、室外熱交換器2を有する室外ユ
ニット21は、連絡配管で室内ユニット22に接続され
ている。
FIG. 1 shows a refrigerant circuit of an air conditioner as an embodiment of a refrigeration apparatus of the present invention. This embodiment is
Using R32 refrigerant, compressor 1, four-way switching valve 4, outdoor heat exchanger 2, expansion valve 3, valve 26, indoor heat exchanger 5, valve 2
5, a gas-liquid separator 6, and an accumulator 7 are sequentially provided with a refrigerant circuit. Note that the outdoor unit 21 having the outdoor heat exchanger 2 is connected to the indoor unit 22 by a communication pipe.

【0025】また、この実施形態は、マイクロコンピュ
ータからなる制御部8を備え、この制御部8は、圧縮機
1の吸入側配管に取り付けた温度センサ13と、吐出側
配管に取り付けた温度センサ12と、室外熱交換器2に
取り付けた温度センサ17と、室内熱交換器5に取り付
けた温度センサ15、および室外の気温を検出する温度
センサ11と室内の温度を検出する温度センサ16に接
続されている。
Further, this embodiment includes a control unit 8 composed of a microcomputer. The control unit 8 includes a temperature sensor 13 attached to the suction pipe of the compressor 1 and a temperature sensor 12 attached to the discharge pipe. And a temperature sensor 17 attached to the outdoor heat exchanger 2, a temperature sensor 15 attached to the indoor heat exchanger 5, a temperature sensor 11 for detecting outdoor air temperature, and a temperature sensor 16 for detecting indoor temperature. ing.

【0026】この実施形態の制御部8の動作を、図2の
フローチャートを参照しながら説明する。まず、ステッ
プS1で、この空気調和機が、R32冷媒を使用してい
るか否かを判断し、R32冷媒を使用していると判断し
たときには、次のステップS2に進む。このR32冷媒
を使用しているか否かの判断は、予め入力された情報に
基づいて判断するものであってもよい。また、ステップ
S1で否と判断した場合には、ステップS5に進み、従
来制御を引き続いて実行する。この従来制御とは、例え
ば、温度センサ12から得た吐出管温度Tdisに基づい
て行なう圧縮機1と膨張弁3の制御である。
The operation of the control section 8 of this embodiment will be described with reference to the flowchart of FIG. First, in step S1, it is determined whether or not the air conditioner is using the R32 refrigerant. When it is determined that the air conditioner is using the R32 refrigerant, the process proceeds to the next step S2. The determination as to whether or not the R32 refrigerant is used may be based on information input in advance. On the other hand, if it is determined as NO at step S1, the process proceeds to step S5, and the conventional control is continuously executed. The conventional control is, for example, control of the compressor 1 and the expansion valve 3 performed based on the discharge pipe temperature Tdis obtained from the temperature sensor 12.

【0027】次に、上記ステップS2では、吐出管温度
Tdisが135℃〜125℃の内の所定値以上になった
か否かを判断し、上記所定値以上になったと判断すれ
ば、ステップS3に進み、上記所定値以上になっていな
いと判断すれば、ステップS5に進む。
Next, in step S2, it is determined whether or not the discharge pipe temperature Tdis has become equal to or higher than a predetermined value in the range of 135 ° C. to 125 ° C. If it is determined that the temperature has become equal to or higher than the predetermined value, the process proceeds to step S3. The process proceeds to step S5 if it is determined that the value does not exceed the predetermined value.

【0028】ステップS3では、スーパーヒートSH
(図5参照)を検出することで、圧縮機1の吸入側での冷
媒の湿り度を検出する。すなわち、温度センサ13から
得た圧縮機1の吸入側の温度Tsucと、温度センサ17
あるいは15から得た蒸発器の温度(冷房時は室内熱交
換器5の温度Tin)との差であるスーパーヒートSHを
検出する。そして、圧縮機1の回転数を増加させる操作
または膨張弁3を開く操作の少なくとも一方の操作を実
行して、スーパーヒートSHを減少させて、湿り度を増
やす。これにより、圧縮機吐出側の冷媒温度を下げて、
信頼性の低下や能力低下を回避する。
In step S3, the super heat SH
By detecting (see FIG. 5), the degree of wetness of the refrigerant on the suction side of the compressor 1 is detected. That is, the temperature Tsuc on the suction side of the compressor 1 obtained from the temperature sensor 13 and the temperature sensor 17
Alternatively, the superheat SH, which is the difference from the temperature of the evaporator obtained in step 15 (the temperature Tin of the indoor heat exchanger 5 during cooling), is detected. Then, at least one of the operation of increasing the rotation speed of the compressor 1 and the operation of opening the expansion valve 3 is executed to reduce the superheat SH and increase the wetness. This reduces the refrigerant temperature on the compressor discharge side,
Avoid loss of reliability and performance.

【0029】次に、ステップS4に進み、上記スーパー
ヒートSHが0.85〜0.75の内の所定値以上である
か否かを判断し、上記所定値以上であると判断すれば、
ステップS5に進んで、上記従来制御を引き続いて実行
する。
Then, the process proceeds to a step S4, wherein it is determined whether or not the superheat SH is equal to or more than a predetermined value of 0.85-0.75.
Proceeding to step S5, the above-described conventional control is continuously executed.

【0030】一方、ステップS4で、上記スーパーヒー
トSHが0.85〜0.75の内の上記所定値以上でない
(湿り度が過剰)と判断すれば、ステップS6に進んで、
圧縮機1の回転数を減少させて、冷媒の循環量を減少さ
せる。これにより、上記スーパーヒートSHを所定の値
だけ増加させて、湿り度を減少させ、乾き度を適正値
(0.85〜0.75)に保つ。
On the other hand, in step S4, the superheat SH is not greater than the predetermined value of 0.85-0.75.
If it is determined that (wetness is excessive), the process proceeds to step S6,
The number of rotations of the compressor 1 is reduced to reduce the circulation amount of the refrigerant. As a result, the superheat SH is increased by a predetermined value, the wetness is reduced, and the dryness is adjusted to an appropriate value.
(0.85-0.75).

【0031】次に、ステップS7に進んで、再度ステッ
プS3,S4を実行し、スーパーヒートを所定値だけ減
少させて、吐出管温度を下げる操作を行ない、スーパー
ヒートが適正値(0.85〜0.75)を下回っている場合
には、ステップS6に戻って、スーパーヒートを増加さ
せる。一方、ステップS7において、スーパーヒートが
上記適正値(0.85〜0.75)以上になっていると判断
すれば、ステップS8に進み、膨張弁3を絞って、スー
パーヒートを減少させ、湿り度を増加させて吐出温度T
disを下げてから、ステップS9に進む。
Next, proceeding to step S7, steps S3 and S4 are executed again, an operation for reducing the superheat by a predetermined value and lowering the discharge pipe temperature is performed, and the superheat is set to a proper value (0.85-85). If it is below 0.75), the flow returns to step S6 to increase the superheat. On the other hand, if it is determined in step S7 that the superheat is equal to or more than the appropriate value (0.85 to 0.75), the process proceeds to step S8, where the expansion valve 3 is squeezed to reduce the superheat and reduce the wetness. Discharge temperature T
After lowering dis, the process proceeds to step S9.

【0032】ステップS9では、再び、ステップS3と
S4の動作を行なう。すなわち、スーパーヒートSHを
減少させる操作を行なって、吐出管温度を下げてから、
スーパーヒートSHが信頼性が十分になる所定値(0.8
5〜0.75)以上であれば、ステップS5に進み、スー
パーヒートSHが上記所定値に達していなければ、ステ
ップS6に戻って、再度、スーパーヒートを増加させる
操作を実行する。
In step S9, the operations in steps S3 and S4 are performed again. That is, after performing the operation of reducing the superheat SH and lowering the discharge pipe temperature,
A predetermined value (0.8) at which the reliability of the superheat SH is sufficient.
If it is 5 to 0.75 or more, the process proceeds to step S5. If the superheat SH has not reached the predetermined value, the process returns to step S6, and the operation of increasing the superheat is performed again.

【0033】このように、この実施形態では、吐出管温
度が所定値以上になると、スーパーヒートSHを減じ
て、湿り度を増やし、吐出管温度を下げる(ステップS
2,S3)。次に、このスーパーヒートSHが不足したと
判断すれば、圧縮機1の回転数を減らして、圧縮機1の
信頼性を十分に確保できる適正値(0.85〜0.75)ま
で、スーパーヒートを増加させて乾き度を増加させる。
As described above, in this embodiment, when the discharge pipe temperature exceeds a predetermined value, the superheat SH is reduced, the wetness is increased, and the discharge pipe temperature is lowered (step S10).
2, S3). Next, if it is determined that the superheat SH is insufficient, the number of revolutions of the compressor 1 is reduced, and the superheat SH is reduced to an appropriate value (0.85-0.75) that can sufficiently secure the reliability of the compressor 1. Increase heat to increase dryness.

【0034】この制御によって、圧縮機1が吸入するR
32冷媒の乾き度を、圧縮機1の信頼性を十分に確保で
きる範囲において、乾き度(スーパーヒート)を低減し
て、吐出温度を下げることができ、信頼性(圧縮機潤滑
性,摩耗など)の低下や能力(暖房低温性能)低下を回避し
つつ、省エネルギーと低GWPを実現できる。
By this control, R
As long as the dryness of the refrigerant 32 is within the range that the reliability of the compressor 1 can be sufficiently ensured, the dryness (superheat) can be reduced, the discharge temperature can be reduced, and the reliability (compressor lubricity, wear, etc.) can be reduced. ) And performance (low-temperature heating performance) can be avoided, and energy saving and low GWP can be realized.

【0035】尚、上記実施形態では、乾き度(スーパー
ヒート)の適正値を、0.85〜0.75の範囲に設定し
たが、0.65以上もしくは、0.70以上または0.7
5以上に設定してもよい。また、上記実施形態では、ス
ーパーヒートに基づいて、圧縮機1と膨張弁3を制御し
たが、圧縮機の吐出管温度あるいはサブクール度(SC)
に基づいて、圧縮機と膨張弁を制御してもよい。また、
上記実施形態では、R32冷媒単体を使用したが、R3
2を少なくとも70重量%以上含んだ混合冷媒を使用す
る場合にも同様の効果が得られる。すなわち、R32を
少なくとも70重量%以上含んだ混合冷媒であれば、擬
似共沸となり、R22冷媒に対するR32冷媒のメリッ
ト(省エネルギー,低GWP)を発揮できる。また、圧縮
機としては、高圧ドームタイプと低圧ドームタイプとが
ある。高圧ドームタイプとは、圧縮機のモータが吐出ガ
スなどの高圧雰囲気にあるものを言い、低圧ドームタイ
プとは、圧縮機のモータが低圧ガスまたは液などの低圧
雰囲気下にある状態の圧縮機形式を言う。低圧ドームタ
イプの圧縮機を採用した場合には、高圧ドームタイプの
圧縮機を採用した場合に比べて、圧縮機の吐出温度が1
5℃〜20℃だけ低い。したがって、R32冷媒を採用
した空気調和機において、低圧ドームタイプの圧縮機を
採用した場合には、圧縮機が吸入する冷媒の乾き度を、
0.65〜0.95に設定して、圧縮機の吐出温度を、6
0〜70℃に制御する。これにより、圧縮機の信頼性や
性能の低下を回避しつつ、低GWPおよび省エネルギー
で低コストな空気調和機を実現できる。
In the above embodiment, the appropriate value of the degree of dryness (superheat) is set in the range of 0.85 to 0.75, but it is 0.65 or more, 0.70 or more, or 0.7.
It may be set to 5 or more. In the above embodiment, the compressor 1 and the expansion valve 3 are controlled based on the superheat. However, the discharge pipe temperature of the compressor or the subcool degree (SC) is controlled.
May control the compressor and the expansion valve. Also,
In the above embodiment, the R32 refrigerant alone was used.
The same effect can be obtained when a mixed refrigerant containing at least 70% by weight of 2 is used. That is, a mixed refrigerant containing at least 70% by weight or more of R32 becomes pseudo-azeotropic, and can exhibit the merits (energy saving, low GWP) of the R32 refrigerant over the R22 refrigerant. As the compressor, there are a high pressure dome type and a low pressure dome type. The high-pressure dome type is a compressor type in which the compressor motor is in a high-pressure atmosphere such as discharge gas, and the low-pressure dome type is a compressor type in which the compressor motor is in a low-pressure atmosphere such as low-pressure gas or liquid. Say When a low-pressure dome-type compressor is used, the discharge temperature of the compressor is 1 compared to when a high-pressure dome-type compressor is used.
Lower by 5 ° C to 20 ° C. Therefore, in the air conditioner employing the R32 refrigerant, when a low-pressure dome type compressor is employed, the dryness of the refrigerant sucked by the compressor is determined by:
0.65 to 0.95, and set the discharge temperature of the compressor to 6
Control at 0-70 ° C. Thus, it is possible to realize a low GWP, energy-saving and low-cost air conditioner while avoiding a decrease in the reliability and performance of the compressor.

【0036】また、上記実施形態において、制御部8
は、蒸発器となる室内熱交換器5の出口での冷媒の過熱
度を制御して、室内熱交換器5出口での冷媒の湿り度を
増やし、室内熱交換器5のファンロータが結露すること
を防止するようにしてもよい。なお、この結露防止制御
は、R32とR125を、50wt%ずつ含有した混合
冷媒にも適用でき、R407C(R32/R125/R1
34a:23/25/52wt%)を使用する場合にも適
用可能である。
In the above embodiment, the control unit 8
Controls the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger 5 serving as an evaporator, increases the wettability of the refrigerant at the outlet of the indoor heat exchanger 5, and causes the fan rotor of the indoor heat exchanger 5 to condense. This may be prevented. Note that this dew condensation prevention control can be applied to a mixed refrigerant containing R32 and R125 in an amount of 50 wt% each, and R407C (R32 / R125 / R1
34a: 23/25/52 wt%).

【0037】[0037]

【発明の効果】以上より明らかなように、請求項1の発
明の冷凍装置は、圧縮機が、乾き度0.65以上のR3
2冷媒(もしくはR32を少なくとも70重量%以上含
む混合冷媒)を吸入して圧縮するから、図3の試験結果
から分かるように、圧縮機の信頼性を低下させることな
く、R32冷媒の使用が可能になり、信頼性や性能の低
下を回避しつつ、省エネルギーと低GWPを実現でき
る。
As is apparent from the above description, in the refrigeration apparatus according to the first aspect of the present invention, the compressor has an R3 with a dryness of 0.65 or more.
Since two refrigerants (or a refrigerant mixture containing at least 70% by weight of R32) are sucked and compressed, as can be seen from the test results in FIG. 3, the R32 refrigerant can be used without reducing the reliability of the compressor. Thus, energy saving and low GWP can be realized while avoiding a decrease in reliability and performance.

【0038】また、請求項2の発明の冷凍装置は、圧縮
機が、乾き度0.70以上のR32冷媒(もしくはR32
を少なくとも70重量%以上含む混合冷媒)を吸入する
から、圧縮機の信頼性を一層向上できる。
Further, in the refrigeration apparatus according to the second aspect of the present invention, the compressor includes an R32 refrigerant (or R32 refrigerant) having a dryness of 0.70 or more.
(A mixed refrigerant containing at least 70% by weight or more), the reliability of the compressor can be further improved.

【0039】また、請求項3の発明の冷凍装置は、圧縮
機が、乾き度0.75以上のR32冷媒(もしくはR32
を少なくとも70重量%以上含む混合冷媒)を吸入する
から、図3の試験結果から分かるように、圧縮機の信頼
性を最高レベルまで高めることができる。
Further, in the refrigeration apparatus according to the third aspect of the present invention, the compressor includes an R32 refrigerant (or R32 refrigerant) having a dryness of 0.75 or more.
), The reliability of the compressor can be increased to the highest level, as can be seen from the test results in FIG.

【0040】また、請求項4の発明は、請求項1乃至3
のいずれか1つに記載の冷凍装置において、上記圧縮機
の吐出管温度を検出し、この吐出管温度に基づいて、圧
縮機が吸入する冷媒の乾き度を制御する制御手段を備え
た。この請求項4の発明では、圧縮機の吐出管温度に基
づいて、圧縮機吸入冷媒の乾き度を制御するから、簡単
な制御手段で乾き度の制御が可能になる。
Further, the invention of claim 4 is the invention of claims 1 to 3
The refrigerating apparatus according to any one of the above, further comprising a control means for detecting a discharge pipe temperature of the compressor, and controlling a dryness of refrigerant sucked by the compressor based on the discharge pipe temperature. According to the fourth aspect of the present invention, since the dryness of the refrigerant drawn into the compressor is controlled based on the temperature of the discharge pipe of the compressor, the dryness can be controlled by simple control means.

【0041】また、請求項5の発明は、請求項1乃至3
のいずれか1つに記載の冷凍装置において、スーパーヒ
ートを検出し、このスーパーヒートに基づいて、圧縮機
が吸入する冷媒の乾き度を制御する制御手段を備えた。
この請求項5の発明では、スーパーヒートに基づいて、
圧縮機が吸入する冷媒の乾き度を制御するから、より精
度良く吸入側の乾き度を制御でき、信頼性の向上を図れ
る。
Further, the invention of claim 5 is the invention of claims 1 to 3
The refrigerating apparatus according to any one of the above, further comprising control means for detecting superheat and controlling the dryness of the refrigerant sucked by the compressor based on the superheat.
In the invention of claim 5, based on the superheat,
Since the dryness of the refrigerant sucked by the compressor is controlled, the dryness on the suction side can be more accurately controlled, and reliability can be improved.

【0042】また、請求項6の発明は、請求項1乃至3
のいずれか1つに記載の冷凍装置において、サブクール
度を検出し、このサブクール度に基づいて、圧縮機が吸
入する冷媒の乾き度を制御する制御手段を備えた。この
請求項6の発明では、サブクール度に基づいて、圧縮機
が吸入する冷媒の乾き度を制御するから、より精度良く
吸入側の乾き度を制御でき、信頼性の向上を図れる。
Further, the invention of claim 6 relates to claims 1 to 3
The refrigerating apparatus according to any one of the above, further comprising control means for detecting the degree of subcooling and controlling the degree of dryness of the refrigerant drawn by the compressor based on the degree of subcooling. According to the sixth aspect of the invention, since the dryness of the refrigerant sucked by the compressor is controlled based on the subcool degree, the dryness on the suction side can be more accurately controlled, and the reliability can be improved.

【0043】また、請求項7の発明は、請求項1乃至3
のいずれか1つに記載の冷凍装置において、蒸発器の出
口の過熱度を制御する制御手段を備えた。この請求項7
の発明では、蒸発器の出口の加熱度を制御して、蒸発器
出口での湿り度を増やすことによって、蒸発器(室内機)
のファンロータが結露することを防止できる。また、請
求項8の発明は、高圧ドームタイプの圧縮機の吸入側で
のR32冷媒の乾き度を0.68以上にし、吐出温度を
80〜90℃にするから、圧縮機の信頼性を低下させる
ことなく、R32冷媒の使用が可能になり、信頼性や性
能の低下を回避しつつ、省エネルギーと低GWPを実現
できる。また、請求項9の発明は、低圧ドームタイプの
圧縮機の吸入側でのR32冷媒の乾き度を0.65以上
にし、吐出温度を60〜70℃にするから、圧縮機の信
頼性を低下させることなく、R32冷媒の使用が可能に
なり、信頼性や性能の低下を回避しつつ、省エネルギー
と低GWPを実現できる。
Further, the invention of claim 7 is the first to third aspects of the present invention.
The refrigerating apparatus according to any one of the above, further comprising control means for controlling the degree of superheat at the outlet of the evaporator. This claim 7
In the invention of the evaporator (indoor unit) by controlling the degree of heating at the outlet of the evaporator to increase the degree of wetness at the outlet of the evaporator
Of the fan rotor can be prevented. According to the invention of claim 8, since the dryness of the R32 refrigerant at the suction side of the high-pressure dome type compressor is 0.68 or more and the discharge temperature is 80 to 90 ° C, the reliability of the compressor is reduced. Without the use of the R32 refrigerant, it is possible to use the R32 refrigerant, thereby realizing energy saving and low GWP while avoiding deterioration in reliability and performance. According to the ninth aspect of the present invention, the dryness of the R32 refrigerant at the suction side of the low-pressure dome type compressor is 0.65 or more, and the discharge temperature is 60 to 70 ° C. Without the use of the R32 refrigerant, it is possible to use the R32 refrigerant, thereby realizing energy saving and low GWP while avoiding deterioration in reliability and performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の冷凍機の実施の形態としての空気
調和機の実施形態の冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram of an embodiment of an air conditioner as an embodiment of a refrigerator of the present invention.

【図2】 上記実施形態の制御部の動作を説明するフロ
ーチャートである。
FIG. 2 is a flowchart illustrating an operation of a control unit according to the embodiment.

【図3】 冷媒の乾き度毎の圧縮機の信頼性評価試験結
果を示す図表である。
FIG. 3 is a table showing the results of a reliability evaluation test of a compressor for each degree of dryness of a refrigerant.

【図4】 実際の冷凍機におけるモリエル線図の一例を
示す図である。
FIG. 4 is a diagram showing an example of a Mollier diagram in an actual refrigerator.

【図5】 モリエル線図におけるスーパーヒートSHと
サブクール度SCを示す図である。
FIG. 5 is a diagram showing a superheat SH and a subcool degree SC in a Mollier diagram.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…室外熱交換器、3…膨張弁、4…四路
切換弁、5…室内熱交換器、8…制御部、11,12,1
3,15,16,17…温度センサ。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Outdoor heat exchanger, 3 ... Expansion valve, 4 ... Four-way switching valve, 5 ... Indoor heat exchanger, 8 ... Control part, 11, 12, 1
3, 15, 16, 17 ... temperature sensors.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(1)が、乾き度0.65以上のR
32冷媒、もしくは、R32を少なくとも70重量%以
上含む乾き度が0.65以上の混合冷媒を吸入して圧縮
することを特徴とする冷凍装置。
The compressor (1) has a dryness of 0.65 or more.
32. A refrigerating apparatus, wherein 32 refrigerants or a refrigerant mixture containing at least 70% by weight or more of R32 and having a dryness of 0.65 or more is sucked and compressed.
【請求項2】 圧縮機(1)が、乾き度0.70以上のR
32冷媒、もしくは、R32を少なくとも70重量%以
上含む乾き度が0.70以上の混合冷媒を吸入して圧縮
することを特徴とする冷凍装置。
2. A compressor (1) having a dryness of 0.70 or more.
A refrigerating apparatus, wherein 32 refrigerants or a refrigerant mixture containing at least 70% by weight or more of R32 and having a dryness of 0.70 or more is sucked and compressed.
【請求項3】 圧縮機(1)が、乾き度0.75以上のR
32冷媒、もしくは、R32を少なくとも70重量%以
上含む乾き度が0.75以上の混合冷媒を吸入して圧縮
することを特徴とする冷凍装置。
3. A compressor (1) having a dryness of 0.75 or more.
A refrigerating apparatus, wherein 32 refrigerants or a mixed refrigerant containing at least 70% by weight or more of R32 and having a dryness of 0.75 or more is sucked and compressed.
【請求項4】 請求項1乃至3のいずれか1つに記載の
冷凍装置において、上記圧縮機(1)の吐出管温度を検出
し、この吐出管温度に基づいて、圧縮機が吸入する冷媒
の乾き度を制御する制御手段(8)を備えたことを特徴と
する冷凍装置。
4. The refrigerating apparatus according to claim 1, wherein a temperature of a discharge pipe of the compressor (1) is detected, and a refrigerant sucked by the compressor is detected based on the temperature of the discharge pipe. A refrigerating apparatus comprising a control means (8) for controlling the degree of dryness.
【請求項5】 請求項1乃至3のいずれか1つに記載の
冷凍装置において、スーパーヒート(SH)を検出し、こ
のスーパーヒートに基づいて、圧縮機(1)が吸入する冷
媒の乾き度を制御する制御手段(8)を備えたことを特徴
とする冷凍装置。
5. The refrigerating apparatus according to claim 1, wherein a superheat (SH) is detected, and based on the superheat, the dryness of the refrigerant sucked by the compressor (1). A refrigerating apparatus comprising control means (8) for controlling the temperature of the refrigerating machine.
【請求項6】 請求項1乃至3のいずれか1つに記載の
冷凍装置において、サブクール度(SC)を検出し、この
サブクール度に基づいて、圧縮機(1)が吸入する冷媒の
乾き度を制御する制御手段(8)を備えたことを特徴とす
る冷凍装置。
6. The refrigerating apparatus according to claim 1, wherein a subcool degree (SC) is detected, and based on the subcool degree, the dryness of the refrigerant sucked by the compressor (1). A refrigerating apparatus comprising control means (8) for controlling the temperature of the refrigerating machine.
【請求項7】 請求項1乃至3のいずれか1つに記載の
冷凍装置において、蒸発器(5,2)の出口の過熱度を制
御する制御手段(8)を備えたことを特徴とする冷凍装
置。
7. The refrigeration apparatus according to claim 1, further comprising control means (8) for controlling the degree of superheat at the outlet of the evaporator (5, 2). Refrigeration equipment.
【請求項8】 圧縮機が高圧ドームタイプであり、この
圧縮機は、乾き度0.68以上のR32冷媒、もしく
は、R32を少なくとも70重量%以上含む乾き度が
0.68以上の混合冷媒を吸入して圧縮し、 この圧縮機の吐出温度を、80〜90℃に設定すること
を特徴とする冷凍装置。
8. The compressor is of a high-pressure dome type, and this compressor uses an R32 refrigerant having a dryness of 0.68 or more or a mixed refrigerant having a dryness of 0.68 or more containing at least 70% by weight of R32. A refrigerating apparatus characterized in that the compressor is sucked and compressed, and the discharge temperature of the compressor is set at 80 to 90 ° C.
【請求項9】 圧縮機が低圧ドームタイプであり、 この圧縮機は、乾き度0.65以上のR32冷媒、もし
くは、R32を少なくとも70重量%以上含む乾き度が
0.65以上の混合冷媒を吸入して圧縮し、 この圧縮機の吐出温度を、60〜70℃に設定すること
を特徴とする冷凍装置。
9. The compressor is a low-pressure dome type compressor, and the compressor uses an R32 refrigerant having a dryness of 0.65 or more, or a mixed refrigerant having a dryness of 0.65 or more containing at least 70% by weight of R32. A refrigerating apparatus characterized in that the compressor is sucked and compressed, and the discharge temperature of the compressor is set at 60 to 70 ° C.
JP2000222450A 1999-10-18 2000-07-24 Refrigeration equipment Expired - Lifetime JP3956589B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2000222450A JP3956589B2 (en) 1999-10-18 2000-07-24 Refrigeration equipment
ES06025814.2T ES2620815T3 (en) 1999-10-18 2000-10-12 Cooling device
EP06025814.2A EP1762794B1 (en) 1999-10-18 2000-10-12 Refrigerating device
EP00966426A EP1225400B1 (en) 1999-10-18 2000-10-12 Refrigerating device
KR10-2002-7004959A KR100482539B1 (en) 1999-10-18 2000-10-12 Refrigerating device
PCT/JP2000/007067 WO2001029489A1 (en) 1999-10-18 2000-10-12 Refrigerating device
AT00966426T ATE380987T1 (en) 1999-10-18 2000-10-12 REFRIGERATOR
ES00966426T ES2296645T3 (en) 1999-10-18 2000-10-12 REFRIGERATION DEVICE
CNB031603777A CN100449224C (en) 1999-10-18 2000-10-12 Freezing equipment
US10/110,930 US6581397B1 (en) 1999-10-18 2000-10-12 Refrigerating device
AU76841/00A AU773284B2 (en) 1999-10-18 2000-10-12 Refrigerating device
CNB008145148A CN1149366C (en) 1999-10-18 2000-10-12 Refrigerating device
DE60037445T DE60037445T2 (en) 1999-10-18 2000-10-12 COOLING DEVICE

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-295258 1999-10-18
JP29525899 1999-10-18
JP2000222450A JP3956589B2 (en) 1999-10-18 2000-07-24 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2001194015A true JP2001194015A (en) 2001-07-17
JP3956589B2 JP3956589B2 (en) 2007-08-08

Family

ID=26560185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000222450A Expired - Lifetime JP3956589B2 (en) 1999-10-18 2000-07-24 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3956589B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028218A1 (en) * 2004-09-09 2006-03-16 Daikin Industries, Ltd. Refrigerating apparatus
JP2007225264A (en) * 2006-02-27 2007-09-06 Mitsubishi Electric Corp Air conditioner
WO2013088638A1 (en) * 2011-12-14 2013-06-20 パナソニック株式会社 Refrigerating cycle device
WO2013146731A1 (en) 2012-03-28 2013-10-03 ダイキン工業株式会社 Refrigeration device
JP2014129941A (en) * 2012-12-28 2014-07-10 Daikin Ind Ltd Refrigeration device
JP2014129987A (en) * 2012-12-28 2014-07-10 Daikin Ind Ltd Refrigeration device
JP2014129986A (en) * 2012-12-28 2014-07-10 Daikin Ind Ltd Refrigeration device
WO2014119149A1 (en) 2013-01-29 2014-08-07 ダイキン工業株式会社 Air conditioner
EP2765370A1 (en) 2013-02-08 2014-08-13 Panasonic Corporation Refrigeration cycle apparatus and hot water generator provided with the same
WO2014129473A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
WO2014155545A1 (en) * 2013-03-27 2014-10-02 日立アプライアンス株式会社 Air conditioner
WO2014156313A1 (en) * 2013-03-27 2014-10-02 日立アプライアンス株式会社 Air conditioner and method for operating air conditioner
JP2015042009A (en) * 2013-08-20 2015-03-02 日立アプライアンス株式会社 Permanent magnet type motor, compressor employing the same, and refrigeration cycle device
JP2015075294A (en) * 2013-10-10 2015-04-20 日立アプライアンス株式会社 Air conditioner
JP2015081722A (en) * 2013-10-23 2015-04-27 日立アプライアンス株式会社 Air conditioner
WO2015174054A1 (en) 2014-05-12 2015-11-19 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP2015218959A (en) * 2014-05-19 2015-12-07 リンナイ株式会社 Heat pump heating device
JP2016080331A (en) * 2014-10-22 2016-05-16 東芝キヤリア株式会社 Refrigeration cycle device
JP2016183859A (en) * 2016-07-28 2016-10-20 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP2017138096A (en) * 2017-03-09 2017-08-10 三菱電機株式会社 Refrigeration cycle device
CN114608181A (en) * 2022-03-21 2022-06-10 青岛海尔空调电子有限公司 Control method and device of electronic expansion valve, medium and air source heat pump unit
JP7089153B2 (en) 2018-01-15 2022-06-22 ダイキン工業株式会社 Ice making system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066471A (en) * 2012-09-27 2014-04-17 Daikin Ind Ltd Air conditioning equipment
JP6000053B2 (en) 2012-10-15 2016-09-28 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP5927633B2 (en) 2012-11-06 2016-06-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
US10247459B2 (en) 2015-05-13 2019-04-02 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1795833A4 (en) * 2004-09-09 2014-12-24 Daikin Ind Ltd Refrigerating apparatus
EP1795833A1 (en) * 2004-09-09 2007-06-13 Daikin Industries, Ltd. Refrigerating apparatus
AU2005280900B2 (en) * 2004-09-09 2009-03-05 Daikin Industries, Ltd. Refrigeration apparatus
WO2006028218A1 (en) * 2004-09-09 2006-03-16 Daikin Industries, Ltd. Refrigerating apparatus
JP2007225264A (en) * 2006-02-27 2007-09-06 Mitsubishi Electric Corp Air conditioner
JP4619303B2 (en) * 2006-02-27 2011-01-26 三菱電機株式会社 Air conditioner
JP2013124800A (en) * 2011-12-14 2013-06-24 Panasonic Corp Refrigerating cycle device
WO2013088638A1 (en) * 2011-12-14 2013-06-20 パナソニック株式会社 Refrigerating cycle device
WO2013146731A1 (en) 2012-03-28 2013-10-03 ダイキン工業株式会社 Refrigeration device
US20150075202A1 (en) * 2012-03-28 2015-03-19 Daikin Industries, Ltd. Refrigeration device
JP2014129941A (en) * 2012-12-28 2014-07-10 Daikin Ind Ltd Refrigeration device
JP2014129987A (en) * 2012-12-28 2014-07-10 Daikin Ind Ltd Refrigeration device
JP2014129986A (en) * 2012-12-28 2014-07-10 Daikin Ind Ltd Refrigeration device
WO2014119149A1 (en) 2013-01-29 2014-08-07 ダイキン工業株式会社 Air conditioner
US20150362199A1 (en) * 2013-01-29 2015-12-17 Daikin Industries, Ltd. Air conditioning apparatus
JP2014167381A (en) * 2013-01-29 2014-09-11 Daikin Ind Ltd Air conditioning device
AU2013375955B2 (en) * 2013-01-29 2016-04-07 Daikin Industries, Ltd. Air conditioning apparatus
US10234151B2 (en) 2013-01-29 2019-03-19 Daikin Industries, Ltd. Air conditioning apparatus
JP2014169854A (en) * 2013-02-08 2014-09-18 Panasonic Corp Refrigeration cycle device and hot water generation device including the same
EP2765370A1 (en) 2013-02-08 2014-08-13 Panasonic Corporation Refrigeration cycle apparatus and hot water generator provided with the same
WO2014129473A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
WO2014128830A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
JP5992089B2 (en) * 2013-02-19 2016-09-14 三菱電機株式会社 Air conditioner
CN104838219B (en) * 2013-02-19 2017-03-15 三菱电机株式会社 Conditioner
US10107533B2 (en) 2013-02-19 2018-10-23 Mitsubishi Electric Corporation Air-conditioning apparatus with subcooling heat exchanger
CN104838219A (en) * 2013-02-19 2015-08-12 三菱电机株式会社 Air conditioning device
WO2014155545A1 (en) * 2013-03-27 2014-10-02 日立アプライアンス株式会社 Air conditioner
JP2014190632A (en) * 2013-03-27 2014-10-06 Hitachi Appliances Inc Air conditioner and air conditioner operation method
CN106839499A (en) * 2013-03-27 2017-06-13 江森自控日立空调技术(香港)有限公司 The method of operation of air conditioner and air conditioner
JPWO2014155545A1 (en) * 2013-03-27 2017-02-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
WO2014156313A1 (en) * 2013-03-27 2014-10-02 日立アプライアンス株式会社 Air conditioner and method for operating air conditioner
CN106839499B (en) * 2013-03-27 2019-05-21 日立江森自控空调有限公司 The method of operation of air conditioner and air conditioner
CN105074353A (en) * 2013-03-27 2015-11-18 日立空调·家用电器株式会社 Air conditioner and method for operating air conditioner
CN105074353B (en) * 2013-03-27 2017-03-15 江森自控日立空调技术(香港)有限公司 Air conditioner and the method for operation of air conditioner
JP2015042009A (en) * 2013-08-20 2015-03-02 日立アプライアンス株式会社 Permanent magnet type motor, compressor employing the same, and refrigeration cycle device
JP2015075294A (en) * 2013-10-10 2015-04-20 日立アプライアンス株式会社 Air conditioner
JP2015081722A (en) * 2013-10-23 2015-04-27 日立アプライアンス株式会社 Air conditioner
WO2015174054A1 (en) 2014-05-12 2015-11-19 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP2015218959A (en) * 2014-05-19 2015-12-07 リンナイ株式会社 Heat pump heating device
JP2016080331A (en) * 2014-10-22 2016-05-16 東芝キヤリア株式会社 Refrigeration cycle device
JP2016183859A (en) * 2016-07-28 2016-10-20 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP2017138096A (en) * 2017-03-09 2017-08-10 三菱電機株式会社 Refrigeration cycle device
JP7089153B2 (en) 2018-01-15 2022-06-22 ダイキン工業株式会社 Ice making system
CN114608181A (en) * 2022-03-21 2022-06-10 青岛海尔空调电子有限公司 Control method and device of electronic expansion valve, medium and air source heat pump unit
CN114608181B (en) * 2022-03-21 2023-12-26 青岛海尔空调电子有限公司 Control method and device for electronic expansion valve, medium and air source heat pump unit

Also Published As

Publication number Publication date
JP3956589B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP2001194015A (en) Freezing apparatus
EP1762794B1 (en) Refrigerating device
US11415345B2 (en) Refrigeration apparatus
JP3598809B2 (en) Refrigeration cycle device
JP6847299B2 (en) Refrigeration cycle equipment
JP5759017B2 (en) Air conditioner
US20160146521A1 (en) Refrigeration cycle apparatus
US20240085044A1 (en) Air-conditioning apparatus
WO2016181529A1 (en) Refrigeration cycle device
JP2004361036A (en) Air conditioning system
JP2001032772A (en) Compressor, and freezing device
WO2016121068A1 (en) Refrigeration cycle device
JP2000292037A (en) Air conditioner
JP6902390B2 (en) Refrigeration cycle equipment
JP3160130B2 (en) Air conditioner
JPH11159895A (en) Air conditioner
JPWO2019021464A1 (en) Air conditioner
JP4096862B2 (en) Refrigeration unit and refrigerator
JPH10325624A (en) Refrigerating cycle device
JP2001355928A (en) Refrigerating device
WO2017122264A1 (en) Air conditioner
JP6537629B2 (en) Air conditioner
JPH1068555A (en) Circulating refrigerant composition detection method of refrigeration cycle and refrigerating apparatus using the detection method
JP3601134B2 (en) Refrigeration equipment
JP2000018685A (en) Multi-room type air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

R151 Written notification of patent or utility model registration

Ref document number: 3956589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

EXPY Cancellation because of completion of term