WO2014155545A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2014155545A1
WO2014155545A1 PCT/JP2013/058900 JP2013058900W WO2014155545A1 WO 2014155545 A1 WO2014155545 A1 WO 2014155545A1 JP 2013058900 W JP2013058900 W JP 2013058900W WO 2014155545 A1 WO2014155545 A1 WO 2014155545A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
indoor
air conditioner
expansion valve
heat exchanger
Prior art date
Application number
PCT/JP2013/058900
Other languages
French (fr)
Japanese (ja)
Inventor
横関 敦彦
坪江 宏明
松村 賢治
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to PCT/JP2013/058900 priority Critical patent/WO2014155545A1/en
Priority to CN201380073435.2A priority patent/CN105143786B/en
Priority to JP2015507754A priority patent/JP6224079B2/en
Publication of WO2014155545A1 publication Critical patent/WO2014155545A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant

Definitions

  • the present invention relates to a control method of an air conditioner, and is particularly suitable for suppressing the flow noise of a refrigerant during heating operation when R32 is employed as the refrigerant.
  • Patent No. 3956589 Patent No. 3435626 gazette
  • the air conditioner can increase the operation efficiency of the refrigeration cycle by controlling the heat exchanger outlet acting as the evaporator near the saturated gas.
  • R32 which is a refrigerant having a relatively low global warming potential, has a refrigerant temperature on the discharge side of the compressor 10 to 15 ° C. higher than that of R410A, which is a conventional refrigerant.
  • R410A which is a conventional refrigerant.
  • the refrigerant on the outlet side of the outdoor heat exchanger which acts as an evaporator during heating operation, is operated in a wet state to reduce the amount of refrigerant on the inlet side of the compressor, the amount of refrigerant stored in the evaporator is large. Become. Then, the degree of supercooling on the outlet side of the indoor heat exchanger acting as a condenser is insufficient, and a gas-liquid two-phase state occurs, so there is a problem that refrigerant flow noise is generated from the indoor unit due to the gas-liquid two-phase state .
  • the present invention is an air conditioner in which a single refrigerant of R32 or a mixed refrigerant containing 70% or more of R32 is enclosed in a refrigerant circulating in a refrigeration cycle, which is comfortable by suppressing the refrigerant flow noise in the indoor expansion valve during heating operation.
  • the purpose is to improve the quality.
  • the present application “connects an outdoor unit equipped with a compressor and an outdoor heat exchanger with an indoor unit equipped with an indoor heat exchanger and an indoor expansion valve using liquid piping and gas piping.
  • a refrigeration cycle in which a refrigeration cycle is configured and a refrigerant circulating R32 alone or a mixed refrigerant containing 70 mass% or more of R32 is enclosed in the refrigerant circulating in the refrigeration cycle, the throttling control by the outdoor expansion valve during heating operation And performing the throttling control by the indoor expansion valve.
  • the refrigerant flow noise in the indoor expansion valve is suppressed during heating operation. It is possible to improve comfort.
  • refrigerating cycle block diagram of an air conditioner It is an explanatory view of a condenser exit state change by compressor discharge temperature control at the time of heating operation. It is an explanatory view of a refrigerant flow style before an indoor expansion valve at the time of heating operation. It is operation
  • FIG. 1 is an example of the refrigerating-cycle block diagram of the multi-room air conditioner of a present Example.
  • the outdoor unit 100 includes an outdoor heat exchanger 101, an outdoor fan 102, an outdoor expansion valve 103, a compressor 104, an accumulator 105, a four-way valve 106, a discharge temperature sensor 107, and a discharge pressure sensor 108.
  • the indoor unit 200 includes an indoor heat exchanger 201, an indoor fan 202, an indoor expansion valve 203, and a refrigerant liquid temperature sensor 204.
  • the outdoor unit 100 and the indoor unit 200 are connected by a liquid pipe 121 and a gas pipe 122.
  • the high temperature gas refrigerant discharged from the compressor 104 is sent to the outdoor heat exchanger 101 through the four-way valve 106.
  • the high temperature gas refrigerant that has entered the outdoor heat exchanger 101 exchanges heat with the outdoor air sent by the outdoor fan 102, condenses, and becomes liquid refrigerant.
  • the refrigerant sent to the indoor unit 200 is decompressed by the indoor expansion valve 203 and enters the indoor heat exchanger 201.
  • the indoor heat exchanger 201 exchanges heat with indoor air sent by the indoor fan 202 and evaporates to become a gas refrigerant.
  • the gas refrigerant leaving the indoor unit 200 is sent to the outdoor unit 100 through the gas pipe 122.
  • the gas refrigerant that has entered the outdoor unit 100 enters the accumulator 105 through the four-way valve 106.
  • the accumulator 105 acts as a buffer tank for storing liquid refrigerant when the liquid refrigerant returns transiently, and prevents liquid compression due to the liquid refrigerant returning to the compressor 104. Under normal conditions, gas refrigerant enters the accumulator 104 from the accumulator 105 and is compressed.
  • the high temperature gas refrigerant discharged from the compressor 104 is sent to the gas pipe 122 through the four-way valve 106.
  • the high temperature gas refrigerant that has entered the gas piping 122 is sent to the indoor unit 200.
  • the high temperature gas refrigerant that has entered the indoor unit 200 exchanges heat with the indoor air sent by the indoor fan 202 in the indoor heat exchanger 201 and condenses to become liquid refrigerant, and passes through the indoor expansion valve 203 from the indoor unit 200 Get out. Heating is performed by heat exchange between the high temperature refrigerant and the indoor air in the indoor heat exchanger 200.
  • the liquid refrigerant that has left the indoor unit 200 then flows to the outdoor unit 100 via the liquid pipe 121.
  • the liquid refrigerant that has entered the outdoor unit 100 is decompressed when passing through the outdoor expansion valve 103 and enters the outdoor heat exchanger 101.
  • the outdoor heat exchanger 101 exchanges heat with the outdoor air sent by the outdoor fan 102 and evaporates to become a gas refrigerant.
  • Gas refrigerant enters accumulator 105 through four-way valve 106.
  • the accumulator 105 acts as a buffer tank when a large amount of liquid refrigerant passes through transiently, and prevents the compressor from being damaged by liquid compression. Under normal conditions, gas refrigerant enters the accumulator 104 from the accumulator 105 and is compressed.
  • the refrigerant liquid temperature sensor 204 of the indoor unit 200 detects the temperature of the refrigerant that has left the indoor heat exchanger 201. Further, the discharge pressure of the compressor 104 is detected by the discharge pressure sensor 108 of the outdoor unit 100. From the outlet side of the compressor 104 to the outlet side of the indoor heat exchanger 201, the pressure loss is relatively small because the refrigerant is in a high pressure state. Therefore, the degree of subcooling of the outlet side of the indoor heat exchanger 201 can be estimated by the following equation (1).
  • SC Tsat (Pd) -TL-C (1)
  • SC (K) is the degree of supercooling at the indoor heat exchanger outlet
  • Tsat () is the saturation temperature of pressure
  • Pd is the compressor discharge pressure (MPa)
  • TL is the indoor heat exchanger outlet temperature (° C)
  • C is It is a correction factor related to the refrigerant pressure loss.
  • FIG. 2 is an explanatory view of a state change on the outlet side of the condenser due to the discharge temperature suppression of the compressor 104 during the heating operation of the air conditioner using the R32 refrigerant.
  • the discharge temperature tends to be higher than when using the refrigerant R410A due to the influence of the refrigerant physical properties.
  • a condition in which the discharge temperature tends to be high includes a heating operation at a low temperature outside air where the pressure ratio of the compressor 104 tends to be large.
  • FIG. 2 is a Mollier diagram showing the operating condition at the low heating temperature, and the operating condition shown by the solid line is the degree of superheat SH (K) of a slight amount (2 to 3 K) as the refrigerant state on the suction side of the compressor 104. It shows the state of operation with the mark attached.
  • the discharge temperature Td1 of the compressor 104 may exceed the reliability upper limit allowable temperature (for example, 120 ° C.) of the compressor 104. Therefore, by increasing the opening degree of the outdoor expansion valve 103, the refrigerant on the suction side of the compressor 104 is made wet (suction dryness Xs), and the discharge temperature of the compressor 104 is set to Td2 (for example, 100 ° C.). It is desirable to lower it. As a result, deterioration of the compressor 104 such as deterioration of refrigeration oil and polymer material in the compressor 104 and demagnetization of a rare earth magnet can be prevented.
  • the suction dryness of the compressor 104 be Xs> 0.85.
  • the suction dryness is a value obtained by dividing the refrigerant gas mass flow by the refrigerant total mass flow, and suction dryness ⁇ refrigerant gas mass flow / refrigerant total mass flow, and refrigerator oil in the refrigerant is excluded. It shall be. Therefore, the compressor 104 is made to suck in the refrigerant whose suction dryness is Xs> 0.85.
  • the suction degree Xs of the compressor 104 when the suction degree Xs of the compressor 104 is decreased, the degree of the degree of abrasion also becomes low at the accumulator 105 located on the upstream side and the outlet side of the outdoor heat exchanger 101 acting as an evaporator. Therefore, the amount of refrigerant stored inside the accumulator 105 and the outdoor heat exchanger 101 is increased. Then, since the total amount of refrigerant in the cycle remains unchanged, the amount of refrigerant held in the indoor heat exchanger 201 acting as a condenser decreases, and as shown by Xco in FIG. 2, the outlet side of the indoor heat exchanger 201.
  • An indoor expansion valve 203 is installed at the outlet side of the indoor heat exchanger 201, and generates a refrigerant flow noise depending on the state of the refrigerant passing through, and generates noise to the occupant as abnormal noise from the indoor unit 200 of the air conditioner. It will cause discomfort.
  • FIG. 3 is a flow pattern determination diagram (Heiwitt-Roberts diagram) in the vertical upward flow (Source: Gas-Liquid Two-Phase Flow Handbook, page 10, Nippon Opportunity Society, 1989).
  • This FIG. 3 is used to estimate the refrigerant flow mode in the piping portion on the inlet side of the indoor expansion valve 203 during heating operation.
  • the horizontal axis of FIG. 3 shows the apparent momentum L L (j L ) 2 of the liquid refrigerant, where ⁇ L is the liquid refrigerant density (kg / m 3 ) and j L (m / s) It is the apparent flow rate of the liquid refrigerant that the liquid refrigerant flowed to satisfy the entire cross-sectional area.
  • ⁇ G is the gas refrigerant density (kg / m 3 ) and j G (m / s) It is an apparent flow rate of the gas refrigerant in which the gas refrigerant flowed so as to satisfy the entire cross-sectional area.
  • the divided regions in Fig. 3 are the types of flow modes such as slag flow, churn flow, and annular flow, and an approximate flow mode can be estimated by examining which region they are in. can do.
  • the state at the time of heating operation is put on a diagram, it can be shown by ⁇ for pipe diameter 10.7 mm, ⁇ for 7.93 mm, and ⁇ for 5.0 mm.
  • the refrigerant flow noise is particularly unpleasant in the region of slug flow or churn flow where gas clumps intermittently pass through the expansion valve, and it is desirable to always avoid this region, for example in the region of bubbly flow .
  • the area on the upper right side is considered to be the area of bubble flow.
  • the displacement control of the compressor 104 it is difficult to reduce the refrigerant flow noise by narrowing the inner diameter of the pipe in this manner because the refrigerant circulation amount is not constant.
  • the refrigerant R32 when the indoor unit is shared, the refrigerant R32 has a smaller refrigerant flow rate than the refrigerant R410A if the pipe inner diameter does not change. be able to.
  • the flow velocity of the refrigerant since the flow velocity of the refrigerant is reduced, the flow of the refrigerant may be more likely to occur in the region of the slag flow or the churn flow, and the refrigerant flow noise may occur due to the outlet side of the indoor heat exchanger 201 becoming the two phase region.
  • FIG. 4 is operation
  • suction suction degree Xs is controlled to, for example, about 0.9 for suppression of discharge temperature
  • the pressure reduction amount is small as ⁇ Pexpi, and it is provided in front of the outdoor heat exchanger 101 acting as an evaporator.
  • the pressure reduction amount ⁇ Pexpo at the outdoor expansion valve 103 which is located is largely controlled.
  • the degree of dryness of the liquid pipe 121 at this time is XLp.
  • the air conditioner of the present embodiment when the degree of subcooling is determined to be zero using the above-described arithmetic expression (1) of the degree of subcooling at the outlet of the indoor heat exchanger 201, indoor expansion is performed.
  • the valve 203 is controlled to squeeze.
  • the amount of pressure reduction by the indoor expansion valve 203 becomes large as ⁇ Pexpi ′, so the degree of dryness is increased up to the degree of dryness XLp ′ of the liquid pipe.
  • the amount of refrigerant held in the liquid pipe 121 can be reduced, and the amount of refrigerant held in the indoor heat exchanger 201, which has run short, can be increased.
  • the refrigerant state on the outlet side of the indoor heat exchanger 201 can be made into a liquid state by securing the subcooling degree SC of 2 to 3 K or more. Therefore, it is possible to prevent the generation of the unpleasant refrigerant flow noise generated in the indoor expansion valve 203.
  • the indoor unit is shared from the indoor unit using the refrigerant R410A in the air conditioner using the refrigerant R410A and the air conditioner using the refrigerant R32, that is, when the indoor unit is shared. Even if the inner diameter of the pipe does not change, the control method of this embodiment can reduce unpleasant refrigerant flow noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

The purpose of the invention, in an air conditioner in which R32 alone or mixed refrigerant containing 70 mass% or more of R32 is incorporated in refrigerant circulating through a refrigeration cycle, is to improve comfort by suppressing refrigerant flow noise in an indoor expansion valve during a heating operation. Therefore, the present invention is an air conditioner characterized in that a refrigeration cycle is configured by using a liquid tube and a gas tube to connect an outdoor unit provided with a compressor and an outdoor heat exchanger to an indoor unit provided with an indoor heat exchanger and an indoor expansion valve, R32 alone or mixed refrigerant containing 70 mass% or more of R32 being incorporated in refrigerant circulating through the refrigeration cycle; wherein throttle control is performed by the outdoor expansion valve and throttle control is performed by the indoor expansion valve during the heating operation.

Description

空気調和機Air conditioner
 本発明は、空気調和機の制御方法に関し、特に冷媒にR32を採用したときの暖房運転時の冷媒流動音の抑制に適するものである。 The present invention relates to a control method of an air conditioner, and is particularly suitable for suppressing the flow noise of a refrigerant during heating operation when R32 is employed as the refrigerant.
 本技術分野の背景技術として、特許第3956589号公報(特許文献1)がある。この公報には、HFC系冷媒のR32は、圧縮機の吐出側の冷媒温度が従来の冷媒であるR410Aより10~15℃高くなるため、これを抑制するために圧縮機入口の冷媒かわき度を0.65以上かつ0.85以下にすることが記載されている。また特許第3435626号公報(特許文献2)には膨張弁から発生する冷媒流動音を抑えるために、膨張弁流入前にオリフィスとテーパーからなる流速調整手段を設置することが記載されている。 As background art of this technical field, there is patent 3956589 gazette (patent documents 1). In this publication, R32 of the HFC-based refrigerant has a refrigerant temperature on the discharge side of the compressor 10 to 15 ° C. higher than that of the conventional refrigerant R410A. It is described to make it 0.65 or more and 0.85 or less. Further, in Japanese Patent No. 3435626 (Patent Document 2), in order to suppress the refrigerant flow noise generated from the expansion valve, it is described that a flow rate adjusting means comprising an orifice and a taper is installed before the expansion valve flows.
特許第3956589号公報Patent No. 3956589 特許第3435626号公報Patent No. 3435626 gazette
 空気調和機は、蒸発器として作用する熱交換器出口を飽和ガス付近に制御することで、冷凍サイクルの運転効率を高くすることが出来る。ここで、地球温暖化係数の比較的低い冷媒であるR32は圧縮機の吐出側の冷媒温度が従来の冷媒であるR410Aに比べて10~15℃高くなる。R32を採用した場合に吐出側の冷媒温度を下げるため、圧縮機の入口側の冷媒かわき度をR410Aより小さくして制御することが考えられる。圧縮機の入口側の冷媒かわき度を小さくするために、暖房運転時に蒸発器として作用する室外熱交換器の出口側の冷媒を湿り状態で運転すると、蒸発器内に保有される冷媒量が多くなる。すると、凝縮器として作用する室内熱交換器の出口側の過冷却度が不足し、気液二相状態となるため、室内機から気液二相状態による冷媒流動音が発生するという問題がある。
 そこで本発明は、冷凍サイクルを循環する冷媒にR32単一又はR32を70質量%以上含む混合冷媒が封入された空気調和機において、暖房運転時に室内膨張弁における冷媒流動音を抑制することで快適性の向上を図ることを目的とする。
The air conditioner can increase the operation efficiency of the refrigeration cycle by controlling the heat exchanger outlet acting as the evaporator near the saturated gas. Here, R32, which is a refrigerant having a relatively low global warming potential, has a refrigerant temperature on the discharge side of the compressor 10 to 15 ° C. higher than that of R410A, which is a conventional refrigerant. When R32 is employed, in order to lower the refrigerant temperature on the discharge side, it is conceivable to control the degree of refrigerant slip on the inlet side of the compressor to be smaller than R410A. If the refrigerant on the outlet side of the outdoor heat exchanger, which acts as an evaporator during heating operation, is operated in a wet state to reduce the amount of refrigerant on the inlet side of the compressor, the amount of refrigerant stored in the evaporator is large. Become. Then, the degree of supercooling on the outlet side of the indoor heat exchanger acting as a condenser is insufficient, and a gas-liquid two-phase state occurs, so there is a problem that refrigerant flow noise is generated from the indoor unit due to the gas-liquid two-phase state .
Therefore, the present invention is an air conditioner in which a single refrigerant of R32 or a mixed refrigerant containing 70% or more of R32 is enclosed in a refrigerant circulating in a refrigeration cycle, which is comfortable by suppressing the refrigerant flow noise in the indoor expansion valve during heating operation. The purpose is to improve the quality.
 本願は上記課題を解決するために、「圧縮機及び室外熱交換器を備えた室外機と、室内熱交換器、室内膨張弁を備えた室内機とを、液配管及びガス配管を用いて接続することで冷凍サイクルを構成し、該冷凍サイクルを循環する冷媒にR32単一又はR32を70質量%以上含む混合冷媒が封入された空気調和機において、暖房運転時に、前記室外膨張弁による絞り制御を行うとともに、前記室内膨張弁による絞り制御を行うこと」を特徴とする。 In order to solve the above-mentioned problems, the present application “connects an outdoor unit equipped with a compressor and an outdoor heat exchanger with an indoor unit equipped with an indoor heat exchanger and an indoor expansion valve using liquid piping and gas piping. In an air conditioner in which a refrigeration cycle is configured and a refrigerant circulating R32 alone or a mixed refrigerant containing 70 mass% or more of R32 is enclosed in the refrigerant circulating in the refrigeration cycle, the throttling control by the outdoor expansion valve during heating operation And performing the throttling control by the indoor expansion valve.
 本発明によれば、冷凍サイクルを循環する冷媒にR32単一又はR32を70質量%以上含む混合冷媒が封入された空気調和機において、暖房運転時に室内膨張弁における冷媒流動音を抑制することで快適性の向上を図ることが可能となる。 According to the present invention, in the air conditioner in which R32 single or mixed refrigerant containing 70% by mass or more of R32 is enclosed in the refrigerant circulating in the refrigeration cycle, the refrigerant flow noise in the indoor expansion valve is suppressed during heating operation. It is possible to improve comfort.
空気調和機の冷凍サイクル構成図の例である。It is an example of the refrigerating cycle block diagram of an air conditioner. 暖房運転時の圧縮機吐出温度抑制による凝縮器出口状態変化の説明図である。It is an explanatory view of a condenser exit state change by compressor discharge temperature control at the time of heating operation. 暖房運転時の室内膨張弁前の冷媒流動様式の説明図である。It is an explanatory view of a refrigerant flow style before an indoor expansion valve at the time of heating operation. 本実施例の室内膨張弁制御による暖房運転時の冷媒流動音抑制の動作説明である。It is operation | movement description of refrigerant | coolant flow noise suppression at the time of the heating operation by the indoor expansion valve control of a present Example.
 以下、本発明の実施例について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本実施例の多室空気調和機の冷凍サイクル構成図の一例である。
室外機100は、室外熱交換器101、室外ファン102、室外膨張弁103、圧縮機104、アキュムレータ105、四方弁106、吐出温度センサ107、吐出圧力センサ108で構成されている。室内機200は、室内熱交換器201、室内ファン202、室内膨張弁203、冷媒液側温度センサ204で構成されている。室外機100と室内機200は液配管121とガス配管122で接続されている。
FIG. 1: is an example of the refrigerating-cycle block diagram of the multi-room air conditioner of a present Example.
The outdoor unit 100 includes an outdoor heat exchanger 101, an outdoor fan 102, an outdoor expansion valve 103, a compressor 104, an accumulator 105, a four-way valve 106, a discharge temperature sensor 107, and a discharge pressure sensor 108. The indoor unit 200 includes an indoor heat exchanger 201, an indoor fan 202, an indoor expansion valve 203, and a refrigerant liquid temperature sensor 204. The outdoor unit 100 and the indoor unit 200 are connected by a liquid pipe 121 and a gas pipe 122.
 次に、動作を説明する。
 冷房運転時は、圧縮機104から吐出した高温のガス冷媒は四方弁106を通って室外熱交換器101へ送られる。室外熱交換器101へ入った高温のガス冷媒は室外ファン102によって送られた室外空気と熱交換して凝縮して、液冷媒になる。その後、室外膨張弁103を通過後、液配管121を介して室内機200へ送られる。室内機200へ送られた冷媒は、室内膨張弁203で減圧されて室内熱交換器201へ入る。室内熱交換器201で室内ファン202によって送られた室内空気と熱交換して蒸発して、ガス冷媒になる。この時、室内機200から冷風が室内に送られて冷房が行われる。室内機200を出たガス冷媒は、ガス配管122を介して室外機100へ送られる。室外機100に入ったガス冷媒は四方弁106を通ってアキュムレータ105へ入る。アキュムレータ105は過渡的に液冷媒が戻った際に液冷媒を貯めるバッファタンクとして作用し、圧縮機104に液冷媒が戻ることによる液圧縮を防止する。通常時にはガス冷媒がアキュムレータ105から圧縮機104へ入り圧縮される。
Next, the operation will be described.
During the cooling operation, the high temperature gas refrigerant discharged from the compressor 104 is sent to the outdoor heat exchanger 101 through the four-way valve 106. The high temperature gas refrigerant that has entered the outdoor heat exchanger 101 exchanges heat with the outdoor air sent by the outdoor fan 102, condenses, and becomes liquid refrigerant. Thereafter, after passing through the outdoor expansion valve 103, it is sent to the indoor unit 200 via the liquid pipe 121. The refrigerant sent to the indoor unit 200 is decompressed by the indoor expansion valve 203 and enters the indoor heat exchanger 201. The indoor heat exchanger 201 exchanges heat with indoor air sent by the indoor fan 202 and evaporates to become a gas refrigerant. At this time, cool air is sent from the indoor unit 200 to the room to perform cooling. The gas refrigerant leaving the indoor unit 200 is sent to the outdoor unit 100 through the gas pipe 122. The gas refrigerant that has entered the outdoor unit 100 enters the accumulator 105 through the four-way valve 106. The accumulator 105 acts as a buffer tank for storing liquid refrigerant when the liquid refrigerant returns transiently, and prevents liquid compression due to the liquid refrigerant returning to the compressor 104. Under normal conditions, gas refrigerant enters the accumulator 104 from the accumulator 105 and is compressed.
 暖房運転は、圧縮機104から吐出した高温のガス冷媒は四方弁106を通ってガス配管122へ送られる。ガス配管122へ入った高温のガス冷媒は、室内機200へ送られる。室内機200へ入った高温のガス冷媒は室内熱交換器201で室内ファン202によって送られた室内空気と熱交換して凝縮して液冷媒になり、室内膨張弁203を通って室内機200から出る。室内熱交換器200で高温冷媒と室内空気が熱交換することによって暖房が行われる。室内機200を出た液冷媒は、その後、液配管121を介して室外機100へ流れる。室外機100へ入った液冷媒は室外膨張弁103を通過する際に減圧され、室外熱交換器101へ入る。室外熱交換器101で室外ファン102によって送られた室外空気と熱交換して蒸発して、ガス冷媒になる。ガス冷媒は四方弁106を通ってアキュムレータ105へ入る。アキュムレータ105では、過渡的に多く液冷媒が通過した際にバッファタンクとして作用し、液圧縮により圧縮機が損傷することを防止する。通常時にはガス冷媒がアキュムレータ105から圧縮機104へ入り圧縮される。 In the heating operation, the high temperature gas refrigerant discharged from the compressor 104 is sent to the gas pipe 122 through the four-way valve 106. The high temperature gas refrigerant that has entered the gas piping 122 is sent to the indoor unit 200. The high temperature gas refrigerant that has entered the indoor unit 200 exchanges heat with the indoor air sent by the indoor fan 202 in the indoor heat exchanger 201 and condenses to become liquid refrigerant, and passes through the indoor expansion valve 203 from the indoor unit 200 Get out. Heating is performed by heat exchange between the high temperature refrigerant and the indoor air in the indoor heat exchanger 200. The liquid refrigerant that has left the indoor unit 200 then flows to the outdoor unit 100 via the liquid pipe 121. The liquid refrigerant that has entered the outdoor unit 100 is decompressed when passing through the outdoor expansion valve 103 and enters the outdoor heat exchanger 101. The outdoor heat exchanger 101 exchanges heat with the outdoor air sent by the outdoor fan 102 and evaporates to become a gas refrigerant. Gas refrigerant enters accumulator 105 through four-way valve 106. The accumulator 105 acts as a buffer tank when a large amount of liquid refrigerant passes through transiently, and prevents the compressor from being damaged by liquid compression. Under normal conditions, gas refrigerant enters the accumulator 104 from the accumulator 105 and is compressed.
 暖房運転時には室内機200の冷媒液側温度センサ204で室内熱交換器201を出た冷媒温度が検知される。また、室外機100の吐出圧力センサ108で圧縮機104の吐出圧力が検知されている。圧縮機104の出口側から室内熱交換器201の出口側では、冷媒が高圧状態であるため、圧力損失が比較的小さい。よって、室内熱交換器201の出口側の過冷却度は以下の(1)式で推定することが出来る。 
   SC=Tsat(Pd)-TL-C  ・・・ (1) 
ここで、SC(K)は室内熱交換器出口過冷却度、Tsat( )は圧力の飽和温度、Pdは圧縮機吐出圧力(MPa)、TLは室内熱交換器出口温度(℃)、Cは冷媒圧力損失に関わる補正係数である。
 また、SC≦0(K)と算出された場合には、室内熱交換器201の出口側では気液二相状態と判定することができる。
During the heating operation, the refrigerant liquid temperature sensor 204 of the indoor unit 200 detects the temperature of the refrigerant that has left the indoor heat exchanger 201. Further, the discharge pressure of the compressor 104 is detected by the discharge pressure sensor 108 of the outdoor unit 100. From the outlet side of the compressor 104 to the outlet side of the indoor heat exchanger 201, the pressure loss is relatively small because the refrigerant is in a high pressure state. Therefore, the degree of subcooling of the outlet side of the indoor heat exchanger 201 can be estimated by the following equation (1).
SC = Tsat (Pd) -TL-C (1)
Here, SC (K) is the degree of supercooling at the indoor heat exchanger outlet, Tsat () is the saturation temperature of pressure, Pd is the compressor discharge pressure (MPa), TL is the indoor heat exchanger outlet temperature (° C), C is It is a correction factor related to the refrigerant pressure loss.
When SC ≦ 0 (K) is calculated, the outlet side of the indoor heat exchanger 201 can be determined as a gas-liquid two-phase state.
 図2はR32冷媒を使用した空気調和機における暖房運転時の圧縮機104の吐出温度抑制による凝縮器の出口側における状態変化の説明図である。
 冷媒R32を単一で又は70%以上の割合で使用する空気調和機においては、冷媒物性の影響により冷媒R410Aを使用した場合に比べて吐出温度が高くなる傾向がある。特に吐出温度の高くなりやすい条件としては、圧縮機104の圧力比が大きくなりやすい外気低温での暖房運転が挙げられる。
FIG. 2 is an explanatory view of a state change on the outlet side of the condenser due to the discharge temperature suppression of the compressor 104 during the heating operation of the air conditioner using the R32 refrigerant.
In an air conditioner that uses the refrigerant R32 singly or in a proportion of 70% or more, the discharge temperature tends to be higher than when using the refrigerant R410A due to the influence of the refrigerant physical properties. In particular, a condition in which the discharge temperature tends to be high includes a heating operation at a low temperature outside air where the pressure ratio of the compressor 104 tends to be large.
 図2は暖房低温での運転状態を示したモリエル線図であり、実線で示した運転状態は、圧縮機104の吸入側の冷媒の状態として若干(2~3K)の過熱度SH(K)をつけた状態で運転した状態を示している。このような運転状態においては、圧縮機104の吐出温度Td1が圧縮機104の信頼性上の許容上限温度(例えば、120℃)を超えてしまう場合がある。そのため、室外膨張弁103の開度を大きくすることにより、圧縮機104の吸入側の冷媒を湿り状態(吸入乾き度Xs)にして、圧縮機104の吐出温度をTd2(例えば、100℃)まで低下させることが望ましい。これにより、圧縮機104内の冷凍機油や高分子材料の劣化および希土類磁石の減磁などの圧縮機104の信頼性低下が生じることが防止される。 FIG. 2 is a Mollier diagram showing the operating condition at the low heating temperature, and the operating condition shown by the solid line is the degree of superheat SH (K) of a slight amount (2 to 3 K) as the refrigerant state on the suction side of the compressor 104. It shows the state of operation with the mark attached. In such an operating state, the discharge temperature Td1 of the compressor 104 may exceed the reliability upper limit allowable temperature (for example, 120 ° C.) of the compressor 104. Therefore, by increasing the opening degree of the outdoor expansion valve 103, the refrigerant on the suction side of the compressor 104 is made wet (suction dryness Xs), and the discharge temperature of the compressor 104 is set to Td2 (for example, 100 ° C.). It is desirable to lower it. As a result, deterioration of the compressor 104 such as deterioration of refrigeration oil and polymer material in the compressor 104 and demagnetization of a rare earth magnet can be prevented.
 ここで、圧縮機104の吸入側冷媒の吸入かわき度Xsを過剰に低下させると、冷凍機油の冷媒による希釈による粘度低下が生じることから、圧縮機104内部の摺動部の潤滑が不十分になるため、圧縮機104の吸入乾き度はXs>0.85とすることが望ましい。なお、ここで吸入乾き度とは、冷媒ガス質量流量を冷媒全質量流量で除した値であり、吸入乾き度≒冷媒ガス質量流量/冷媒全質量流量であり、冷媒中の冷凍機油は除いたものとする。したがって、圧縮機104には吸入乾き度がXs>0.85となる冷媒が吸入されるようにする。 Here, if the suction degree Xs of the suction side refrigerant of the compressor 104 is excessively reduced, the viscosity decreases due to dilution of the refrigerant oil, so that the lubrication of the sliding portion inside the compressor 104 is insufficient. Therefore, it is desirable that the suction dryness of the compressor 104 be Xs> 0.85. Here, the suction dryness is a value obtained by dividing the refrigerant gas mass flow by the refrigerant total mass flow, and suction dryness 吸入 refrigerant gas mass flow / refrigerant total mass flow, and refrigerator oil in the refrigerant is excluded. It shall be. Therefore, the compressor 104 is made to suck in the refrigerant whose suction dryness is Xs> 0.85.
 ここで、圧縮機104の吸入かわき度Xsを低下させると、その上流側に位置するアキュムレータ105や蒸発器として作用する室外熱交換器101の出口側でもかわき度が低い状態となる。そのため、アキュムレータ105と室外熱交換器101の内部に保有される冷媒量が増加することになる。すると、サイクル内の全冷媒量は不変であるため、凝縮器として作用する室内熱交換器201内の冷媒保有量が減少し、図2のXcoで示すように室内熱交換器201の出口側の冷媒状態が気液二相状態のかわき度Xco(例えばXco=0.01~0.1)となる。室内熱交換器201の出口側には室内膨張弁203が設置されており、通過する冷媒状態によっては冷媒流動音を発生させ、空気調和機の室内機200からの異音として在室者への不快感を生じさせることになる。 Here, when the suction degree Xs of the compressor 104 is decreased, the degree of the degree of abrasion also becomes low at the accumulator 105 located on the upstream side and the outlet side of the outdoor heat exchanger 101 acting as an evaporator. Therefore, the amount of refrigerant stored inside the accumulator 105 and the outdoor heat exchanger 101 is increased. Then, since the total amount of refrigerant in the cycle remains unchanged, the amount of refrigerant held in the indoor heat exchanger 201 acting as a condenser decreases, and as shown by Xco in FIG. 2, the outlet side of the indoor heat exchanger 201. The refrigerant state is a dry degree Xco of gas-liquid two-phase state (for example, Xco = 0.01 to 0.1). An indoor expansion valve 203 is installed at the outlet side of the indoor heat exchanger 201, and generates a refrigerant flow noise depending on the state of the refrigerant passing through, and generates noise to the occupant as abnormal noise from the indoor unit 200 of the air conditioner. It will cause discomfort.
 図3は垂直上昇流におけるフローパターン判定図(Heiwitt-Roberts線図)である(出典:気液二相流ハンドブック 10頁 日本機会学会編 1989年)。この図3は暖房運転時における、室内膨張弁203の入口側の配管部での冷媒流動様式を推定するために用いる。図3の横軸に示すのは、液冷媒の見かけの運動量ρL(jL2であり、ここで、ρLは液冷媒密度(kg/m3)、jL(m/s)は液冷媒が全断面積を満たして流れたとした液冷媒の見かけ流速である。図3の縦軸に示すのは、ガス冷媒の見かけの運動量ρG(jG2であり、ここで、ρGはガス冷媒密度(kg/m3)、jG(m/s)はガス冷媒が全断面積を満たして流れたとしたガス冷媒の見かけ流速である。 FIG. 3 is a flow pattern determination diagram (Heiwitt-Roberts diagram) in the vertical upward flow (Source: Gas-Liquid Two-Phase Flow Handbook, page 10, Nippon Opportunity Society, 1989). This FIG. 3 is used to estimate the refrigerant flow mode in the piping portion on the inlet side of the indoor expansion valve 203 during heating operation. The horizontal axis of FIG. 3 shows the apparent momentum L L (j L ) 2 of the liquid refrigerant, where ρ L is the liquid refrigerant density (kg / m 3 ) and j L (m / s) It is the apparent flow rate of the liquid refrigerant that the liquid refrigerant flowed to satisfy the entire cross-sectional area. The ordinate of FIG. 3 shows the apparent momentum G G (j G ) 2 of the gas refrigerant, where ρ G is the gas refrigerant density (kg / m 3 ) and j G (m / s) It is an apparent flow rate of the gas refrigerant in which the gas refrigerant flowed so as to satisfy the entire cross-sectional area.
 また、図3の中で領域が分割されているのは、スラグ流やチャーン流、環状流など流動様式のタイプであり、どの領域に入っているかを検証することで、おおよその流動様式を推定することができる。例として、暖房運転時の状態を線図に載せてみると、配管内径10.7mmでは●、7.93mmでは△、5.0mmでは◆で示すことが出来る。また、かわき度Xcoの値によって状態が変化し、Xco=0.01ではスラグ流または、気泡流、Xco=0.1以上では環状流に遷移することが分かる。冷媒流動音が特に不快に感じるのは間欠的にガスの塊が膨張弁を通過するスラグ流または、チャーン流の領域であり、この領域を常に避けて、たとえば気泡流の領域にすることが望ましい。 Also, the divided regions in Fig. 3 are the types of flow modes such as slag flow, churn flow, and annular flow, and an approximate flow mode can be estimated by examining which region they are in. can do. As an example, when the state at the time of heating operation is put on a diagram, it can be shown by ● for pipe diameter 10.7 mm, Δ for 7.93 mm, and ◆ for 5.0 mm. In addition, it is understood that the state changes depending on the value of the degree of dryness Xco, and transition to slug flow or bubbly flow at Xco = 0.01, and annular flow at Xco = 0.1 or more. The refrigerant flow noise is particularly unpleasant in the region of slug flow or churn flow where gas clumps intermittently pass through the expansion valve, and it is desirable to always avoid this region, for example in the region of bubbly flow .
 図3から配管内径を細くすれば右上側の領域になるため、気泡流の領域になると考えられる。しかし、圧縮機104の容量制御が行われる場合には冷媒循環量は一定ではないため、このように配管内径を細くして冷媒流動音を低減することは難しい。また、冷媒R410Aを用いた空気調和機と冷媒R32を用いた空気調和機で、室内機を共用した際においては、配管内径が変わらないと冷媒R32の方が冷媒R410Aよりも冷媒流量を少なくすることができる。よって冷媒流速が小さくなるため、よりスラグ流やチャーン流の領域となりやすく室内熱交換器201の出口側が二相域となることに起因する冷媒流動音が発生してしまう可能性がある。 As shown in FIG. 3, if the inner diameter of the pipe is reduced, the area on the upper right side is considered to be the area of bubble flow. However, when the displacement control of the compressor 104 is performed, it is difficult to reduce the refrigerant flow noise by narrowing the inner diameter of the pipe in this manner because the refrigerant circulation amount is not constant. In the air conditioner using the refrigerant R410A and the air conditioner using the refrigerant R32, when the indoor unit is shared, the refrigerant R32 has a smaller refrigerant flow rate than the refrigerant R410A if the pipe inner diameter does not change. be able to. Therefore, since the flow velocity of the refrigerant is reduced, the flow of the refrigerant may be more likely to occur in the region of the slag flow or the churn flow, and the refrigerant flow noise may occur due to the outlet side of the indoor heat exchanger 201 becoming the two phase region.
 そこで、本実施例の空気調和機では図4に示す室内膨張弁制御を実施するものである。
図4は本実施例の室内膨張弁203の制御による暖房運転時の冷媒流動音抑制の動作説明図である。吐出温度抑制のために吸入かわき度Xsを例えば0.9程度に制御すると、前述のように室内熱交換器201の出口側の冷媒は気液二相状態(かわき度Xco=0.01~0.1程度)になるが、このとき、室内膨張弁203はほぼ全開状態に制御されているため、その減圧量はΔPexpiと小さく、蒸発器として作用する室外熱交換器101の前に設けられている室外膨張弁103での減圧量ΔPexpoは大きく制御されている。このときの液配管121のかわき度はXLpである。
Therefore, in the air conditioner of the present embodiment, the indoor expansion valve control shown in FIG. 4 is performed.
FIG. 4: is operation | movement explanatory drawing of refrigerant | coolant flowing noise suppression at the time of heating operation by control of the indoor expansion valve 203 of a present Example. When suction suction degree Xs is controlled to, for example, about 0.9 for suppression of discharge temperature, the refrigerant on the outlet side of indoor heat exchanger 201 is in a gas-liquid two-phase state (the degree of dust Xco = 0.01 to 0) as described above. In this case, since the indoor expansion valve 203 is controlled to be almost fully open, the pressure reduction amount is small as ΔPexpi, and it is provided in front of the outdoor heat exchanger 101 acting as an evaporator. The pressure reduction amount ΔPexpo at the outdoor expansion valve 103 which is located is largely controlled. The degree of dryness of the liquid pipe 121 at this time is XLp.
 これに対して、本実施例の空気調和器では、前述の室内熱交換器201の出口側の過冷却度の演算式(1)を用いて過冷却度がゼロと判定されると、室内膨張弁203を絞るように制御する。これにより、室内膨張弁203による減圧量がΔPexpi’と大きくなるので、液配管のかわき度XLp’までかわき度を大きくさせる。これにより、液配管121の冷媒保有量を低減させるとともに、不足していた室内熱交換器201の冷媒保有量を増やすことができる。よって、室内熱交換器201の出口側の冷媒状態は過冷却度SCが2~3K以上確保して液状態とすることが出来る。したがって、室内膨張弁203で生じていた不快な冷媒流動音の発生を防止することが可能となる。また、また、冷媒R410Aを用いた空気調和機と冷媒R32を用いた空気調和機で、室内機が冷媒R410Aを用いた室内機から共用して用いられた場合、つまり室内機を共用した際に配管内径が変わらない場合であっても本実施例の制御方法によれば、不快な冷媒流動音の低減が可能となる。 On the other hand, in the air conditioner of the present embodiment, when the degree of subcooling is determined to be zero using the above-described arithmetic expression (1) of the degree of subcooling at the outlet of the indoor heat exchanger 201, indoor expansion is performed. The valve 203 is controlled to squeeze. As a result, the amount of pressure reduction by the indoor expansion valve 203 becomes large as ΔPexpi ′, so the degree of dryness is increased up to the degree of dryness XLp ′ of the liquid pipe. Thus, the amount of refrigerant held in the liquid pipe 121 can be reduced, and the amount of refrigerant held in the indoor heat exchanger 201, which has run short, can be increased. Therefore, the refrigerant state on the outlet side of the indoor heat exchanger 201 can be made into a liquid state by securing the subcooling degree SC of 2 to 3 K or more. Therefore, it is possible to prevent the generation of the unpleasant refrigerant flow noise generated in the indoor expansion valve 203. In addition, when the indoor unit is shared from the indoor unit using the refrigerant R410A in the air conditioner using the refrigerant R410A and the air conditioner using the refrigerant R32, that is, when the indoor unit is shared. Even if the inner diameter of the pipe does not change, the control method of this embodiment can reduce unpleasant refrigerant flow noise.
100 空気調和機の室外機
101 室外熱交換器
102 室外ファン
103 室外膨張弁
104 圧縮機
105 アキュムレータ
106 四方弁
107 吐出温度センサ
108 吐出圧力センサ
121 液配管
122 ガス配管
200 室内機
201 室内熱交換器
202 室内ファン
203 室内膨張弁
204 冷媒液側温度センサ
100 air conditioner outdoor unit 101 outdoor heat exchanger 102 outdoor fan 103 outdoor expansion valve 104 compressor 105 accumulator 106 four-way valve 107 discharge temperature sensor 108 discharge pressure sensor 121 liquid piping 122 gas piping 200 indoor unit 201 indoor heat exchanger 202 Indoor fan 203 Indoor expansion valve 204 Refrigerant liquid side temperature sensor

Claims (4)

  1.  圧縮機及び室外熱交換器を備えた室外機と、室内熱交換器、室内膨張弁を備えた室内機とを、液配管及びガス配管を用いて接続することで冷凍サイクルを構成し、
     該冷凍サイクルを循環する冷媒にR32単一又はR32を70質量%以上含む混合冷媒が封入された空気調和機において、
     暖房運転時に、前記室外膨張弁による絞り制御を行うとともに、前記室内膨張弁による絞り制御を行うことを特徴とする空気調和機。
    A refrigeration cycle is configured by connecting an outdoor unit provided with a compressor and an outdoor heat exchanger with an indoor unit provided with an indoor heat exchanger and an indoor expansion valve using liquid piping and gas piping,
    In an air conditioner in which a single refrigerant of R32 or a mixed refrigerant containing 70% by mass or more of R32 is sealed in a refrigerant circulating in the refrigeration cycle,
    An air conditioner characterized by performing throttling control by the outdoor expansion valve and throttling control by the indoor expansion valve at the time of heating operation.
  2.  請求項1に記載の空気調和機において、
     暖房運転時に前記室内熱交換器の出口側の過冷却度が設定値以下となった場合に、前記室外膨張弁による絞り制御を行うとともに、さらに前記室内膨張弁による絞り制御を行うことを特徴とする空気調和機。
    In the air conditioner according to claim 1,
    In the heating operation, when the degree of subcooling on the outlet side of the indoor heat exchanger becomes equal to or less than a set value, the throttling control by the outdoor expansion valve is performed, and the throttling control by the indoor expansion valve is further performed. Air conditioner.
  3.  請求項1又は2に記載の空気調和機において、
     前記圧縮機には吸入乾き度Xsが0.85より大きい冷媒が吸入されることを特徴とする空気調和機。
    The air conditioner according to claim 1 or 2
    An air conditioner characterized in that a refrigerant having a suction dryness Xs of more than 0.85 is sucked into the compressor.
  4.  請求項1又は2に記載の空気調和機において、
     前記室内機は、冷媒R410Aを用いた室内機から共用して用いられたことを特徴とする空気調和機。
    The air conditioner according to claim 1 or 2
    An air conditioner characterized in that the indoor unit is shared from an indoor unit using a refrigerant R410A.
PCT/JP2013/058900 2013-03-27 2013-03-27 Air conditioner WO2014155545A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/058900 WO2014155545A1 (en) 2013-03-27 2013-03-27 Air conditioner
CN201380073435.2A CN105143786B (en) 2013-03-27 2013-03-27 Air conditioner
JP2015507754A JP6224079B2 (en) 2013-03-27 2013-03-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/058900 WO2014155545A1 (en) 2013-03-27 2013-03-27 Air conditioner

Publications (1)

Publication Number Publication Date
WO2014155545A1 true WO2014155545A1 (en) 2014-10-02

Family

ID=51622625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058900 WO2014155545A1 (en) 2013-03-27 2013-03-27 Air conditioner

Country Status (3)

Country Link
JP (1) JP6224079B2 (en)
CN (1) CN105143786B (en)
WO (1) WO2014155545A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230436A1 (en) * 2018-05-31 2019-12-05 株式会社デンソー Refrigerant cycle device
EP3951285A4 (en) * 2019-03-26 2022-12-28 Fujitsu General Limited Air conditioning device
WO2023243022A1 (en) * 2022-06-16 2023-12-21 三菱電機株式会社 Heat pump device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115831A (en) * 2017-01-20 2018-07-26 ダイキン工業株式会社 Indoor unit
EP4047287A4 (en) * 2019-10-18 2023-03-08 Mitsubishi Electric Corporation Refrigeration cycle device
CN112432341A (en) * 2020-12-08 2021-03-02 合肥美的暖通设备有限公司 Control method of air conditioning system, air conditioning system and readable storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194015A (en) * 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
JP2001227822A (en) * 2000-02-17 2001-08-24 Mitsubishi Electric Corp Refrigerating air conditioner
JP2001295762A (en) * 2000-04-13 2001-10-26 Daikin Ind Ltd Compressor and refrigerating system
JP2007225264A (en) * 2006-02-27 2007-09-06 Mitsubishi Electric Corp Air conditioner
JP2012032108A (en) * 2010-08-02 2012-02-16 Daikin Industries Ltd Air conditioning device
JP2012159216A (en) * 2011-01-31 2012-08-23 Mitsubishi Electric Corp Outdoor unit, indoor unit, and air conditioning device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571772A (en) * 1991-09-11 1993-03-23 Matsushita Refrig Co Ltd Multiroom heating and cooling apparatus
EP1762794B1 (en) * 1999-10-18 2017-03-22 Daikin Industries, Ltd. Refrigerating device
JP2012030603A (en) * 2010-07-28 2012-02-16 Tgk Co Ltd Vehicle air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194015A (en) * 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
JP2001227822A (en) * 2000-02-17 2001-08-24 Mitsubishi Electric Corp Refrigerating air conditioner
JP2001295762A (en) * 2000-04-13 2001-10-26 Daikin Ind Ltd Compressor and refrigerating system
JP2007225264A (en) * 2006-02-27 2007-09-06 Mitsubishi Electric Corp Air conditioner
JP2012032108A (en) * 2010-08-02 2012-02-16 Daikin Industries Ltd Air conditioning device
JP2012159216A (en) * 2011-01-31 2012-08-23 Mitsubishi Electric Corp Outdoor unit, indoor unit, and air conditioning device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230436A1 (en) * 2018-05-31 2019-12-05 株式会社デンソー Refrigerant cycle device
JP2019211118A (en) * 2018-05-31 2019-12-12 株式会社デンソー Refrigeration cycle apparatus
EP3951285A4 (en) * 2019-03-26 2022-12-28 Fujitsu General Limited Air conditioning device
WO2023243022A1 (en) * 2022-06-16 2023-12-21 三菱電機株式会社 Heat pump device

Also Published As

Publication number Publication date
CN105143786A (en) 2015-12-09
CN105143786B (en) 2017-05-10
JP6224079B2 (en) 2017-11-01
JPWO2014155545A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2014155545A1 (en) Air conditioner
JP5318099B2 (en) Refrigeration cycle apparatus and control method thereof
JP5240332B2 (en) Refrigeration equipment
US20140290292A1 (en) Refrigerating and air-conditioning apparatus
JP6657613B2 (en) Air conditioner
US10208987B2 (en) Heat pump with an auxiliary heat exchanger for compressor discharge temperature control
JP6540904B2 (en) Air conditioner
JPWO2019171588A1 (en) Refrigeration cycle equipment
JP2011208860A (en) Air conditioner
JP2006250479A (en) Air conditioner
JP2018054237A (en) Air conditioner
EP3109566B1 (en) Air conditioning device
JP2017161193A (en) Air conditioner
JP2019020088A (en) Freezing unit
JP6576603B1 (en) Air conditioner
JP5871723B2 (en) Air conditioner and control method thereof
JP2008039233A (en) Refrigerating device
JP6643630B2 (en) Air conditioner
WO2015182484A1 (en) Freezer device
JP2010032105A (en) Air conditioner
WO2022029845A1 (en) Air conditioner
JP2009293887A (en) Refrigerating device
JP2019020089A (en) Freezing unit
JP2008180435A (en) Air conditioner
JP5908177B1 (en) Refrigeration cycle apparatus, air conditioner, and control method for refrigeration cycle apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380073435.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507754

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880046

Country of ref document: EP

Kind code of ref document: A1