WO2015182484A1 - Freezer device - Google Patents

Freezer device Download PDF

Info

Publication number
WO2015182484A1
WO2015182484A1 PCT/JP2015/064639 JP2015064639W WO2015182484A1 WO 2015182484 A1 WO2015182484 A1 WO 2015182484A1 JP 2015064639 W JP2015064639 W JP 2015064639W WO 2015182484 A1 WO2015182484 A1 WO 2015182484A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
flow rate
receiver
heat exchanger
supercooling
Prior art date
Application number
PCT/JP2015/064639
Other languages
French (fr)
Japanese (ja)
Inventor
麻里 須崎
昌弘 岡
淳哉 南
竜太 大浦
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2015182484A1 publication Critical patent/WO2015182484A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Definitions

  • the present invention relates to a refrigeration apparatus, in particular, a heat source unit having a receiver, and a utilization unit having a utilization side flow control valve and a utilization side heat exchanger are connected via a refrigerant communication pipe, and utilization side heat exchange.
  • the present invention relates to a refrigeration apparatus that controls the opening degree of a usage-side flow rate adjustment valve based on the degree of refrigerant supercooling at the outlet of a usage-side heat exchanger in an operation that causes the cooler to function as a refrigerant radiator.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-78026
  • an outdoor unit heat source unit having a receiver
  • an indoor electronic expansion valve use side flow control valve
  • an outdoor heat exchanger use side Air that can be operated simultaneously with cooling and heating
  • an indoor unit utilization unit having a heat exchanger is connected via a gas pipe and a liquid pipe (gas refrigerant communication pipe and liquid refrigerant communication pipe)
  • the indoor unit when the indoor unit (use unit) performs a heating operation (when the use side heat exchanger functions as a refrigerant radiator), a desired heating capacity is secured in the use unit.
  • supercooling degree control is performed to control the opening degree of the use side flow rate control valve based on the supercooling degree of the refrigerant at the outlet of the use side heat exchanger.
  • the pressure loss (liquid pressure loss) of the liquid refrigerant flowing through the liquid refrigerant communication pipe increases when the usage unit performs heating operation. There is. For this reason, the liquid refrigerant sent from the utilization unit to the heat source unit via the liquid refrigerant communication pipe is reduced in pressure according to the liquid pressure loss and accumulated in the receiver in a liquid saturated state, and the utilization side heat exchange The degree of supercooling of the refrigerant at the outlet of the vessel may increase depending on this hydraulic pressure loss.
  • An object of the present invention is that a heat source unit having a receiver, a utilization unit having a utilization side flow rate adjustment valve and a utilization side heat exchanger are connected via a refrigerant communication pipe, and the utilization side heat exchanger is a refrigerant.
  • the refrigeration apparatus that controls the opening degree of the use side flow rate control valve based on the degree of supercooling of the refrigerant at the outlet of the use side heat exchanger, even when the hydraulic pressure loss is large, The purpose is to appropriately control the degree of supercooling and to suppress a decrease in heating capacity.
  • a heat source unit having a compressor, a heat source side heat exchanger, and a receiver, and a utilization unit having a utilization side flow rate adjustment valve and a utilization side heat exchanger are provided as a gas refrigerant communication pipe. And a liquid refrigerant communication pipe.
  • the opening degree of the use side flow control valve is controlled based on the degree of subcooling of the refrigerant at the outlet of the use side heat exchanger. Control the degree of supercooling.
  • the receiver is provided with a receiver gas vent pipe that connects the upper part of the receiver and the suction side of the compressor, and the receiver gas vent pipe is provided with a gas vent-side flow rate adjustment valve capable of adjusting the opening.
  • the opening degree of the degassing flow rate control valve is controlled so that the use side flow rate control valve performing the cooling degree control satisfies the normal condition of the supercooling degree control capable of performing the supercooling degree control. .
  • the supercooling degree of the refrigerant at the outlet of the use side heat exchanger becomes larger than the desired supercooling degree such as the target supercooling degree, and the use side flow control valve Only by controlling the opening degree, the degree of supercooling of the refrigerant at the outlet of the use side heat exchanger cannot be reduced to a desired degree of supercooling such as the target degree of supercooling.
  • the receiver gas vent pipe is provided with a gas vent side flow rate control valve capable of adjusting the opening, and the gas vent side flow rate control valve is opened so as to satisfy the normal condition of the supercooling degree control.
  • the refrigeration apparatus according to the second aspect is the refrigeration apparatus according to the first aspect, wherein the normal condition of the supercooling degree control is that the opening degree of the use side flow rate control valve performing the supercooling degree control is the upper limit of the supercooling degree control. It is less than the opening.
  • whether or not the normal condition of the supercooling degree control is satisfied is determined based on whether or not the opening degree of the use side flow control valve is less than the supercooling degree control upper limit opening degree. That is, when the opening of the usage-side flow control valve is open to the supercooling degree control upper limit opening that is the upper limit opening in the supercooling degree control, the variable width of the usage side flow control valve is exceeded. Therefore, it is assumed that the degree of supercooling of the refrigerant at the outlet of the use side heat exchanger is so large that the supercooling degree control cannot be performed.
  • the opening degree of the use side flow rate control valve performing the supercooling degree control can be maintained below the supercooling degree control upper limit opening degree within the range of the variable width of the use side flow rate control valve.
  • Supercooling degree control can be performed.
  • the gas flow control valve performing the supercooling degree control satisfies the normal condition of the supercooling degree control. If the usage-side flow control valve that controls the degree of subcooling does not satisfy the normal conditions for supercooling control, the control is performed to reduce the opening of the vent flow control valve. Control to increase the degree.
  • the degassing side flow rate control valve is controlled to open and close depending on whether or not the normal supercooling degree control condition is satisfied. For this reason, the opening degree of the degassing side flow rate control valve can be maintained at the minimum opening degree necessary for satisfying the normal condition of the supercooling degree control.
  • the refrigeration apparatus is the refrigeration apparatus according to the third aspect, wherein when the receiver reaches a predetermined liquid level, the degassing side flow rate regardless of whether or not the normal condition of supercooling degree control is satisfied. Control to reduce the opening of the control valve.
  • the liquid level of the liquid refrigerant collected in the receiver may rise and rise to near full liquid.
  • FIG. 1 is a schematic configuration diagram of a cooling and heating simultaneous operation type air conditioning apparatus as an embodiment of a refrigeration apparatus according to the present invention. It is the schematic which shows the structure of a receiver and its periphery. It is a figure which shows the operation
  • FIG. 1 is a schematic configuration diagram of a cooling and heating simultaneous operation type air conditioning device 1 as an embodiment of the refrigeration device according to the present invention.
  • the cooling and heating simultaneous operation type air conditioner 1 is an apparatus used for air conditioning in a room such as a building by performing a vapor compression refrigeration cycle operation.
  • the cooling and heating simultaneous operation type air conditioner 1 mainly includes one heat source unit 2, a plurality of (here, four) use units 3 a, 3 b, 3 c, 3 d, and each use unit 3 a, 3 b, 3 c, 3 d.
  • the vapor compression refrigerant circuit 10 of the cooling and heating simultaneous operation type air conditioner 1 includes a heat source unit 2, utilization units 3a, 3b, 3c, and 3d, connection units 4a, 4b, 4c, and 4d, and a refrigerant communication tube. 7, 8 and 9 are connected to each other.
  • each of the use units 3a, 3b, 3c, and 3d can individually perform the cooling operation or the heating operation, and the cooling operation is performed from the use unit that performs the heating operation. Heat is recovered between the utilization units by sending the refrigerant to the utilization unit to be performed (here, simultaneous cooling / heating operation in which the cooling operation and the heating operation are performed simultaneously) is possible.
  • the heat load of the heat source unit 2 is changed according to the heat loads of the plurality of utilization units 3a, 3b, 3c, and 3d in consideration of the heat recovery (simultaneous cooling and heating operation). It is configured to balance.
  • the use units 3a, 3b, 3c, and 3d are installed by being embedded or suspended in a ceiling of a room such as a building, or by hanging on a wall surface of the room.
  • the utilization units 3a, 3b, 3c, and 3d are connected to the heat source unit 2 via the refrigerant communication tubes 7, 8, and 9 and the connection units 4a, 4b, 4c, and 4d, and constitute a part of the refrigerant circuit 10. ing.
  • the configuration of the usage units 3a, 3b, 3c, and 3d will be described. Since the usage unit 3a and the usage units 3b, 3c, and 3d have the same configuration, only the configuration of the usage unit 3a will be described here, and the configuration of the usage units 3b, 3c, and 3d will be described respectively. Instead of the subscript “a” indicating the respective parts of 3a, the subscript “b”, “c” or “d” is attached, and the description of each part is omitted.
  • the usage unit 3a mainly constitutes a part of the refrigerant circuit 10, and includes usage-side refrigerant circuits 13a (in the usage units 3b, 3c, and 3d, usage-side refrigerant circuits 13b, 13c, and 13d, respectively). Yes.
  • the utilization side refrigerant circuit 13a mainly has a utilization side flow rate adjustment valve 51a and a utilization side heat exchanger 52a.
  • the usage-side flow rate adjustment valve 51a is an electric expansion valve that can adjust the opening degree connected to the liquid side of the usage-side heat exchanger 52a in order to adjust the flow rate of the refrigerant flowing through the usage-side heat exchanger 52a. is there.
  • the use-side heat exchanger 52a is a device for performing heat exchange between the refrigerant and the room air, and includes, for example, a fin-and-tube heat exchanger configured by a large number of heat transfer tubes and fins.
  • the utilization unit 3a has an indoor fan 53a for sucking indoor air into the unit and exchanging heat, and then supplying the indoor air as supply air to the indoor unit 53a. It is possible to exchange heat with the refrigerant flowing through The indoor fan 53a is driven by the indoor fan motor 54a.
  • the use unit 3a is provided with various sensors. Specifically, a liquid side temperature sensor 82a that detects the temperature of the refrigerant on the liquid side of the use side heat exchanger 52a (an outlet when the use side heat exchanger 52a functions as a refrigerant radiator) is provided. .
  • the usage unit 3a includes a usage-side control unit 50a that controls the operations of the units 51a and 54a constituting the usage unit 3a.
  • the use-side control unit 50a includes a microcomputer and a memory provided for controlling the use unit 3a, and exchanges control signals and the like with a remote controller (not shown). Control signals and the like can be exchanged with the heat source unit 2.
  • the heat source unit 2 is installed on the rooftop of a building or the like, and is connected to the usage units 3a, 3b, 3c, and 3d via the refrigerant communication tubes 7, 8, and 9, and the usage units 3a, 3b, 3c,
  • the refrigerant circuit 10 is configured with 3d.
  • the heat source unit 2 mainly constitutes a part of the refrigerant circuit 10 and has a heat source side refrigerant circuit 12.
  • the heat source side refrigerant circuit 12 mainly includes a compressor 21, a plurality (here, two) of heat exchange switching mechanisms 22, 23, and two heat source side heat exchangers 24, 25 as main heat source side heat exchangers. And a precooling heat exchanger 35, a refrigerant cooler 36, heat source side flow control valves 26 and 27 corresponding to the two heat source side heat exchangers 24 and 25, and a precooling heat exchanger 35.
  • a refrigerant cooling side flow rate adjustment valve 37 corresponding to the refrigerant cooler 36, a receiver 28, a bridge circuit 29, a high / low pressure switching mechanism 30, a liquid side closing valve 31, a high / low pressure gas side closing valve 32, and a low pressure.
  • a gas side closing valve 33 corresponding to the refrigerant cooler 36, a receiver 28, a bridge circuit 29, a high / low pressure switching mechanism 30, a liquid side closing valve 31, a high / low pressure gas side closing valve 32, and a low pressure.
  • the compressor 21 is a device for compressing a refrigerant, and includes, for example, a scroll type positive displacement compressor capable of changing an operation capacity by inverter-controlling the compressor motor 21a.
  • the first heat exchange switching mechanism 22 uses the compressor 21 when the first heat source side heat exchanger 24 as the main heat source side heat exchanger functions as a refrigerant radiator (hereinafter referred to as “heat dissipation operation state”). And the gas side of the first heat source side heat exchanger 24 (see the solid line of the first heat exchange switching mechanism 22 in FIG. 1), and the first heat source side heat exchanger 24 is used as a refrigerant evaporator. When functioning (hereinafter referred to as “evaporation operation state”), the suction side of the compressor 21 and the gas side of the first heat source side heat exchanger 24 are connected (the first heat exchange switching mechanism of FIG. 1).
  • the second heat exchange switching mechanism 23 is compressed when the second heat source side heat exchanger 25 as the main heat source side heat exchanger functions as a refrigerant radiator (hereinafter referred to as “heat dissipation operation state”).
  • the discharge side of the machine 21 and the gas side of the second heat source side heat exchanger 25 are connected (see the solid line of the second heat exchange switching mechanism 23 in FIG. 1), and the second heat source side heat exchanger 25 is evaporated by the refrigerant.
  • the suction side of the compressor 21 and the gas side of the second heat source side heat exchanger 25 are connected (second heat exchange in FIG. 1).
  • This is a device capable of switching the refrigerant flow path in the heat source side refrigerant circuit 12 and includes, for example, a four-way switching valve. Then, by changing the switching state of the first heat exchange switching mechanism 22 and the second heat exchange switching mechanism 23, the first heat source side heat exchanger 24 and the second heat source side heat exchanger 25 individually evaporate the refrigerant. Switching to function as a heat sink or a radiator is possible.
  • the first heat source side heat exchanger 24 as the main heat source side heat exchanger is a device for performing heat exchange between the refrigerant and the outdoor air.
  • the first heat source side heat exchanger 24 includes a fin and It consists of a tube heat exchanger.
  • the gas side of the first heat source side heat exchanger 24 is connected to the first heat exchange switching mechanism 22, and the liquid side thereof is connected to the first heat source side flow rate adjustment valve 26.
  • the second heat source side heat exchanger 25 as the main heat source side heat exchanger is a device for performing heat exchange between the refrigerant and the outdoor air, and includes, for example, a fin configured by a large number of heat transfer tubes and fins. It consists of an and tube type heat exchanger.
  • the gas side of the second heat source side heat exchanger 25 is connected to the second heat exchange switching mechanism 23, and the liquid side thereof is connected to the second heat source side flow rate adjustment valve 27.
  • the pre-cooling heat exchanger 35 is a device for performing heat exchange between the refrigerant and the outdoor air, and includes, for example, a fin-and-tube heat exchanger constituted by a large number of heat transfer tubes and fins.
  • the pre-cooling heat exchanger 35 constitutes a part of the heat source side heat exchanger (that is, a part of the heat source side heat exchanger excluding the heat source side heat exchangers 24 and 25 as the main heat source side heat exchanger).
  • the heat source side refrigerant circuit 12 is provided so that the high-pressure gas refrigerant discharged from the compressor 21 always flows.
  • the pre-cooling heat exchanger 35 is different from the heat source side heat exchangers 24 and 25 as the main heat source side heat exchangers, and is a refrigerant evaporator or radiator such as the heat exchange switching mechanisms 22 and 23.
  • the gas side is connected to the discharge side of the compressor 21 without a mechanism for enabling switching to function. That is, unlike the heat source side heat exchangers 24 and 25 as the main heat source side heat exchanger, the precooling heat exchanger 35 always functions as a refrigerant radiator.
  • the 1st heat source side heat exchanger 24, the 2nd heat source side heat exchanger 25, and the pre-cooling heat exchanger 35 are comprised as an integrated heat source side heat exchanger.
  • the heat source unit 2 has an outdoor fan 34 for sucking outdoor air into the unit, exchanging heat, and then discharging the air outside the unit.
  • the outdoor air and the heat source side heat exchangers 24, 25, It is possible to exchange heat with the refrigerant flowing through 35.
  • the outdoor fan 34 is driven by an outdoor fan motor 34a capable of controlling the rotational speed.
  • the refrigerant cooler 36 is a device that cools the electrical component 20a by exchanging heat between the refrigerant radiated in the precooling heat exchanger 35 and the electrical component 20a, and is a liquid side of the precooling heat exchanger 35, that is, precooling heat. It is connected to the downstream side of the exchanger 35.
  • the refrigerant cooler 36 is configured, for example, by bringing a metal member having a refrigerant flow path into contact with the electrical component 20a.
  • the electrical component 20a is an electrical component for controlling each part constituting the heat source unit 2, and constitutes a heat source side control part 20 described later.
  • the electrical component 20a that needs to be cooled by the refrigerant cooler 36 includes a highly exothermic electrical component such as a power element or a reactor that constitutes an inverter for controlling the compressor motor 21a.
  • a highly heat-generating electrical component tends to increase in heat generation as the operating capacity of the compressor 21 increases.
  • the electrical component 20 a is illustrated separately from the heat source side control unit 20, but this is for convenience for explaining the function of the refrigerant cooler 36.
  • the first heat source side flow rate adjustment valve 26 is configured to adjust the opening degree connected to the liquid side of the first heat source side heat exchanger 24 in order to adjust the flow rate of the refrigerant flowing through the first heat source side heat exchanger 24. It is a possible electric expansion valve.
  • the second heat source side flow rate adjustment valve 27 has an opening degree connected to the liquid side of the second heat source side heat exchanger 25 in order to adjust the flow rate of the refrigerant flowing through the second heat source side heat exchanger 25 and the like. It is an electric expansion valve that can be adjusted.
  • the heat source side heat exchangers 24, 25, 35 are parts of the heat source side heat exchangers 24, 25 as main heat source side heat exchangers that are portions excluding the precooling heat exchanger 35, and the heat source side heat Heat source side flow rate adjustment valves 26 and 27 for adjusting the flow rate of the refrigerant flowing through the exchangers 24 and 25 are connected.
  • the refrigerant cooling side flow rate adjustment valve 37 is an electric motor capable of adjusting the opening degree connected to the downstream side of the refrigerant cooler 36 in order to adjust the flow rate of the refrigerant flowing through the precooling heat exchanger 35 and the refrigerant cooler 36. It is an expansion valve.
  • the heat source side heat exchangers 24 and 25 as the main heat source side heat exchangers are provided downstream of the heat source side flow rate adjusting valves 26 and 27 when functioning as a refrigerant radiator, that is, the first heat source side heat exchanger.
  • An outlet of the refrigerant cooling side flow rate adjustment valve 37 is connected to the downstream side of the valve 27.
  • the outlet of the refrigerant cooling side flow rate adjustment valve 37 is connected to join the outlet pipe 28 b of the receiver 28.
  • the receiver 28 is a container for temporarily storing the refrigerant flowing between the heat source side heat exchangers 24 and 25 and the use side refrigerant circuits 13a, 13b, 13c, and 13d.
  • a receiver inlet pipe 28 a is provided in the upper part of the receiver 28, and a receiver outlet pipe 28 b is provided in the lower part of the receiver 28.
  • the receiver inlet pipe 28a is provided with a receiver inlet on / off valve 28c capable of opening / closing control.
  • the inlet pipe 28 a and the outlet pipe 28 b of the receiver 28 are connected between the heat source side heat exchangers 24 and 25 and the liquid side shut-off valve 31 via the bridge circuit 29.
  • a receiver degassing pipe 41 is connected to the receiver 28.
  • the receiver degassing pipe 41 is provided so as to extract the refrigerant from the upper part of the receiver 28 separately from the receiver inlet pipe 28 a, and connects the upper part of the receiver 28 and the suction side of the compressor 21.
  • the receiver degassing pipe 41 is provided with a degassing side flow rate adjusting valve 42 for adjusting the flow rate of the refrigerant degassed from the receiver 28.
  • the degassing side flow rate adjustment valve 42 is an electric expansion valve capable of adjusting the opening degree.
  • the receiver 28 has a receiver liquid for detecting whether or not the liquid level in the receiver 28 has reached a predetermined position L1 below the position where the receiver degassing pipe 41 is connected.
  • a surface detection tube 43 is connected.
  • the receiver liquid level detection tube 43 is provided so as to extract the refrigerant from a portion near the middle in the vertical direction of the receiver 28.
  • tube 43 has joined the receiver degassing pipe
  • the receiver liquid level detection pipe 43 is provided so as to merge with a portion on the upstream side of the position where the gas vent side flow rate adjustment valve 42 of the receiver gas vent pipe 41 is provided.
  • the receiver gas vent pipe 41 is provided with a refrigerant heater 44 that heats the refrigerant flowing through the receiver gas vent pipe 41 on the downstream side of the position where the receiver liquid level detection pipe 43 joins.
  • the refrigerant heater 44 is a heat exchanger that heats the refrigerant flowing through the receiver degassing pipe 41 using the high-pressure gas refrigerant discharged from the compressor 21 as a heating source.
  • the refrigerant heater 44 divides a part of the high-pressure gas refrigerant discharged from the compressor 21 and sends it to the pre-cooling heat exchanger 35 that is a part of the heat source side heat exchangers 24, 25, 35. It consists of a pipe heat exchanger, a double pipe heat exchanger, etc.
  • the refrigerant heater 44 is connected to the upstream side of the precooling heat exchanger 35 through which the high-pressure gas refrigerant discharged from the compressor 21 always flows.
  • the refrigerant heater 44, the precooling heat exchanger 35, the refrigerant cooler 36, and the refrigerant cooling side flow rate adjustment valve 37 are branched, and the refrigerant heater 44, the precooling heat exchanger 35, the refrigerant cooler 36, and the refrigerant cooling side flow rate adjustment valve 37.
  • a flow that merges with the receiver outlet pipe 28b is obtained, and the refrigerant extracted from the receiver gas vent pipe 41 is heated by a part of the high-pressure gas refrigerant discharged from the compressor 21. .
  • the bridge circuit 29 when the refrigerant flows from the heat source side heat exchangers 24, 25 toward the liquid side closing valve 31 side, and when the refrigerant flows from the liquid side closing valve 31 side to the heat source side heat exchangers 24, 25 side.
  • the refrigerant has a function of causing the refrigerant to flow into the receiver 28 through the receiver inlet pipe 28a and out of the receiver 28 through the receiver outlet pipe 28b.
  • the bridge circuit 29 has four check valves 29a, 29b, 29c, and 29d.
  • the inlet check valve 29a is a check valve that only allows the refrigerant to flow from the heat source side heat exchangers 24 and 25 to the receiver inlet pipe 28a.
  • the inlet check valve 29b is a check valve that only allows refrigerant to flow from the liquid-side closing valve 31 side to the receiver inlet pipe 28a. That is, the inlet check valves 29a and 29b have a function of circulating the refrigerant from the heat source side heat exchangers 24 and 25 side or the liquid side closing valve 31 side to the receiver inlet pipe 28a.
  • the outlet check valve 29c is a check valve that allows only the refrigerant to flow from the receiver outlet pipe 28b to the liquid side closing valve 31 side.
  • the outlet check valve 29d is a check valve that only allows refrigerant to flow from the receiver outlet pipe 28b to the heat source side heat exchangers 24 and 25. That is, the outlet check valves 29c and 29d have a function of circulating the refrigerant from the receiver outlet pipe 28b to the heat source side heat exchangers 24 and 25 side or the liquid side closing valve 31 side.
  • the bridge circuit 29 is provided with a supercooling heat exchanger 45 as a liquid pipe heat exchanger that performs heat exchange with the refrigerant flowing on the liquid side of the heat source side heat exchangers 24 and 25, and the heat source side heat exchanger
  • a suction return pipe 46 is connected to return a part of the refrigerant flowing between the liquid side of 24, 25 and the liquid side of the use side heat exchangers 52 a, 52 b, 52 c, 52 d to the suction side of the compressor 21.
  • the supercooling heat exchanger 45 is provided in the receiver outlet pipe 28b, and the refrigerant flowing through the receiver outlet pipe 28b using the refrigerant flowing through the suction return pipe 46 as a cooling source (that is, the liquid side of the heat source side heat exchangers 24 and 25). And a refrigerant flowing between the liquid side of the use side heat exchangers 52a, 52b, 52c, and 52d).
  • the supercooling heat exchanger 45 includes a pipe heat exchanger, a double pipe heat exchanger, and the like configured by bringing the suction return pipe 46 and the receiver outlet pipe 28b into contact with each other.
  • the suction return pipe 46 is provided so as to be branched from the receiver outlet pipe 28 b, and connects the receiver outlet pipe 28 b and the suction side of the compressor 21 via the supercooling heat exchanger 45.
  • the suction return pipe 46 is provided with a suction return side flow rate adjustment valve 47 for adjusting the flow rate of the refrigerant branched from the receiver outlet pipe 28b.
  • the suction return side flow rate adjustment valve 47 is provided on the upstream side of the supercooling heat exchanger 45 of the suction return pipe 46.
  • the suction return side flow rate adjustment valve 47 is an electric expansion valve capable of adjusting the opening degree.
  • the high / low pressure gas side shut-off valve 32 and the suction side of the compressor 21 are connected (high / low pressure switching in FIG. 1).
  • the solid line of the mechanism 30 which is a device capable of switching the refrigerant flow path in the heat source side refrigerant circuit 12, and includes, for example, a four-way switching valve.
  • the liquid side shut-off valve 31, the high-low pressure gas side shut-off valve 32, and the low-pressure gas side shut-off valve 33 are provided at the connection ports with external devices and piping (specifically, the refrigerant communication pipes 7, 8, and 9). It is a valve.
  • the liquid side closing valve 31 is connected to the receiver inlet pipe 28a or the receiver outlet pipe 28b via the bridge circuit 29.
  • the high / low pressure gas side closing valve 32 is connected to the high / low pressure switching mechanism 30.
  • the low pressure gas side closing valve 33 is connected to the suction side of the compressor 21.
  • the heat source unit 2 is provided with various sensors. Specifically, the suction pressure sensor 71 detects the refrigerant pressure on the suction side of the compressor 21, the discharge pressure sensor 73 detects the refrigerant pressure on the discharge side of the compressor 21, and the receiver degassing pipe 41.
  • a degassing side temperature sensor 75 for detecting the temperature of the refrigerant and a suction return side temperature sensor 81 for detecting the temperature of the refrigerant flowing through the suction return pipe 46 are provided.
  • the degassing temperature sensor 75 is provided in the receiver degassing pipe 41 so as to detect the temperature of the refrigerant at the outlet of the refrigerant heater 44, and the suction return side temperature sensor 81 is provided in the supercooling heat exchanger 45.
  • a suction return pipe 46 is provided to detect the temperature of the refrigerant at the outlet.
  • the heat source unit 2 includes a heat source side control unit 20 that controls operations of the respective units 21 a, 22, 23, 26, 27, 28 c, 30, 34 a, 37, 42, and 47 constituting the heat source unit 2.
  • the heat source side control unit 20 includes a microcomputer and a memory provided to control the heat source unit 2, and uses side control units 50a, 50b, 50c of the usage units 3a, 3b, 3c, 3d. , 50d can exchange control signals and the like.
  • connection units 4a, 4b, 4c, and 4d are installed together with the use units 3a, 3b, 3c, and 3d in a room such as a building.
  • the connection units 4 a, 4 b, 4 c, 4 d are interposed between the use units 3, 4, 5 and the heat source unit 2 together with the refrigerant communication tubes 9, 10, 11, and constitute a part of the refrigerant circuit 10. ing.
  • connection units 4a, 4b, 4c, and 4d will be described. Since the connection unit 4a and the connection units 4b, 4c, and 4d have the same configuration, only the configuration of the connection unit 4a will be described here, and the configuration of the connection units 4b, 4c, and 4d will be described respectively. In place of the subscript “a” indicating the respective parts of 4a, the subscript “b”, “c” or “d” is attached, and the description of each part is omitted.
  • connection unit 4a mainly constitutes a part of the refrigerant circuit 10, and includes a connection side refrigerant circuit 14a (in the connection units 4b, 4c, and 4d, connection side refrigerant circuits 14b, 14c, and 14d, respectively). Yes.
  • the connection side refrigerant circuit 14a mainly includes a liquid connection pipe 61a and a gas connection pipe 62a.
  • the liquid connection pipe 61a connects the liquid refrigerant communication pipe 7 and the use side flow rate adjustment valve 51a of the use side refrigerant circuit 13a.
  • the gas connection pipe 62a includes a high pressure gas connection pipe 63a connected to the high and low pressure gas refrigerant communication pipe 8, a low pressure gas connection pipe 64a connected to the low pressure gas refrigerant communication pipe 9, and a high pressure gas connection pipe 63a and a low pressure gas connection. It has a merged gas connection pipe 65a that merges the pipe 64a.
  • the merged gas connection pipe 65a is connected to the gas side of the use side heat exchanger 52a of the use side refrigerant circuit 13a.
  • the high pressure gas connection pipe 63a is provided with a high pressure gas on / off valve 66a capable of opening / closing control
  • the low pressure gas connection pipe 64a is provided with a low pressure gas on / off valve 67a capable of opening / closing control.
  • connection unit 4a opens the low-pressure gas on / off valve 67a and allows the refrigerant flowing into the liquid connection pipe 61a through the liquid refrigerant communication pipe 7 to be used on the use-side refrigerant circuit.
  • the refrigerant evaporated by heat exchange with the indoor air in the use side heat exchanger 52a through the use side flow rate adjustment valve 51a of 13a and through the combined gas connection pipe 65a and the low pressure gas connection pipe 64a is sent through the use side heat exchanger 52a. It can function to return to the low-pressure gas refrigerant communication tube 9.
  • connection unit 4a closes the low pressure gas on / off valve 67a and opens the high pressure gas on / off valve 66a when the use unit 3a performs the heating operation, and passes through the high / low pressure gas refrigerant communication pipe 8.
  • the refrigerant flowing into the high-pressure gas connection pipe 63a and the merged gas connection pipe 65a is sent to the use-side heat exchanger 52a of the use-side refrigerant circuit 13a, and the refrigerant radiated by heat exchange with room air in the use-side heat exchanger 52a is It can function to return to the liquid refrigerant communication pipe 7 through the use side flow rate adjustment valve 51a and the liquid connection pipe 61a.
  • connection unit 4a Since this function has not only the connection unit 4a but also the connection units 4b, 4c, and 4d, the use side heat exchangers 52a, 52b, 52c, and 52d are connected by the connection units 4a, 4b, 4c, and 4d. Can be switched individually to function as a refrigerant evaporator or radiator.
  • connection unit 4a has a connection side control unit 60a for controlling the operation of each unit 66a, 67a constituting the connection unit 4a.
  • the connection-side control unit 60a includes a microcomputer and a memory provided for controlling the connection unit 60a, and exchanges control signals and the like with the use-side control unit 50a of the use unit 3a. Can be done.
  • the use side refrigerant circuits 13a, 13b, 13c, 13d, the heat source side refrigerant circuit 12, the refrigerant communication tubes 7, 8, 9 and the connection side refrigerant circuits 14a, 14b, 14c, 14d are connected.
  • the refrigerant circuit 10 of the cooling and heating simultaneous operation type air conditioner 1 is configured.
  • the heat source unit 2 including the compressor 21, the heat source side heat exchangers 24 and 25, and the receiver 28, the use side flow rate adjustment valves 51a, 51b, 51c, and 51d and the use side.
  • Use units 3a, 3b, 3c, 3d having heat exchangers 52a, 52b, 52c, 52d constitute a refrigeration apparatus connected via gas refrigerant communication pipes 8, 9 and liquid refrigerant communication pipe 7. Yes. And, as will be described later, in the operation in which the use side heat exchangers 52a, 52b, 52c, 52d function as a refrigerant radiator, such as heating operation, the use side heat exchangers 52a, 52b, 52c, Based on the supercooling degree SC of the refrigerant at the outlet 52d, supercooling degree control is performed to control the opening degree of the use side flow rate adjusting valves 51a, 51b, 51c, 51d.
  • the receiver 28 is provided with a receiver degassing pipe 41 that connects the upper part of the receiver 28 and the suction side of the compressor 21, and the receiver degassing pipe 41 is provided with a degassing side flow rate adjustment valve 42 that can adjust the opening degree.
  • a receiver degassing pipe 41 that connects the upper part of the receiver 28 and the suction side of the compressor 21, and the receiver degassing pipe 41 is provided with a degassing side flow rate adjustment valve 42 that can adjust the opening degree.
  • the refrigeration cycle operation of the cooling / heating simultaneous operation type air conditioner 1 includes a cooling operation, a heating operation, a cooling / heating simultaneous operation (evaporation load main), and a cooling / heating simultaneous operation (heat radiation load main).
  • a cooling operation there is only a use unit that performs a cooling operation (that is, an operation in which the use-side heat exchanger functions as an evaporator of the refrigerant), and the heat source-side heat exchanger with respect to the evaporation load of the entire use unit In this operation, 24 and 25 are made to function as refrigerant radiators.
  • the heating operation there are only use units that perform the heating operation (that is, the operation in which the use-side heat exchanger functions as a refrigerant radiator), and the main heat source side heat exchanger is used for the heat radiation load of the entire use unit.
  • the heat source side heat exchangers 24 and 25 function as a refrigerant evaporator.
  • Simultaneous cooling and heating operation is a cooling unit (that is, an operation in which the use side heat exchanger functions as a refrigerant evaporator) and a heating unit (ie, the use side heat exchanger is a refrigerant radiator).
  • the heat source side heat as the main heat source side heat exchanger with respect to the evaporation load of the entire utilization unit functions as refrigerant radiators.
  • Simultaneous cooling and heating operation (mainly heat radiation load) is a cooling unit (that is, an operation in which the use side heat exchanger functions as a refrigerant evaporator) and a heating unit (that is, the use side heat exchanger is a refrigerant radiator).
  • the heat source side heat as the main heat source side heat exchanger is used for the heat radiation load of the entire utilization unit. This is an operation in which the exchangers 24 and 25 function as a refrigerant evaporator.
  • all of the usage units 3a, 3b, 3c, and 3d perform a cooling operation (that is, an operation in which all of the usage-side heat exchangers 52a, 52b, 52c, and 52d function as a refrigerant evaporator).
  • a cooling operation that is, an operation in which all of the usage-side heat exchangers 52a, 52b, 52c, and 52d function as a refrigerant evaporator.
  • the heat source side heat exchangers 24 and 25 as the main heat source side heat exchanger function as a refrigerant radiator
  • the refrigerant circuit 10 of the air conditioner 1 is configured as shown in FIG. (For the flow, see the arrow attached to the refrigerant circuit 10 in FIG. 3).
  • the first heat exchange switching mechanism 22 is switched to the heat radiation operation state (the state indicated by the solid line of the first heat exchange switching mechanism 22 in FIG. 3), and the second heat exchange switching mechanism 22
  • the heat source side heat exchangers 24 and 25 are caused to function as refrigerant radiators by switching the operation state to the heat radiation operation state (the state indicated by the solid line of the second heat exchange switching mechanism 23 in FIG. 3).
  • the high / low pressure switching mechanism 30 is switched to the evaporative load operation state (the state indicated by the solid line of the high / low pressure switching mechanism 30 in FIG. 3).
  • the opening amounts of the heat source side flow rate adjusting valves 26 and 27 are adjusted, and the receiver inlet opening / closing valve 28c is in an open state.
  • the opening degree of the refrigerant cooling side flow rate adjustment valve 37 is adjusted so that the high-pressure gas refrigerant discharged from the compressor 21 flows into the precooling heat exchanger 35.
  • the suction return side flow rate adjustment valve 47 is adjusted in opening so that the supercooling heat exchanger 45 functions as a refrigerant cooler flowing through the receiver outlet pipe 28b.
  • the degassing side flow rate adjustment valve 42 is opened in a fully closed state (opening degree 0%) as described later.
  • connection units 4a, 4b, 4c and 4d the use units 3a and 3b are opened by opening the high pressure gas on / off valves 66a, 66b, 66c and 66d and the low pressure gas on / off valves 67a, 67b, 67c and 67d.
  • 3c, 3d use side heat exchangers 52a, 52b, 52c, 52d all function as refrigerant evaporators
  • use units 3a, 3b, 3c, 3d use side heat exchangers 52a, 52b, 52c, All of 52d and the suction side of the compressor 21 of the heat source unit 2 are connected via the high and low pressure gas refrigerant communication pipe 8 and the low pressure gas refrigerant communication pipe 9.
  • the usage-side flow rate adjustment valves 51a, 51b, 51c and 51d are adjusted in opening.
  • the high-pressure gas refrigerant compressed and discharged by the compressor 21 is sent to the heat source side heat exchangers 24 and 25 as main heat source side heat exchangers through the heat exchange switching mechanisms 22 and 23. It is done.
  • the high-pressure gas refrigerant compressed and discharged by the compressor 21 is also sent to the precooling heat exchanger 35 via the refrigerant heater 44.
  • the high-pressure gas refrigerant sent to the heat source side heat exchangers 24 and 25 radiates heat by exchanging heat with outdoor air as a heat source supplied by the outdoor fan 34 in the heat source side heat exchangers 24 and 25. To do.
  • the refrigerant that has radiated heat in the heat source side heat exchangers 24 and 25 is adjusted in flow rate in the heat source side flow rate adjusting valves 26 and 27, and then merges and passes through the inlet check valve 29a and the receiver inlet on / off valve 28c. Sent to.
  • the high-pressure gas refrigerant sent to the precooling heat exchanger 35 also dissipates heat by exchanging heat with outdoor air as a heat source supplied by the outdoor fan 34 in the precooling heat exchanger 35. And the refrigerant
  • the refrigerant that has passed through the refrigerant cooler 36 is adjusted in flow rate by the refrigerant cooling side flow rate adjustment valve 37 and then sent to the receiver outlet pipe 28b.
  • the refrigerant sent to the receiver 28 is temporarily stored in the receiver 28, and then sent to the receiver outlet pipe 28b.
  • a part of the refrigerant is branched to the suction return pipe 46, and then the refrigerant cooler 36 is connected.
  • the refrigerant that has passed through is joined to the supercooling heat exchanger 45.
  • the refrigerant flowing through the receiver outlet pipe 28 b sent to the supercooling heat exchanger 45 is cooled by the refrigerant whose flow rate is adjusted by the suction return side flow rate adjustment valve 47 of the suction return pipe 46.
  • the refrigerant flowing through the receiver outlet pipe 28 b cooled in the supercooling heat exchanger 45 is sent to the liquid refrigerant communication pipe 7 through the outlet check valve 29 c and the liquid side closing valve 31.
  • the refrigerant flowing through the suction return pipe 46 after heat exchange in the subcooling heat exchanger 45 is returned to the suction side of the compressor 21.
  • the refrigerant sent to the liquid refrigerant communication tube 7 is branched into four and sent to the liquid connection tubes 61a, 61b, 61c, 61d of the connection units 4a, 4b, 4c, 4d.
  • the refrigerant sent to the liquid connection pipes 61a, 61b, 61c, 61d is sent to the usage-side flow rate adjustment valves 51a, 51b, 51c, 51d of the usage units 3a, 3b, 3c, 3d.
  • the refrigerant sent to the usage-side flow rate adjustment valves 51a, 51b, 51c, 51d is adjusted in flow rate at the usage-side flow rate adjustment valves 51a, 51b, 51c, 51d, and then used-side heat exchangers 52a, 52b, 52c. , 52d evaporates into a low-pressure gas refrigerant by exchanging heat with the indoor air supplied by the indoor fans 53a, 53b, 53c, 53d.
  • the room air is cooled and supplied to the room, and the use units 3a, 3b, 3c, and 3d are cooled.
  • the low-pressure gas refrigerant is sent to the merged gas connection pipes 65a, 65b, 65c, and 65d of the connection units 4a, 4b, 4c, and 4d.
  • the low-pressure gas refrigerant sent to the merged gas connection pipes 65a, 65b, 65c, 65d passes through the high-pressure gas on / off valves 66a, 66b, 66c, 66d and the high-pressure gas connection pipes 63a, 63b, 63c, 63d.
  • the gas refrigerant communication pipe 8 is sent and merged, and the low pressure gas on / off valves 67a, 67b, 67c and 67d and the low pressure gas connection pipes 64a, 64b, 64c and 64d are sent to the low pressure gas refrigerant communication pipe 9 and merged. .
  • the low-pressure gas refrigerant sent to the gas refrigerant communication pipes 8 and 9 is returned to the suction side of the compressor 21 through the gas-side stop valves 32 and 33 and the high-low pressure switching mechanism 30.
  • some of the usage units 3a, 3b, 3c, and 3d perform a cooling operation (that is, an operation in which some of the usage-side heat exchangers 52a, 52b, 52c, and 52d function as a refrigerant evaporator).
  • a cooling operation that is, an operation in which some of the usage-side heat exchangers 52a, 52b, 52c, and 52d function as a refrigerant evaporator.
  • the heating operation for example, all of the usage units 3a, 3b, 3c, and 3d perform the heating operation (that is, the operation in which all of the usage-side heat exchangers 52a, 52b, 52c, and 52d function as a refrigerant radiator).
  • the heat source side heat exchangers 24 and 25 as the main heat source side heat exchanger function as a refrigerant evaporator
  • the refrigerant circuit 10 of the air conditioner 1 is configured as shown in FIG. (For the flow, see the arrow attached to the refrigerant circuit 10 in FIG. 4).
  • the first heat exchange switching mechanism 22 is switched to the evaporation operation state (the state indicated by the broken line of the first heat exchange switching mechanism 22 in FIG. 4), and the second heat exchange switching mechanism is selected.
  • the heat source side heat exchangers 24 and 25 are caused to function as a refrigerant evaporator by switching the operation state to the evaporation operation state (the state indicated by the broken line of the second heat exchange switching mechanism 23 in FIG. 4).
  • the high / low pressure switching mechanism 30 is switched to the heat radiation load operation state (the state indicated by the broken line of the high / low pressure switching mechanism 30 in FIG. 4).
  • the opening amounts of the heat source side flow rate adjusting valves 26 and 27 are adjusted, and the receiver inlet opening / closing valve 28c is in an open state.
  • the opening degree of the refrigerant cooling side flow rate adjustment valve 37 is adjusted so that the high-pressure gas refrigerant discharged from the compressor 21 flows into the precooling heat exchanger 35.
  • the suction return side flow rate adjustment valve 47 is adjusted in opening so that the supercooling heat exchanger 45 functions as a refrigerant cooler flowing through the receiver outlet pipe 28b.
  • the degassing side flow rate adjustment valve 42 uses the use side flow rate adjustment as described later.
  • the opening degree is adjusted in accordance with the control status of the valves 51 a, 51 b, 51 c, 51 d, and the gas refrigerant is extracted from the receiver 28 through the receiver gas vent pipe 41 to the suction side of the compressor 21.
  • the high pressure gas on / off valves 66a, 66b, 66c, and 66d are opened, and the low pressure gas on / off valves 67a, 67b, 67c, and 67d are closed, thereby using the use unit 3a.
  • 3b, 3c, 3d use side heat exchangers 52a, 52b, 52c, 52d all function as refrigerant radiators, and use units 3a, 3b, 3c, 3d use side heat exchangers 52a, 52b, All of 52c and 52d and the discharge side of the compressor 21 of the heat source unit 2 are connected via the high and low pressure gas refrigerant communication pipe 8.
  • the usage-side flow rate adjustment valves 51a, 51b, 51c, and 51d are, as will be described later, supercooling of the refrigerant at the outlets of the usage-side heat exchangers 52a, 52b, 52c, and 52d.
  • the degree of opening is adjusted by supercooling degree control that controls the degree of opening based on the degree SC.
  • the high-pressure gas refrigerant compressed and discharged by the compressor 21 is sent to the high-low pressure gas refrigerant communication pipe 8 through the high-low pressure switching mechanism 30 and the high-low pressure gas side closing valve 32.
  • the high-pressure gas refrigerant compressed and discharged by the compressor 21 is also sent to the refrigerant heater 44.
  • the opening degree of the degassing side flow rate adjustment valve 42 is adjusted to the open state, the gas refrigerant is extracted from the receiver 28 through the receiver degassing pipe 41, and thus the high pressure sent to the refrigerant heater 44.
  • the gas refrigerant is cooled by exchanging heat with the refrigerant flowing through the receiver degassing pipe 41.
  • the gas refrigerant flowing through the receiver degassing pipe 41 is heated and returned to the suction side of the compressor 21. Then, the refrigerant cooled in the refrigerant heater 44 is sent to the precooling heat exchanger 35.
  • the high-pressure refrigerant sent to the precooling heat exchanger 35 radiates heat by exchanging heat with outdoor air as a heat source supplied by the outdoor fan 34 in the precooling heat exchanger 35.
  • coolant thermally radiated in the pre-cooling heat exchanger 35 is sent to the refrigerant
  • the refrigerant that has passed through the refrigerant cooler 36 is adjusted in flow rate by the refrigerant cooling side flow rate adjustment valve 37 and then sent to the receiver outlet pipe 28b.
  • the high-pressure gas refrigerant sent to the high-low pressure gas refrigerant communication pipe 8 is branched into four and sent to the high-pressure gas connection pipes 63a, 63b, 63c, 63d of the connection units 4a, 4b, 4c, 4d. It is done.
  • the high-pressure gas refrigerant sent to the high-pressure gas connection pipes 63a, 63b, 63c, 63d passes through the high-pressure gas on / off valves 66a, 66b, 66c, 66d and the merged gas connection pipes 65a, 65b, 65c, 65d. It is sent to the use side heat exchangers 52a, 52b, 52c, 52d of 3b, 3c, 3d.
  • the high-pressure gas refrigerant sent to the use side heat exchangers 52a, 52b, 52c, and 52d is supplied by the indoor fans 53a, 53b, 53c, and 53d in the use side heat exchangers 52a, 52b, 52c, and 52d. Heat is dissipated by exchanging heat with indoor air. On the other hand, indoor air is heated and supplied indoors, and heating operation of utilization unit 3a, 3b, 3c, 3d is performed.
  • the refrigerant radiated in the use side heat exchangers 52a, 52b, 52c, 52d is adjusted in flow rate in the use side flow rate adjusting valves 51a, 51b, 51c, 51d, and then the liquid connection pipes of the connection units 4a, 4b, 4c, 4d. 61a, 61b, 61c and 61d.
  • the refrigerant sent to the liquid connection pipes 61a, 61b, 61c, 61d is sent to the liquid refrigerant communication pipe 7 and merges.
  • the refrigerant sent to the liquid refrigerant communication tube 7 is sent to the receiver 28 through the liquid side closing valve 31, the inlet check valve 29b, and the receiver inlet opening / closing valve 28c.
  • the opening degree of the degassing flow rate adjustment valve 42 is adjusted to the open state, the refrigerant sent to the receiver 28 is temporarily stored in the receiver 28 and separated into gas and liquid, The gas refrigerant is extracted to the suction side of the compressor 21 through the receiver gas vent pipe 41, and the liquid refrigerant is sent to the receiver outlet pipe 28b.
  • a part of the refrigerant sent to the receiver outlet pipe 28 b is branched into the suction return pipe 46, and then merged with the refrigerant passed through the refrigerant cooler 36 and sent to the supercooling heat exchanger 45.
  • the refrigerant flowing through the receiver outlet pipe 28 b sent to the supercooling heat exchanger 45 is cooled by the refrigerant whose flow rate is adjusted by the suction return side flow rate adjustment valve 47 of the suction return pipe 46.
  • the refrigerant flowing through the receiver outlet pipe 28b cooled in the supercooling heat exchanger 45 is sent to both the heat source side flow rate adjusting valves 26 and 27 through the outlet check valve 29d.
  • the refrigerant sent to the heat source side flow rate adjustment valves 26, 27 is adjusted in flow rate in the heat source side flow rate adjustment valves 26, 27, and then is supplied to the outdoor source 34 by the outdoor fan 34 in the heat source side heat exchangers 24, 25. By evaporating with air, it evaporates into a low-pressure gas refrigerant and is sent to the heat exchange switching mechanisms 22 and 23.
  • the low-pressure gas refrigerant sent to the heat exchange switching mechanisms 22 and 23 merges and returns to the suction side of the compressor 21.
  • some of the usage units 3a, 3b, 3c, and 3d perform a heating operation (that is, an operation in which some of the usage-side heat exchangers 52a, 52b, 52c, and 52d function as a refrigerant radiator).
  • a heating operation that is, an operation in which some of the usage-side heat exchangers 52a, 52b, 52c, and 52d function as a refrigerant radiator.
  • the heat radiation load of the entire use side heat exchangers 52a, 52b, 52c, 52d becomes small, only one of the heat source side heat exchangers 24, 25 (for example, the first heat source side heat exchanger 24) evaporates the refrigerant.
  • the operation to function as a vessel is performed.
  • the usage units 3a, 3b, and 3c are in cooling operation
  • the usage unit 3d is in heating operation
  • the first heat source side heat exchanger 24 as a main heat source side heat exchanger functions as a refrigerant heat radiator
  • the use side heat exchanger 52d functions as a refrigerant heat radiator.
  • the refrigerant circuit 10 of the air conditioner 1 is configured as shown in FIG. 5 (refer to the arrows attached to the refrigerant circuit 10 of FIG. 5 for the flow of the refrigerant).
  • the first heat exchange switching mechanism 22 is switched to the heat radiation operation state (the state indicated by the solid line of the first heat exchange switching mechanism 22 in FIG. 5), thereby Only the heat exchanger 24 is made to function as a refrigerant radiator. Further, the high / low pressure switching mechanism 30 is switched to the heat radiation load operation state (the state indicated by the broken line of the high / low pressure switching mechanism 30 in FIG. 5). Further, the opening degree of the first heat source side flow rate adjustment valve 26 is adjusted, the second heat source side flow rate adjustment valve 27 is in a closed state, and the receiver inlet on-off valve 28c is in an open state.
  • the degassing side flow rate adjustment valve 42 is, as will be described later, the use side flow rate adjustment valves 51a, 51b, 51c.
  • the opening degree is adjusted according to the control status of 51d, but the result is that the refrigerant is not sent from the use units 3a, 3b, 3c, and 3d to the heat source unit 2 via the liquid refrigerant communication tube 7. Therefore, the opening degree is adjusted to a fully closed state (opening degree 0%), and thereby, the gas refrigerant is not extracted from the receiver 28 to the suction side of the compressor 21 through the receiver gas vent pipe 41. .
  • connection units 4a, 4b, 4c, and 4d the high-pressure gas on-off valve 66d and the low-pressure gas on-off valves 67a, 67b, and 67c are opened, and the high-pressure gas on-off valves 66a, 66b, 66c, and the low-pressure gas
  • the use side heat exchangers 52a, 52b, 52c of the use units 3a, 3b, 3c function as a refrigerant evaporator, and the use side heat exchanger 52d of the use unit 3d.
  • the use side heat exchanger 52d of the use unit 3d and the discharge side of the compressor 21 of the heat source unit 2 are connected to the high / low pressure gas refrigerant communication pipe 8 in a connected state. To have become the connected state.
  • the opening amounts of the usage-side flow rate adjustment valves 51a, 51b, and 51c are adjusted.
  • the usage-side flow rate adjustment valve 51d is described later. As described above, the opening degree is adjusted by the supercooling degree control that controls the opening degree based on the supercooling degree SC of the refrigerant at the outlet of the use side heat exchanger 52d.
  • a part of the high-pressure gas refrigerant compressed and discharged by the compressor 21 passes through the high / low pressure switching mechanism 30 and the high / low pressure gas side shut-off valve 32. The remainder is sent to the first heat source side heat exchanger 24 through the first heat exchange switching mechanism 22.
  • the high-pressure gas refrigerant compressed and discharged by the compressor 21 is also sent to the precooling heat exchanger 35 via the refrigerant heater 44.
  • the high-pressure gas refrigerant sent to the high-low pressure gas refrigerant communication pipe 8 is sent to the high-pressure gas connection pipe 63d of the connection unit 4d.
  • the high-pressure gas refrigerant sent to the high-pressure gas connection pipe 63d is sent to the use-side heat exchanger 52d of the use unit 3d through the high-pressure gas on-off valve 66d and the merged gas connection pipe 65d.
  • the high-pressure gas refrigerant sent to the use side heat exchanger 52d dissipates heat by exchanging heat with the indoor air supplied by the indoor fan 53d in the use side heat exchanger 52d.
  • the indoor air is heated and supplied indoors, and the heating operation of the utilization unit 3d is performed.
  • the refrigerant that has radiated heat in the use side heat exchanger 52d is sent to the liquid connection pipe 61d of the connection unit 4d after the flow rate is adjusted in the use side flow rate adjustment valve 51d.
  • the high-pressure gas refrigerant sent to the first heat source side heat exchanger 24 dissipates heat by exchanging heat with outdoor air as a heat source supplied by the outdoor fan 34 in the first heat source side heat exchanger 24. To do.
  • the refrigerant that has radiated heat in the first heat source side heat exchanger 24 is adjusted in flow rate in the first heat source side flow rate adjustment valve 26 and then sent to the receiver 28 through the inlet check valve 29a and the receiver inlet opening / closing valve 28c.
  • the high-pressure gas refrigerant sent to the precooling heat exchanger 35 also dissipates heat by exchanging heat with outdoor air as a heat source supplied by the outdoor fan 34 in the precooling heat exchanger 35.
  • coolant thermally radiated in the pre-cooling heat exchanger 35 is sent to the refrigerant
  • the refrigerant that has passed through the refrigerant cooler 36 is adjusted in flow rate by the refrigerant cooling side flow rate adjustment valve 37 and then sent to the receiver outlet pipe 28b.
  • the refrigerant sent to the receiver 28 is temporarily stored in the receiver 28, and then sent to the receiver outlet pipe 28b.
  • a part of the refrigerant is branched to the suction return pipe 46, and then the refrigerant cooler 36 is connected.
  • the refrigerant that has passed through is joined to the supercooling heat exchanger 45.
  • the refrigerant flowing through the receiver outlet pipe 28 b sent to the supercooling heat exchanger 45 is cooled by the refrigerant whose flow rate is adjusted by the suction return side flow rate adjustment valve 47 of the suction return pipe 46.
  • the refrigerant flowing through the receiver outlet pipe 28 b cooled in the supercooling heat exchanger 45 is sent to the liquid refrigerant communication pipe 7 through the outlet check valve 29 c and the liquid side closing valve 31.
  • the refrigerant flowing through the suction return pipe 46 after heat exchange in the subcooling heat exchanger 45 is returned to the suction side of the compressor 21.
  • the refrigerant radiated in the use side heat exchanger 52d and sent to the liquid connection pipe 61d is sent to the liquid refrigerant communication pipe 7 and radiated in the first heat source side heat exchanger 24 to be radiated. It merges with the refrigerant sent to.
  • the refrigerant merged in the liquid refrigerant communication pipe 7 is branched into three and sent to the liquid connection pipes 61a, 61b, 61c of the connection units 4a, 4b, 4c. Then, the refrigerant sent to the liquid connection pipes 61a, 61b, 61c is sent to the use side flow rate adjusting valves 51a, 51b, 51c of the use units 3a, 3b, 3c.
  • the refrigerant sent to the usage-side flow rate adjustment valves 51a, 51b, 51c is adjusted in flow rate at the usage-side flow rate adjustment valves 51a, 51b, 51c, and then the indoor fan in the usage-side heat exchangers 52a, 52b, 52c.
  • the indoor air supplied by 53a, 53b, 53c it evaporates and becomes a low-pressure gas refrigerant.
  • the room air is cooled and supplied to the room, and the use units 3a, 3b, and 3c are cooled.
  • the low-pressure gas refrigerant is sent to the merged gas connection pipes 65a, 65b, and 65c of the connection units 4a, 4b, and 4c.
  • the low-pressure gas refrigerant sent to the merged gas connection pipes 65a, 65b, 65c is sent to the low-pressure gas refrigerant communication pipe 9 through the low-pressure gas on-off valves 67a, 67b, 67c and the low-pressure gas connection pipes 64a, 64b, 64c. Be merged.
  • the low-pressure gas refrigerant sent to the low-pressure gas refrigerant communication tube 9 is returned to the suction side of the compressor 21 through the gas-side shut-off valve 33.
  • the operation in the simultaneous cooling and heating operation (mainly evaporation load) is performed.
  • the evaporation load of the entire use side heat exchangers 52a, 52b, 52c, and 52d is reduced due to a decrease in the number of use units (that is, use side heat exchangers functioning as refrigerant evaporators) that perform the cooling operation.
  • the second heat source side heat exchanger 25 by causing the second heat source side heat exchanger 25 to function as a refrigerant evaporator, the heat radiation load of the first heat source side heat exchanger 24 and the evaporation load of the second heat source side heat exchanger 25 are reduced.
  • the operation of canceling and reducing the heat radiation load of the heat source side heat exchangers 24 and 25 as a whole is performed.
  • the usage units 3a, 3b, 3c are operated for heating, and the usage unit 3d is operated for cooling (that is, the usage-side heat exchangers 52a, 52b, 52c are refrigerants).
  • the first heat source side heat exchanger 24 as the main heat source side heat exchanger as the refrigerant evaporator, and the use side heat exchanger 52d functions as a refrigerant evaporator.
  • the refrigerant circuit 10 of the air-conditioning apparatus 1 is configured as shown in FIG. 6 (refer to the arrows attached to the refrigerant circuit 10 in FIG. 6 for the flow of the refrigerant).
  • the first heat exchange switching mechanism 22 is switched to the evaporation operation state (the state indicated by the broken line of the first heat exchange switching mechanism 22 in FIG. 6), thereby Only the heat exchanger 24 functions as a refrigerant evaporator.
  • the high / low pressure switching mechanism 30 is switched to the heat radiation load operation state (the state indicated by the broken line of the high / low pressure switching mechanism 30 in FIG. 6).
  • the opening degree of the first heat source side flow rate adjustment valve 26 is adjusted, the second heat source side flow rate adjustment valve 27 is in a closed state, and the receiver inlet on-off valve 28c is in an open state.
  • the degassing side flow rate adjustment valve 42 is used as described later. , 51b, 51c, the opening degree is adjusted, and the gas refrigerant is extracted from the receiver 28 to the suction side of the compressor 21 through the receiver degassing pipe 41.
  • connection units 4a, 4b, 4c and 4d the high pressure gas on / off valves 66a, 66b and 66c and the low pressure gas on / off valve 67d are opened, and the high pressure gas on / off valve 66d and the low pressure gas on / off valve 67a, By closing 67b and 67c, the utilization side heat exchangers 52a, 52b and 52c of the utilization units 3a, 3b and 3c function as refrigerant radiators, and the utilization side heat exchanger 52d of the utilization unit 3d.
  • the utilization side heat exchanger 52d of the utilization unit 3d and the suction side of the compressor 21 of the heat source unit 2 are connected via the low-pressure gas refrigerant communication pipe 9, and
  • the use side heat exchangers 52a, 52b, 52c of the use units 3a, 3b, 3c and the discharge side of the compressor 21 of the heat source unit 2 connect the high / low pressure gas refrigerant communication pipe 8.
  • the usage-side flow rate adjustment valve 51d is adjusted in opening, and in the usage units 3a, 3b, and 3c that perform the heating operation, the usage-side flow rate adjustment valves 51a, 51b, and 51c are described later.
  • the opening degree is adjusted by the supercooling degree control that controls the opening degree based on the supercooling degree SC of the refrigerant at the outlets of the use side heat exchangers 52a, 52b, and 52c.
  • the high-pressure gas refrigerant compressed and discharged by the compressor 21 is sent to the high-low pressure gas refrigerant communication pipe 8 through the high-low pressure switching mechanism 30 and the high-low pressure gas side closing valve 32.
  • the high-pressure gas refrigerant compressed and discharged by the compressor 21 is also sent to the refrigerant heater 44.
  • the opening degree of the degassing side flow rate adjustment valve 42 is adjusted to the open state, the gas refrigerant is extracted from the receiver 28 through the receiver degassing pipe 41, and thus the high pressure sent to the refrigerant heater 44.
  • the gas refrigerant is cooled by exchanging heat with the refrigerant flowing through the receiver degassing pipe 41.
  • the gas refrigerant flowing through the receiver degassing pipe 41 is heated and returned to the suction side of the compressor 21. Then, the refrigerant cooled in the refrigerant heater 44 is sent to the precooling heat exchanger 35.
  • the high-pressure refrigerant sent to the precooling heat exchanger 35 radiates heat by exchanging heat with outdoor air as a heat source supplied by the outdoor fan 34 in the precooling heat exchanger 35.
  • coolant thermally radiated in the pre-cooling heat exchanger 35 is sent to the refrigerant
  • the refrigerant that has passed through the refrigerant cooler 36 is adjusted in flow rate by the refrigerant cooling side flow rate adjustment valve 37 and then sent to the receiver outlet pipe 28b.
  • the high-pressure gas refrigerant sent to the high-low pressure gas refrigerant communication pipe 8 is branched into three and sent to the high-pressure gas connection pipes 63a, 63b, 63c of the connection units 4a, 4b, 4c.
  • the high-pressure gas refrigerant sent to the high-pressure gas connection pipes 63a, 63b, and 63c passes through the high-pressure gas on / off valves 66a, 66b, and 66c and the merged gas connection pipes 65a, 65b, and 65c, and the use side of the use units 3a, 3b, and 3c. It is sent to the heat exchangers 52a, 52b, 52c.
  • the high-pressure gas refrigerant sent to the use side heat exchangers 52a, 52b, 52c exchanges heat with the indoor air supplied by the indoor fans 53a, 53b, 53c in the use side heat exchangers 52a, 52b, 52c. To dissipate heat. On the other hand, room air is heated and supplied indoors, and heating operation of utilization unit 3a, 3b, 3c is performed.
  • the refrigerant that has dissipated heat in the usage-side heat exchangers 52a, 52b, and 52c is adjusted in flow rate in the usage-side flow rate adjustment valves 51a, 51b, and 51c, and then into the liquid connection pipes 61a, 61b, and 61c of the connection units 4a, 4b, and 4c. Sent.
  • the refrigerant sent to the liquid connection pipes 61a, 61b, 61c, 61d is sent to the liquid refrigerant communication pipe 7 and merges.
  • a part of the refrigerant merged in the liquid refrigerant communication pipe 7 is sent to the liquid connection pipe 61d of the connection unit 4d, and the rest passes through the liquid side closing valve 31, the inlet check valve 29b, and the receiver inlet opening / closing valve 28c. It is sent to the receiver 28.
  • the refrigerant sent to the liquid connection pipe 61d of the connection unit 4d is sent to the use side flow rate adjustment valve 51d of the use unit 3d.
  • the refrigerant sent to the use-side flow rate adjustment valve 51d is subjected to heat exchange with the indoor air supplied by the indoor fan 53d in the use-side heat exchanger 52d after the flow rate is adjusted in the use-side flow rate adjustment valve 51d. As a result, it evaporates into a low-pressure gas refrigerant. On the other hand, the indoor air is cooled and supplied to the room, and the cooling operation of the utilization unit 3d is performed. Then, the low-pressure gas refrigerant is sent to the merged gas connection pipe 65d of the connection unit 4d.
  • the low-pressure gas refrigerant sent to the merged gas connection pipe 65d is sent to the low-pressure gas refrigerant communication pipe 9 through the low-pressure gas on-off valve 67d and the low-pressure gas connection pipe 64d.
  • the low-pressure gas refrigerant sent to the low-pressure gas refrigerant communication tube 9 is returned to the suction side of the compressor 21 through the gas-side shut-off valve 33.
  • the refrigerant sent to the receiver 28 is temporarily stored in the receiver 28 and separated into gas and liquid. Thereafter, the gas refrigerant is extracted to the suction side of the compressor 21 through the receiver gas vent pipe 41, and the liquid refrigerant is sent to the receiver outlet pipe 28b. A part of the refrigerant sent to the receiver outlet pipe 28 b is branched into the suction return pipe 46, and then merged with the refrigerant passed through the refrigerant cooler 36 and sent to the supercooling heat exchanger 45.
  • the refrigerant flowing through the receiver outlet pipe 28 b sent to the supercooling heat exchanger 45 is cooled by the refrigerant whose flow rate is adjusted by the suction return side flow rate adjustment valve 47 of the suction return pipe 46.
  • the refrigerant flowing through the receiver outlet pipe 28b cooled in the supercooling heat exchanger 45 is sent to the first heat source side flow rate adjustment valve 26 through the outlet check valve 29d.
  • the refrigerant sent to the first heat source side flow rate adjustment valve 26 is adjusted in flow rate in the first heat source side flow rate adjustment valve 26, and then is supplied to the outdoor side supplied by the outdoor fan 34 in the first heat source side heat exchanger 24.
  • the low-pressure gas refrigerant sent to the first heat exchange switching mechanism 22 merges with the low-pressure gas refrigerant returned to the suction side of the compressor 21 through the low-pressure gas refrigerant communication tube 9 and the gas-side shut-off valve 33, Returned to the suction side of the compressor 21.
  • the operation in the simultaneous cooling and heating operation (mainly heat radiation load) is performed.
  • the heat radiation load of the entire use side heat exchangers 52a, 52b, 52c, and 52d is reduced due to a decrease in the number of use units (that is, use side heat exchangers functioning as refrigerant radiators) that perform the heating operation.
  • the second heat source side heat exchanger 25 by causing the second heat source side heat exchanger 25 to function as a refrigerant radiator, the evaporation load of the first heat source side heat exchanger 24 and the heat radiation load of the second heat source side heat exchanger 25 are reduced.
  • the operation of canceling and reducing the evaporation load of the heat source side heat exchangers 24 and 25 as a whole is performed.
  • this supercooling degree control it is used so that the supercooling degree SC at the outlets of the use side heat exchangers 52a, 52b, 52c, and 52d functioning as refrigerant radiators approaches the target supercooling degree SCt.
  • the opening degree MV of the side flow rate adjusting valves 51a, 51b, 51c, 51d is controlled.
  • the refrigerant subcooling degree SC at the outlets of the use side heat exchangers 52a, 52b, 52c, and 52d is obtained by converting the refrigerant pressure on the discharge side of the compressor 21 detected by the discharge pressure sensor 73 into a saturation temperature.
  • the refrigerant temperature Tirl on the liquid side of the use side heat exchangers 52a, 52b, 52c, 52d detected by the liquid side temperature sensors 82a, 82b, 82c, 82d is subtracted from the condensation temperature Tc obtained in this way.
  • the target subcooling degree SCt is set to a value suitable for exhibiting the heat exchange performance of the use side heat exchangers 52a, 52b, 52c, and 52d.
  • the opening MV of the use side flow rate adjustment valves 51a, 51b, 51c, 51d is increased within the range of the variable width in the supercooling degree control. Take control.
  • the opening MV of the use side flow rate adjustment valves 51a, 51b, 51c, 51d is made smaller within the range of the variable width in the supercooling degree control.
  • the variable width of the opening degree MV of the use side flow rate adjustment valves 51a, 51b, 51c, 51d in the supercooling degree control is the supercooling degree control lower limit opening degree MVm (for example, the opening degree 0% to Several degree) to a supercooling degree control upper limit opening degree MVx (for example, opening degree 100%) close to a fully opened state.
  • each usage side is set so that the degree of supercooling SC at the outlets of the use side heat exchangers 52a, 52b, 52c, and 52d functioning as a refrigerant radiator approaches the target degree of supercooling SCt.
  • the opening degree MV of the flow rate adjusting valves 51a, 51b, 51c, 51d is controlled within the range of the variable range from the supercooling degree control lower limit opening degree MVm to the supercooling degree control upper limit opening degree MVx.
  • the length of the liquid refrigerant communication tube 7 and the like vary depending on the installation conditions and construction status of the cooling and heating simultaneous operation type air conditioner 1, when at least one of the usage units 3a, 3b, 3c, and 3d performs the heating operation,
  • the pressure loss (liquid pressure loss) of the liquid refrigerant flowing through the refrigerant communication tube 7 may increase.
  • the liquid refrigerant sent from the utilization units 3a, 3b, 3c, and 3d to the heat source unit 2 via the liquid refrigerant communication pipe 7 is reduced in pressure according to the liquid pressure loss, and the receiver 28 is in a liquid saturated state.
  • the refrigerant at the outlets of the use side heat exchangers 52a, 52b, 52c, and 52d has a supercooling degree SC corresponding to the liquid pressure loss.
  • SC supercooling degree
  • the usage units 3a, 3b, 3c, and 3d perform the heating operation in a state where the opening degree of the degassing side flow rate adjustment valve 42 is adjusted to the fully closed state (opening degree 0%), on the Mollier diagram of FIG. It becomes like the refrigeration cycle shown in.
  • the liquid refrigerant sent from the utilization units 3a, 3b, 3c, and 3d to the heat source unit 2 via the liquid refrigerant communication tube 7 has a pressure that decreases according to the liquid pressure loss as shown by a point D in FIG.
  • the liquid is saturated in the receiver 28.
  • coolant in the exit of utilization side heat exchanger 52a, 52b, 52c, 52d will increase the degree of supercooling SC according to a hydraulic pressure loss, as shown to the point C of FIG.
  • the degree of supercooling SC of the refrigerant at the outlets of the use side heat exchangers 52a, 52b, 52c, 52d exceeds the variable width of the use side flow rate adjustment valves 51a, 51b, 51c, 51d, so that the degree of supercooling cannot be controlled.
  • the heat dissipation capability of the use side heat exchangers 52a, 52b, 52c, 52d may be reduced, and the heating capability of the use units 3a, 3b, 3c, 3d may be reduced. That is, if the conditions under which the usage-side flow rate adjustment valves 51a, 51b, 51c, 51d can perform the supercooling degree control are the supercooling degree control normal conditions, The supercooling degree SC of the refrigerant at the outlets of the use side heat exchangers 52a, 52b, 52c, 52d becomes larger than the desired supercooling degree (here, the target supercooling degree SCt), and the use side flow control valves 51a, By simply controlling the opening MV of 51b, 51c, 51d, the supercooling degree SC of the refrigerant at the outlets of the use side heat exchangers 52a, 52b, 52c, 52d is set to the desired supercooling degree (here, the target supercooling degree). SCt) cannot be made smaller.
  • the pressure loss (liquid pressure loss) of the liquid refrigerant flowing through the liquid refrigerant communication pipe 7 is increased when at least one of the use units 3a, 3b, 3c, and 3d performs the heating operation.
  • the refrigerant flowing into the receiver 28 is changed to the gas-liquid two-phase state, and the supercooling degree of the refrigerant at the outlets of the use side heat exchangers 52a, 52b, 52c, 52d. It is necessary to reduce the SC.
  • the receiver 28 is provided with a receiver degassing pipe 41 that connects the upper part of the receiver 28 and the suction side of the compressor 21, and the receiver degassing pipe 41 has a degassing-side flow rate adjustment capable of adjusting the opening degree.
  • a valve 42 is provided to control the opening degree MV of the degassing side flow rate adjustment valve 42 so as to satisfy the normal condition of supercooling degree control.
  • FIG. 8 is a Mollier diagram showing a refrigeration cycle in the case where the heating operation is performed with the degassing side flow rate adjustment valve 42 opened
  • FIG. 9 shows the opening degree of the degassing side flow rate adjustment valve 42. It is a flowchart of control. Various operations including the opening degree control of the gas vent side flow rate adjustment valve 42 described here are performed by the control units 20, 50a, 50b, 50c, 50d, 60a, 60b, 60c, 60d.
  • step ST1 it is determined whether or not the normal supercooling degree control normal condition is satisfied. That is, at least one of the usage units 3a, 3b, 3c, and 3d is performing a heating operation (that is, an operation in which at least one of the usage-side heat exchangers 52a, 52b, 52c, and 52d functions as a refrigerant radiator). Whether the usage-side flow rate control valves 51a, 51b, 51c, 51d of the usage units 3a, 3b, 3c, 3d that are performing the heating operation are performing the supercooling degree control, whether the supercooling degree control normal condition is satisfied Determine if.
  • the normal condition of the supercooling degree control is determined depending on whether or not the opening degree MV of the use side flow rate adjusting valves 51a, 51b, 51c, 51d performing the supercooling degree control is less than the supercooling degree control upper limit opening degree MVx. Judgment is made as to whether or not it is satisfied.
  • the opening MV of the use side flow rate adjustment valves 51a, 51b, 51c, 51d is opened to the supercooling degree control upper limit opening MVx that is the upper limit opening in the supercooling degree control
  • the flow rate adjustment valves 51a, 51b, 51c, 51d are over the variable width, and the supercooling degree SC of the refrigerant at the outlets of the use side heat exchangers 52a, 52b, 52c, 52d cannot be controlled. It is considered that it is excessive.
  • step ST1 when it is determined in step ST1 that the normal condition for supercooling degree control is not satisfied, the process proceeds to step ST2. And in step ST2, control which enlarges the opening degree MV of the degassing side flow control valve 42 is performed.
  • the opening degree MV of the degassing side flow rate adjustment valve 42 is controlled to be increased by adding the first opening change ⁇ MV1 to the current opening degree MV of the degassing side flow rate adjustment valve 42.
  • the refrigerant subcooling degree SC at the outlets of the use side heat exchangers 52a, 52b, 52c, 52d is reduced. It is prevented that the supercooling degree control becomes too large to exceed the variable width of 51c and 51d, that is, the normal condition for supercooling degree control in step ST1 is satisfied.
  • step ST3 when it is determined in step ST1 that the normal supercooling degree control normal condition is satisfied, the process proceeds to step ST3. And in step ST3, control which makes the opening degree MV of the degassing side flow control valve 42 small is performed.
  • the opening degree MV of the degassing side flow rate adjustment valve 42 is controlled to be reduced by subtracting the second opening change ⁇ MV2 from the current opening degree MV of the degassing side flow rate adjustment valve 42.
  • the opening is in the fully closed state, that is, the gas refrigerant is extracted from the receiver 28 through the receiver degassing pipe 41.
  • the flow rate of the gas refrigerant extracted from the receiver 28 through the receiver degassing pipe 41 is decreased.
  • the degassing side flow rate adjustment valve 42 is controlled to open and close depending on whether the normal condition of the supercooling degree control of step ST1 is satisfied, and the degassing side flow rate adjustment is performed.
  • the opening degree MV of the valve 42 can be maintained at the minimum opening degree necessary for satisfying the normal condition of the supercooling degree control.
  • the degassing side flow rate control valve 42 is controlled to open and close in steps ST2 and ST3 depending on whether or not the normal condition of the supercooling degree control in step ST1 is satisfied.
  • the liquid level of the liquid refrigerant that accumulates in the receiver 28 may rise, and may rise to near full liquid.
  • steps ST1, ST2, and ST3 are performed.
  • the receiver 28 reaches the predetermined liquid level L1 (see FIG. 2), regardless of whether or not the normal condition of the supercooling degree control in step ST1 is satisfied, that is, the supercooling degree control in step ST1.
  • control is performed to forcibly reduce the opening degree MV of the gas vent side flow rate adjustment valve 42.
  • the opening degree MV of the degassing side flow rate adjustment valve 42 is controlled to be reduced by subtracting the third opening change ⁇ MV3 from the current opening degree MV of the degassing side flow rate adjustment valve 42.
  • the third opening degree change ⁇ MV3 may be set to a value larger than the first opening degree change ⁇ MV1 and the second opening degree change ⁇ MV2 in order to be able to greatly limit the degassing amount. preferable.
  • the receiver liquid level detection tube 43 is used.
  • the liquid level in the receiver 28 is detected by the receiver liquid level detection tube 43 as follows. First, the receiver liquid level detection pipe 43 extracts the refrigerant from the predetermined height position L1 of the receiver 28 as shown in FIGS. 2, 4 and 6 when the degassing side flow rate adjustment valve 42 is opened.
  • the refrigerant extracted from the receiver liquid level detection tube 43 is in a gas state when the liquid level in the receiver 28 is lower than the predetermined height position L1, and the liquid level in the receiver 28 is at a predetermined level.
  • the position is L1 or more, the liquid state is entered.
  • the refrigerant extracted from the receiver liquid level detection tube 43 merges with the refrigerant extracted from the receiver degassing tube 41 as shown in FIGS.
  • the refrigerant extracted from the receiver degassing pipe 41 is in a gas state when the liquid level in the receiver 28 is lower than the height position L2 (see FIG. 2).
  • the refrigerant flowing through the receiver degassing tube 41 after joining the refrigerant extracted from the receiver degassing tube 41 is also gas. It becomes a state.
  • the refrigerant flowing through the receiver degassing tube 41 after joining the refrigerant extracted from the receiver degassing tube 41 is a gas refrigerant. It becomes a gas-liquid two-phase state in which liquid refrigerant is mixed.
  • tube 43 merges is pressure-reduced by the degassing side flow control valve 42 to the pressure of the refrigerant
  • the refrigerant flowing through the receiver degassing pipe 41 undergoes a temperature drop according to the state of the refrigerant before the depressurization operation. That is, when the refrigerant flowing through the receiver degassing pipe 41 is in a gas state, the temperature drop due to the decompression operation is small, and when it is in the gas-liquid two-phase state, the temperature drop due to the decompression operation is large. For this reason, although not employed here, the temperature of the refrigerant flowing through the receiver degassing pipe 41 after being depressurized by the degassing flow rate adjusting valve 42 was used to extract from the liquid level detection pipe 43. It can also be detected whether the refrigerant is in a liquid state (whether the liquid level in the receiver 28 has reached the height position L1).
  • the refrigerant flowing through the receiver degassing pipe 41 after being depressurized by the degassing flow rate adjusting valve 42 is sent to the refrigerant heater 44 as shown in FIGS. Heat is exchanged with the high-pressure gas refrigerant flowing between the discharge side and the precooling heat exchanger 35 and heated. As a result of the heating operation by the refrigerant heater 44, the temperature of the refrigerant flowing through the receiver degassing pipe 41 is increased according to the state of the refrigerant before the heating operation.
  • the temperature rise due to the heating operation is large, and the gas-liquid two-phase state is present.
  • the temperature rise due to the decompression operation is reduced. Therefore, here, the temperature of the refrigerant flowing through the receiver degassing pipe 41 after being heated by the refrigerant heater 44 is detected by the degassing side temperature sensor 75, and this detected refrigerant temperature is used.
  • the refrigerant extracted from the liquid level detection tube 43 is in a liquid state (whether the liquid level in the receiver 28 has reached the height position L1).
  • the refrigerant heater 44 is obtained by subtracting the refrigerant saturation temperature obtained by converting the refrigerant pressure detected by the suction pressure sensor 71 from the refrigerant temperature detected by the degassing temperature sensor 75.
  • the degree of superheat of the refrigerant flowing through the receiver degassing pipe 41 after being heated at is obtained.
  • the refrigerant extracted from the liquid level detection tube 43 is in a gas state (the liquid level in the receiver 28 has reached the height position L1. If the superheat degree of the refrigerant does not reach a predetermined temperature difference, the refrigerant extracted from the liquid level detection tube 43 is in a liquid state (the liquid level in the receiver 28 is at a height position). L1 is reached).
  • an operation that causes at least one of the usage-side heat exchangers 52a, 52b, 52c, and 52d to function as a refrigerant radiator (heating operation and simultaneous cooling and heating shown in FIGS. 4, 5, and 6).
  • the degree of opening of the degassing side flow rate adjusting valve 42 is set so as to satisfy the normal condition of supercooling degree control while performing the degree of supercooling degree control by the opening degree MV of the use side flow rate regulating valves 51a, 51b, 51c, 51d.
  • the MV is controlled.
  • simultaneous cooling / heating operation (mainly evaporative load) shown in FIG.
  • the cooling / heating simultaneous operation type air conditioner 1 has the following characteristics.
  • the receiver degassing pipe 41 is provided with the degassing flow rate adjusting valve 42 capable of adjusting the opening degree, and the degassing side flow rate adjusting valve 42 is set so as to satisfy the normal condition of supercooling degree control.
  • the opening is controlled. That is, by increasing the opening degree MV of the gas vent side flow rate control valve 42, the state of the refrigerant flowing into the receiver 28 is changed to a gas-liquid two-phase state with a large amount of gas refrigerant, and the use side heat exchangers 52a, 52b, 52c.
  • the refrigerant supercooling degree SC at the outlet is reduced, and the refrigerant supercooling degree SC at the outlet of the use side heat exchangers 52a, 52b, 52c, 52d is reduced to that of the use side flow control valves 51a, 51b, 51c, 51d.
  • the excessive cooling is prevented so that the supercooling degree control cannot be performed beyond the variable width, that is, the normal condition of the supercooling degree control is satisfied.
  • the opening MV of the use side flow rate adjusting valves 51a, 51b, 51c, 51d performing the supercooling degree control can be maintained below the supercooling degree control upper limit opening MVx.
  • the degree of supercooling can be controlled within the range of the variable width of the control valves 51a, 51b, 51c, 51d.
  • the degassing side flow rate adjustment valve 42 is controlled to open and close depending on whether or not the subcooling degree control normal condition is satisfied. For this reason, the opening degree MV of the degassing side flow rate adjustment valve 42 can be maintained at the minimum opening degree necessary for satisfying the normal condition of the supercooling degree control.
  • the amount of the gas refrigerant extracted from the receiver 28 can be minimized here, and the performance degradation due to degassing from the receiver 28 can be suppressed.
  • the configuration example of the cooling and heating simultaneous operation type air conditioner 1 is described as a refrigeration apparatus to which the present invention is applied.
  • the present invention is not limited to this.
  • a cooling / heating switching operation type air conditioner a heat source unit having a receiver, and a utilization unit having a utilization side flow rate adjustment valve and a utilization side heat exchanger have a refrigerant communication pipe.
  • the opening degree of the use side flow rate control valve is controlled based on the degree of subcooling of the refrigerant at the outlet of the use side heat exchanger.
  • the present invention can be applied to any device.
  • the supercooling heat exchanger 45 and the suction return pipe 46 are provided, but they may not be provided.
  • the heating source of the refrigerant heater 44 provided in the receiver liquid level detection pipe 43 is not limited to the high-pressure gas refrigerant discharged from the compressor 21, and may be a liquid refrigerant or the like flowing through the receiver outlet pipe 28b. Good.
  • a heat source unit having a receiver, a utilization unit having a utilization side flow rate adjustment valve and a utilization side heat exchanger are connected via a refrigerant communication pipe, and the utilization side heat exchanger is radiated of refrigerant.
  • the present invention is widely applicable to a refrigeration apparatus that controls the opening degree of the use side flow rate control valve based on the degree of supercooling of the refrigerant at the outlet of the use side heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

In the present invention a receiver (28) is provided with a receiver gas venting pipe (41) connecting the upper part of the receiver (28) and the suction side of a compressor (21), and the receiver gas venting pipe (41) is provided with a gas-venting-side flow volume adjustment valve (42) the degree of opening of which can be adjusted. The degree of opening of the gas-venting-side flow volume adjustment valve (42) is controlled so as to satisfy a supercooling degree control normal condition wherein a supercooling degree control can be performed by usage-side flow volume adjustment valves (51a, 51b, 51c, 51d) which are performing the supercooling degree control.

Description

冷凍装置Refrigeration equipment
 本発明は、冷凍装置、特に、レシーバを有する熱源ユニットと、利用側流量調節弁と利用側熱交換器とを有する利用ユニットとが、冷媒連絡管を介して接続されており、利用側熱交換器を冷媒の放熱器として機能させる運転において、利用側熱交換器の出口における冷媒の過冷却度に基づいて利用側流量調節弁の開度を制御する冷凍装置に関する。 The present invention relates to a refrigeration apparatus, in particular, a heat source unit having a receiver, and a utilization unit having a utilization side flow control valve and a utilization side heat exchanger are connected via a refrigerant communication pipe, and utilization side heat exchange. The present invention relates to a refrigeration apparatus that controls the opening degree of a usage-side flow rate adjustment valve based on the degree of refrigerant supercooling at the outlet of a usage-side heat exchanger in an operation that causes the cooler to function as a refrigerant radiator.
 従来より、特許文献1(特開2006-78026号公報)に示すように、レシーバを有する室外ユニット(熱源ユニット)と、室内電子膨張弁(利用側流量調節弁)と室外熱交換器(利用側熱交換器)とを有する室内ユニット(利用ユニット)とが、ガス配管及び液配管(ガス冷媒連絡管及び液冷媒連絡管)を介して接続された冷凍装置の一種である冷暖同時運転可能な空気調和機がある。 Conventionally, as shown in Patent Document 1 (Japanese Patent Laid-Open No. 2006-78026), an outdoor unit (heat source unit) having a receiver, an indoor electronic expansion valve (use side flow control valve), an outdoor heat exchanger (use side) Air that can be operated simultaneously with cooling and heating, which is a type of refrigeration system in which an indoor unit (utilization unit) having a heat exchanger is connected via a gas pipe and a liquid pipe (gas refrigerant communication pipe and liquid refrigerant communication pipe) There is a harmony machine.
 上記従来の冷凍装置においては、室内ユニット(利用ユニット)が暖房運転を行う際(利用側熱交換器を冷媒の放熱器として機能させる運転を行う際)に、利用ユニットにおいて所望の暖房能力を確保するために、利用側熱交換器の出口における冷媒の過冷却度に基づいて利用側流量調節弁の開度を制御する過冷却度制御を行う。 In the conventional refrigeration system, when the indoor unit (use unit) performs a heating operation (when the use side heat exchanger functions as a refrigerant radiator), a desired heating capacity is secured in the use unit. In order to do so, supercooling degree control is performed to control the opening degree of the use side flow rate control valve based on the supercooling degree of the refrigerant at the outlet of the use side heat exchanger.
 しかし、冷凍装置の設置条件や施工状況によって液冷媒連絡管の長さ等が異なるため、利用ユニットが暖房運転を行う際に液冷媒連絡管を流れる液冷媒の圧損(液圧損)が大きくなる場合がある。このため、液冷媒連絡管を介して利用ユニットから熱源ユニットに送られる液冷媒は、この液圧損に応じて圧力が低下して、液飽和の状態でレシーバに溜まることになり、利用側熱交換器の出口における冷媒は、この液圧損に応じて過冷却度が大きくなることがある。そして、利用側熱交換器の出口における冷媒の過冷却度が利用側流量調節弁の可変幅を超えて過冷却度制御を行えなくなる程に過大になってしまうと、利用側熱交換器の放熱能力が低下してしまい、利用ユニットにおける暖房能力が低下してしまうおそれがある。 However, because the length of the liquid refrigerant communication pipe differs depending on the installation conditions and construction status of the refrigeration system, the pressure loss (liquid pressure loss) of the liquid refrigerant flowing through the liquid refrigerant communication pipe increases when the usage unit performs heating operation. There is. For this reason, the liquid refrigerant sent from the utilization unit to the heat source unit via the liquid refrigerant communication pipe is reduced in pressure according to the liquid pressure loss and accumulated in the receiver in a liquid saturated state, and the utilization side heat exchange The degree of supercooling of the refrigerant at the outlet of the vessel may increase depending on this hydraulic pressure loss. If the degree of supercooling of the refrigerant at the outlet of the use side heat exchanger exceeds the variable width of the use side flow rate control valve and becomes too large to control the degree of supercooling, the heat release of the use side heat exchanger There is a possibility that the capacity is lowered and the heating capacity in the utilization unit is lowered.
 本発明の課題は、レシーバを有する熱源ユニットと、利用側流量調節弁と利用側熱交換器とを有する利用ユニットとが、冷媒連絡管を介して接続されており、利用側熱交換器を冷媒の放熱器として機能させる運転において、利用側熱交換器の出口における冷媒の過冷却度に基づいて利用側流量調節弁の開度を制御する冷凍装置において、液圧損が大きい場合であっても、過冷却度制御を適切に行えるようにして、暖房能力の低下を抑えることにある。 An object of the present invention is that a heat source unit having a receiver, a utilization unit having a utilization side flow rate adjustment valve and a utilization side heat exchanger are connected via a refrigerant communication pipe, and the utilization side heat exchanger is a refrigerant. In the operation to function as a radiator of the refrigerant, in the refrigeration apparatus that controls the opening degree of the use side flow rate control valve based on the degree of supercooling of the refrigerant at the outlet of the use side heat exchanger, even when the hydraulic pressure loss is large, The purpose is to appropriately control the degree of supercooling and to suppress a decrease in heating capacity.
 第1の観点にかかる冷凍装置は、圧縮機と熱源側熱交換器とレシーバとを有する熱源ユニットと、利用側流量調節弁と利用側熱交換器とを有する利用ユニットとが、ガス冷媒連絡管及び液冷媒連絡管を介して接続されている。そして、この冷凍装置では、利用側熱交換器を冷媒の放熱器として機能させる運転において、利用側熱交換器の出口における冷媒の過冷却度に基づいて利用側流量調節弁の開度を制御する過冷却度制御を行う。そして、ここでは、レシーバに、レシーバの上部と圧縮機の吸入側とを接続するレシーバガス抜き管を設け、レシーバガス抜き管に、開度調節が可能なガス抜き側流量調節弁を設け、過冷却度制御を行っている利用側流量調節弁が過冷却度制御を行うことが可能な過冷却度制御正常条件を満たすように、ガス抜き側流量調節弁の開度を制御するようにしている。 In a refrigeration apparatus according to a first aspect, a heat source unit having a compressor, a heat source side heat exchanger, and a receiver, and a utilization unit having a utilization side flow rate adjustment valve and a utilization side heat exchanger are provided as a gas refrigerant communication pipe. And a liquid refrigerant communication pipe. In this refrigeration apparatus, in the operation in which the use side heat exchanger functions as a refrigerant radiator, the opening degree of the use side flow control valve is controlled based on the degree of subcooling of the refrigerant at the outlet of the use side heat exchanger. Control the degree of supercooling. Here, the receiver is provided with a receiver gas vent pipe that connects the upper part of the receiver and the suction side of the compressor, and the receiver gas vent pipe is provided with a gas vent-side flow rate adjustment valve capable of adjusting the opening. The opening degree of the degassing flow rate control valve is controlled so that the use side flow rate control valve performing the cooling degree control satisfies the normal condition of the supercooling degree control capable of performing the supercooling degree control. .
 液圧損によって過冷却度制御正常条件を満たなくなると、利用側熱交換器の出口における冷媒の過冷却度が目標過冷却度等の所望の過冷却度よりも過大になり、利用側流量調節弁の開度を制御するだけでは、利用側熱交換器の出口における冷媒の過冷却度が目標過冷却度等の所望の過冷却度まで小さくすることができない状況になってしまう。 If the normal condition of the supercooling degree control is not satisfied due to the liquid pressure loss, the supercooling degree of the refrigerant at the outlet of the use side heat exchanger becomes larger than the desired supercooling degree such as the target supercooling degree, and the use side flow control valve Only by controlling the opening degree, the degree of supercooling of the refrigerant at the outlet of the use side heat exchanger cannot be reduced to a desired degree of supercooling such as the target degree of supercooling.
 そして、このような状況を解消するためには、レシーバに溜まる冷媒の状態を気液二相状態にして、利用側熱交換器の出口における冷媒の過冷却度を小さくすることが必要である。 In order to eliminate such a situation, it is necessary to reduce the degree of refrigerant supercooling at the outlet of the use side heat exchanger by changing the state of the refrigerant accumulated in the receiver to a gas-liquid two-phase state.
 そこで、ここでは、上記のように、レシーバガス抜き管に、開度調節が可能なガス抜き側流量調節弁を設け、過冷却度制御正常条件を満たすように、ガス抜き側流量調節弁の開度を制御するようにしている。すなわち、ガス抜き側流量調節弁の開度を大きくすることによって、レシーバに流入する冷媒の状態をガス冷媒が多い気液二相状態にして、利用側熱交換器の出口における冷媒の過冷却度を小さくし、利用側熱交換器の出口における冷媒の過冷却度が利用側流量調節弁の可変幅を超えて過冷却度制御を行えなくなる程に過大になるのを防ぐ、すなわち、過冷却度制御正常条件を満たすようにするのである。 Therefore, here, as described above, the receiver gas vent pipe is provided with a gas vent side flow rate control valve capable of adjusting the opening, and the gas vent side flow rate control valve is opened so as to satisfy the normal condition of the supercooling degree control. I try to control the degree. That is, by increasing the degree of opening of the degassing flow rate control valve, the refrigerant flowing into the receiver is brought into a gas-liquid two-phase state with a large amount of gas refrigerant, and the degree of refrigerant subcooling at the outlet of the use side heat exchanger To prevent the supercooling degree of the refrigerant at the outlet of the use side heat exchanger from exceeding the variable width of the use side flow rate control valve so that the supercooling degree control cannot be performed. The control normal condition is satisfied.
 これにより、ここでは、液圧損が大きい場合であっても、過冷却度制御が適切に行えるようになり、暖房能力の低下を抑えることができる。 Thereby, here, even when the hydraulic pressure loss is large, the supercooling degree control can be appropriately performed, and the decrease in the heating capacity can be suppressed.
 第2の観点にかかる冷凍装置は、第1の観点にかかる冷凍装置において、過冷却度制御正常条件が、過冷却度制御を行っている利用側流量調節弁の開度が過冷却度制御上限開度未満であることである。 The refrigeration apparatus according to the second aspect is the refrigeration apparatus according to the first aspect, wherein the normal condition of the supercooling degree control is that the opening degree of the use side flow rate control valve performing the supercooling degree control is the upper limit of the supercooling degree control. It is less than the opening.
 ここでは、上記のように、利用側流量調節弁の開度が過冷却度制御上限開度未満であるかどうかによって、過冷却度制御正常条件を満たしているかどうかを判定するようにしている。すなわち、利用側流量調節弁の開度が過冷却度制御における上限開度である過冷却度制御上限開度まで開いた状態になっている場合には、利用側流量調節弁の可変幅を超えており、利用側熱交換器の出口における冷媒の過冷却度が過冷却度制御を行えなくなる程に過大になっているものとみなすようにしている。 Here, as described above, whether or not the normal condition of the supercooling degree control is satisfied is determined based on whether or not the opening degree of the use side flow control valve is less than the supercooling degree control upper limit opening degree. That is, when the opening of the usage-side flow control valve is open to the supercooling degree control upper limit opening that is the upper limit opening in the supercooling degree control, the variable width of the usage side flow control valve is exceeded. Therefore, it is assumed that the degree of supercooling of the refrigerant at the outlet of the use side heat exchanger is so large that the supercooling degree control cannot be performed.
 これにより、ここでは、過冷却度制御を行っている利用側流量調節弁の開度を過冷却度制御上限開度未満に維持できるようになり、利用側流量調節弁の可変幅の範囲内で過冷却度制御を行うことができる。 As a result, the opening degree of the use side flow rate control valve performing the supercooling degree control can be maintained below the supercooling degree control upper limit opening degree within the range of the variable width of the use side flow rate control valve. Supercooling degree control can be performed.
 第3の観点にかかる冷凍装置は、第1又は第2の観点にかかる冷凍装置において、過冷却度制御を行っている利用側流量調節弁が過冷却度制御正常条件を満たす場合には、ガス抜き側流量調節弁の開度を小さくする制御を行い、過冷却度制御を行っている利用側流量調節弁が過冷却度制御正常条件を満たさない場合には、ガス抜き側流量調節弁の開度を大きくする制御を行う。 In the refrigeration apparatus according to the third aspect, in the refrigeration apparatus according to the first or second aspect, the gas flow control valve performing the supercooling degree control satisfies the normal condition of the supercooling degree control. If the usage-side flow control valve that controls the degree of subcooling does not satisfy the normal conditions for supercooling control, the control is performed to reduce the opening of the vent flow control valve. Control to increase the degree.
 ここでは、上記のように、過冷却度制御正常条件を満たすかどうかによってガス抜き側流量調節弁を開閉制御するようにしている。このため、ガス抜き側流量調節弁の開度を、過冷却度制御正常条件を満たすために必要な最小限の開度で維持することができる。 Here, as described above, the degassing side flow rate control valve is controlled to open and close depending on whether or not the normal supercooling degree control condition is satisfied. For this reason, the opening degree of the degassing side flow rate control valve can be maintained at the minimum opening degree necessary for satisfying the normal condition of the supercooling degree control.
 これにより、ここでは、レシーバから抜き出されるガス冷媒の量を最小限に抑えることができるようになり、レシーバからのガス抜きによる性能低下を抑えることができる。 This makes it possible to minimize the amount of gas refrigerant extracted from the receiver, and to suppress performance degradation due to outgassing from the receiver.
 第4の観点にかかる冷凍装置は、第3の観点にかかる冷凍装置において、レシーバが所定液面まで達した場合には、過冷却度制御正常条件を満たすかどうかにかかわらず、ガス抜き側流量調節弁の開度を小さくする制御を行う。 The refrigeration apparatus according to the fourth aspect is the refrigeration apparatus according to the third aspect, wherein when the receiver reaches a predetermined liquid level, the degassing side flow rate regardless of whether or not the normal condition of supercooling degree control is satisfied. Control to reduce the opening of the control valve.
 ガス抜き側流量調節弁を開けることでレシーバからガス冷媒を抜き出すと、レシーバ内に溜まる液冷媒の液面が上昇して、満液近くまで上昇する場合もあり得る。 When the gas refrigerant is extracted from the receiver by opening the gas vent side flow control valve, the liquid level of the liquid refrigerant collected in the receiver may rise and rise to near full liquid.
 そこで、ここでは、上記のように、レシーバが所定液面まで達した場合には、過冷却度制御正常条件を満たすかどうかにかかわらず、すなわち、過冷却度制御正常条件を満たさない場合であっても、ガス抜き側流量調節弁の開度を強制的に小さくする制御を行う。 Therefore, here, as described above, when the receiver reaches a predetermined liquid level, it is a case where the normal condition for the supercooling degree control is not satisfied regardless of whether the normal condition for the supercooling degree control is satisfied. Even so, control is performed to forcibly reduce the opening degree of the gas vent side flow control valve.
 これにより、ここでは、過冷却度制御を適切に行えるようにしつつ、レシーバから圧縮機に液冷媒が戻ることを抑えることができる。 Thereby, here, it is possible to prevent the liquid refrigerant from returning from the receiver to the compressor while appropriately performing the supercooling degree control.
本発明にかかる冷凍装置の一実施形態としての冷暖同時運転型空気調和装置の概略構成図である。1 is a schematic configuration diagram of a cooling and heating simultaneous operation type air conditioning apparatus as an embodiment of a refrigeration apparatus according to the present invention. レシーバ及びその周辺の構造を示す概略図である。It is the schematic which shows the structure of a receiver and its periphery. 冷房運転における動作(冷媒の流れ)を示す図である。It is a figure which shows the operation | movement (flow of a refrigerant | coolant) in a cooling operation. 暖房運転における動作(冷媒の流れ)を示す図である。It is a figure which shows the operation | movement (flow of a refrigerant | coolant) in heating operation. 冷暖同時運転(蒸発負荷主体)における動作(冷媒の流れ)を示す図である。It is a figure which shows the operation | movement (flow of a refrigerant | coolant) in the heating / cooling simultaneous operation (evaporation load main body). 冷暖同時運転(放熱負荷主体)における動作(冷媒の流れ)を示す図である。It is a figure which shows the operation | movement (flow of a refrigerant | coolant) in the heating / cooling simultaneous operation (heat dissipation load main body). ガス抜き側流量調節弁を全閉状態で暖房運転を行った場合の冷凍サイクルを示したモリエル線図である。It is the Mollier diagram which showed the refrigerating cycle at the time of performing heating operation in the fully-closed state of the degassing side flow control valve. ガス抜き側流量調節弁を開状態で暖房運転を行った場合の冷凍サイクルを示したモリエル線図である。It is the Mollier diagram which showed the refrigerating cycle at the time of performing heating operation in the open state of the degassing side flow control valve. ガス抜き側流量調節弁の開度制御のフローチャートである。It is a flowchart of the opening degree control of a degassing side flow control valve.
 以下、本発明にかかる冷凍装置の実施形態について、図面に基づいて説明する。尚、本発明にかかる冷凍装置の具体的な構成は、下記の実施形態及びその変形例に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。 Hereinafter, an embodiment of a refrigeration apparatus according to the present invention will be described with reference to the drawings. In addition, the specific structure of the freezing apparatus concerning this invention is not restricted to the following embodiment and its modification, It can change in the range which does not deviate from the summary of invention.
 (1)冷凍装置(冷暖同時運転型空気調和装置)の構成
 図1は、本発明にかかる冷凍装置の一実施形態としての冷暖同時運転型空気調和装置1の概略構成図である。冷暖同時運転型空気調和装置1は、蒸気圧縮式の冷凍サイクル運転を行うことによって、ビル等の室内の冷暖房に使用される装置である。
(1) Configuration of Refrigeration Device (Cooling and Heating Simultaneous Operation Type Air Conditioner) FIG. 1 is a schematic configuration diagram of a cooling and heating simultaneous operation type air conditioning device 1 as an embodiment of the refrigeration device according to the present invention. The cooling and heating simultaneous operation type air conditioner 1 is an apparatus used for air conditioning in a room such as a building by performing a vapor compression refrigeration cycle operation.
 冷暖同時運転型空気調和装置1は、主として、1台の熱源ユニット2と、複数(ここでは、4台)の利用ユニット3a、3b、3c、3dと、各利用ユニット3a、3b、3c、3dに接続される接続ユニット4a、4b、4c、4dと、接続ユニット4a、4b、4c、4dを介して熱源ユニット2と利用ユニット3a、3b、3c、3dとを接続する冷媒連絡管7、8、9とを有している。すなわち、冷暖同時運転型空気調和装置1の蒸気圧縮式の冷媒回路10は、熱源ユニット2と、利用ユニット3a、3b、3c、3dと、接続ユニット4a、4b、4c、4dと、冷媒連絡管7、8、9とが接続されることによって構成されている。そして、冷暖同時運転型空気調和装置1は、各利用ユニット3a、3b、3c、3dが個別に冷房運転又は暖房運転を行うことが可能になっており、暖房運転を行う利用ユニットから冷房運転を行う利用ユニットに冷媒を送ることで利用ユニット間において熱回収を行うこと(ここでは、冷房運転と暖房運転とを同時に行う冷暖同時運転を行うこと)が可能になるように構成されている。しかも、冷暖同時運転型空気調和装置1では、上記の熱回収(冷暖同時運転)も考慮した複数の利用ユニット3a、3b、3c、3d全体の熱負荷に応じて、熱源ユニット2の熱負荷をバランスさせるように構成されている。 The cooling and heating simultaneous operation type air conditioner 1 mainly includes one heat source unit 2, a plurality of (here, four) use units 3 a, 3 b, 3 c, 3 d, and each use unit 3 a, 3 b, 3 c, 3 d. Connecting units 4a, 4b, 4c, and 4d connected to each other, and refrigerant communication tubes 7 and 8 that connect the heat source unit 2 and the utilization units 3a, 3b, 3c, and 3d via the connection units 4a, 4b, 4c, and 4d. , 9. That is, the vapor compression refrigerant circuit 10 of the cooling and heating simultaneous operation type air conditioner 1 includes a heat source unit 2, utilization units 3a, 3b, 3c, and 3d, connection units 4a, 4b, 4c, and 4d, and a refrigerant communication tube. 7, 8 and 9 are connected to each other. In the cooling / heating simultaneous operation type air conditioner 1, each of the use units 3a, 3b, 3c, and 3d can individually perform the cooling operation or the heating operation, and the cooling operation is performed from the use unit that performs the heating operation. Heat is recovered between the utilization units by sending the refrigerant to the utilization unit to be performed (here, simultaneous cooling / heating operation in which the cooling operation and the heating operation are performed simultaneously) is possible. In addition, in the cooling and heating simultaneous operation type air conditioner 1, the heat load of the heat source unit 2 is changed according to the heat loads of the plurality of utilization units 3a, 3b, 3c, and 3d in consideration of the heat recovery (simultaneous cooling and heating operation). It is configured to balance.
 <利用ユニット>
 利用ユニット3a、3b、3c、3dは、ビル等の室内の天井に埋め込みや吊り下げ等、又は、室内の壁面に壁掛け等により設置されている。利用ユニット3a、3b、3c、3dは、冷媒連絡管7、8、9及び接続ユニット4a、4b、4c、4dを介して熱源ユニット2に接続されており、冷媒回路10の一部を構成している。
<Usage unit>
The use units 3a, 3b, 3c, and 3d are installed by being embedded or suspended in a ceiling of a room such as a building, or by hanging on a wall surface of the room. The utilization units 3a, 3b, 3c, and 3d are connected to the heat source unit 2 via the refrigerant communication tubes 7, 8, and 9 and the connection units 4a, 4b, 4c, and 4d, and constitute a part of the refrigerant circuit 10. ing.
 次に、利用ユニット3a、3b、3c、3dの構成について説明する。尚、利用ユニット3aと利用ユニット3b、3c、3dとは同様の構成であるため、ここでは、利用ユニット3aの構成のみ説明し、利用ユニット3b、3c、3dの構成については、それぞれ、利用ユニット3aの各部を示す符号の添字「a」の代わりに、「b」、「c」又は「d」の添字を付して、各部の説明を省略する。 Next, the configuration of the usage units 3a, 3b, 3c, and 3d will be described. Since the usage unit 3a and the usage units 3b, 3c, and 3d have the same configuration, only the configuration of the usage unit 3a will be described here, and the configuration of the usage units 3b, 3c, and 3d will be described respectively. Instead of the subscript “a” indicating the respective parts of 3a, the subscript “b”, “c” or “d” is attached, and the description of each part is omitted.
 利用ユニット3aは、主として、冷媒回路10の一部を構成しており、利用側冷媒回路13a(利用ユニット3b、3c、3dでは、それぞれ、利用側冷媒回路13b、13c、13d)を有している。利用側冷媒回路13aは、主として、利用側流量調節弁51aと、利用側熱交換器52aとを有している。 The usage unit 3a mainly constitutes a part of the refrigerant circuit 10, and includes usage-side refrigerant circuits 13a (in the usage units 3b, 3c, and 3d, usage- side refrigerant circuits 13b, 13c, and 13d, respectively). Yes. The utilization side refrigerant circuit 13a mainly has a utilization side flow rate adjustment valve 51a and a utilization side heat exchanger 52a.
 利用側流量調節弁51aは、利用側熱交換器52aを流れる冷媒の流量の調節等を行うために、利用側熱交換器52aの液側に接続された開度調節が可能な電動膨張弁である。 The usage-side flow rate adjustment valve 51a is an electric expansion valve that can adjust the opening degree connected to the liquid side of the usage-side heat exchanger 52a in order to adjust the flow rate of the refrigerant flowing through the usage-side heat exchanger 52a. is there.
 利用側熱交換器52aは、冷媒と室内空気との熱交換を行うための機器であり、例えば、多数の伝熱管及びフィンによって構成されたフィン・アンド・チューブ型熱交換器からなる。ここで、利用ユニット3aは、ユニット内に室内空気を吸入して、熱交換した後に、供給空気として屋内に供給するための室内ファン53aを有しており、室内空気と利用側熱交換器32aを流れる冷媒とを熱交換させることが可能である。室内ファン53aは、室内ファンモータ54aによって駆動される。 The use-side heat exchanger 52a is a device for performing heat exchange between the refrigerant and the room air, and includes, for example, a fin-and-tube heat exchanger configured by a large number of heat transfer tubes and fins. Here, the utilization unit 3a has an indoor fan 53a for sucking indoor air into the unit and exchanging heat, and then supplying the indoor air as supply air to the indoor unit 53a. It is possible to exchange heat with the refrigerant flowing through The indoor fan 53a is driven by the indoor fan motor 54a.
 また、利用ユニット3aには、各種のセンサが設けられている。具体的には、利用側熱交換器52aの液側(利用側熱交換器52aを冷媒の放熱器として機能させる際の出口)における冷媒の温度を検出する液側温度センサ82aが設けられている。また、利用ユニット3aは、利用ユニット3aを構成する各部51a、54aの動作を制御する利用側制御部50aを有している。そして、利用側制御部50aは、利用ユニット3aの制御を行うために設けられたマイクロコンピュータやメモリを有しており、リモコン(図示せず)との間で制御信号等のやりとりを行ったり、熱源ユニット2との間で制御信号等のやりとりを行うことができるようになっている。 In addition, the use unit 3a is provided with various sensors. Specifically, a liquid side temperature sensor 82a that detects the temperature of the refrigerant on the liquid side of the use side heat exchanger 52a (an outlet when the use side heat exchanger 52a functions as a refrigerant radiator) is provided. . In addition, the usage unit 3a includes a usage-side control unit 50a that controls the operations of the units 51a and 54a constituting the usage unit 3a. The use-side control unit 50a includes a microcomputer and a memory provided for controlling the use unit 3a, and exchanges control signals and the like with a remote controller (not shown). Control signals and the like can be exchanged with the heat source unit 2.
 <熱源ユニット>
 熱源ユニット2は、ビル等の屋上等に設置されており、冷媒連絡管7、8、9を介して利用ユニット3a、3b、3c、3dに接続されており、利用ユニット3a、3b、3c、3dとの間で冷媒回路10を構成している。
<Heat source unit>
The heat source unit 2 is installed on the rooftop of a building or the like, and is connected to the usage units 3a, 3b, 3c, and 3d via the refrigerant communication tubes 7, 8, and 9, and the usage units 3a, 3b, 3c, The refrigerant circuit 10 is configured with 3d.
 次に、熱源ユニット2の構成について説明する。熱源ユニット2は、主として、冷媒回路10の一部を構成しており、熱源側冷媒回路12を有している。熱源側冷媒回路12は、主として、圧縮機21と、複数(ここでは、2つ)の熱交切換機構22、23と、主熱源側熱交換器としての2つの熱源側熱交換器24、25と予冷熱交換器35とからなる熱源側熱交換器と、冷媒冷却器36と、2つの熱源側熱交換器24、25に対応する熱源側流量調節弁26、27と、予冷熱交換器35及び冷媒冷却器36に対応する冷媒冷却側流量調節弁37と、レシーバ28と、ブリッジ回路29と、高低圧切換機構30と、液側閉鎖弁31と、高低圧ガス側閉鎖弁32と、低圧ガス側閉鎖弁33とを有している。 Next, the configuration of the heat source unit 2 will be described. The heat source unit 2 mainly constitutes a part of the refrigerant circuit 10 and has a heat source side refrigerant circuit 12. The heat source side refrigerant circuit 12 mainly includes a compressor 21, a plurality (here, two) of heat exchange switching mechanisms 22, 23, and two heat source side heat exchangers 24, 25 as main heat source side heat exchangers. And a precooling heat exchanger 35, a refrigerant cooler 36, heat source side flow control valves 26 and 27 corresponding to the two heat source side heat exchangers 24 and 25, and a precooling heat exchanger 35. And a refrigerant cooling side flow rate adjustment valve 37 corresponding to the refrigerant cooler 36, a receiver 28, a bridge circuit 29, a high / low pressure switching mechanism 30, a liquid side closing valve 31, a high / low pressure gas side closing valve 32, and a low pressure. A gas side closing valve 33.
 圧縮機21は、ここでは、冷媒を圧縮するための機器であり、例えば、圧縮機モータ21aをインバータ制御することで運転容量を可変することが可能なスクロール型等の容積式圧縮機からなる。 Here, the compressor 21 is a device for compressing a refrigerant, and includes, for example, a scroll type positive displacement compressor capable of changing an operation capacity by inverter-controlling the compressor motor 21a.
 第1熱交切換機構22は、主熱源側熱交換器としての第1熱源側熱交換器24を冷媒の放熱器として機能させる場合(以下、「放熱運転状態」とする)には圧縮機21の吐出側と第1熱源側熱交換器24のガス側とを接続し(図1の第1熱交切換機構22の実線を参照)、第1熱源側熱交換器24を冷媒の蒸発器として機能させる場合(以下、「蒸発運転状態」とする)には圧縮機21の吸入側と第1熱源側熱交換器24のガス側とを接続するように(図1の第1熱交切換機構22の破線を参照)、熱源側冷媒回路12内における冷媒の流路を切り換えることが可能な機器であり、例えば、四路切換弁からなる。また、第2熱交切換機構23は、主熱源側熱交換器としての第2熱源側熱交換器25を冷媒の放熱器として機能させる場合(以下、「放熱運転状態」とする)には圧縮機21の吐出側と第2熱源側熱交換器25のガス側とを接続し(図1の第2熱交切換機構23の実線を参照)、第2熱源側熱交換器25を冷媒の蒸発器として機能させる場合(以下、「蒸発運転状態」とする)には圧縮機21の吸入側と第2熱源側熱交換器25のガス側とを接続するように(図1の第2熱交切換機構23の破線を参照)、熱源側冷媒回路12内における冷媒の流路を切り換えることが可能な機器であり、例えば、四路切換弁からなる。そして、第1熱交切換機構22及び第2熱交切換機構23の切り換え状態を変更することによって、第1熱源側熱交換器24及び第2熱源側熱交換器25は、個別に冷媒の蒸発器又は放熱器として機能させる切り換えが可能になっている。 The first heat exchange switching mechanism 22 uses the compressor 21 when the first heat source side heat exchanger 24 as the main heat source side heat exchanger functions as a refrigerant radiator (hereinafter referred to as “heat dissipation operation state”). And the gas side of the first heat source side heat exchanger 24 (see the solid line of the first heat exchange switching mechanism 22 in FIG. 1), and the first heat source side heat exchanger 24 is used as a refrigerant evaporator. When functioning (hereinafter referred to as “evaporation operation state”), the suction side of the compressor 21 and the gas side of the first heat source side heat exchanger 24 are connected (the first heat exchange switching mechanism of FIG. 1). 22), which is a device capable of switching the refrigerant flow path in the heat source side refrigerant circuit 12, and includes, for example, a four-way switching valve. The second heat exchange switching mechanism 23 is compressed when the second heat source side heat exchanger 25 as the main heat source side heat exchanger functions as a refrigerant radiator (hereinafter referred to as “heat dissipation operation state”). The discharge side of the machine 21 and the gas side of the second heat source side heat exchanger 25 are connected (see the solid line of the second heat exchange switching mechanism 23 in FIG. 1), and the second heat source side heat exchanger 25 is evaporated by the refrigerant. 1 (hereinafter referred to as “evaporation operation state”), the suction side of the compressor 21 and the gas side of the second heat source side heat exchanger 25 are connected (second heat exchange in FIG. 1). This is a device capable of switching the refrigerant flow path in the heat source side refrigerant circuit 12 and includes, for example, a four-way switching valve. Then, by changing the switching state of the first heat exchange switching mechanism 22 and the second heat exchange switching mechanism 23, the first heat source side heat exchanger 24 and the second heat source side heat exchanger 25 individually evaporate the refrigerant. Switching to function as a heat sink or a radiator is possible.
 主熱源側熱交換器としての第1熱源側熱交換器24は、冷媒と室外空気との熱交換を行うための機器であり、例えば、多数の伝熱管及びフィンによって構成されたフィン・アンド・チューブ型熱交換器からなる。第1熱源側熱交換器24は、そのガス側が第1熱交切換機構22に接続され、その液側が第1熱源側流量調節弁26に接続されている。また、主熱源側熱交換器としての第2熱源側熱交換器25は、冷媒と室外空気との熱交換を行うための機器であり、例えば、多数の伝熱管及びフィンによって構成されたフィン・アンド・チューブ型熱交換器からなる。第2熱源側熱交換器25は、そのガス側が第2熱交切換機構23に接続され、その液側が第2熱源側流量調節弁27に接続されている。 The first heat source side heat exchanger 24 as the main heat source side heat exchanger is a device for performing heat exchange between the refrigerant and the outdoor air. For example, the first heat source side heat exchanger 24 includes a fin and It consists of a tube heat exchanger. The gas side of the first heat source side heat exchanger 24 is connected to the first heat exchange switching mechanism 22, and the liquid side thereof is connected to the first heat source side flow rate adjustment valve 26. The second heat source side heat exchanger 25 as the main heat source side heat exchanger is a device for performing heat exchange between the refrigerant and the outdoor air, and includes, for example, a fin configured by a large number of heat transfer tubes and fins. It consists of an and tube type heat exchanger. The gas side of the second heat source side heat exchanger 25 is connected to the second heat exchange switching mechanism 23, and the liquid side thereof is connected to the second heat source side flow rate adjustment valve 27.
 予冷熱交換器35は、冷媒と室外空気との熱交換を行うための機器であり、例えば、多数の伝熱管及びフィンによって構成されたフィン・アンド・チューブ型熱交換器からなる。予冷熱交換器35は、熱源側熱交換器の一部(すなわち、熱源側熱交換器のうち主熱源側熱交換器としての熱源側熱交換器24、25を除いた部分)を構成しており、圧縮機21から吐出される高圧のガス冷媒を常時流すように熱源側冷媒回路12に設けられている。具体的には、予冷熱交換器35は、主熱源側熱交換器としての熱源側熱交換器24、25とは異なり、熱交切換機構22、23のような冷媒の蒸発器又は放熱器として機能させる切り換えを可能にするための機構を介することなく、そのガス側が圧縮機21の吐出側に接続されている。すなわち、予冷熱交換器35は、主熱源側熱交換器としての熱源側熱交換器24、25とは異なり、常時冷媒の放熱器として機能するようになっている。 The pre-cooling heat exchanger 35 is a device for performing heat exchange between the refrigerant and the outdoor air, and includes, for example, a fin-and-tube heat exchanger constituted by a large number of heat transfer tubes and fins. The pre-cooling heat exchanger 35 constitutes a part of the heat source side heat exchanger (that is, a part of the heat source side heat exchanger excluding the heat source side heat exchangers 24 and 25 as the main heat source side heat exchanger). The heat source side refrigerant circuit 12 is provided so that the high-pressure gas refrigerant discharged from the compressor 21 always flows. Specifically, the pre-cooling heat exchanger 35 is different from the heat source side heat exchangers 24 and 25 as the main heat source side heat exchangers, and is a refrigerant evaporator or radiator such as the heat exchange switching mechanisms 22 and 23. The gas side is connected to the discharge side of the compressor 21 without a mechanism for enabling switching to function. That is, unlike the heat source side heat exchangers 24 and 25 as the main heat source side heat exchanger, the precooling heat exchanger 35 always functions as a refrigerant radiator.
 ここでは、第1熱源側熱交換器24と第2熱源側熱交換器25と予冷熱交換器35とが一体の熱源側熱交換器として構成されている。そして、熱源ユニット2は、ユニット内に室外空気を吸入して、熱交換した後に、ユニット外に排出するための室外ファン34を有しており、室外空気と熱源側熱交換器24、25、35を流れる冷媒とを熱交換させることが可能である。室外ファン34は、回転数制御が可能な室外ファンモータ34aによって駆動される。 Here, the 1st heat source side heat exchanger 24, the 2nd heat source side heat exchanger 25, and the pre-cooling heat exchanger 35 are comprised as an integrated heat source side heat exchanger. The heat source unit 2 has an outdoor fan 34 for sucking outdoor air into the unit, exchanging heat, and then discharging the air outside the unit. The outdoor air and the heat source side heat exchangers 24, 25, It is possible to exchange heat with the refrigerant flowing through 35. The outdoor fan 34 is driven by an outdoor fan motor 34a capable of controlling the rotational speed.
 冷媒冷却器36は、予冷熱交換器35において放熱した冷媒と電装品20aとの熱交換を行うことで電装品20aを冷却する機器であり、予冷熱交換器35の液側、すなわち、予冷熱交換器35の下流側に接続されている。冷媒冷却器36は、例えば、冷媒流路が形成された金属製の部材を電装品20aに接触させることによって構成されている。ここで、電装品20aは、熱源ユニット2を構成する各部を制御するための電気部品であり、後述の熱源側制御部20を構成している。そして、冷媒冷却器36によって冷却が必要な電装品20aとしては、圧縮機モータ21aを制御するためのインバータを構成するパワー素子やリアクタ等の高発熱電気部品が挙げられる。このような高発熱電気部品は、圧縮機21の運転容量が大きくなるにつれて、発熱量が大きくなる傾向にある。尚、図1において、電装品20aを熱源側制御部20とは別に図示しているが、これは、冷媒冷却器36の機能を説明するための便宜を考慮したものである。 The refrigerant cooler 36 is a device that cools the electrical component 20a by exchanging heat between the refrigerant radiated in the precooling heat exchanger 35 and the electrical component 20a, and is a liquid side of the precooling heat exchanger 35, that is, precooling heat. It is connected to the downstream side of the exchanger 35. The refrigerant cooler 36 is configured, for example, by bringing a metal member having a refrigerant flow path into contact with the electrical component 20a. Here, the electrical component 20a is an electrical component for controlling each part constituting the heat source unit 2, and constitutes a heat source side control part 20 described later. The electrical component 20a that needs to be cooled by the refrigerant cooler 36 includes a highly exothermic electrical component such as a power element or a reactor that constitutes an inverter for controlling the compressor motor 21a. Such a highly heat-generating electrical component tends to increase in heat generation as the operating capacity of the compressor 21 increases. In FIG. 1, the electrical component 20 a is illustrated separately from the heat source side control unit 20, but this is for convenience for explaining the function of the refrigerant cooler 36.
 第1熱源側流量調節弁26は、第1熱源側熱交換器24を流れる冷媒の流量の調節等を行うために、第1熱源側熱交換器24の液側に接続された開度調節が可能な電動膨張弁である。また、第2熱源側流量調節弁27は、第2熱源側熱交換器25を流れる冷媒の流量の調節等を行うために、第2熱源側熱交換器25の液側に接続された開度調節が可能な電動膨張弁である。すなわち、熱源側熱交換器24、25、35のうち予冷熱交換器35を除いた部分である主熱源側熱交換器としての熱源側熱交換器24、25の液側に、各熱源側熱交換器24、25を流れる冷媒の流量を調節する熱源側流量調節弁26、27が接続されている。 The first heat source side flow rate adjustment valve 26 is configured to adjust the opening degree connected to the liquid side of the first heat source side heat exchanger 24 in order to adjust the flow rate of the refrigerant flowing through the first heat source side heat exchanger 24. It is a possible electric expansion valve. The second heat source side flow rate adjustment valve 27 has an opening degree connected to the liquid side of the second heat source side heat exchanger 25 in order to adjust the flow rate of the refrigerant flowing through the second heat source side heat exchanger 25 and the like. It is an electric expansion valve that can be adjusted. In other words, the heat source side heat exchangers 24, 25, 35 are parts of the heat source side heat exchangers 24, 25 as main heat source side heat exchangers that are portions excluding the precooling heat exchanger 35, and the heat source side heat Heat source side flow rate adjustment valves 26 and 27 for adjusting the flow rate of the refrigerant flowing through the exchangers 24 and 25 are connected.
 冷媒冷却側流量調節弁37は、予冷熱交換器35及び冷媒冷却器36を流れる冷媒の流量の調節等を行うために、冷媒冷却器36の下流側に接続された開度調節が可能な電動膨張弁である。そして、主熱源側熱交換器としての熱源側熱交換器24、25を冷媒の放熱器として機能させる際の熱源側流量調節弁26、27の下流側に、すなわち、第1熱源側熱交換器24を冷媒の放熱器として機能させる際の第1熱源側流量調節弁26の下流側に、かつ、第2熱源側熱交換器25を冷媒の放熱器として機能させる際の第2熱源側流量調節弁27の下流側に、冷媒冷却側流量調節弁37の出口が接続されている。ここでは、冷媒冷却側流量調節弁37の出口は、レシーバ28の出口管28bに合流するように接続されている。 The refrigerant cooling side flow rate adjustment valve 37 is an electric motor capable of adjusting the opening degree connected to the downstream side of the refrigerant cooler 36 in order to adjust the flow rate of the refrigerant flowing through the precooling heat exchanger 35 and the refrigerant cooler 36. It is an expansion valve. The heat source side heat exchangers 24 and 25 as the main heat source side heat exchangers are provided downstream of the heat source side flow rate adjusting valves 26 and 27 when functioning as a refrigerant radiator, that is, the first heat source side heat exchanger. The second heat source side flow rate adjustment when the second heat source side heat exchanger 25 is made to function as a refrigerant radiator on the downstream side of the first heat source side flow rate adjustment valve 26 when the 24 is made to function as a refrigerant radiator. An outlet of the refrigerant cooling side flow rate adjustment valve 37 is connected to the downstream side of the valve 27. Here, the outlet of the refrigerant cooling side flow rate adjustment valve 37 is connected to join the outlet pipe 28 b of the receiver 28.
 レシーバ28は、熱源側熱交換器24、25と利用側冷媒回路13a、13b、13c、13dとの間を流れる冷媒を一時的に溜めるための容器である。レシーバ28の上部には、レシーバ入口管28aが設けられており、レシーバ28の下部には、レシーバ出口管28bが設けられている。また、レシーバ入口管28aには、開閉制御が可能なレシーバ入口開閉弁28cが設けられている。そして、レシーバ28の入口管28a及び出口管28bは、ブリッジ回路29を介して、熱源側熱交換器24、25と液側閉鎖弁31との間に接続されている。 The receiver 28 is a container for temporarily storing the refrigerant flowing between the heat source side heat exchangers 24 and 25 and the use side refrigerant circuits 13a, 13b, 13c, and 13d. A receiver inlet pipe 28 a is provided in the upper part of the receiver 28, and a receiver outlet pipe 28 b is provided in the lower part of the receiver 28. The receiver inlet pipe 28a is provided with a receiver inlet on / off valve 28c capable of opening / closing control. The inlet pipe 28 a and the outlet pipe 28 b of the receiver 28 are connected between the heat source side heat exchangers 24 and 25 and the liquid side shut-off valve 31 via the bridge circuit 29.
 また、レシーバ28には、レシーバガス抜き管41が接続されている。レシーバガス抜き管41は、レシーバ入口管28aとは別にレシーバ28の上部から冷媒を抜き出すように設けられており、レシーバ28の上部と圧縮機21の吸入側とを接続している。レシーバガス抜き管41には、レシーバ28からガス抜きされる冷媒の流量の調節等を行うために、ガス抜き側流量調節弁42が設けられている。ここで、ガス抜き側流量調節弁42は、開度調節が可能な電動膨張弁からなる。 Also, a receiver degassing pipe 41 is connected to the receiver 28. The receiver degassing pipe 41 is provided so as to extract the refrigerant from the upper part of the receiver 28 separately from the receiver inlet pipe 28 a, and connects the upper part of the receiver 28 and the suction side of the compressor 21. The receiver degassing pipe 41 is provided with a degassing side flow rate adjusting valve 42 for adjusting the flow rate of the refrigerant degassed from the receiver 28. Here, the degassing side flow rate adjustment valve 42 is an electric expansion valve capable of adjusting the opening degree.
 また、レシーバ28には、図2に示すように、レシーバ28内の液面がレシーバガス抜き管41を接続した位置よりも下側の所定位置L1まで達しているかどうかを検知するためのレシーバ液面検知管43が接続されている。ここで、レシーバ液面検知管43は、レシーバ28の上下方向の中間付近の部分から冷媒を抜き出すように設けられている。そして、レシーバ液面検知管43は、キャピラリチューブ43aを介してレシーバガス抜き管41に合流している。ここで、レシーバ液面検知管43は、レシーバガス抜き管41のガス抜き側流量調節弁42が設けられている位置よりも上流側の部分に合流するように設けられている。さらに、レシーバガス抜き管41には、レシーバ液面検知管43が合流する位置よりも下流側に、レシーバガス抜き管41を流れる冷媒を加熱する冷媒加熱器44が設けられている。ここで、冷媒加熱器44は、圧縮機21から吐出される高圧のガス冷媒を加熱源としてレシーバガス抜き管41を流れる冷媒を加熱する熱交換器である。ここで、冷媒加熱器44は、圧縮機21から吐出された高圧のガス冷媒の一部を分岐して熱源側熱交換器24、25、35の一部である予冷熱交換器35に送る冷媒管とレシーバガス抜き管41とを接触させることによって構成される配管熱交換器や二重管熱交換器等からなる。すなわち、冷媒加熱器44は、圧縮機21から吐出される高圧のガス冷媒が常時流れる予冷熱交換器35の上流側に接続されている。そして、冷凍サイクル運転時において、圧縮機21から吐出される高圧のガス冷媒の一部が分岐されて、冷媒加熱器44、予冷熱交換器35、冷媒冷却器36及び冷媒冷却側流量調節弁37を通じて、レシーバ出口管28bに合流する流れが得られ、レシーバガス抜き管41から抜き出される冷媒は、この圧縮機21から吐出される高圧のガス冷媒の一部によって加熱されるようになっている。 As shown in FIG. 2, the receiver 28 has a receiver liquid for detecting whether or not the liquid level in the receiver 28 has reached a predetermined position L1 below the position where the receiver degassing pipe 41 is connected. A surface detection tube 43 is connected. Here, the receiver liquid level detection tube 43 is provided so as to extract the refrigerant from a portion near the middle in the vertical direction of the receiver 28. And the receiver liquid level detection pipe | tube 43 has joined the receiver degassing pipe | tube 41 via the capillary tube 43a. Here, the receiver liquid level detection pipe 43 is provided so as to merge with a portion on the upstream side of the position where the gas vent side flow rate adjustment valve 42 of the receiver gas vent pipe 41 is provided. Further, the receiver gas vent pipe 41 is provided with a refrigerant heater 44 that heats the refrigerant flowing through the receiver gas vent pipe 41 on the downstream side of the position where the receiver liquid level detection pipe 43 joins. Here, the refrigerant heater 44 is a heat exchanger that heats the refrigerant flowing through the receiver degassing pipe 41 using the high-pressure gas refrigerant discharged from the compressor 21 as a heating source. Here, the refrigerant heater 44 divides a part of the high-pressure gas refrigerant discharged from the compressor 21 and sends it to the pre-cooling heat exchanger 35 that is a part of the heat source side heat exchangers 24, 25, 35. It consists of a pipe heat exchanger, a double pipe heat exchanger, etc. comprised by making a pipe | tube and the receiver degassing pipe | tube 41 contact. That is, the refrigerant heater 44 is connected to the upstream side of the precooling heat exchanger 35 through which the high-pressure gas refrigerant discharged from the compressor 21 always flows. During the refrigeration cycle operation, a part of the high-pressure gas refrigerant discharged from the compressor 21 is branched, and the refrigerant heater 44, the precooling heat exchanger 35, the refrigerant cooler 36, and the refrigerant cooling side flow rate adjustment valve 37. Through this, a flow that merges with the receiver outlet pipe 28b is obtained, and the refrigerant extracted from the receiver gas vent pipe 41 is heated by a part of the high-pressure gas refrigerant discharged from the compressor 21. .
 ブリッジ回路29は、冷媒が熱源側熱交換器24、25側から液側閉鎖弁31側に向かって流れる場合、及び、冷媒が液側閉鎖弁31側から熱源側熱交換器24、25側に向かって流れる場合のいずれにおいても、レシーバ入口管28aを通じてレシーバ28内に冷媒を流入させ、レシーバ出口管28bを通じてレシーバ28内から冷媒を流出させる機能を有する回路である。ブリッジ回路29は、4つの逆止弁29a、29b、29c、29dを有している。そして、入口逆止弁29aは、熱源側熱交換器24、25側からレシーバ入口管28aへの冷媒の流通のみを許容する逆止弁である。入口逆止弁29bは、液側閉鎖弁31側からレシーバ入口管28aへの冷媒の流通のみを許容する逆止弁である。すなわち、入口逆止弁29a、29bは、熱源側熱交換器24、25側又は液側閉鎖弁31側からレシーバ入口管28aに冷媒を流通させる機能を有している。出口逆止弁29cは、レシーバ出口管28bから液側閉鎖弁31側への冷媒の流通のみを許容する逆止弁である。出口逆止弁29dは、レシーバ出口管28bから熱源側熱交換器24、25側への冷媒の流通のみを許容する逆止弁である。すなわち、出口逆止弁29c、29dは、レシーバ出口管28bから熱源側熱交換器24、25側又は液側閉鎖弁31側に冷媒を流通させる機能を有している。 In the bridge circuit 29, when the refrigerant flows from the heat source side heat exchangers 24, 25 toward the liquid side closing valve 31 side, and when the refrigerant flows from the liquid side closing valve 31 side to the heat source side heat exchangers 24, 25 side. In any case where the refrigerant flows in the direction, the refrigerant has a function of causing the refrigerant to flow into the receiver 28 through the receiver inlet pipe 28a and out of the receiver 28 through the receiver outlet pipe 28b. The bridge circuit 29 has four check valves 29a, 29b, 29c, and 29d. The inlet check valve 29a is a check valve that only allows the refrigerant to flow from the heat source side heat exchangers 24 and 25 to the receiver inlet pipe 28a. The inlet check valve 29b is a check valve that only allows refrigerant to flow from the liquid-side closing valve 31 side to the receiver inlet pipe 28a. That is, the inlet check valves 29a and 29b have a function of circulating the refrigerant from the heat source side heat exchangers 24 and 25 side or the liquid side closing valve 31 side to the receiver inlet pipe 28a. The outlet check valve 29c is a check valve that allows only the refrigerant to flow from the receiver outlet pipe 28b to the liquid side closing valve 31 side. The outlet check valve 29d is a check valve that only allows refrigerant to flow from the receiver outlet pipe 28b to the heat source side heat exchangers 24 and 25. That is, the outlet check valves 29c and 29d have a function of circulating the refrigerant from the receiver outlet pipe 28b to the heat source side heat exchangers 24 and 25 side or the liquid side closing valve 31 side.
 また、ブリッジ回路29には、熱源側熱交換器24、25の液側を流れる冷媒との熱交換を行う液管熱交換器としての過冷却熱交換器45が設けられ、熱源側熱交換器24、25の液側と利用側熱交換器52a、52b、52c、52dの液側との間を流れる冷媒の一部を圧縮機21の吸入側に戻す吸入戻し管46が接続されている。過冷却熱交換器45は、レシーバ出口管28bに設けられており、吸入戻し管46を流れる冷媒を冷却源としてレシーバ出口管28bを流れる冷媒(すなわち、熱源側熱交換器24、25の液側と利用側熱交換器52a、52b、52c、52dの液側との間を流れる冷媒)を冷却する冷却器である。ここで、過冷却熱交換器45は、吸入戻し管46とレシーバ出口管28bとを接触させることによって構成される配管熱交換器や二重管熱交換器等からなる。吸入戻し管46は、レシーバ出口管28bから分岐されるように設けられており、過冷却熱交換器45を介してレシーバ出口管28bと圧縮機21の吸入側とを接続している。吸入戻し管46には、レシーバ出口管28bから分岐される冷媒の流量の調節等を行うために、吸入戻し側流量調節弁47が設けられている。吸入戻し側流量調節弁47は、吸入戻し管46の過冷却熱交換器45の上流側の部分に設けられている。ここで、吸入戻し側流量調節弁47は、開度調節が可能な電動膨張弁からなる。 Further, the bridge circuit 29 is provided with a supercooling heat exchanger 45 as a liquid pipe heat exchanger that performs heat exchange with the refrigerant flowing on the liquid side of the heat source side heat exchangers 24 and 25, and the heat source side heat exchanger A suction return pipe 46 is connected to return a part of the refrigerant flowing between the liquid side of 24, 25 and the liquid side of the use side heat exchangers 52 a, 52 b, 52 c, 52 d to the suction side of the compressor 21. The supercooling heat exchanger 45 is provided in the receiver outlet pipe 28b, and the refrigerant flowing through the receiver outlet pipe 28b using the refrigerant flowing through the suction return pipe 46 as a cooling source (that is, the liquid side of the heat source side heat exchangers 24 and 25). And a refrigerant flowing between the liquid side of the use side heat exchangers 52a, 52b, 52c, and 52d). Here, the supercooling heat exchanger 45 includes a pipe heat exchanger, a double pipe heat exchanger, and the like configured by bringing the suction return pipe 46 and the receiver outlet pipe 28b into contact with each other. The suction return pipe 46 is provided so as to be branched from the receiver outlet pipe 28 b, and connects the receiver outlet pipe 28 b and the suction side of the compressor 21 via the supercooling heat exchanger 45. The suction return pipe 46 is provided with a suction return side flow rate adjustment valve 47 for adjusting the flow rate of the refrigerant branched from the receiver outlet pipe 28b. The suction return side flow rate adjustment valve 47 is provided on the upstream side of the supercooling heat exchanger 45 of the suction return pipe 46. Here, the suction return side flow rate adjustment valve 47 is an electric expansion valve capable of adjusting the opening degree.
 高低圧切換機構30は、圧縮機21から吐出された高圧のガス冷媒を利用側冷媒回路13a、13b、13c、13dに送る場合(以下、「放熱負荷運転状態」とする)には、圧縮機21の吐出側と高低圧ガス側閉鎖弁32とを接続し(図1の高低圧切換機構30の破線を参照)、圧縮機21から吐出された高圧のガス冷媒を利用側冷媒回路13a、13b、13c、13dに送らない場合(以下、「蒸発負荷運転状態」とする)には、高低圧ガス側閉鎖弁32と圧縮機21の吸入側とを接続するように(図1の高低圧切換機構30の実線を参照)、熱源側冷媒回路12内における冷媒の流路を切り換えることが可能な機器であり、例えば、四路切換弁からなる。 The high / low pressure switching mechanism 30, when sending the high-pressure gas refrigerant discharged from the compressor 21 to the use- side refrigerant circuits 13 a, 13 b, 13 c, and 13 d (hereinafter referred to as “heat dissipation load operation state”), 21 is connected to the high-low pressure gas side shut-off valve 32 (see the broken line of the high-low pressure switching mechanism 30 in FIG. 1), and the high-pressure gas refrigerant discharged from the compressor 21 is used on the use- side refrigerant circuits 13a, 13b. , 13c, 13d (hereinafter referred to as “evaporative load operation state”), the high / low pressure gas side shut-off valve 32 and the suction side of the compressor 21 are connected (high / low pressure switching in FIG. 1). (Refer to the solid line of the mechanism 30), which is a device capable of switching the refrigerant flow path in the heat source side refrigerant circuit 12, and includes, for example, a four-way switching valve.
 液側閉鎖弁31、高低圧ガス側閉鎖弁32及び低圧ガス側閉鎖弁33は、外部の機器・配管(具体的には、冷媒連絡管7、8及び9)との接続口に設けられた弁である。液側閉鎖弁31は、ブリッジ回路29を介してレシーバ入口管28a又はレシーバ出口管28bに接続されている。高低圧ガス側閉鎖弁32は、高低圧切換機構30に接続されている。低圧ガス側閉鎖弁33は、圧縮機21の吸入側に接続されている。 The liquid side shut-off valve 31, the high-low pressure gas side shut-off valve 32, and the low-pressure gas side shut-off valve 33 are provided at the connection ports with external devices and piping (specifically, the refrigerant communication pipes 7, 8, and 9). It is a valve. The liquid side closing valve 31 is connected to the receiver inlet pipe 28a or the receiver outlet pipe 28b via the bridge circuit 29. The high / low pressure gas side closing valve 32 is connected to the high / low pressure switching mechanism 30. The low pressure gas side closing valve 33 is connected to the suction side of the compressor 21.
 また、熱源ユニット2には、各種のセンサが設けられている。具体的には、圧縮機21の吸入側における冷媒の圧力を検出する吸入圧力センサ71と、圧縮機21の吐出側における冷媒の圧力を検出する吐出圧力センサ73と、レシーバガス抜き管41を流れる冷媒の温度を検出するガス抜き側温度センサ75と、吸入戻し管46を流れる冷媒の温度を検出する吸入戻し側温度センサ81とが設けられている。ここでは、ガス抜き側温度センサ75は、冷媒加熱器44の出口における冷媒の温度を検出するようにレシーバガス抜き管41に設けられ、吸入戻し側温度センサ81は、過冷却熱交換器45の出口における冷媒の温度を検出するように吸入戻し管46に設けられている。また、熱源ユニット2は、熱源ユニット2を構成する各部21a、22、23、26、27、28c、30、34a、37、42、47の動作を制御する熱源側制御部20を有している。そして、熱源側制御部20は、熱源ユニット2の制御を行うために設けられたマイクロコンピュータやメモリを有しており、利用ユニット3a、3b、3c、3dの利用側制御部50a、50b、50c、50dとの間で制御信号等のやりとりを行うことができるようになっている。 The heat source unit 2 is provided with various sensors. Specifically, the suction pressure sensor 71 detects the refrigerant pressure on the suction side of the compressor 21, the discharge pressure sensor 73 detects the refrigerant pressure on the discharge side of the compressor 21, and the receiver degassing pipe 41. A degassing side temperature sensor 75 for detecting the temperature of the refrigerant and a suction return side temperature sensor 81 for detecting the temperature of the refrigerant flowing through the suction return pipe 46 are provided. Here, the degassing temperature sensor 75 is provided in the receiver degassing pipe 41 so as to detect the temperature of the refrigerant at the outlet of the refrigerant heater 44, and the suction return side temperature sensor 81 is provided in the supercooling heat exchanger 45. A suction return pipe 46 is provided to detect the temperature of the refrigerant at the outlet. Further, the heat source unit 2 includes a heat source side control unit 20 that controls operations of the respective units 21 a, 22, 23, 26, 27, 28 c, 30, 34 a, 37, 42, and 47 constituting the heat source unit 2. . The heat source side control unit 20 includes a microcomputer and a memory provided to control the heat source unit 2, and uses side control units 50a, 50b, 50c of the usage units 3a, 3b, 3c, 3d. , 50d can exchange control signals and the like.
 <接続ユニット>
 接続ユニット4a、4b、4c、4dは、ビル等の室内に利用ユニット3a、3b、3c、3dとともに設置されている。接続ユニット4a、4b、4c、4dは、冷媒連絡管9、10、11とともに、利用ユニット3、4、5と熱源ユニット2との間に介在しており、冷媒回路10の一部を構成している。
<Connection unit>
The connection units 4a, 4b, 4c, and 4d are installed together with the use units 3a, 3b, 3c, and 3d in a room such as a building. The connection units 4 a, 4 b, 4 c, 4 d are interposed between the use units 3, 4, 5 and the heat source unit 2 together with the refrigerant communication tubes 9, 10, 11, and constitute a part of the refrigerant circuit 10. ing.
 次に、接続ユニット4a、4b、4c、4dの構成について説明する。尚、接続ユニット4aと接続ユニット4b、4c、4dとは同様の構成であるため、ここでは、接続ユニット4aの構成のみ説明し、接続ユニット4b、4c、4dの構成については、それぞれ、接続ユニット4aの各部を示す符号の添字「a」の代わりに、「b」、「c」又は「d」の添字を付して、各部の説明を省略する。 Next, the configuration of the connection units 4a, 4b, 4c, and 4d will be described. Since the connection unit 4a and the connection units 4b, 4c, and 4d have the same configuration, only the configuration of the connection unit 4a will be described here, and the configuration of the connection units 4b, 4c, and 4d will be described respectively. In place of the subscript “a” indicating the respective parts of 4a, the subscript “b”, “c” or “d” is attached, and the description of each part is omitted.
 接続ユニット4aは、主として、冷媒回路10の一部を構成しており、接続側冷媒回路14a(接続ユニット4b、4c、4dでは、それぞれ、接続側冷媒回路14b、14c、14d)を有している。接続側冷媒回路14aは、主として、液接続管61aと、ガス接続管62aとを有している。 The connection unit 4a mainly constitutes a part of the refrigerant circuit 10, and includes a connection side refrigerant circuit 14a (in the connection units 4b, 4c, and 4d, connection side refrigerant circuits 14b, 14c, and 14d, respectively). Yes. The connection side refrigerant circuit 14a mainly includes a liquid connection pipe 61a and a gas connection pipe 62a.
 液接続管61aは、液冷媒連絡管7と利用側冷媒回路13aの利用側流量調節弁51aとを接続している。 The liquid connection pipe 61a connects the liquid refrigerant communication pipe 7 and the use side flow rate adjustment valve 51a of the use side refrigerant circuit 13a.
 ガス接続管62aは、高低圧ガス冷媒連絡管8に接続された高圧ガス接続管63aと、低圧ガス冷媒連絡管9に接続された低圧ガス接続管64aと、高圧ガス接続管63aと低圧ガス接続管64aとを合流させる合流ガス接続管65aとを有している。合流ガス接続管65aは、利用側冷媒回路13aの利用側熱交換器52aのガス側に接続されている。高圧ガス接続管63aには、開閉制御が可能な高圧ガス開閉弁66aが設けられており、低圧ガス接続管64aには、開閉制御が可能な低圧ガス開閉弁67aが設けられている。 The gas connection pipe 62a includes a high pressure gas connection pipe 63a connected to the high and low pressure gas refrigerant communication pipe 8, a low pressure gas connection pipe 64a connected to the low pressure gas refrigerant communication pipe 9, and a high pressure gas connection pipe 63a and a low pressure gas connection. It has a merged gas connection pipe 65a that merges the pipe 64a. The merged gas connection pipe 65a is connected to the gas side of the use side heat exchanger 52a of the use side refrigerant circuit 13a. The high pressure gas connection pipe 63a is provided with a high pressure gas on / off valve 66a capable of opening / closing control, and the low pressure gas connection pipe 64a is provided with a low pressure gas on / off valve 67a capable of opening / closing control.
 そして、接続ユニット4aは、利用ユニット3aが冷房運転を行う際には、低圧ガス開閉弁67aを開けた状態にして、液冷媒連絡管7を通じて液接続管61aに流入する冷媒を利用側冷媒回路13aの利用側流量調節弁51aを通じて利用側熱交換器52aに送り、利用側熱交換器52aにおいて室内空気との熱交換によって蒸発した冷媒を、合流ガス接続管65a及び低圧ガス接続管64aを通じて、低圧ガス冷媒連絡管9に戻すように機能することができる。また、接続ユニット4aは、利用ユニット3aが暖房運転を行う際には、低圧ガス開閉弁67aを閉止し、かつ、高圧ガス開閉弁66aを開けた状態にして、高低圧ガス冷媒連絡管8を通じて高圧ガス接続管63a及び合流ガス接続管65aに流入する冷媒を利用側冷媒回路13aの利用側熱交換器52aに送り、利用側熱交換器52aにおいて室内空気との熱交換によって放熱した冷媒を、利用側流量調節弁51a及び液接続管61aを通じて、液冷媒連絡管7に戻すように機能することができる。この機能は、接続ユニット4aだけでなく、接続ユニット4b、4c、4dも同様に有しているため、接続ユニット4a、4b、4c、4dによって、利用側熱交換器52a、52b、52c、52dは、個別に冷媒の蒸発器又は放熱器として機能させる切り換えが可能になっている。 When the use unit 3a performs the cooling operation, the connection unit 4a opens the low-pressure gas on / off valve 67a and allows the refrigerant flowing into the liquid connection pipe 61a through the liquid refrigerant communication pipe 7 to be used on the use-side refrigerant circuit. The refrigerant evaporated by heat exchange with the indoor air in the use side heat exchanger 52a through the use side flow rate adjustment valve 51a of 13a and through the combined gas connection pipe 65a and the low pressure gas connection pipe 64a is sent through the use side heat exchanger 52a. It can function to return to the low-pressure gas refrigerant communication tube 9. Further, the connection unit 4a closes the low pressure gas on / off valve 67a and opens the high pressure gas on / off valve 66a when the use unit 3a performs the heating operation, and passes through the high / low pressure gas refrigerant communication pipe 8. The refrigerant flowing into the high-pressure gas connection pipe 63a and the merged gas connection pipe 65a is sent to the use-side heat exchanger 52a of the use-side refrigerant circuit 13a, and the refrigerant radiated by heat exchange with room air in the use-side heat exchanger 52a is It can function to return to the liquid refrigerant communication pipe 7 through the use side flow rate adjustment valve 51a and the liquid connection pipe 61a. Since this function has not only the connection unit 4a but also the connection units 4b, 4c, and 4d, the use side heat exchangers 52a, 52b, 52c, and 52d are connected by the connection units 4a, 4b, 4c, and 4d. Can be switched individually to function as a refrigerant evaporator or radiator.
 また、接続ユニット4aは、接続ユニット4aを構成する各部66a、67aの動作を制御する接続側制御部60aを有している。そして、接続側制御部60aは、接続ユニット60aの制御を行うために設けられたマイクロコンピュータやメモリを有しており、利用ユニット3aの利用側制御部50aとの間で制御信号等のやりとりを行うことができるようになっている。 Further, the connection unit 4a has a connection side control unit 60a for controlling the operation of each unit 66a, 67a constituting the connection unit 4a. The connection-side control unit 60a includes a microcomputer and a memory provided for controlling the connection unit 60a, and exchanges control signals and the like with the use-side control unit 50a of the use unit 3a. Can be done.
 以上のように、利用側冷媒回路13a、13b、13c、13dと、熱源側冷媒回路12と、冷媒連絡管7、8、9と、接続側冷媒回路14a、14b、14c、14dとが接続されて、冷暖同時運転型空気調和装置1の冷媒回路10が構成されている。そして、冷暖同時運転型空気調和装置1では、圧縮機21と熱源側熱交換器24、25とレシーバ28とを有する熱源ユニット2と、利用側流量調節弁51a、51b、51c、51dと利用側熱交換器52a、52b、52c、52dとを有する利用ユニット3a、3b、3c、3dとが、ガス冷媒連絡管8、9及び液冷媒連絡管7を介して接続された冷凍装置を構成している。そして、ここでは、後述のように、暖房運転等のような利用側熱交換器52a、52b、52c、52dを冷媒の放熱器として機能させる運転において、利用側熱交換器52a、52b、52c、52dの出口における冷媒の過冷却度SCに基づいて利用側流量調節弁51a、51b、51c、51dの開度を制御する過冷却度制御を行うようになっている。また、レシーバ28に、レシーバ28の上部と圧縮機21の吸入側とを接続するレシーバガス抜き管41を設け、レシーバガス抜き管41に、開度調節が可能なガス抜き側流量調節弁42を設けている。 As described above, the use side refrigerant circuits 13a, 13b, 13c, 13d, the heat source side refrigerant circuit 12, the refrigerant communication tubes 7, 8, 9 and the connection side refrigerant circuits 14a, 14b, 14c, 14d are connected. Thus, the refrigerant circuit 10 of the cooling and heating simultaneous operation type air conditioner 1 is configured. In the cooling and heating simultaneous operation type air conditioner 1, the heat source unit 2 including the compressor 21, the heat source side heat exchangers 24 and 25, and the receiver 28, the use side flow rate adjustment valves 51a, 51b, 51c, and 51d and the use side. Use units 3a, 3b, 3c, 3d having heat exchangers 52a, 52b, 52c, 52d constitute a refrigeration apparatus connected via gas refrigerant communication pipes 8, 9 and liquid refrigerant communication pipe 7. Yes. And, as will be described later, in the operation in which the use side heat exchangers 52a, 52b, 52c, 52d function as a refrigerant radiator, such as heating operation, the use side heat exchangers 52a, 52b, 52c, Based on the supercooling degree SC of the refrigerant at the outlet 52d, supercooling degree control is performed to control the opening degree of the use side flow rate adjusting valves 51a, 51b, 51c, 51d. In addition, the receiver 28 is provided with a receiver degassing pipe 41 that connects the upper part of the receiver 28 and the suction side of the compressor 21, and the receiver degassing pipe 41 is provided with a degassing side flow rate adjustment valve 42 that can adjust the opening degree. Provided.
 (2)冷凍装置(冷暖同時運転型空気調和装置)の動作
 次に、冷暖同時運転型空気調和装置1の動作について説明する。
(2) Operation | movement of freezing apparatus (cooling / heating simultaneous operation type air conditioning apparatus) Next, operation | movement of the cooling / heating simultaneous operation type air conditioning apparatus 1 is demonstrated.
 冷暖同時運転型空気調和装置1の冷凍サイクル運転としては、冷房運転と、暖房運転と、冷暖同時運転(蒸発負荷主体)と、冷暖同時運転(放熱負荷主体)とがある。ここで、冷房運転は、冷房運転(すなわち、利用側熱交換器が冷媒の蒸発器として機能する運転)を行う利用ユニットだけが存在し、利用ユニット全体の蒸発負荷に対して熱源側熱交換器24、25を冷媒の放熱器として機能させる運転である。暖房運転は、暖房運転(すなわち、利用側熱交換器が冷媒の放熱器として機能する運転)を行う利用ユニットだけが存在し、利用ユニット全体の放熱負荷に対して主熱源側熱交換器としての熱源側熱交換器24、25を冷媒の蒸発器として機能させる運転である。冷暖同時運転(蒸発負荷主体)は、冷房運転(すなわち、利用側熱交換器が冷媒の蒸発器として機能する運転)を行う利用ユニットと暖房運転(すなわち、利用側熱交換器が冷媒の放熱器として機能する運転)を行う利用ユニットとが混在し、利用ユニット全体の熱負荷が蒸発負荷主体である場合に、この利用ユニット全体の蒸発負荷に対して主熱源側熱交換器としての熱源側熱交換器24、25を冷媒の放熱器として機能させる運転である。冷暖同時運転(放熱負荷主体)は、冷房運転(すなわち、利用側熱交換器が冷媒の蒸発器として機能する運転)を行う利用ユニットと暖房運転(すなわち、利用側熱交換器が冷媒の放熱器として機能する運転)を行う利用ユニットとが混在し、利用ユニット全体の熱負荷が放熱負荷主体である場合に、この利用ユニット全体の放熱負荷に対して主熱源側熱交換器としての熱源側熱交換器24、25を冷媒の蒸発器として機能させる運転である。 The refrigeration cycle operation of the cooling / heating simultaneous operation type air conditioner 1 includes a cooling operation, a heating operation, a cooling / heating simultaneous operation (evaporation load main), and a cooling / heating simultaneous operation (heat radiation load main). Here, in the cooling operation, there is only a use unit that performs a cooling operation (that is, an operation in which the use-side heat exchanger functions as an evaporator of the refrigerant), and the heat source-side heat exchanger with respect to the evaporation load of the entire use unit In this operation, 24 and 25 are made to function as refrigerant radiators. In the heating operation, there are only use units that perform the heating operation (that is, the operation in which the use-side heat exchanger functions as a refrigerant radiator), and the main heat source side heat exchanger is used for the heat radiation load of the entire use unit. In this operation, the heat source side heat exchangers 24 and 25 function as a refrigerant evaporator. Simultaneous cooling and heating operation (evaporation load mainly) is a cooling unit (that is, an operation in which the use side heat exchanger functions as a refrigerant evaporator) and a heating unit (ie, the use side heat exchanger is a refrigerant radiator). When there is a mixture of utilization units that perform the operation that functions as the main unit and the heat load of the entire utilization unit is mainly the evaporation load, the heat source side heat as the main heat source side heat exchanger with respect to the evaporation load of the entire utilization unit In this operation, the exchangers 24 and 25 function as refrigerant radiators. Simultaneous cooling and heating operation (mainly heat radiation load) is a cooling unit (that is, an operation in which the use side heat exchanger functions as a refrigerant evaporator) and a heating unit (that is, the use side heat exchanger is a refrigerant radiator). When the heat load of the entire utilization unit is mainly the heat radiation load, the heat source side heat as the main heat source side heat exchanger is used for the heat radiation load of the entire utilization unit. This is an operation in which the exchangers 24 and 25 function as a refrigerant evaporator.
 尚、これらの冷凍サイクル運転を含む冷暖同時運転型空気調和装置1の動作は、上記の制御部20、50a、50b、50c、50d、60a、60b、60c、60dによって行われる。 In addition, operation | movement of the heating / cooling simultaneous operation type air conditioning apparatus 1 including these refrigerating cycle operation | movement is performed by said control part 20, 50a, 50b, 50c, 50d, 60a, 60b, 60c, 60d.
 -冷房運転-
 冷房運転の際、例えば、利用ユニット3a、3b、3c、3dの全てが冷房運転(すなわち、利用側熱交換器52a、52b、52c、52dの全てが冷媒の蒸発器として機能する運転)を行い、主熱源側熱交換器としての熱源側熱交換器24、25が冷媒の放熱器として機能する際、空気調和装置1の冷媒回路10は、図3に示されるように構成される(冷媒の流れについては、図3の冷媒回路10に付された矢印を参照)。
-Cooling operation-
During the cooling operation, for example, all of the usage units 3a, 3b, 3c, and 3d perform a cooling operation (that is, an operation in which all of the usage- side heat exchangers 52a, 52b, 52c, and 52d function as a refrigerant evaporator). When the heat source side heat exchangers 24 and 25 as the main heat source side heat exchanger function as a refrigerant radiator, the refrigerant circuit 10 of the air conditioner 1 is configured as shown in FIG. (For the flow, see the arrow attached to the refrigerant circuit 10 in FIG. 3).
 具体的には、熱源ユニット2においては、第1熱交切換機構22を放熱運転状態(図3の第1熱交切換機構22の実線で示された状態)に切り換え、第2熱交切換機構23を放熱運転状態(図3の第2熱交切換機構23の実線で示された状態)に切り換えることによって、熱源側熱交換器24、25を冷媒の放熱器として機能させるようになっている。また、高低圧切換機構30を蒸発負荷運転状態(図3の高低圧切換機構30の実線で示された状態)に切り換えている。また、熱源側流量調節弁26、27は、開度調節され、レシーバ入口開閉弁28cは、開状態になっている。また、冷媒冷却側流量調節弁37は、開度調節されて、予冷熱交換器35に圧縮機21から吐出される高圧のガス冷媒が流れるようになっている。また、吸入戻し側流量調節弁47は、開度調節されて、過冷却熱交換器45がレシーバ出口管28bを流れる冷媒の冷却器として機能するようになっている。さらに、ここでは、冷媒の放熱器として機能する利用側熱交換器が存在しない運転であるため、ガス抜き側流量調節弁42は、後述のように、全閉状態(開度0%)に開度調節されており、これにより、レシーバガス抜き管41を通じてレシーバ28からガス冷媒を圧縮機21の吸入側に抜き出さないようになっている。接続ユニット4a、4b、4c、4dにおいては、高圧ガス開閉弁66a、66b、66c、66d、及び、低圧ガス開閉弁67a、67b、67c、67dを開状態にすることによって、利用ユニット3a、3b、3c、3dの利用側熱交換器52a、52b、52c、52dの全てを冷媒の蒸発器として機能させるとともに、利用ユニット3a、3b、3c、3dの利用側熱交換器52a、52b、52c、52dの全てと熱源ユニット2の圧縮機21の吸入側とが高低圧ガス冷媒連絡管8及び低圧ガス冷媒連絡管9を介して接続された状態になっている。利用ユニット3a、3b、3c、3dにおいては、利用側流量調節弁51a、51b、51c、51dは、開度調節されている。 Specifically, in the heat source unit 2, the first heat exchange switching mechanism 22 is switched to the heat radiation operation state (the state indicated by the solid line of the first heat exchange switching mechanism 22 in FIG. 3), and the second heat exchange switching mechanism 22 The heat source side heat exchangers 24 and 25 are caused to function as refrigerant radiators by switching the operation state to the heat radiation operation state (the state indicated by the solid line of the second heat exchange switching mechanism 23 in FIG. 3). . Further, the high / low pressure switching mechanism 30 is switched to the evaporative load operation state (the state indicated by the solid line of the high / low pressure switching mechanism 30 in FIG. 3). Further, the opening amounts of the heat source side flow rate adjusting valves 26 and 27 are adjusted, and the receiver inlet opening / closing valve 28c is in an open state. Moreover, the opening degree of the refrigerant cooling side flow rate adjustment valve 37 is adjusted so that the high-pressure gas refrigerant discharged from the compressor 21 flows into the precooling heat exchanger 35. The suction return side flow rate adjustment valve 47 is adjusted in opening so that the supercooling heat exchanger 45 functions as a refrigerant cooler flowing through the receiver outlet pipe 28b. Further, here, since the use side heat exchanger functioning as a refrigerant radiator does not exist, the degassing side flow rate adjustment valve 42 is opened in a fully closed state (opening degree 0%) as described later. Thus, the gas refrigerant is not extracted from the receiver 28 to the suction side of the compressor 21 through the receiver gas vent pipe 41. In the connection units 4a, 4b, 4c and 4d, the use units 3a and 3b are opened by opening the high pressure gas on / off valves 66a, 66b, 66c and 66d and the low pressure gas on / off valves 67a, 67b, 67c and 67d. 3c, 3d use side heat exchangers 52a, 52b, 52c, 52d all function as refrigerant evaporators, and use units 3a, 3b, 3c, 3d use side heat exchangers 52a, 52b, 52c, All of 52d and the suction side of the compressor 21 of the heat source unit 2 are connected via the high and low pressure gas refrigerant communication pipe 8 and the low pressure gas refrigerant communication pipe 9. In the usage units 3a, 3b, 3c and 3d, the usage-side flow rate adjustment valves 51a, 51b, 51c and 51d are adjusted in opening.
 このような冷媒回路10において、圧縮機21で圧縮され吐出された高圧のガス冷媒は、熱交切換機構22、23を通じて、主熱源側熱交換器としての熱源側熱交換器24、25に送られる。また、圧縮機21で圧縮され吐出された高圧のガス冷媒は、冷媒加熱器44を介して、予冷熱交換器35にも送られる。そして、熱源側熱交換器24、25に送られた高圧のガス冷媒は、熱源側熱交換器24、25において、室外ファン34によって供給される熱源としての室外空気と熱交換を行うことによって放熱する。そして、熱源側熱交換器24、25において放熱した冷媒は、熱源側流量調節弁26、27において流量調節された後、合流して、入口逆止弁29a及びレシーバ入口開閉弁28cを通じて、レシーバ28に送られる。また、予冷熱交換器35に送られた高圧のガス冷媒も、予冷熱交換器35において、室外ファン34によって供給される熱源としての室外空気と熱交換を行うことによって放熱する。そして、予冷熱交換器35において放熱した冷媒は、冷媒冷却器36に送られて、電装品20aを冷却する。冷媒冷却器36を通過した冷媒は、冷媒冷却側流量調節弁37において流量調節された後、レシーバ出口管28bに送られる。そして、レシーバ28に送られた冷媒は、レシーバ28内に一時的に溜められた後、レシーバ出口管28bに送られ、その一部が吸入戻し管46に分岐され、その後、冷媒冷却器36を通過した冷媒と合流して過冷却熱交換器45に送られる。過冷却熱交換器45に送られたレシーバ出口管28bを流れる冷媒は、吸入戻し管46の吸入戻し側流量調節弁47において流量調節された冷媒によって冷却される。過冷却熱交換器45において冷却されたレシーバ出口管28bを流れる冷媒は、出口逆止弁29c及び液側閉鎖弁31を通じて、液冷媒連絡管7に送られる。一方、過冷却熱交換器45で熱交換を行った後の吸入戻し管46を流れる冷媒は、圧縮機21の吸入側に戻される。 In such a refrigerant circuit 10, the high-pressure gas refrigerant compressed and discharged by the compressor 21 is sent to the heat source side heat exchangers 24 and 25 as main heat source side heat exchangers through the heat exchange switching mechanisms 22 and 23. It is done. The high-pressure gas refrigerant compressed and discharged by the compressor 21 is also sent to the precooling heat exchanger 35 via the refrigerant heater 44. The high-pressure gas refrigerant sent to the heat source side heat exchangers 24 and 25 radiates heat by exchanging heat with outdoor air as a heat source supplied by the outdoor fan 34 in the heat source side heat exchangers 24 and 25. To do. The refrigerant that has radiated heat in the heat source side heat exchangers 24 and 25 is adjusted in flow rate in the heat source side flow rate adjusting valves 26 and 27, and then merges and passes through the inlet check valve 29a and the receiver inlet on / off valve 28c. Sent to. The high-pressure gas refrigerant sent to the precooling heat exchanger 35 also dissipates heat by exchanging heat with outdoor air as a heat source supplied by the outdoor fan 34 in the precooling heat exchanger 35. And the refrigerant | coolant thermally radiated in the pre-cooling heat exchanger 35 is sent to the refrigerant | coolant cooler 36, and cools the electrical component 20a. The refrigerant that has passed through the refrigerant cooler 36 is adjusted in flow rate by the refrigerant cooling side flow rate adjustment valve 37 and then sent to the receiver outlet pipe 28b. The refrigerant sent to the receiver 28 is temporarily stored in the receiver 28, and then sent to the receiver outlet pipe 28b. A part of the refrigerant is branched to the suction return pipe 46, and then the refrigerant cooler 36 is connected. The refrigerant that has passed through is joined to the supercooling heat exchanger 45. The refrigerant flowing through the receiver outlet pipe 28 b sent to the supercooling heat exchanger 45 is cooled by the refrigerant whose flow rate is adjusted by the suction return side flow rate adjustment valve 47 of the suction return pipe 46. The refrigerant flowing through the receiver outlet pipe 28 b cooled in the supercooling heat exchanger 45 is sent to the liquid refrigerant communication pipe 7 through the outlet check valve 29 c and the liquid side closing valve 31. On the other hand, the refrigerant flowing through the suction return pipe 46 after heat exchange in the subcooling heat exchanger 45 is returned to the suction side of the compressor 21.
 そして、液冷媒連絡管7に送られた冷媒は、4つに分岐されて、各接続ユニット4a、4b、4c、4dの液接続管61a、61b、61c、61dに送られる。そして、液接続管61a、61b、61c、61dに送られた冷媒は、利用ユニット3a、3b、3c、3dの利用側流量調節弁51a、51b、51c、51dに送られる。 The refrigerant sent to the liquid refrigerant communication tube 7 is branched into four and sent to the liquid connection tubes 61a, 61b, 61c, 61d of the connection units 4a, 4b, 4c, 4d. The refrigerant sent to the liquid connection pipes 61a, 61b, 61c, 61d is sent to the usage-side flow rate adjustment valves 51a, 51b, 51c, 51d of the usage units 3a, 3b, 3c, 3d.
 そして、利用側流量調節弁51a、51b、51c、51dに送られた冷媒は、利用側流量調節弁51a、51b、51c、51dにおいて流量調節された後、利用側熱交換器52a、52b、52c、52dにおいて、室内ファン53a、53b、53c、53dによって供給される室内空気と熱交換を行うことによって蒸発して低圧のガス冷媒となる。一方、室内空気は、冷却されて室内に供給されて、利用ユニット3a、3b、3c、3dの冷房運転が行われる。そして、低圧のガス冷媒は、接続ユニット4a、4b、4c、4dの合流ガス接続管65a、65b、65c、65dに送られる。 The refrigerant sent to the usage-side flow rate adjustment valves 51a, 51b, 51c, 51d is adjusted in flow rate at the usage-side flow rate adjustment valves 51a, 51b, 51c, 51d, and then used- side heat exchangers 52a, 52b, 52c. , 52d evaporates into a low-pressure gas refrigerant by exchanging heat with the indoor air supplied by the indoor fans 53a, 53b, 53c, 53d. On the other hand, the room air is cooled and supplied to the room, and the use units 3a, 3b, 3c, and 3d are cooled. Then, the low-pressure gas refrigerant is sent to the merged gas connection pipes 65a, 65b, 65c, and 65d of the connection units 4a, 4b, 4c, and 4d.
 そして、合流ガス接続管65a、65b、65c、65dに送られた低圧のガス冷媒は、高圧ガス開閉弁66a、66b、66c、66d及び高圧ガス接続管63a、63b、63c、63dを通じて、高低圧ガス冷媒連絡管8に送られて合流するとともに、低圧ガス開閉弁67a、67b、67c、67d及び低圧ガス接続管64a、64b、64c、64dを通じて、低圧ガス冷媒連絡管9に送られて合流する。 The low-pressure gas refrigerant sent to the merged gas connection pipes 65a, 65b, 65c, 65d passes through the high-pressure gas on / off valves 66a, 66b, 66c, 66d and the high-pressure gas connection pipes 63a, 63b, 63c, 63d. The gas refrigerant communication pipe 8 is sent and merged, and the low pressure gas on / off valves 67a, 67b, 67c and 67d and the low pressure gas connection pipes 64a, 64b, 64c and 64d are sent to the low pressure gas refrigerant communication pipe 9 and merged. .
 そして、ガス冷媒連絡管8、9に送られた低圧のガス冷媒は、ガス側閉鎖弁32、33及び高低圧切換機構30を通じて、圧縮機21の吸入側に戻される。 Then, the low-pressure gas refrigerant sent to the gas refrigerant communication pipes 8 and 9 is returned to the suction side of the compressor 21 through the gas- side stop valves 32 and 33 and the high-low pressure switching mechanism 30.
 このようにして、冷房運転における動作が行われる。尚、利用ユニット3a、3b、3c、3dのいくつかが冷房運転(すなわち、利用側熱交換器52a、52b、52c、52dのいくつかが冷媒の蒸発器として機能する運転)を行う等によって、利用側熱交換器52a、52b、52c、52d全体の蒸発負荷が小さくなる場合には、熱源側熱交換器24、25の一方(例えば、第1熱源側熱交換器24)だけを冷媒の放熱器として機能させる運転が行われる。 In this way, the operation in the cooling operation is performed. In addition, some of the usage units 3a, 3b, 3c, and 3d perform a cooling operation (that is, an operation in which some of the usage- side heat exchangers 52a, 52b, 52c, and 52d function as a refrigerant evaporator). When the evaporation load of the entire use side heat exchangers 52a, 52b, 52c, and 52d becomes small, only one of the heat source side heat exchangers 24 and 25 (for example, the first heat source side heat exchanger 24) dissipates the refrigerant. The operation to function as a vessel is performed.
 -暖房運転-
 暖房運転の際、例えば、利用ユニット3a、3b、3c、3dの全てが暖房運転(すなわち、利用側熱交換器52a、52b、52c、52dの全てが冷媒の放熱器として機能する運転)を行い、主熱源側熱交換器としての熱源側熱交換器24、25が冷媒の蒸発器として機能する際、空気調和装置1の冷媒回路10は、図4に示されるように構成される(冷媒の流れについては、図4の冷媒回路10に付された矢印を参照)。
-Heating operation-
In the heating operation, for example, all of the usage units 3a, 3b, 3c, and 3d perform the heating operation (that is, the operation in which all of the usage- side heat exchangers 52a, 52b, 52c, and 52d function as a refrigerant radiator). When the heat source side heat exchangers 24 and 25 as the main heat source side heat exchanger function as a refrigerant evaporator, the refrigerant circuit 10 of the air conditioner 1 is configured as shown in FIG. (For the flow, see the arrow attached to the refrigerant circuit 10 in FIG. 4).
 具体的には、熱源ユニット2においては、第1熱交切換機構22を蒸発運転状態(図4の第1熱交切換機構22の破線で示された状態)に切り換え、第2熱交切換機構23を蒸発運転状態(図4の第2熱交切換機構23の破線で示された状態)に切り換えることによって、熱源側熱交換器24、25を冷媒の蒸発器として機能させるようになっている。また、高低圧切換機構30を放熱負荷運転状態(図4の高低圧切換機構30の破線で示された状態)に切り換えている。また、熱源側流量調節弁26、27は、開度調節され、レシーバ入口開閉弁28cは、開状態になっている。また、冷媒冷却側流量調節弁37は、開度調節されて、予冷熱交換器35に圧縮機21から吐出される高圧のガス冷媒が流れるようになっている。また、吸入戻し側流量調節弁47は、開度調節されて、過冷却熱交換器45がレシーバ出口管28bを流れる冷媒の冷却器として機能するようになっている。さらに、ここでは、冷媒の放熱器として機能する利用側熱交換器52a、52b、52c、52dが存在する運転であるため、ガス抜き側流量調節弁42は、後述のように、利用側流量調節弁51a、51b、51c、51dの制御状況に応じて開度調節されて、レシーバガス抜き管41を通じてレシーバ28からガス冷媒を圧縮機21の吸入側に抜き出すようになっている。接続ユニット4a、4b、4c、4dにおいては、高圧ガス開閉弁66a、66b、66c、66dを開状態にし、低圧ガス開閉弁67a、67b、67c、67dを閉状態にすることによって、利用ユニット3a、3b、3c、3dの利用側熱交換器52a、52b、52c、52dの全てを冷媒の放熱器として機能させるとともに、利用ユニット3a、3b、3c、3dの利用側熱交換器52a、52b、52c、52dの全てと熱源ユニット2の圧縮機21の吐出側とが高低圧ガス冷媒連絡管8を介して接続された状態になっている。利用ユニット3a、3b、3c、3dにおいては、利用側流量調節弁51a、51b、51c、51dは、後述のように、利用側熱交換器52a、52b、52c、52dの出口における冷媒の過冷却度SCに基づいて開度を制御する過冷却度制御によって、開度調節されている。 Specifically, in the heat source unit 2, the first heat exchange switching mechanism 22 is switched to the evaporation operation state (the state indicated by the broken line of the first heat exchange switching mechanism 22 in FIG. 4), and the second heat exchange switching mechanism is selected. The heat source side heat exchangers 24 and 25 are caused to function as a refrigerant evaporator by switching the operation state to the evaporation operation state (the state indicated by the broken line of the second heat exchange switching mechanism 23 in FIG. 4). . Further, the high / low pressure switching mechanism 30 is switched to the heat radiation load operation state (the state indicated by the broken line of the high / low pressure switching mechanism 30 in FIG. 4). Further, the opening amounts of the heat source side flow rate adjusting valves 26 and 27 are adjusted, and the receiver inlet opening / closing valve 28c is in an open state. Moreover, the opening degree of the refrigerant cooling side flow rate adjustment valve 37 is adjusted so that the high-pressure gas refrigerant discharged from the compressor 21 flows into the precooling heat exchanger 35. The suction return side flow rate adjustment valve 47 is adjusted in opening so that the supercooling heat exchanger 45 functions as a refrigerant cooler flowing through the receiver outlet pipe 28b. In addition, here, since the use side heat exchangers 52a, 52b, 52c, and 52d that function as a refrigerant radiator exist, the degassing side flow rate adjustment valve 42 uses the use side flow rate adjustment as described later. The opening degree is adjusted in accordance with the control status of the valves 51 a, 51 b, 51 c, 51 d, and the gas refrigerant is extracted from the receiver 28 through the receiver gas vent pipe 41 to the suction side of the compressor 21. In the connection units 4a, 4b, 4c, and 4d, the high pressure gas on / off valves 66a, 66b, 66c, and 66d are opened, and the low pressure gas on / off valves 67a, 67b, 67c, and 67d are closed, thereby using the use unit 3a. 3b, 3c, 3d use side heat exchangers 52a, 52b, 52c, 52d all function as refrigerant radiators, and use units 3a, 3b, 3c, 3d use side heat exchangers 52a, 52b, All of 52c and 52d and the discharge side of the compressor 21 of the heat source unit 2 are connected via the high and low pressure gas refrigerant communication pipe 8. In the usage units 3a, 3b, 3c, and 3d, the usage-side flow rate adjustment valves 51a, 51b, 51c, and 51d are, as will be described later, supercooling of the refrigerant at the outlets of the usage- side heat exchangers 52a, 52b, 52c, and 52d. The degree of opening is adjusted by supercooling degree control that controls the degree of opening based on the degree SC.
 このような冷媒回路10において、圧縮機21で圧縮され吐出された高圧のガス冷媒は、高低圧切換機構30及び高低圧ガス側閉鎖弁32を通じて、高低圧ガス冷媒連絡管8に送られる。また、圧縮機21で圧縮され吐出された高圧のガス冷媒は、冷媒加熱器44にも送られる。ここで、ガス抜き側流量調節弁42が開状態に開度調節されている場合には、レシーバガス抜き管41を通じてレシーバ28からガス冷媒が抜き出されるため、冷媒加熱器44に送られた高圧のガス冷媒は、レシーバガス抜き管41を流れる冷媒と熱交換を行うことによって冷却される。一方、レシーバガス抜き管41を流れるガス冷媒は、加熱されて、圧縮機21の吸入側に戻される。そして、冷媒加熱器44において冷却された冷媒は、予冷熱交換器35に送られる。予冷熱交換器35に送られた高圧の冷媒は、予冷熱交換器35において、室外ファン34によって供給される熱源としての室外空気と熱交換を行うことによって放熱する。そして、予冷熱交換器35において放熱した冷媒は、冷媒冷却器36に送られて、電装品20aを冷却する。冷媒冷却器36を通過した冷媒は、冷媒冷却側流量調節弁37において流量調節された後、レシーバ出口管28bに送られる。 In such a refrigerant circuit 10, the high-pressure gas refrigerant compressed and discharged by the compressor 21 is sent to the high-low pressure gas refrigerant communication pipe 8 through the high-low pressure switching mechanism 30 and the high-low pressure gas side closing valve 32. The high-pressure gas refrigerant compressed and discharged by the compressor 21 is also sent to the refrigerant heater 44. Here, when the opening degree of the degassing side flow rate adjustment valve 42 is adjusted to the open state, the gas refrigerant is extracted from the receiver 28 through the receiver degassing pipe 41, and thus the high pressure sent to the refrigerant heater 44. The gas refrigerant is cooled by exchanging heat with the refrigerant flowing through the receiver degassing pipe 41. On the other hand, the gas refrigerant flowing through the receiver degassing pipe 41 is heated and returned to the suction side of the compressor 21. Then, the refrigerant cooled in the refrigerant heater 44 is sent to the precooling heat exchanger 35. The high-pressure refrigerant sent to the precooling heat exchanger 35 radiates heat by exchanging heat with outdoor air as a heat source supplied by the outdoor fan 34 in the precooling heat exchanger 35. And the refrigerant | coolant thermally radiated in the pre-cooling heat exchanger 35 is sent to the refrigerant | coolant cooler 36, and cools the electrical component 20a. The refrigerant that has passed through the refrigerant cooler 36 is adjusted in flow rate by the refrigerant cooling side flow rate adjustment valve 37 and then sent to the receiver outlet pipe 28b.
 そして、高低圧ガス冷媒連絡管8に送られた高圧のガス冷媒は、4つに分岐されて、各接続ユニット4a、4b、4c、4dの高圧ガス接続管63a、63b、63c、63dに送られる。高圧ガス接続管63a、63b、63c、63dに送られた高圧のガス冷媒は、高圧ガス開閉弁66a、66b、66c、66d及び合流ガス接続管65a、65b、65c、65dを通じて、利用ユニット3a、3b、3c、3dの利用側熱交換器52a、52b、52c、52dに送られる。 The high-pressure gas refrigerant sent to the high-low pressure gas refrigerant communication pipe 8 is branched into four and sent to the high-pressure gas connection pipes 63a, 63b, 63c, 63d of the connection units 4a, 4b, 4c, 4d. It is done. The high-pressure gas refrigerant sent to the high-pressure gas connection pipes 63a, 63b, 63c, 63d passes through the high-pressure gas on / off valves 66a, 66b, 66c, 66d and the merged gas connection pipes 65a, 65b, 65c, 65d. It is sent to the use side heat exchangers 52a, 52b, 52c, 52d of 3b, 3c, 3d.
 そして、利用側熱交換器52a、52b、52c、52dに送られた高圧のガス冷媒は、利用側熱交換器52a、52b、52c、52dにおいて、室内ファン53a、53b、53c、53dによって供給される室内空気と熱交換を行うことによって放熱する。一方、室内空気は、加熱されて室内に供給されて、利用ユニット3a、3b、3c、3dの暖房運転が行われる。利用側熱交換器52a、52b、52c、52dにおいて放熱した冷媒は、利用側流量調節弁51a、51b、51c、51dにおいて流量調節された後、接続ユニット4a、4b、4c、4dの液接続管61a、61b、61c、61dに送られる。 The high-pressure gas refrigerant sent to the use side heat exchangers 52a, 52b, 52c, and 52d is supplied by the indoor fans 53a, 53b, 53c, and 53d in the use side heat exchangers 52a, 52b, 52c, and 52d. Heat is dissipated by exchanging heat with indoor air. On the other hand, indoor air is heated and supplied indoors, and heating operation of utilization unit 3a, 3b, 3c, 3d is performed. The refrigerant radiated in the use side heat exchangers 52a, 52b, 52c, 52d is adjusted in flow rate in the use side flow rate adjusting valves 51a, 51b, 51c, 51d, and then the liquid connection pipes of the connection units 4a, 4b, 4c, 4d. 61a, 61b, 61c and 61d.
 そして、液接続管61a、61b、61c、61dに送られた冷媒は、液冷媒連絡管7に送られて合流する。 Then, the refrigerant sent to the liquid connection pipes 61a, 61b, 61c, 61d is sent to the liquid refrigerant communication pipe 7 and merges.
 そして、液冷媒連絡管7に送られた冷媒は、液側閉鎖弁31、入口逆止弁29b及びレシーバ入口開閉弁28cを通じて、レシーバ28に送られる。ここで、ガス抜き側流量調節弁42が開状態に開度調節されている場合には、レシーバ28に送られた冷媒は、レシーバ28内に一時的に溜められて気液分離された後、ガス冷媒は、レシーバガス抜き管41を通じて圧縮機21の吸入側に抜き出され、液冷媒は、レシーバ出口管28bに送られる。レシーバ出口管28bに送られた冷媒は、その一部が吸入戻し管46に分岐され、その後、冷媒冷却器36を通過した冷媒と合流して過冷却熱交換器45に送られる。過冷却熱交換器45に送られたレシーバ出口管28bを流れる冷媒は、吸入戻し管46の吸入戻し側流量調節弁47において流量調節された冷媒によって冷却される。過冷却熱交換器45において冷却されたレシーバ出口管28bを流れる冷媒は、出口逆止弁29dを通じて、熱源側流量調節弁26、27の両方に送られる。そして、熱源側流量調節弁26、27に送られた冷媒は、熱源側流量調節弁26、27において流量調節された後、熱源側熱交換器24、25において、室外ファン34によって供給される室外空気と熱交換を行うことによって蒸発して低圧のガス冷媒になり、熱交切換機構22、23に送られる。そして、熱交切換機構22、23に送られた低圧のガス冷媒は、合流して、圧縮機21の吸入側に戻される。 The refrigerant sent to the liquid refrigerant communication tube 7 is sent to the receiver 28 through the liquid side closing valve 31, the inlet check valve 29b, and the receiver inlet opening / closing valve 28c. Here, when the opening degree of the degassing flow rate adjustment valve 42 is adjusted to the open state, the refrigerant sent to the receiver 28 is temporarily stored in the receiver 28 and separated into gas and liquid, The gas refrigerant is extracted to the suction side of the compressor 21 through the receiver gas vent pipe 41, and the liquid refrigerant is sent to the receiver outlet pipe 28b. A part of the refrigerant sent to the receiver outlet pipe 28 b is branched into the suction return pipe 46, and then merged with the refrigerant passed through the refrigerant cooler 36 and sent to the supercooling heat exchanger 45. The refrigerant flowing through the receiver outlet pipe 28 b sent to the supercooling heat exchanger 45 is cooled by the refrigerant whose flow rate is adjusted by the suction return side flow rate adjustment valve 47 of the suction return pipe 46. The refrigerant flowing through the receiver outlet pipe 28b cooled in the supercooling heat exchanger 45 is sent to both the heat source side flow rate adjusting valves 26 and 27 through the outlet check valve 29d. The refrigerant sent to the heat source side flow rate adjustment valves 26, 27 is adjusted in flow rate in the heat source side flow rate adjustment valves 26, 27, and then is supplied to the outdoor source 34 by the outdoor fan 34 in the heat source side heat exchangers 24, 25. By evaporating with air, it evaporates into a low-pressure gas refrigerant and is sent to the heat exchange switching mechanisms 22 and 23. The low-pressure gas refrigerant sent to the heat exchange switching mechanisms 22 and 23 merges and returns to the suction side of the compressor 21.
 このようにして、暖房運転における動作が行われる。尚、利用ユニット3a、3b、3c、3dのいくつかが暖房運転(すなわち、利用側熱交換器52a、52b、52c、52dのいくつかが冷媒の放熱器として機能する運転)を行う等によって、利用側熱交換器52a、52b、52c、52d全体の放熱負荷が小さくなる場合には、熱源側熱交換器24、25の一方(例えば、第1熱源側熱交換器24)だけを冷媒の蒸発器として機能させる運転が行われる。 In this way, the operation in the heating operation is performed. In addition, some of the usage units 3a, 3b, 3c, and 3d perform a heating operation (that is, an operation in which some of the usage- side heat exchangers 52a, 52b, 52c, and 52d function as a refrigerant radiator). When the heat radiation load of the entire use side heat exchangers 52a, 52b, 52c, 52d becomes small, only one of the heat source side heat exchangers 24, 25 (for example, the first heat source side heat exchanger 24) evaporates the refrigerant. The operation to function as a vessel is performed.
 -冷暖同時運転(蒸発負荷主体)-
 冷暖同時運転(蒸発負荷主体)の際、例えば、利用ユニット3a、3b、3cが冷房運転し、かつ、利用ユニット3dが暖房運転し(すなわち、利用側熱交換器52a、52b、52cが冷媒の蒸発器として機能し、かつ、利用側熱交換器52dが冷媒の放熱器として機能する運転)を行い、主熱源側熱交換器としての第1熱源側熱交換器24が冷媒の放熱器として機能する際、空気調和装置1の冷媒回路10は、図5に示されるように構成される(冷媒の流れについては、図5の冷媒回路10に付された矢印を参照)。
-Simultaneous cooling and heating operation (mainly evaporation load)-
In simultaneous cooling and heating operation (evaporation load mainly), for example, the usage units 3a, 3b, and 3c are in cooling operation, and the usage unit 3d is in heating operation (that is, the usage- side heat exchangers 52a, 52b, and 52c are refrigerants). The first heat source side heat exchanger 24 as a main heat source side heat exchanger functions as a refrigerant heat radiator and the use side heat exchanger 52d functions as a refrigerant heat radiator. In doing so, the refrigerant circuit 10 of the air conditioner 1 is configured as shown in FIG. 5 (refer to the arrows attached to the refrigerant circuit 10 of FIG. 5 for the flow of the refrigerant).
 具体的には、熱源ユニット2においては、第1熱交切換機構22を放熱運転状態(図5の第1熱交切換機構22の実線で示された状態)に切り換えることによって、第1熱源側熱交換器24だけを冷媒の放熱器として機能させるようになっている。また、高低圧切換機構30を放熱負荷運転状態(図5の高低圧切換機構30の破線で示された状態)に切り換えている。また、第1熱源側流量調節弁26は、開度調節され、第2熱源側流量調節弁27は、閉状態になっており、レシーバ入口開閉弁28cは、開状態になっている。さらに、ここでは、冷媒の放熱器として機能する利用側熱交換器52dが存在する運転であるため、ガス抜き側流量調節弁42は、後述のように、利用側流量調節弁51a、51b、51c、51dの制御状況に応じて開度調節されるのであるが、液冷媒連絡管7を介して利用ユニット3a、3b、3c、3dから熱源ユニット2に冷媒が送られる運転状態ではないため、結果的に、全閉状態(開度0%)に開度調節されており、これにより、レシーバガス抜き管41を通じてレシーバ28からガス冷媒を圧縮機21の吸入側に抜き出さないようになっている。接続ユニット4a、4b、4c、4dにおいては、高圧ガス開閉弁66d、及び、低圧ガス開閉弁67a、67b、67cを開状態にし、かつ、高圧ガス開閉弁66a、66b、66c、及び、低圧ガス開閉弁67dを閉状態にすることによって、利用ユニット3a、3b、3cの利用側熱交換器52a、52b、52cを冷媒の蒸発器として機能させ、かつ、利用ユニット3dの利用側熱交換器52dを冷媒の放熱器として機能させるとともに、利用ユニット3a、3b、3cの利用側熱交換器52a、52b、52cと熱源ユニット2の圧縮機21の吸入側とが低圧ガス冷媒連絡管9を介して接続された状態になり、かつ、利用ユニット3dの利用側熱交換器52dと熱源ユニット2の圧縮機21の吐出側とが高低圧ガス冷媒連絡管8を介して接続された状態になっている。冷房運転を行う利用ユニット3a、3b、3cにおいては、利用側流量調節弁51a、51b、51cは、開度調節され、暖房運転を行う利用ユニット3dにおいては、利用側流量調節弁51dは、後述のように、利用側熱交換器52dの出口における冷媒の過冷却度SCに基づいて開度を制御する過冷却度制御によって、開度調節されている。 Specifically, in the heat source unit 2, the first heat exchange switching mechanism 22 is switched to the heat radiation operation state (the state indicated by the solid line of the first heat exchange switching mechanism 22 in FIG. 5), thereby Only the heat exchanger 24 is made to function as a refrigerant radiator. Further, the high / low pressure switching mechanism 30 is switched to the heat radiation load operation state (the state indicated by the broken line of the high / low pressure switching mechanism 30 in FIG. 5). Further, the opening degree of the first heat source side flow rate adjustment valve 26 is adjusted, the second heat source side flow rate adjustment valve 27 is in a closed state, and the receiver inlet on-off valve 28c is in an open state. Furthermore, since the use side heat exchanger 52d that functions as a refrigerant radiator is present here, the degassing side flow rate adjustment valve 42 is, as will be described later, the use side flow rate adjustment valves 51a, 51b, 51c. , The opening degree is adjusted according to the control status of 51d, but the result is that the refrigerant is not sent from the use units 3a, 3b, 3c, and 3d to the heat source unit 2 via the liquid refrigerant communication tube 7. Therefore, the opening degree is adjusted to a fully closed state (opening degree 0%), and thereby, the gas refrigerant is not extracted from the receiver 28 to the suction side of the compressor 21 through the receiver gas vent pipe 41. . In the connection units 4a, 4b, 4c, and 4d, the high-pressure gas on-off valve 66d and the low-pressure gas on-off valves 67a, 67b, and 67c are opened, and the high-pressure gas on-off valves 66a, 66b, 66c, and the low-pressure gas By closing the on-off valve 67d, the use side heat exchangers 52a, 52b, 52c of the use units 3a, 3b, 3c function as a refrigerant evaporator, and the use side heat exchanger 52d of the use unit 3d. Through the low-pressure gas refrigerant communication pipe 9 between the utilization side heat exchangers 52a, 52b, 52c of the utilization units 3a, 3b, 3c and the suction side of the compressor 21 of the heat source unit 2. The use side heat exchanger 52d of the use unit 3d and the discharge side of the compressor 21 of the heat source unit 2 are connected to the high / low pressure gas refrigerant communication pipe 8 in a connected state. To have become the connected state. In the usage units 3a, 3b, and 3c that perform the cooling operation, the opening amounts of the usage-side flow rate adjustment valves 51a, 51b, and 51c are adjusted. In the usage unit 3d that performs the heating operation, the usage-side flow rate adjustment valve 51d is described later. As described above, the opening degree is adjusted by the supercooling degree control that controls the opening degree based on the supercooling degree SC of the refrigerant at the outlet of the use side heat exchanger 52d.
 このような冷媒回路10において、圧縮機21で圧縮され吐出された高圧のガス冷媒は、その一部が、高低圧切換機構30及び高低圧ガス側閉鎖弁32を通じて、高低圧ガス冷媒連絡管8に送られ、残りが、第1熱交切換機構22を通じて、第1熱源側熱交換器24に送られる。また、圧縮機21で圧縮され吐出された高圧のガス冷媒は、冷媒加熱器44を介して、予冷熱交換器35にも送られる。 In such a refrigerant circuit 10, a part of the high-pressure gas refrigerant compressed and discharged by the compressor 21 passes through the high / low pressure switching mechanism 30 and the high / low pressure gas side shut-off valve 32. The remainder is sent to the first heat source side heat exchanger 24 through the first heat exchange switching mechanism 22. The high-pressure gas refrigerant compressed and discharged by the compressor 21 is also sent to the precooling heat exchanger 35 via the refrigerant heater 44.
 そして、高低圧ガス冷媒連絡管8に送られた高圧のガス冷媒は、接続ユニット4dの高圧ガス接続管63dに送られる。高圧ガス接続管63dに送られた高圧のガス冷媒は、高圧ガス開閉弁66d及び合流ガス接続管65dを通じて、利用ユニット3dの利用側熱交換器52dに送られる。 The high-pressure gas refrigerant sent to the high-low pressure gas refrigerant communication pipe 8 is sent to the high-pressure gas connection pipe 63d of the connection unit 4d. The high-pressure gas refrigerant sent to the high-pressure gas connection pipe 63d is sent to the use-side heat exchanger 52d of the use unit 3d through the high-pressure gas on-off valve 66d and the merged gas connection pipe 65d.
 そして、利用側熱交換器52dに送られた高圧のガス冷媒は、利用側熱交換器52dにおいて、室内ファン53dによって供給される室内空気と熱交換を行うことによって放熱する。一方、室内空気は、加熱されて室内に供給されて、利用ユニット3dの暖房運転が行われる。利用側熱交換器52dにおいて放熱した冷媒は、利用側流量調節弁51dにおいて流量調節された後、接続ユニット4dの液接続管61dに送られる。 The high-pressure gas refrigerant sent to the use side heat exchanger 52d dissipates heat by exchanging heat with the indoor air supplied by the indoor fan 53d in the use side heat exchanger 52d. On the other hand, the indoor air is heated and supplied indoors, and the heating operation of the utilization unit 3d is performed. The refrigerant that has radiated heat in the use side heat exchanger 52d is sent to the liquid connection pipe 61d of the connection unit 4d after the flow rate is adjusted in the use side flow rate adjustment valve 51d.
 また、第1熱源側熱交換器24に送られた高圧のガス冷媒は、第1熱源側熱交換器24において、室外ファン34によって供給される熱源としての室外空気と熱交換を行うことによって放熱する。そして、第1熱源側熱交換器24において放熱した冷媒は、第1熱源側流量調節弁26において流量調節された後、入口逆止弁29a及びレシーバ入口開閉弁28cを通じて、レシーバ28に送られる。また、予冷熱交換器35に送られた高圧のガス冷媒も、予冷熱交換器35において、室外ファン34によって供給される熱源としての室外空気と熱交換を行うことによって放熱する。そして、予冷熱交換器35において放熱した冷媒は、冷媒冷却器36に送られて、電装品20aを冷却する。冷媒冷却器36を通過した冷媒は、冷媒冷却側流量調節弁37において流量調節された後、レシーバ出口管28bに送られる。そして、レシーバ28に送られた冷媒は、レシーバ28内に一時的に溜められた後、レシーバ出口管28bに送られ、その一部が吸入戻し管46に分岐され、その後、冷媒冷却器36を通過した冷媒と合流して過冷却熱交換器45に送られる。過冷却熱交換器45に送られたレシーバ出口管28bを流れる冷媒は、吸入戻し管46の吸入戻し側流量調節弁47において流量調節された冷媒によって冷却される。過冷却熱交換器45において冷却されたレシーバ出口管28bを流れる冷媒は、出口逆止弁29c及び液側閉鎖弁31を通じて、液冷媒連絡管7に送られる。一方、過冷却熱交換器45で熱交換を行った後の吸入戻し管46を流れる冷媒は、圧縮機21の吸入側に戻される。 The high-pressure gas refrigerant sent to the first heat source side heat exchanger 24 dissipates heat by exchanging heat with outdoor air as a heat source supplied by the outdoor fan 34 in the first heat source side heat exchanger 24. To do. The refrigerant that has radiated heat in the first heat source side heat exchanger 24 is adjusted in flow rate in the first heat source side flow rate adjustment valve 26 and then sent to the receiver 28 through the inlet check valve 29a and the receiver inlet opening / closing valve 28c. The high-pressure gas refrigerant sent to the precooling heat exchanger 35 also dissipates heat by exchanging heat with outdoor air as a heat source supplied by the outdoor fan 34 in the precooling heat exchanger 35. And the refrigerant | coolant thermally radiated in the pre-cooling heat exchanger 35 is sent to the refrigerant | coolant cooler 36, and cools the electrical component 20a. The refrigerant that has passed through the refrigerant cooler 36 is adjusted in flow rate by the refrigerant cooling side flow rate adjustment valve 37 and then sent to the receiver outlet pipe 28b. The refrigerant sent to the receiver 28 is temporarily stored in the receiver 28, and then sent to the receiver outlet pipe 28b. A part of the refrigerant is branched to the suction return pipe 46, and then the refrigerant cooler 36 is connected. The refrigerant that has passed through is joined to the supercooling heat exchanger 45. The refrigerant flowing through the receiver outlet pipe 28 b sent to the supercooling heat exchanger 45 is cooled by the refrigerant whose flow rate is adjusted by the suction return side flow rate adjustment valve 47 of the suction return pipe 46. The refrigerant flowing through the receiver outlet pipe 28 b cooled in the supercooling heat exchanger 45 is sent to the liquid refrigerant communication pipe 7 through the outlet check valve 29 c and the liquid side closing valve 31. On the other hand, the refrigerant flowing through the suction return pipe 46 after heat exchange in the subcooling heat exchanger 45 is returned to the suction side of the compressor 21.
 そして、利用側熱交換器52dにおいて放熱して液接続管61dに送られた冷媒は、液冷媒連絡管7に送られて、第1熱源側熱交換器24において放熱して液冷媒連絡管7に送られた冷媒と合流する。 The refrigerant radiated in the use side heat exchanger 52d and sent to the liquid connection pipe 61d is sent to the liquid refrigerant communication pipe 7 and radiated in the first heat source side heat exchanger 24 to be radiated. It merges with the refrigerant sent to.
 そして、液冷媒連絡管7において合流した冷媒は、3つに分岐されて、各接続ユニット4a、4b、4cの液接続管61a、61b、61cに送られる。そして、液接続管61a、61b、61cに送られた冷媒は、利用ユニット3a、3b、3cの利用側流量調節弁51a、51b、51cに送られる。 Then, the refrigerant merged in the liquid refrigerant communication pipe 7 is branched into three and sent to the liquid connection pipes 61a, 61b, 61c of the connection units 4a, 4b, 4c. Then, the refrigerant sent to the liquid connection pipes 61a, 61b, 61c is sent to the use side flow rate adjusting valves 51a, 51b, 51c of the use units 3a, 3b, 3c.
 そして、利用側流量調節弁51a、51b、51cに送られた冷媒は、利用側流量調節弁51a、51b、51cにおいて流量調節された後、利用側熱交換器52a、52b、52cにおいて、室内ファン53a、53b、53cによって供給される室内空気と熱交換を行うことによって蒸発して低圧のガス冷媒となる。一方、室内空気は、冷却されて室内に供給されて、利用ユニット3a、3b、3cの冷房運転が行われる。そして、低圧のガス冷媒は、接続ユニット4a、4b、4cの合流ガス接続管65a、65b、65cに送られる。 The refrigerant sent to the usage-side flow rate adjustment valves 51a, 51b, 51c is adjusted in flow rate at the usage-side flow rate adjustment valves 51a, 51b, 51c, and then the indoor fan in the usage- side heat exchangers 52a, 52b, 52c. By exchanging heat with the indoor air supplied by 53a, 53b, 53c, it evaporates and becomes a low-pressure gas refrigerant. On the other hand, the room air is cooled and supplied to the room, and the use units 3a, 3b, and 3c are cooled. Then, the low-pressure gas refrigerant is sent to the merged gas connection pipes 65a, 65b, and 65c of the connection units 4a, 4b, and 4c.
 そして、合流ガス接続管65a、65b、65cに送られた低圧のガス冷媒は、低圧ガス開閉弁67a、67b、67c及び低圧ガス接続管64a、64b、64cを通じて、低圧ガス冷媒連絡管9に送られて合流する。 The low-pressure gas refrigerant sent to the merged gas connection pipes 65a, 65b, 65c is sent to the low-pressure gas refrigerant communication pipe 9 through the low-pressure gas on-off valves 67a, 67b, 67c and the low-pressure gas connection pipes 64a, 64b, 64c. Be merged.
 そして、低圧ガス冷媒連絡管9に送られた低圧のガス冷媒は、ガス側閉鎖弁33を通じて、圧縮機21の吸入側に戻される。 The low-pressure gas refrigerant sent to the low-pressure gas refrigerant communication tube 9 is returned to the suction side of the compressor 21 through the gas-side shut-off valve 33.
 このようにして、冷暖同時運転(蒸発負荷主体)における動作が行われる。尚、冷房運転を行う利用ユニット(すなわち、冷媒の蒸発器として機能する利用側熱交換器)の数が少なくなる等によって、利用側熱交換器52a、52b、52c、52d全体の蒸発負荷が小さくなる場合には、第2熱源側熱交換器25を冷媒の蒸発器として機能させることで、第1熱源側熱交換器24の放熱負荷と第2熱源側熱交換器25との蒸発負荷とを相殺して熱源側熱交換器24、25全体の放熱負荷を小さくする運転が行われる。 In this way, the operation in the simultaneous cooling and heating operation (mainly evaporation load) is performed. Note that the evaporation load of the entire use side heat exchangers 52a, 52b, 52c, and 52d is reduced due to a decrease in the number of use units (that is, use side heat exchangers functioning as refrigerant evaporators) that perform the cooling operation. In this case, by causing the second heat source side heat exchanger 25 to function as a refrigerant evaporator, the heat radiation load of the first heat source side heat exchanger 24 and the evaporation load of the second heat source side heat exchanger 25 are reduced. The operation of canceling and reducing the heat radiation load of the heat source side heat exchangers 24 and 25 as a whole is performed.
 -冷暖同時運転(放熱負荷主体)-
 冷暖同時運転(放熱負荷主体)の際、例えば、利用ユニット3a、3b、3cが暖房運転し、かつ、利用ユニット3dが冷房運転し(すなわち、利用側熱交換器52a、52b、52cが冷媒の放熱器として機能し、かつ、利用側熱交換器52dが冷媒の蒸発器として機能する運転)を行い、主熱源側熱交換器としての第1熱源側熱交換器24だけが冷媒の蒸発器として機能する際、空気調和装置1の冷媒回路10は、図6に示されるように構成される(冷媒の流れについては、図6の冷媒回路10に付された矢印を参照)。
-Simultaneous cooling and heating operation (mainly heat radiation load)-
During simultaneous cooling / heating operation (mainly heat radiation load), for example, the usage units 3a, 3b, 3c are operated for heating, and the usage unit 3d is operated for cooling (that is, the usage- side heat exchangers 52a, 52b, 52c are refrigerants). The first heat source side heat exchanger 24 as the main heat source side heat exchanger as the refrigerant evaporator, and the use side heat exchanger 52d functions as a refrigerant evaporator. When functioning, the refrigerant circuit 10 of the air-conditioning apparatus 1 is configured as shown in FIG. 6 (refer to the arrows attached to the refrigerant circuit 10 in FIG. 6 for the flow of the refrigerant).
 具体的には、熱源ユニット2においては、第1熱交切換機構22を蒸発運転状態(図6の第1熱交切換機構22の破線で示された状態)に切り換えることによって、第1熱源側熱交換器24だけを冷媒の蒸発器として機能させるようになっている。また、高低圧切換機構30を放熱負荷運転状態(図6の高低圧切換機構30の破線で示された状態)に切り換えている。また、第1熱源側流量調節弁26は、開度調節され、第2熱源側流量調節弁27は、閉状態になっており、レシーバ入口開閉弁28cは、開状態になっている。さらに、ここでは、冷媒の放熱器として機能する利用側熱交換器52a、52b、52cが存在する運転であるため、ガス抜き側流量調節弁42は、後述のように、利用側流量調節弁51a、51b、51cの制御状況に応じて開度調節されて、レシーバガス抜き管41を通じてレシーバ28からガス冷媒を圧縮機21の吸入側に抜き出すようになっている。接続ユニット4a、4b、4c、4dにおいては、高圧ガス開閉弁66a、66b、66c、及び、低圧ガス開閉弁67dを開状態にし、かつ、高圧ガス開閉弁66d、及び、低圧ガス開閉弁67a、67b、67cを閉状態にすることによって、利用ユニット3a、3b、3cの利用側熱交換器52a、52b、52cを冷媒の放熱器として機能させ、かつ、利用ユニット3dの利用側熱交換器52dを冷媒の蒸発器として機能させるとともに、利用ユニット3dの利用側熱交換器52dと熱源ユニット2の圧縮機21の吸入側とが低圧ガス冷媒連絡管9を介して接続された状態になり、かつ、利用ユニット3a、3b、3cの利用側熱交換器52a、52b、52cと熱源ユニット2の圧縮機21の吐出側とが高低圧ガス冷媒連絡管8を介して接続された状態になっている。冷房運転を行う利用ユニット3dにおいては、利用側流量調節弁51dは、開度調節され、暖房運転を行う利用ユニット3a、3b、3cにおいては、利用側流量調節弁51a、51b、51cは、後述のように、利用側熱交換器52a、52b、52cの出口における冷媒の過冷却度SCに基づいて開度を制御する過冷却度制御によって、開度調節されている。 Specifically, in the heat source unit 2, the first heat exchange switching mechanism 22 is switched to the evaporation operation state (the state indicated by the broken line of the first heat exchange switching mechanism 22 in FIG. 6), thereby Only the heat exchanger 24 functions as a refrigerant evaporator. Further, the high / low pressure switching mechanism 30 is switched to the heat radiation load operation state (the state indicated by the broken line of the high / low pressure switching mechanism 30 in FIG. 6). Further, the opening degree of the first heat source side flow rate adjustment valve 26 is adjusted, the second heat source side flow rate adjustment valve 27 is in a closed state, and the receiver inlet on-off valve 28c is in an open state. Further, here, since the use side heat exchangers 52a, 52b, 52c functioning as a refrigerant radiator exist, the degassing side flow rate adjustment valve 42 is used as described later. , 51b, 51c, the opening degree is adjusted, and the gas refrigerant is extracted from the receiver 28 to the suction side of the compressor 21 through the receiver degassing pipe 41. In the connection units 4a, 4b, 4c and 4d, the high pressure gas on / off valves 66a, 66b and 66c and the low pressure gas on / off valve 67d are opened, and the high pressure gas on / off valve 66d and the low pressure gas on / off valve 67a, By closing 67b and 67c, the utilization side heat exchangers 52a, 52b and 52c of the utilization units 3a, 3b and 3c function as refrigerant radiators, and the utilization side heat exchanger 52d of the utilization unit 3d. As a refrigerant evaporator, the utilization side heat exchanger 52d of the utilization unit 3d and the suction side of the compressor 21 of the heat source unit 2 are connected via the low-pressure gas refrigerant communication pipe 9, and The use side heat exchangers 52a, 52b, 52c of the use units 3a, 3b, 3c and the discharge side of the compressor 21 of the heat source unit 2 connect the high / low pressure gas refrigerant communication pipe 8. To have become the connected state. In the usage unit 3d that performs the cooling operation, the usage-side flow rate adjustment valve 51d is adjusted in opening, and in the usage units 3a, 3b, and 3c that perform the heating operation, the usage-side flow rate adjustment valves 51a, 51b, and 51c are described later. As described above, the opening degree is adjusted by the supercooling degree control that controls the opening degree based on the supercooling degree SC of the refrigerant at the outlets of the use side heat exchangers 52a, 52b, and 52c.
 このような冷媒回路10において、圧縮機21で圧縮され吐出された高圧のガス冷媒は、高低圧切換機構30及び高低圧ガス側閉鎖弁32を通じて、高低圧ガス冷媒連絡管8に送られる。また、圧縮機21で圧縮され吐出された高圧のガス冷媒は、冷媒加熱器44にも送られる。ここで、ガス抜き側流量調節弁42が開状態に開度調節されている場合には、レシーバガス抜き管41を通じてレシーバ28からガス冷媒が抜き出されるため、冷媒加熱器44に送られた高圧のガス冷媒は、レシーバガス抜き管41を流れる冷媒と熱交換を行うことによって冷却される。一方、レシーバガス抜き管41を流れるガス冷媒は、加熱されて、圧縮機21の吸入側に戻される。そして、冷媒加熱器44において冷却された冷媒は、予冷熱交換器35に送られる。予冷熱交換器35に送られた高圧の冷媒は、予冷熱交換器35において、室外ファン34によって供給される熱源としての室外空気と熱交換を行うことによって放熱する。そして、予冷熱交換器35において放熱した冷媒は、冷媒冷却器36に送られて、電装品20aを冷却する。冷媒冷却器36を通過した冷媒は、冷媒冷却側流量調節弁37において流量調節された後、レシーバ出口管28bに送られる。 In such a refrigerant circuit 10, the high-pressure gas refrigerant compressed and discharged by the compressor 21 is sent to the high-low pressure gas refrigerant communication pipe 8 through the high-low pressure switching mechanism 30 and the high-low pressure gas side closing valve 32. The high-pressure gas refrigerant compressed and discharged by the compressor 21 is also sent to the refrigerant heater 44. Here, when the opening degree of the degassing side flow rate adjustment valve 42 is adjusted to the open state, the gas refrigerant is extracted from the receiver 28 through the receiver degassing pipe 41, and thus the high pressure sent to the refrigerant heater 44. The gas refrigerant is cooled by exchanging heat with the refrigerant flowing through the receiver degassing pipe 41. On the other hand, the gas refrigerant flowing through the receiver degassing pipe 41 is heated and returned to the suction side of the compressor 21. Then, the refrigerant cooled in the refrigerant heater 44 is sent to the precooling heat exchanger 35. The high-pressure refrigerant sent to the precooling heat exchanger 35 radiates heat by exchanging heat with outdoor air as a heat source supplied by the outdoor fan 34 in the precooling heat exchanger 35. And the refrigerant | coolant thermally radiated in the pre-cooling heat exchanger 35 is sent to the refrigerant | coolant cooler 36, and cools the electrical component 20a. The refrigerant that has passed through the refrigerant cooler 36 is adjusted in flow rate by the refrigerant cooling side flow rate adjustment valve 37 and then sent to the receiver outlet pipe 28b.
 そして、高低圧ガス冷媒連絡管8に送られた高圧のガス冷媒は、3つに分岐されて、各接続ユニット4a、4b、4cの高圧ガス接続管63a、63b、63cに送られる。高圧ガス接続管63a、63b、63cに送られた高圧のガス冷媒は、高圧ガス開閉弁66a、66b、66c及び合流ガス接続管65a、65b、65cを通じて、利用ユニット3a、3b、3cの利用側熱交換器52a、52b、52cに送られる。 The high-pressure gas refrigerant sent to the high-low pressure gas refrigerant communication pipe 8 is branched into three and sent to the high-pressure gas connection pipes 63a, 63b, 63c of the connection units 4a, 4b, 4c. The high-pressure gas refrigerant sent to the high-pressure gas connection pipes 63a, 63b, and 63c passes through the high-pressure gas on / off valves 66a, 66b, and 66c and the merged gas connection pipes 65a, 65b, and 65c, and the use side of the use units 3a, 3b, and 3c. It is sent to the heat exchangers 52a, 52b, 52c.
 そして、利用側熱交換器52a、52b、52cに送られた高圧のガス冷媒は、利用側熱交換器52a、52b、52cにおいて、室内ファン53a、53b、53cによって供給される室内空気と熱交換を行うことによって放熱する。一方、室内空気は、加熱されて室内に供給されて、利用ユニット3a、3b、3cの暖房運転が行われる。利用側熱交換器52a、52b、52cにおいて放熱した冷媒は、利用側流量調節弁51a、51b、51cにおいて流量調節された後、接続ユニット4a、4b、4cの液接続管61a、61b、61cに送られる。 The high-pressure gas refrigerant sent to the use side heat exchangers 52a, 52b, 52c exchanges heat with the indoor air supplied by the indoor fans 53a, 53b, 53c in the use side heat exchangers 52a, 52b, 52c. To dissipate heat. On the other hand, room air is heated and supplied indoors, and heating operation of utilization unit 3a, 3b, 3c is performed. The refrigerant that has dissipated heat in the usage- side heat exchangers 52a, 52b, and 52c is adjusted in flow rate in the usage-side flow rate adjustment valves 51a, 51b, and 51c, and then into the liquid connection pipes 61a, 61b, and 61c of the connection units 4a, 4b, and 4c. Sent.
 そして、液接続管61a、61b、61c、61dに送られた冷媒は、液冷媒連絡管7に送られて合流する。 Then, the refrigerant sent to the liquid connection pipes 61a, 61b, 61c, 61d is sent to the liquid refrigerant communication pipe 7 and merges.
 液冷媒連絡管7において合流した冷媒は、その一部が、接続ユニット4dの液接続管61dに送られ、残りが、液側閉鎖弁31、入口逆止弁29b及びレシーバ入口開閉弁28cを通じて、レシーバ28に送られる。 A part of the refrigerant merged in the liquid refrigerant communication pipe 7 is sent to the liquid connection pipe 61d of the connection unit 4d, and the rest passes through the liquid side closing valve 31, the inlet check valve 29b, and the receiver inlet opening / closing valve 28c. It is sent to the receiver 28.
 そして、接続ユニット4dの液接続管61dに送られた冷媒は、利用ユニット3dの利用側流量調節弁51dに送られる。 Then, the refrigerant sent to the liquid connection pipe 61d of the connection unit 4d is sent to the use side flow rate adjustment valve 51d of the use unit 3d.
 そして、利用側流量調節弁51dに送られた冷媒は、利用側流量調節弁51dにおいて流量調節された後、利用側熱交換器52dにおいて、室内ファン53dによって供給される室内空気と熱交換を行うことによって蒸発して低圧のガス冷媒となる。一方、室内空気は、冷却されて室内に供給されて、利用ユニット3dの冷房運転が行われる。そして、低圧のガス冷媒は、接続ユニット4dの合流ガス接続管65dに送られる。 The refrigerant sent to the use-side flow rate adjustment valve 51d is subjected to heat exchange with the indoor air supplied by the indoor fan 53d in the use-side heat exchanger 52d after the flow rate is adjusted in the use-side flow rate adjustment valve 51d. As a result, it evaporates into a low-pressure gas refrigerant. On the other hand, the indoor air is cooled and supplied to the room, and the cooling operation of the utilization unit 3d is performed. Then, the low-pressure gas refrigerant is sent to the merged gas connection pipe 65d of the connection unit 4d.
 そして、合流ガス接続管65dに送られた低圧のガス冷媒は、低圧ガス開閉弁67d及び低圧ガス接続管64dを通じて、低圧ガス冷媒連絡管9に送られる。 The low-pressure gas refrigerant sent to the merged gas connection pipe 65d is sent to the low-pressure gas refrigerant communication pipe 9 through the low-pressure gas on-off valve 67d and the low-pressure gas connection pipe 64d.
 そして、低圧ガス冷媒連絡管9に送られた低圧のガス冷媒は、ガス側閉鎖弁33を通じて、圧縮機21の吸入側に戻される。 The low-pressure gas refrigerant sent to the low-pressure gas refrigerant communication tube 9 is returned to the suction side of the compressor 21 through the gas-side shut-off valve 33.
 また、ここで、ガス抜き側流量調節弁42が開状態に開度調節されている場合には、レシーバ28に送られた冷媒は、レシーバ28内に一時的に溜められて気液分離された後、ガス冷媒は、レシーバガス抜き管41を通じて圧縮機21の吸入側に抜き出され、液冷媒は、レシーバ出口管28bに送られる。レシーバ出口管28bに送られた冷媒は、その一部が吸入戻し管46に分岐され、その後、冷媒冷却器36を通過した冷媒と合流して過冷却熱交換器45に送られる。過冷却熱交換器45に送られたレシーバ出口管28bを流れる冷媒は、吸入戻し管46の吸入戻し側流量調節弁47において流量調節された冷媒によって冷却される。過冷却熱交換器45において冷却されたレシーバ出口管28bを流れる冷媒は、出口逆止弁29dを通じて、第1熱源側流量調節弁26に送られる。そして、第1熱源側流量調節弁26に送られた冷媒は、第1熱源側流量調節弁26において流量調節された後、第1熱源側熱交換器24において、室外ファン34によって供給される室外空気と熱交換を行うことによって蒸発して低圧のガス冷媒になり、第1熱交切換機構22に送られる。そして、第1熱交切換機構22に送られた低圧のガス冷媒は、低圧ガス冷媒連絡管9及びガス側閉鎖弁33を通じて圧縮機21の吸入側に戻される低圧のガス冷媒と合流して、圧縮機21の吸入側に戻される。 Here, when the opening degree of the degassing side flow rate adjustment valve 42 is adjusted to the open state, the refrigerant sent to the receiver 28 is temporarily stored in the receiver 28 and separated into gas and liquid. Thereafter, the gas refrigerant is extracted to the suction side of the compressor 21 through the receiver gas vent pipe 41, and the liquid refrigerant is sent to the receiver outlet pipe 28b. A part of the refrigerant sent to the receiver outlet pipe 28 b is branched into the suction return pipe 46, and then merged with the refrigerant passed through the refrigerant cooler 36 and sent to the supercooling heat exchanger 45. The refrigerant flowing through the receiver outlet pipe 28 b sent to the supercooling heat exchanger 45 is cooled by the refrigerant whose flow rate is adjusted by the suction return side flow rate adjustment valve 47 of the suction return pipe 46. The refrigerant flowing through the receiver outlet pipe 28b cooled in the supercooling heat exchanger 45 is sent to the first heat source side flow rate adjustment valve 26 through the outlet check valve 29d. The refrigerant sent to the first heat source side flow rate adjustment valve 26 is adjusted in flow rate in the first heat source side flow rate adjustment valve 26, and then is supplied to the outdoor side supplied by the outdoor fan 34 in the first heat source side heat exchanger 24. By evaporating with air, it evaporates into a low-pressure gas refrigerant and is sent to the first heat exchange switching mechanism 22. The low-pressure gas refrigerant sent to the first heat exchange switching mechanism 22 merges with the low-pressure gas refrigerant returned to the suction side of the compressor 21 through the low-pressure gas refrigerant communication tube 9 and the gas-side shut-off valve 33, Returned to the suction side of the compressor 21.
 このようにして、冷暖同時運転(放熱負荷主体)における動作が行われる。尚、暖房運転を行う利用ユニット(すなわち、冷媒の放熱器として機能する利用側熱交換器)の数が少なくなる等によって、利用側熱交換器52a、52b、52c、52d全体の放熱負荷が小さくなる場合には、第2熱源側熱交換器25を冷媒の放熱器として機能させることで、第1熱源側熱交換器24の蒸発負荷と第2熱源側熱交換器25との放熱負荷とを相殺して熱源側熱交換器24、25全体の蒸発負荷を小さくする運転が行われる。 In this way, the operation in the simultaneous cooling and heating operation (mainly heat radiation load) is performed. Note that the heat radiation load of the entire use side heat exchangers 52a, 52b, 52c, and 52d is reduced due to a decrease in the number of use units (that is, use side heat exchangers functioning as refrigerant radiators) that perform the heating operation. In this case, by causing the second heat source side heat exchanger 25 to function as a refrigerant radiator, the evaporation load of the first heat source side heat exchanger 24 and the heat radiation load of the second heat source side heat exchanger 25 are reduced. The operation of canceling and reducing the evaporation load of the heat source side heat exchangers 24 and 25 as a whole is performed.
 -利用側流量調節弁による過冷却度制御-
 上記の各種冷凍サイクル運転のうち冷房運転を除く運転(暖房運転及び冷暖同時運転)においては、利用側熱交換器52a、52b、52c、52dの少なくとも1つを冷媒の放熱器として機能させる運転、すなわち、利用ユニット3a、3b、3c、3dの少なくとも1つが暖房運転を行っている。そして、暖房運転を行う利用ユニットにおいては、利用側熱交換器52a、52b、52c、52dの出口における冷媒の過冷却度SCに基づいて利用側流量調節弁51a、51b、51c、51dの開度MVを制御する過冷却度制御が行われるようになっている。そして、この過冷却度制御によって、暖房運転を行う利用ユニット3a、3b、3c、3dの利用側熱交換器52a、52b、52c、52dを流れる冷媒の流量を調節し、所望の暖房能力を確保するようにしている。
-Supercooling control by use side flow control valve-
In the above-described various refrigeration cycle operations except the cooling operation (heating operation and simultaneous cooling and heating operation), an operation in which at least one of the use side heat exchangers 52a, 52b, 52c, 52d functions as a refrigerant radiator, That is, at least one of the usage units 3a, 3b, 3c, and 3d is performing the heating operation. And in the utilization unit which performs heating operation, the opening degree of utilization side flow control valve 51a, 51b, 51c, 51d based on the supercooling degree SC of the refrigerant | coolant in the exit of utilization side heat exchanger 52a, 52b, 52c, 52d. Supercooling degree control for controlling the MV is performed. And by this supercooling degree control, the flow rate of the refrigerant | coolant which flows through the utilization side heat exchanger 52a, 52b, 52c, 52d of utilization unit 3a, 3b, 3c, 3d which performs heating operation is adjusted, and desired heating capability is ensured. Like to do.
 具体的には、この過冷却度制御では、冷媒の放熱器として機能する利用側熱交換器52a、52b、52c、52dの出口における過冷却度SCが目標過冷却度SCtに近づくように、利用側流量調節弁51a、51b、51c、51dの開度MVを制御する。ここで、利用側熱交換器52a、52b、52c、52dの出口における冷媒の過冷却度SCは、吐出圧力センサ73によって検出される圧縮機21の吐出側における冷媒の圧力を飽和温度に換算して得られる凝縮温度Tcから液側温度センサ82a、82b、82c、82dによって検出される利用側熱交換器52a、52b、52c、52dの液側における冷媒の温度Tirlを差し引くことによって得られる。目標過冷却度SCtは、利用側熱交換器52a、52b、52c、52dの熱交換性能を発揮するのに適した値に設定される。そして、過冷却度SCが目標過冷却度SCtよりも大きい場合には、利用側流量調節弁51a、51b、51c、51dの開度MVを、過冷却度制御における可変幅の範囲内で大きくする制御を行う。また、過冷却度SCが目標過冷却度SCtよりも小さい場合には、利用側流量調節弁51a、51b、51c、51dの開度MVを、過冷却度制御における可変幅の範囲内で小さくする制御を行う。ここで、過冷却度制御における利用側流量調節弁51a、51b、51c、51dの開度MVの可変幅は、全閉状態に近い過冷却度制御下限開度MVm(例えば、開度0%~数%)から全開状態に近い過冷却度制御上限開度MVx(例えば、開度100%)までの範囲である。このため、過冷却度制御においては、冷媒の放熱器として機能する利用側熱交換器52a、52b、52c、52dの出口における過冷却度SCが目標過冷却度SCtに近づくように、各利用側流量調節弁51a、51b、51c、51dの開度MVを、過冷却度制御下限開度MVmから過冷却度制御上限開度MVxの可変幅の範囲内で制御することになる。 Specifically, in this supercooling degree control, it is used so that the supercooling degree SC at the outlets of the use side heat exchangers 52a, 52b, 52c, and 52d functioning as refrigerant radiators approaches the target supercooling degree SCt. The opening degree MV of the side flow rate adjusting valves 51a, 51b, 51c, 51d is controlled. Here, the refrigerant subcooling degree SC at the outlets of the use side heat exchangers 52a, 52b, 52c, and 52d is obtained by converting the refrigerant pressure on the discharge side of the compressor 21 detected by the discharge pressure sensor 73 into a saturation temperature. The refrigerant temperature Tirl on the liquid side of the use side heat exchangers 52a, 52b, 52c, 52d detected by the liquid side temperature sensors 82a, 82b, 82c, 82d is subtracted from the condensation temperature Tc obtained in this way. The target subcooling degree SCt is set to a value suitable for exhibiting the heat exchange performance of the use side heat exchangers 52a, 52b, 52c, and 52d. When the degree of supercooling SC is larger than the target degree of supercooling SCt, the opening MV of the use side flow rate adjustment valves 51a, 51b, 51c, 51d is increased within the range of the variable width in the supercooling degree control. Take control. When the degree of supercooling SC is smaller than the target degree of supercooling SCt, the opening MV of the use side flow rate adjustment valves 51a, 51b, 51c, 51d is made smaller within the range of the variable width in the supercooling degree control. Take control. Here, the variable width of the opening degree MV of the use side flow rate adjustment valves 51a, 51b, 51c, 51d in the supercooling degree control is the supercooling degree control lower limit opening degree MVm (for example, the opening degree 0% to Several degree) to a supercooling degree control upper limit opening degree MVx (for example, opening degree 100%) close to a fully opened state. For this reason, in the degree of supercooling control, each usage side is set so that the degree of supercooling SC at the outlets of the use side heat exchangers 52a, 52b, 52c, and 52d functioning as a refrigerant radiator approaches the target degree of supercooling SCt. The opening degree MV of the flow rate adjusting valves 51a, 51b, 51c, 51d is controlled within the range of the variable range from the supercooling degree control lower limit opening degree MVm to the supercooling degree control upper limit opening degree MVx.
 -液圧損が大きい場合のレシーバガス抜き制御-
 上記のように、冷暖同時運転型空気調和装置1では、利用側熱交換器52a、52b、52c、52dの少なくとも1つを冷媒の放熱器として機能させる運転(ここでは、暖房運転及び冷暖同時運転)において、利用側流量調節弁51a、51b、51c、51dによる過冷却度制御が行われている。
-Receiver degassing control when fluid pressure loss is large-
As described above, in the cooling / heating simultaneous operation type air conditioner 1, an operation in which at least one of the usage- side heat exchangers 52 a, 52 b, 52 c, 52 d functions as a refrigerant radiator (here, heating operation and simultaneous cooling / heating operation). ), The degree of supercooling is controlled by the use side flow control valves 51a, 51b, 51c, 51d.
 しかし、冷暖同時運転型空気調和装置1の設置条件や施工状況によって液冷媒連絡管7の長さ等が異なるため、利用ユニット3a、3b、3c、3dの少なくとも1つが暖房運転を行う際に液冷媒連絡管7を流れる液冷媒の圧損(液圧損)が大きくなる場合がある。このため、液冷媒連絡管7を介して利用ユニット3a、3b、3c、3dから熱源ユニット2に送られる液冷媒は、この液圧損に応じて圧力が低下して、液飽和の状態でレシーバ28に流入することになり、利用側熱交換器52a、52b、52c、52dの出口における冷媒は、この液圧損に応じて過冷却度SCが大きくなってしまう。例えば、ガス抜き側流量調節弁42を全閉状態(開度0%)に開度調節した状態で、利用ユニット3a、3b、3c、3dが暖房運転を行うと、図7のモリエル線図上に示された冷凍サイクルのようになる。ここで、液冷媒連絡管7を介して利用ユニット3a、3b、3c、3dから熱源ユニット2に送られる液冷媒は、図7の点Dに示すように、液圧損に応じて圧力が低下して、液飽和の状態でレシーバ28に溜まることになる。そして、利用側熱交換器52a、52b、52c、52dの出口における冷媒は、図7の点Cに示すように、液圧損に応じて過冷却度SCが大きくなってしまう。そして、利用側熱交換器52a、52b、52c、52dの出口における冷媒の過冷却度SCが利用側流量調節弁51a、51b、51c、51dの可変幅を超えて過冷却度制御を行えなくなる程に過大になってしまうと、利用側熱交換器52a、52b、52c、52dの放熱能力が低下してしまい、利用ユニット3a、3b、3c、3dにおける暖房能力が低下してしまうおそれがある。すなわち、利用側流量調節弁51a、51b、51c、51dが過冷却度制御を行うことが可能な条件を過冷却度制御正常条件とすると、液圧損によって過冷却度制御正常条件を満たなくなると、利用側熱交換器52a、52b、52c、52dの出口における冷媒の過冷却度SCが所望の過冷却度(ここでは、目標過冷却度SCt)よりも過大になり、利用側流量調節弁51a、51b、51c、51dの開度MVを制御するだけでは、利用側熱交換器52a、52b、52c、52dの出口における冷媒の過冷却度SCが所望の過冷却度(ここでは、目標過冷却度SCt)まで小さくすることができない状況になってしまうのである。 However, since the length of the liquid refrigerant communication tube 7 and the like vary depending on the installation conditions and construction status of the cooling and heating simultaneous operation type air conditioner 1, when at least one of the usage units 3a, 3b, 3c, and 3d performs the heating operation, The pressure loss (liquid pressure loss) of the liquid refrigerant flowing through the refrigerant communication tube 7 may increase. For this reason, the liquid refrigerant sent from the utilization units 3a, 3b, 3c, and 3d to the heat source unit 2 via the liquid refrigerant communication pipe 7 is reduced in pressure according to the liquid pressure loss, and the receiver 28 is in a liquid saturated state. The refrigerant at the outlets of the use side heat exchangers 52a, 52b, 52c, and 52d has a supercooling degree SC corresponding to the liquid pressure loss. For example, when the usage units 3a, 3b, 3c, and 3d perform the heating operation in a state where the opening degree of the degassing side flow rate adjustment valve 42 is adjusted to the fully closed state (opening degree 0%), on the Mollier diagram of FIG. It becomes like the refrigeration cycle shown in. Here, the liquid refrigerant sent from the utilization units 3a, 3b, 3c, and 3d to the heat source unit 2 via the liquid refrigerant communication tube 7 has a pressure that decreases according to the liquid pressure loss as shown by a point D in FIG. As a result, the liquid is saturated in the receiver 28. And the refrigerant | coolant in the exit of utilization side heat exchanger 52a, 52b, 52c, 52d will increase the degree of supercooling SC according to a hydraulic pressure loss, as shown to the point C of FIG. And the degree of supercooling SC of the refrigerant at the outlets of the use side heat exchangers 52a, 52b, 52c, 52d exceeds the variable width of the use side flow rate adjustment valves 51a, 51b, 51c, 51d, so that the degree of supercooling cannot be controlled. If it becomes excessively large, the heat dissipation capability of the use side heat exchangers 52a, 52b, 52c, 52d may be reduced, and the heating capability of the use units 3a, 3b, 3c, 3d may be reduced. That is, if the conditions under which the usage-side flow rate adjustment valves 51a, 51b, 51c, 51d can perform the supercooling degree control are the supercooling degree control normal conditions, The supercooling degree SC of the refrigerant at the outlets of the use side heat exchangers 52a, 52b, 52c, 52d becomes larger than the desired supercooling degree (here, the target supercooling degree SCt), and the use side flow control valves 51a, By simply controlling the opening MV of 51b, 51c, 51d, the supercooling degree SC of the refrigerant at the outlets of the use side heat exchangers 52a, 52b, 52c, 52d is set to the desired supercooling degree (here, the target supercooling degree). SCt) cannot be made smaller.
 そして、このような状況を解消するためには、利用ユニット3a、3b、3c、3dの少なくとも1つが暖房運転を行う際に液冷媒連絡管7を流れる液冷媒の圧損(液圧損)が大きくなって過冷却度制御正常条件を満たさなくなる場合に、レシーバ28に流入する冷媒の状態を気液二相状態にして、利用側熱交換器52a、52b、52c、52dの出口における冷媒の過冷却度SCを小さくすることが必要である。 In order to eliminate such a situation, the pressure loss (liquid pressure loss) of the liquid refrigerant flowing through the liquid refrigerant communication pipe 7 is increased when at least one of the use units 3a, 3b, 3c, and 3d performs the heating operation. When the normal condition for the supercooling degree control is not satisfied, the refrigerant flowing into the receiver 28 is changed to the gas-liquid two-phase state, and the supercooling degree of the refrigerant at the outlets of the use side heat exchangers 52a, 52b, 52c, 52d. It is necessary to reduce the SC.
 そこで、ここでは、レシーバ28に、レシーバ28の上部と圧縮機21の吸入側とを接続するレシーバガス抜き管41を設け、レシーバガス抜き管41に、開度調節が可能なガス抜き側流量調節弁42を設け、過冷却度制御正常条件を満たすように、ガス抜き側流量調節弁42の開度MVを制御するようにしている。 Therefore, here, the receiver 28 is provided with a receiver degassing pipe 41 that connects the upper part of the receiver 28 and the suction side of the compressor 21, and the receiver degassing pipe 41 has a degassing-side flow rate adjustment capable of adjusting the opening degree. A valve 42 is provided to control the opening degree MV of the degassing side flow rate adjustment valve 42 so as to satisfy the normal condition of supercooling degree control.
 次に、ガス抜き側流量調節弁42の開度制御について、図8及び図9を用いて説明する。ここで、図8は、ガス抜き側流量調節弁42を開状態で暖房運転を行った場合の冷凍サイクルを示したモリエル線図であり、図9は、ガス抜き側流量調節弁42の開度制御のフローチャートである。尚、ここで説明するガス抜き側流量調節弁42の開度制御を含む各種動作は、制御部20、50a、50b、50c、50d、60a、60b、60c、60dによって行われる。 Next, the opening degree control of the gas vent side flow rate control valve 42 will be described with reference to FIGS. Here, FIG. 8 is a Mollier diagram showing a refrigeration cycle in the case where the heating operation is performed with the degassing side flow rate adjustment valve 42 opened, and FIG. 9 shows the opening degree of the degassing side flow rate adjustment valve 42. It is a flowchart of control. Various operations including the opening degree control of the gas vent side flow rate adjustment valve 42 described here are performed by the control units 20, 50a, 50b, 50c, 50d, 60a, 60b, 60c, 60d.
 まず、ステップST1において、過冷却度制御正常条件を満たすかどうかを判定する。すなわち、利用ユニット3a、3b、3c、3dの少なくとも1つが暖房運転(すなわち、利用側熱交換器52a、52b、52c、52dの少なくとも1つを冷媒の放熱器として機能させる運転)を行っており、暖房運転を行っている利用ユニット3a、3b、3c、3dの利用側流量調節弁51a、51b、51c、51dが過冷却度制御を行っている場合において、過冷却度制御正常条件を満たすかどうかを判定する。ここでは、過冷却度制御を行っている利用側流量調節弁51a、51b、51c、51dの開度MVが過冷却度制御上限開度MVx未満であるかどうかによって、過冷却度制御正常条件を満たすかどうかを判定するようにしている。すなわち、利用側流量調節弁51a、51b、51c、51dの開度MVが過冷却度制御における上限開度である過冷却度制御上限開度MVxまで開いた状態になっている場合には、利用側流量調節弁51a、51b、51c、51dの可変幅を超えており、利用側熱交換器52a、52b、52c、52dの出口における冷媒の過冷却度SCが過冷却度制御を行えなくなる程に過大になっているものとみなすようにしている。ここで、暖房運転を行っている利用ユニットが複数存在する場合には、各利用ユニットについて、過冷却度制御正常条件を満たすかどうかの判定を行う。 First, in step ST1, it is determined whether or not the normal supercooling degree control normal condition is satisfied. That is, at least one of the usage units 3a, 3b, 3c, and 3d is performing a heating operation (that is, an operation in which at least one of the usage- side heat exchangers 52a, 52b, 52c, and 52d functions as a refrigerant radiator). Whether the usage-side flow rate control valves 51a, 51b, 51c, 51d of the usage units 3a, 3b, 3c, 3d that are performing the heating operation are performing the supercooling degree control, whether the supercooling degree control normal condition is satisfied Determine if. Here, the normal condition of the supercooling degree control is determined depending on whether or not the opening degree MV of the use side flow rate adjusting valves 51a, 51b, 51c, 51d performing the supercooling degree control is less than the supercooling degree control upper limit opening degree MVx. Judgment is made as to whether or not it is satisfied. That is, when the opening MV of the use side flow rate adjustment valves 51a, 51b, 51c, 51d is opened to the supercooling degree control upper limit opening MVx that is the upper limit opening in the supercooling degree control, The flow rate adjustment valves 51a, 51b, 51c, 51d are over the variable width, and the supercooling degree SC of the refrigerant at the outlets of the use side heat exchangers 52a, 52b, 52c, 52d cannot be controlled. It is considered that it is excessive. Here, when there are a plurality of use units performing the heating operation, it is determined whether or not the subcool degree control normal condition is satisfied for each use unit.
 次に、ステップST1において過冷却度制御正常条件を満たさないものと判定された場合には、ステップST2に移行する。そして、ステップST2においては、ガス抜き側流量調節弁42の開度MVを大きくする制御を行う。ここでは、ガス抜き側流量調節弁42の現在開度MVに第1開度変化分ΔMV1を加えることによって、ガス抜き側流量調節弁42の開度MVを大きくする制御を行うようにしている。すると、ガス抜き側流量調節弁42が全閉状態(開度MV=0%)の場合には、レシーバガス抜き管41を通じてレシーバ28からガス冷媒が抜き出され始め、また、ガス抜き側流量調節弁42が既に開いている場合には、レシーバガス抜き管41を通じてレシーバ28から抜き出されるガス冷媒の流量が増加するようになる。そして、このステップST2の処理を繰り返すと、図8の点C、Dに示すように、レシーバ28に流入する冷媒の状態をガス冷媒が多い気液二相状態にして、利用側熱交換器52a、52b、52c、52dの出口における冷媒の過冷却度SCを小さくし、利用側熱交換器52a、52b、52c、52dの出口における冷媒の過冷却度SCが利用側流量調節弁51a、51b、51c、51dの可変幅を超えて過冷却度制御を行えなくなる程に過大になるのを防ぐ、すなわち、ステップST1における過冷却度制御正常条件を満たすようにするのである。 Next, when it is determined in step ST1 that the normal condition for supercooling degree control is not satisfied, the process proceeds to step ST2. And in step ST2, control which enlarges the opening degree MV of the degassing side flow control valve 42 is performed. Here, the opening degree MV of the degassing side flow rate adjustment valve 42 is controlled to be increased by adding the first opening change ΔMV1 to the current opening degree MV of the degassing side flow rate adjustment valve 42. Then, when the degassing side flow rate adjustment valve 42 is in the fully closed state (opening MV = 0%), the gas refrigerant begins to be extracted from the receiver 28 through the receiver degassing pipe 41, and the degassing side flow rate adjustment When the valve 42 is already open, the flow rate of the gas refrigerant extracted from the receiver 28 through the receiver degassing pipe 41 increases. Then, when the process of step ST2 is repeated, as shown at points C and D in FIG. 8, the state of the refrigerant flowing into the receiver 28 is changed to a gas-liquid two-phase state with a large amount of gas refrigerant, and the use side heat exchanger 52a. , 52b, 52c, 52d, the refrigerant subcooling degree SC at the outlets of the use side heat exchangers 52a, 52b, 52c, 52d is reduced. It is prevented that the supercooling degree control becomes too large to exceed the variable width of 51c and 51d, that is, the normal condition for supercooling degree control in step ST1 is satisfied.
 次に、ステップST1において過冷却度制御正常条件を満たすものと判定された場合には、ステップST3に移行する。そして、ステップST3においては、ガス抜き側流量調節弁42の開度MVを小さくする制御を行う。ここでは、ガス抜き側流量調節弁42の現在開度MVから第2開度変化分ΔMV2を差し引くことによって、ガス抜き側流量調節弁42の開度MVを小さくする制御を行うようにしている。すると、ガス抜き側流量調節弁42が全閉状態(開度MV=0%)の場合には、そのまま開度が全閉状態、すなわち、レシーバガス抜き管41を通じてレシーバ28からガス冷媒が抜き出されない状態が維持され、また、ステップST2の処理によってガス抜き側流量調節弁42が既に開いている場合には、レシーバガス抜き管41を通じてレシーバ28から抜き出されるガス冷媒の流量が減少するようになる。そして、このステップST3の処理をステップST2の処理とともに繰り返すと、ステップST1の過冷却度制御正常条件を満たすかどうかによってガス抜き側流量調節弁42を開閉制御することになり、ガス抜き側流量調節弁42の開度MVを、過冷却度制御正常条件を満たすために必要な最小限の開度で維持することができる。 Next, when it is determined in step ST1 that the normal supercooling degree control normal condition is satisfied, the process proceeds to step ST3. And in step ST3, control which makes the opening degree MV of the degassing side flow control valve 42 small is performed. Here, the opening degree MV of the degassing side flow rate adjustment valve 42 is controlled to be reduced by subtracting the second opening change ΔMV2 from the current opening degree MV of the degassing side flow rate adjustment valve 42. Then, when the degassing side flow rate adjustment valve 42 is in the fully closed state (opening MV = 0%), the opening is in the fully closed state, that is, the gas refrigerant is extracted from the receiver 28 through the receiver degassing pipe 41. In the case where the state where the gas is not discharged is maintained and the degassing side flow rate adjustment valve 42 is already opened by the process of step ST2, the flow rate of the gas refrigerant extracted from the receiver 28 through the receiver degassing pipe 41 is decreased. Become. When the process of step ST3 is repeated together with the process of step ST2, the degassing side flow rate adjustment valve 42 is controlled to open and close depending on whether the normal condition of the supercooling degree control of step ST1 is satisfied, and the degassing side flow rate adjustment is performed. The opening degree MV of the valve 42 can be maintained at the minimum opening degree necessary for satisfying the normal condition of the supercooling degree control.
 このように、ガス抜き側流量調節弁42は、ステップST1の過冷却度制御正常条件を満たすかどうかによって、ステップST2、ST3の開閉制御がなされるようになっている。 As described above, the degassing side flow rate control valve 42 is controlled to open and close in steps ST2 and ST3 depending on whether or not the normal condition of the supercooling degree control in step ST1 is satisfied.
 しかし、ガス抜き側流量調節弁42を開けることでレシーバ28からガス冷媒を抜き出すと、レシーバ28内に溜まる液冷媒の液面が上昇して、満液近くまで上昇する場合もあり得る。 However, when the gas refrigerant is extracted from the receiver 28 by opening the gas vent side flow rate adjustment valve 42, the liquid level of the liquid refrigerant that accumulates in the receiver 28 may rise, and may rise to near full liquid.
 そこで、ここでは、ステップST1、ST2、ST3の処理だけでなく、ステップST4、ST5の処理を行うようにしている。具体的には、レシーバ28が所定液面L1(図2参照)まで達した場合には、ステップST1の過冷却度制御正常条件を満たすかどうかにかかわらず、すなわち、ステップST1の過冷却度制御正常条件を満たさない場合であっても、ガス抜き側流量調節弁42の開度MVを強制的に小さくする制御を行うようにしている。ここでは、ガス抜き側流量調節弁42の現在開度MVから第3開度変化分ΔMV3を差し引くことによって、ガス抜き側流量調節弁42の開度MVを小さくする制御を行うようにしている。ここで、第3開度変化分ΔMV3は、ガス抜き量を大幅に制限できるようにするために、第1開度変化分ΔMV1や第2開度変化分ΔMV2よりも大きな値に設定することが好ましい。 Therefore, here, not only the processes of steps ST1, ST2, and ST3 but also the processes of steps ST4 and ST5 are performed. Specifically, when the receiver 28 reaches the predetermined liquid level L1 (see FIG. 2), regardless of whether or not the normal condition of the supercooling degree control in step ST1 is satisfied, that is, the supercooling degree control in step ST1. Even when the normal condition is not satisfied, control is performed to forcibly reduce the opening degree MV of the gas vent side flow rate adjustment valve 42. Here, the opening degree MV of the degassing side flow rate adjustment valve 42 is controlled to be reduced by subtracting the third opening change ΔMV3 from the current opening degree MV of the degassing side flow rate adjustment valve 42. Here, the third opening degree change ΔMV3 may be set to a value larger than the first opening degree change ΔMV1 and the second opening degree change ΔMV2 in order to be able to greatly limit the degassing amount. preferable.
 尚、レシーバ28が所定液面L1に達したかどうかの判定は、液面センサ等の種々の手法が採用可能であるが、ここでは、レシーバ液面検知管43を使用している。このレシーバ液面検知管43によるレシーバ28内の液面検知は、以下のようにして行う。まず、レシーバ液面検知管43は、ガス抜き側流量調節弁42が開状態になると、図2、図4及び図6に示すように、レシーバ28の所定の高さ位置L1から冷媒を抜き出す。ここで、レシーバ液面検知管43から抜き出された冷媒は、レシーバ28内の液面が所定の高さ位置L1よりも低い場合は、ガス状態となり、レシーバ28内の液面が所定の高さ位置L1以上である場合は、液状態となる。 It should be noted that various methods such as a liquid level sensor can be used to determine whether or not the receiver 28 has reached the predetermined liquid level L1, but here, the receiver liquid level detection tube 43 is used. The liquid level in the receiver 28 is detected by the receiver liquid level detection tube 43 as follows. First, the receiver liquid level detection pipe 43 extracts the refrigerant from the predetermined height position L1 of the receiver 28 as shown in FIGS. 2, 4 and 6 when the degassing side flow rate adjustment valve 42 is opened. Here, the refrigerant extracted from the receiver liquid level detection tube 43 is in a gas state when the liquid level in the receiver 28 is lower than the predetermined height position L1, and the liquid level in the receiver 28 is at a predetermined level. When the position is L1 or more, the liquid state is entered.
 次に、レシーバ液面検知管43から抜き出された冷媒は、図4及び図6に示すように、レシーバガス抜き管41から抜き出された冷媒と合流する。ここで、レシーバガス抜き管41から抜き出された冷媒は、レシーバ28内の液面が高さ位置L2(図2参照)より低い場合には、ガス状態である。このため、レシーバ液面検知管43から抜き出された冷媒がガス状態である場合には、レシーバガス抜き管41から抜き出された冷媒と合流した後にレシーバガス抜き管41を流れる冷媒も、ガス状態となる。一方、レシーバ液面検知管43から抜き出された冷媒が液状態である場合には、レシーバガス抜き管41から抜き出された冷媒と合流した後にレシーバガス抜き管41を流れる冷媒は、ガス冷媒に液冷媒が混入した気液二相状態となる。そして、レシーバ液面検知管43から抜き出された冷媒が合流した後のレシーバガス抜き管41を流れる冷媒は、ガス抜き側流量調節弁42によって圧縮機21の吸入側における冷媒の圧力近くまで減圧される。このガス抜き側流量調節弁42による減圧操作によって、レシーバガス抜き管41を流れる冷媒は、減圧操作前の冷媒の状態に応じた温度降下が発生することになる。すなわち、レシーバガス抜き管41を流れる冷媒がガス状態である場合には、減圧操作による温度降下は小さく、気液二相状態である場合には、減圧操作による温度降下は大きくなる。このため、ここでは採用していないが、ガス抜き側流量調節弁42で減圧操作された後のレシーバガス抜き管41を流れる冷媒の温度を使用して、液面検知管43から抜き出された冷媒が液状態であるかどうか(レシーバ28内の液面が高さ位置L1まで達しているかどうか)を検知することもできる。 Next, the refrigerant extracted from the receiver liquid level detection tube 43 merges with the refrigerant extracted from the receiver degassing tube 41 as shown in FIGS. Here, the refrigerant extracted from the receiver degassing pipe 41 is in a gas state when the liquid level in the receiver 28 is lower than the height position L2 (see FIG. 2). For this reason, when the refrigerant extracted from the receiver liquid level detection tube 43 is in a gas state, the refrigerant flowing through the receiver degassing tube 41 after joining the refrigerant extracted from the receiver degassing tube 41 is also gas. It becomes a state. On the other hand, when the refrigerant extracted from the receiver liquid level detection tube 43 is in a liquid state, the refrigerant flowing through the receiver degassing tube 41 after joining the refrigerant extracted from the receiver degassing tube 41 is a gas refrigerant. It becomes a gas-liquid two-phase state in which liquid refrigerant is mixed. And the refrigerant | coolant which flows through the receiver degassing pipe | tube 41 after the refrigerant | coolant extracted from the receiver liquid level detection pipe | tube 43 merges is pressure-reduced by the degassing side flow control valve 42 to the pressure of the refrigerant | coolant in the suction side of the compressor 21. Is done. By the depressurization operation by the degassing flow rate control valve 42, the refrigerant flowing through the receiver degassing pipe 41 undergoes a temperature drop according to the state of the refrigerant before the depressurization operation. That is, when the refrigerant flowing through the receiver degassing pipe 41 is in a gas state, the temperature drop due to the decompression operation is small, and when it is in the gas-liquid two-phase state, the temperature drop due to the decompression operation is large. For this reason, although not employed here, the temperature of the refrigerant flowing through the receiver degassing pipe 41 after being depressurized by the degassing flow rate adjusting valve 42 was used to extract from the liquid level detection pipe 43. It can also be detected whether the refrigerant is in a liquid state (whether the liquid level in the receiver 28 has reached the height position L1).
 次に、ガス抜き側流量調節弁42で減圧操作された後のレシーバガス抜き管41を流れる冷媒は、図4及び図6に示すように、冷媒加熱器44に送られて、圧縮機21の吐出側と予冷熱交換器35との間を流れる高圧のガス冷媒と熱交換を行って加熱される。この冷媒加熱器44による加熱操作によって、レシーバガス抜き管41を流れる冷媒は、加熱操作前の冷媒の状態に応じた温度上昇が発生することになる。すなわち、ガス抜き側流量調節弁42で減圧操作された後のレシーバガス抜き管41を流れる冷媒がガス状態である場合には、加熱操作による温度上昇が大きく、気液二相状態である場合には、減圧操作による温度上昇が小さくなる。このため、ここでは、ガス抜き側温度センサ75によって、冷媒加熱器44で加熱操作された後のレシーバガス抜き管41を流れる冷媒の温度を検出して、この検出された冷媒の温度を使用して、液面検知管43から抜き出された冷媒が液状態であるかどうか(レシーバ28内の液面が高さ位置L1まで達しているかどうか)を検知している。具体的には、ガス抜き側温度センサ75によって検出された冷媒の温度から吸入圧力センサ71によって検出された冷媒の圧力を換算することによって得られる冷媒の飽和温度を差し引くことによって、冷媒加熱器44で加熱操作された後のレシーバガス抜き管41を流れる冷媒の過熱度を得る。そして、この冷媒の過熱度が所定の温度差以上である場合には、液面検知管43から抜き出された冷媒がガス状態である(レシーバ28内の液面が高さ位置L1まで達していない)と判断し、この冷媒の過熱度が所定の温度差に達しない場合には、液面検知管43から抜き出された冷媒が液状態である(レシーバ28内の液面が高さ位置L1まで達している)と判断する。 Next, the refrigerant flowing through the receiver degassing pipe 41 after being depressurized by the degassing flow rate adjusting valve 42 is sent to the refrigerant heater 44 as shown in FIGS. Heat is exchanged with the high-pressure gas refrigerant flowing between the discharge side and the precooling heat exchanger 35 and heated. As a result of the heating operation by the refrigerant heater 44, the temperature of the refrigerant flowing through the receiver degassing pipe 41 is increased according to the state of the refrigerant before the heating operation. That is, when the refrigerant flowing through the receiver degassing pipe 41 after being depressurized by the degassing flow rate adjustment valve 42 is in a gas state, the temperature rise due to the heating operation is large, and the gas-liquid two-phase state is present. The temperature rise due to the decompression operation is reduced. Therefore, here, the temperature of the refrigerant flowing through the receiver degassing pipe 41 after being heated by the refrigerant heater 44 is detected by the degassing side temperature sensor 75, and this detected refrigerant temperature is used. Thus, it is detected whether the refrigerant extracted from the liquid level detection tube 43 is in a liquid state (whether the liquid level in the receiver 28 has reached the height position L1). Specifically, the refrigerant heater 44 is obtained by subtracting the refrigerant saturation temperature obtained by converting the refrigerant pressure detected by the suction pressure sensor 71 from the refrigerant temperature detected by the degassing temperature sensor 75. The degree of superheat of the refrigerant flowing through the receiver degassing pipe 41 after being heated at is obtained. When the superheat degree of the refrigerant is equal to or greater than the predetermined temperature difference, the refrigerant extracted from the liquid level detection tube 43 is in a gas state (the liquid level in the receiver 28 has reached the height position L1. If the superheat degree of the refrigerant does not reach a predetermined temperature difference, the refrigerant extracted from the liquid level detection tube 43 is in a liquid state (the liquid level in the receiver 28 is at a height position). L1 is reached).
 このようにして、ここでは、利用側熱交換器52a、52b、52c、52dの少なくとも1つを冷媒の放熱器として機能させる運転(図4、図5及び図6に示される暖房運転や冷暖同時運転)において、利用側流量調節弁51a、51b、51c、51dの開度MVによる過冷却度制御を行いつつ、過冷却度制御正常条件を満たすように、ガス抜き側流量調節弁42の開度MVを制御するようにしている。尚、図5に示される冷暖同時運転(蒸発負荷主体)においては、暖房運転を行う利用ユニット3dが存在しているものの、利用ユニット3a、3b、3c、3d全体の熱負荷が蒸発負荷主体であり、液冷媒連絡管7を介して利用ユニット3a、3b、3c、3dから熱源ユニット2に冷媒が送られる運転状態ではない。このため、上記のステップST1~ST5の制御は適用されているものの、過冷却度制御正常条件を満たさない状況が生じないため、結果的に、ガス抜き側流量調節弁42が全閉状態(開度0%)に開度調節されており、レシーバガス抜き管41を通じてレシーバ28からガス冷媒を圧縮機21の吸入側に抜き出さないようになっているのである。 In this way, here, an operation that causes at least one of the usage- side heat exchangers 52a, 52b, 52c, and 52d to function as a refrigerant radiator (heating operation and simultaneous cooling and heating shown in FIGS. 4, 5, and 6). In operation, the degree of opening of the degassing side flow rate adjusting valve 42 is set so as to satisfy the normal condition of supercooling degree control while performing the degree of supercooling degree control by the opening degree MV of the use side flow rate regulating valves 51a, 51b, 51c, 51d. The MV is controlled. In the simultaneous cooling / heating operation (mainly evaporative load) shown in FIG. 5, although there is a use unit 3d that performs heating operation, the heat load of the entire use units 3a, 3b, 3c, and 3d is mainly evaporative load. Yes, it is not an operation state in which the refrigerant is sent from the utilization units 3a, 3b, 3c, and 3d to the heat source unit 2 via the liquid refrigerant communication tube 7. For this reason, although the control of the above steps ST1 to ST5 is applied, there is no situation where the normal condition for the supercooling degree control is not satisfied. As a result, the degassing side flow rate control valve 42 is fully closed (opened). The degree of opening is adjusted to 0%), and the gas refrigerant is not extracted from the receiver 28 through the receiver degassing pipe 41 to the suction side of the compressor 21.
 (3)冷凍装置(冷暖同時運転型空気調和装置)の特徴
 冷暖同時運転型空気調和装置1には、以下のような特徴がある。
(3) Features of the refrigeration apparatus (cooling / heating simultaneous operation type air conditioner) The cooling / heating simultaneous operation type air conditioner 1 has the following characteristics.
 <A>
 ここでは、上記のように、レシーバガス抜き管41に、開度調節が可能なガス抜き側流量調節弁42を設け、過冷却度制御正常条件を満たすように、ガス抜き側流量調節弁42の開度を制御するようにしている。すなわち、ガス抜き側流量調節弁42の開度MVを大きくすることによって、レシーバ28に流入する冷媒の状態をガス冷媒が多い気液二相状態にして、利用側熱交換器52a、52b、52c、52dの出口における冷媒の過冷却度SCを小さくし、利用側熱交換器52a、52b、52c、52dの出口における冷媒の過冷却度SCが利用側流量調節弁51a、51b、51c、51dの可変幅を超えて過冷却度制御を行えなくなる程に過大になるのを防ぐ、すなわち、過冷却度制御正常条件を満たすようにしている。
<A>
Here, as described above, the receiver degassing pipe 41 is provided with the degassing flow rate adjusting valve 42 capable of adjusting the opening degree, and the degassing side flow rate adjusting valve 42 is set so as to satisfy the normal condition of supercooling degree control. The opening is controlled. That is, by increasing the opening degree MV of the gas vent side flow rate control valve 42, the state of the refrigerant flowing into the receiver 28 is changed to a gas-liquid two-phase state with a large amount of gas refrigerant, and the use side heat exchangers 52a, 52b, 52c. , 52d, the refrigerant supercooling degree SC at the outlet is reduced, and the refrigerant supercooling degree SC at the outlet of the use side heat exchangers 52a, 52b, 52c, 52d is reduced to that of the use side flow control valves 51a, 51b, 51c, 51d. The excessive cooling is prevented so that the supercooling degree control cannot be performed beyond the variable width, that is, the normal condition of the supercooling degree control is satisfied.
 これにより、ここでは、液圧損が大きい場合であっても、過冷却度制御が適切に行えるようになり、暖房能力の低下を抑えることができる。 Thereby, here, even when the hydraulic pressure loss is large, the supercooling degree control can be appropriately performed, and the decrease in the heating capacity can be suppressed.
 <B>
 ここでは、上記のように、利用側流量調節弁51a、51b、51c、51dの開度MVが過冷却度制御上限開度MVx未満であるかどうかによって、過冷却度制御正常条件を満たしているかどうかを判定するようにしている。すなわち、利用側流量調節弁51a、51b、51c、51dの開度MVが過冷却度制御における上限開度である過冷却度制御上限開度MVxまで開いた状態になっている場合には、利用側流量調節弁51a、51b、51c、51dの可変幅を超えており、利用側熱交換器52a、52b、52c、52dの出口における冷媒の過冷却度SCが過冷却度制御を行えなくなる程に過大になっているものとみなすようにしている。
<B>
Here, as described above, whether or not the normal condition of the supercooling degree control is satisfied depending on whether or not the opening degree MV of the use side flow rate adjustment valves 51a, 51b, 51c, 51d is less than the supercooling degree control upper limit opening degree MVx. Judgment is made. That is, when the opening MV of the use side flow rate adjustment valves 51a, 51b, 51c, 51d is opened to the supercooling degree control upper limit opening MVx that is the upper limit opening in the supercooling degree control, The flow rate adjustment valves 51a, 51b, 51c, 51d are over the variable width, and the supercooling degree SC of the refrigerant at the outlets of the use side heat exchangers 52a, 52b, 52c, 52d cannot be controlled. It is considered that it is excessive.
 これにより、ここでは、過冷却度制御を行っている利用側流量調節弁51a、51b、51c、51dの開度MVを過冷却度制御上限開度MVx未満に維持できるようになり、利用側流量調節弁51a、51b、51c、51dの可変幅の範囲内で過冷却度制御を行うことができる。 As a result, the opening MV of the use side flow rate adjusting valves 51a, 51b, 51c, 51d performing the supercooling degree control can be maintained below the supercooling degree control upper limit opening MVx. The degree of supercooling can be controlled within the range of the variable width of the control valves 51a, 51b, 51c, 51d.
 <C>
 ここでは、上記のように、過冷却度制御正常条件を満たすかどうかによってガス抜き側流量調節弁42を開閉制御するようにしている。このため、ガス抜き側流量調節弁42の開度MVを、過冷却度制御正常条件を満たすために必要な最小限の開度で維持することができる。
<C>
Here, as described above, the degassing side flow rate adjustment valve 42 is controlled to open and close depending on whether or not the subcooling degree control normal condition is satisfied. For this reason, the opening degree MV of the degassing side flow rate adjustment valve 42 can be maintained at the minimum opening degree necessary for satisfying the normal condition of the supercooling degree control.
 これにより、ここでは、レシーバ28から抜き出されるガス冷媒の量を最小限に抑えることができるようになり、レシーバ28からのガス抜きによる性能低下を抑えることができる。 Thereby, the amount of the gas refrigerant extracted from the receiver 28 can be minimized here, and the performance degradation due to degassing from the receiver 28 can be suppressed.
 <D>
 ここでは、上記のように、レシーバ28が所定液面L1まで達した場合には、過冷却度制御正常条件を満たすかどうかにかかわらず、すなわち、過冷却度制御正常条件を満たさない場合であっても、ガス抜き側流量調節弁42の開度MVを強制的に小さくする制御を行うようにしている。
<D>
Here, as described above, when the receiver 28 reaches the predetermined liquid level L1, it is a case where the normal condition for the supercooling degree control is not satisfied regardless of whether the normal condition for the supercooling degree control is satisfied. However, control is performed to forcibly reduce the opening degree MV of the gas vent side flow rate adjustment valve 42.
 これにより、ここでは、過冷却度制御を適切に行えるようにしつつ、レシーバ28から圧縮機21に液冷媒が戻ることを抑えることができる。 Thereby, here, it is possible to prevent the liquid refrigerant from returning from the receiver 28 to the compressor 21 while appropriately performing the supercooling degree control.
 (4)変形例
 上記の実施形態では、本発明が適用される冷凍装置として、冷暖同時運転型空気調和装置1の構成例に挙げて説明しているが、これに限定されるものではない。例えば、冷暖切換運転型空気調和装置等の他の冷凍装置であっても、レシーバを有する熱源ユニットと、利用側流量調節弁と利用側熱交換器とを有する利用ユニットとが、冷媒連絡管を介して接続されており、利用側熱交換器を冷媒の放熱器として機能させる運転において、利用側熱交換器の出口における冷媒の過冷却度に基づいて利用側流量調節弁の開度を制御するものであれば、本発明を適用することが可能である。
(4) Modifications In the above embodiment, the configuration example of the cooling and heating simultaneous operation type air conditioner 1 is described as a refrigeration apparatus to which the present invention is applied. However, the present invention is not limited to this. For example, even in other refrigeration apparatuses such as a cooling / heating switching operation type air conditioner, a heat source unit having a receiver, and a utilization unit having a utilization side flow rate adjustment valve and a utilization side heat exchanger have a refrigerant communication pipe. In the operation in which the use side heat exchanger functions as a refrigerant radiator, the opening degree of the use side flow rate control valve is controlled based on the degree of subcooling of the refrigerant at the outlet of the use side heat exchanger. The present invention can be applied to any device.
 また、上記の実施形態では、過冷却熱交換器45及び吸入戻し管46が設けられているが、設けられていなくてもよい。 In the above embodiment, the supercooling heat exchanger 45 and the suction return pipe 46 are provided, but they may not be provided.
 さらに、レシーバ液面検知管43に設けられた冷媒加熱器44の加熱源は、圧縮機21から吐出された高圧のガス冷媒に限定されず、レシーバ出口管28bを流れる液冷媒等であってもよい。 Furthermore, the heating source of the refrigerant heater 44 provided in the receiver liquid level detection pipe 43 is not limited to the high-pressure gas refrigerant discharged from the compressor 21, and may be a liquid refrigerant or the like flowing through the receiver outlet pipe 28b. Good.
 本発明は、レシーバを有する熱源ユニットと、利用側流量調節弁と利用側熱交換器とを有する利用ユニットとが、冷媒連絡管を介して接続されており、利用側熱交換器を冷媒の放熱器として機能させる運転において、利用側熱交換器の出口における冷媒の過冷却度に基づいて利用側流量調節弁の開度を制御する冷凍装置に対して、広く適用可能である。 In the present invention, a heat source unit having a receiver, a utilization unit having a utilization side flow rate adjustment valve and a utilization side heat exchanger are connected via a refrigerant communication pipe, and the utilization side heat exchanger is radiated of refrigerant. In the operation to function as a cooler, the present invention is widely applicable to a refrigeration apparatus that controls the opening degree of the use side flow rate control valve based on the degree of supercooling of the refrigerant at the outlet of the use side heat exchanger.
 1               冷暖同時運転型空気調和装置(冷凍装置)
 2               熱源ユニット
 3a、3b、3c、3d     利用ユニット
 7               液冷媒連絡管
 8、9             ガス冷媒連絡管
 21              圧縮機
 24、25        熱源側熱交換器
 28              レシーバ
 41              レシーバガス抜き管
 42              ガス抜き側流量調節弁
 51a、51b、51c、51d 利用側流量調節弁
 52a、52b、52c、52d 利用側熱交換器
1 Cooling and heating simultaneous operation type air conditioner (refrigeration equipment)
2 Heat source unit 3a, 3b, 3c, 3d Utilization unit 7 Liquid refrigerant communication tube 8, 9 Gas refrigerant communication tube 21 Compressor 24, 25 Heat source side heat exchanger 28 Receiver 41 Receiver degassing tube 42 Degassing side flow rate adjustment valve 51a , 51b, 51c, 51d Use side flow rate adjustment valve 52a, 52b, 52c, 52d Use side heat exchanger
特開2006-78026号公報JP 2006-78026 A

Claims (4)

  1.  圧縮機(21)と熱源側熱交換器(24、25)とレシーバ(28)とを有する熱源ユニット(2)と、利用側流量調節弁(51a、51b、51c、51d)と利用側熱交換器(52a、52b、52c、52d)とを有する利用ユニット(3a、3b、3c、3d)とが、ガス冷媒連絡管(8、9)及び液冷媒連絡管(7)を介して接続されており、前記利用側熱交換器を冷媒の放熱器として機能させる運転において、前記利用側熱交換器の出口における冷媒の過冷却度に基づいて前記利用側流量調節弁の開度を制御する過冷却度制御を行う冷凍装置において、
     前記レシーバに、前記レシーバの上部と前記圧縮機の吸入側とを接続するレシーバガス抜き管(41)を設け、
     前記レシーバガス抜き管に、開度調節が可能なガス抜き側流量調節弁(42)を設け、
     前記過冷却度制御を行っている前記利用側流量調節弁が前記過冷却度制御を行うことが可能な過冷却度制御正常条件を満たすように、前記ガス抜き側流量調節弁の開度を制御する、
    冷凍装置(1)。
    A heat source unit (2) having a compressor (21), a heat source side heat exchanger (24, 25), and a receiver (28), a use side flow rate adjustment valve (51a, 51b, 51c, 51d) and a use side heat exchange The utilization units (3a, 3b, 3c, 3d) having the containers (52a, 52b, 52c, 52d) are connected via the gas refrigerant communication pipe (8, 9) and the liquid refrigerant communication pipe (7). In the operation in which the use side heat exchanger functions as a refrigerant radiator, the supercooling that controls the opening degree of the use side flow control valve based on the degree of refrigerant subcooling at the outlet of the use side heat exchanger. In refrigeration equipment that performs degree control,
    The receiver is provided with a receiver vent pipe (41) for connecting the upper part of the receiver and the suction side of the compressor,
    The receiver degassing pipe is provided with a degassing flow rate control valve (42) capable of opening adjustment,
    The opening degree of the degassing side flow rate control valve is controlled so that the use side flow rate control valve performing the supercooling degree control satisfies the normal condition of the supercooling degree control capable of performing the supercooling degree control. To
    Refrigeration equipment (1).
  2.  前記過冷却度制御正常条件は、前記過冷却度制御を行っている前記利用側流量調節弁(51a、51b、51c、51d)の開度が過冷却度制御上限開度未満であることである、
    請求項1に記載の冷凍装置(1)。
    The normal condition of the supercooling degree control is that the opening degree of the use side flow rate control valve (51a, 51b, 51c, 51d) performing the supercooling degree control is less than the supercooling degree control upper limit opening degree. ,
    The refrigeration apparatus (1) according to claim 1.
  3.  前記過冷却度制御を行っている前記利用側流量調節弁(51a、51b、51c、51d)が前記過冷却度制御正常条件を満たす場合には、前記ガス抜き側流量調節弁(42)の開度を小さくする制御を行い、
     前記過冷却度制御を行っている前記利用側流量調節弁が前記過冷却度制御正常条件を満たさない場合には、前記ガス抜き側流量調節弁の開度を大きくする制御を行う、
    請求項1又は2に記載の冷凍装置(1)。
    When the use side flow rate control valves (51a, 51b, 51c, 51d) performing the supercooling degree control satisfy the normal condition of the supercooling degree control, the degassing side flow rate control valve (42) is opened. Control to reduce the degree,
    When the use side flow rate control valve performing the supercooling degree control does not satisfy the normal condition of the supercooling degree control, the opening degree of the degassing side flow rate control valve is increased.
    The refrigeration apparatus (1) according to claim 1 or 2.
  4.  前記レシーバ(28)が所定液面まで達した場合には、前記過冷却度制御正常条件を満たすかどうかにかかわらず、前記ガス抜き側流量調節弁(42)の開度を小さくする制御を行う、
    請求項3に記載の冷凍装置(1)。
    When the receiver (28) reaches a predetermined liquid level, control is performed to reduce the opening degree of the degassing side flow rate control valve (42) regardless of whether the normal condition for supercooling degree control is satisfied. ,
    The refrigeration apparatus (1) according to claim 3.
PCT/JP2015/064639 2014-05-28 2015-05-21 Freezer device WO2015182484A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-110074 2014-05-28
JP2014110074A JP2015224832A (en) 2014-05-28 2014-05-28 Refrigeration device

Publications (1)

Publication Number Publication Date
WO2015182484A1 true WO2015182484A1 (en) 2015-12-03

Family

ID=54698819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064639 WO2015182484A1 (en) 2014-05-28 2015-05-21 Freezer device

Country Status (2)

Country Link
JP (1) JP2015224832A (en)
WO (1) WO2015182484A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172265B2 (en) * 2018-08-06 2022-11-16 富士電機株式会社 heat pump equipment
JP7489817B2 (en) 2020-04-17 2024-05-24 東芝ライフスタイル株式会社 Air conditioners
JP7372556B2 (en) * 2021-09-30 2023-11-01 ダイキン工業株式会社 Refrigerant containers and refrigeration cycle equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254376A (en) * 1995-03-17 1996-10-01 Mitsubishi Electric Corp Air conditioner
JPH11142001A (en) * 1997-11-06 1999-05-28 Daikin Ind Ltd Air conditioner
JP2006078026A (en) * 2004-09-08 2006-03-23 Hitachi Ltd Air conditioner
JP2006292212A (en) * 2005-04-07 2006-10-26 Daikin Ind Ltd Air conditioner
JP2009115340A (en) * 2007-11-02 2009-05-28 Hitachi Appliances Inc Air conditioner
JP2009293899A (en) * 2008-06-09 2009-12-17 Daikin Ind Ltd Refrigerating device
JP2012180945A (en) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd Water heater system
JP2014167381A (en) * 2013-01-29 2014-09-11 Daikin Ind Ltd Air conditioning device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254376A (en) * 1995-03-17 1996-10-01 Mitsubishi Electric Corp Air conditioner
JPH11142001A (en) * 1997-11-06 1999-05-28 Daikin Ind Ltd Air conditioner
JP2006078026A (en) * 2004-09-08 2006-03-23 Hitachi Ltd Air conditioner
JP2006292212A (en) * 2005-04-07 2006-10-26 Daikin Ind Ltd Air conditioner
JP2009115340A (en) * 2007-11-02 2009-05-28 Hitachi Appliances Inc Air conditioner
JP2009293899A (en) * 2008-06-09 2009-12-17 Daikin Ind Ltd Refrigerating device
JP2012180945A (en) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd Water heater system
JP2014167381A (en) * 2013-01-29 2014-09-11 Daikin Ind Ltd Air conditioning device

Also Published As

Publication number Publication date
JP2015224832A (en) 2015-12-14

Similar Documents

Publication Publication Date Title
JP5747968B2 (en) Heat recovery type refrigeration system
US9683768B2 (en) Air-conditioning apparatus
CN108027179B (en) Air conditioner
US9958171B2 (en) Air-conditioning apparatus
JP6053826B2 (en) Air conditioner
JP6895901B2 (en) Air conditioner
WO2013099898A1 (en) Refrigeration device
GB2569898A (en) Air conditioner
JP5772904B2 (en) Heat recovery type refrigeration system
JP6033297B2 (en) Air conditioner
JP6388010B2 (en) Air conditioner
JP5979112B2 (en) Refrigeration equipment
WO2015140994A1 (en) Heat source side unit and air conditioner
JP6277005B2 (en) Refrigeration equipment
WO2019017351A1 (en) Freezer
JP6436196B1 (en) Refrigeration equipment
JP5949831B2 (en) Refrigeration equipment
WO2016098645A1 (en) Air-conditioning device
WO2015115546A1 (en) Refrigeration device
WO2015182484A1 (en) Freezer device
JP2009139012A (en) Refrigeration air conditioning apparatus
JP5839084B2 (en) Refrigeration equipment
JP5907212B2 (en) Heat recovery type refrigeration system
JPWO2017068649A1 (en) Heat pump system
JP2014126289A (en) Air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799224

Country of ref document: EP

Kind code of ref document: A1