JP2015218959A - Heat pump heating device - Google Patents

Heat pump heating device Download PDF

Info

Publication number
JP2015218959A
JP2015218959A JP2014103193A JP2014103193A JP2015218959A JP 2015218959 A JP2015218959 A JP 2015218959A JP 2014103193 A JP2014103193 A JP 2014103193A JP 2014103193 A JP2014103193 A JP 2014103193A JP 2015218959 A JP2015218959 A JP 2015218959A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
compressor
hot water
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014103193A
Other languages
Japanese (ja)
Other versions
JP6387246B2 (en
Inventor
今井 誠士
Seishi Imai
誠士 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2014103193A priority Critical patent/JP6387246B2/en
Priority to KR1020150069086A priority patent/KR20150133149A/en
Publication of JP2015218959A publication Critical patent/JP2015218959A/en
Application granted granted Critical
Publication of JP6387246B2 publication Critical patent/JP6387246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a technology capable of solving a situation where a dryness degree of a refrigerant sucked into a compressor is high, and temperature of the refrigerant discharged from the compressor becomes greatly higher than condensation temperature, in a heat pump heating device.SOLUTION: A heat pump heating device disclosed in the present specification includes: a condenser for exchanging heat between a refrigerant and a heated fluid and for condensing the refrigerant; a decompressor for decompressing the refrigerant from the condenser; an evaporator for evaporating the refrigerant from the decompressor; a compressor for pressurizing the refrigerant from the evaporator and for sending it out to the condenser; first temperature detection means arranged in a refrigerant flow passage between the compressor and the condenser and for detecting the temperature of the refrigerant; and second temperature detection means arranged in the refrigerant flow passage inside the condenser and for detecting the temperature of the refrigerant. The heat pump heating device performs refrigerant dryness degree drop control for dropping a dryness degree of the refrigerant sucked into the compressor, in the case where a difference between detection temperature of the first temperature detection means and detection temperature of the second temperature detection means exceeds a predetermined upper limit value.

Description

本発明は、ヒートポンプ加熱装置に関する。   The present invention relates to a heat pump heating apparatus.

特許文献1に、冷媒と被加熱流体との間で熱交換して冷媒を凝縮させる凝縮器と、凝縮器からの冷媒を減圧する減圧器と、減圧器からの冷媒を蒸発させる蒸発器と、蒸発器からの冷媒を加圧して凝縮器へ送り出す圧縮機と、凝縮器内の冷媒流路に配置されており、冷媒の温度を検出する温度検出手段を備えるヒートポンプ加熱装置が開示されている。このヒートポンプ加熱装置では、温度検出手段での検出温度(すなわち冷媒の凝縮温度)が所定温度を超えた場合に、圧縮機の回転数を低下させて、圧縮機から吐出される冷媒の高圧化を抑制する。   In Patent Document 1, a condenser that condenses the refrigerant by exchanging heat between the refrigerant and the fluid to be heated, a decompressor that decompresses the refrigerant from the condenser, an evaporator that evaporates the refrigerant from the decompressor, A heat pump heating device is disclosed that includes a compressor that pressurizes the refrigerant from the evaporator and sends it to the condenser, and a temperature detection means that is disposed in the refrigerant flow path in the condenser and detects the temperature of the refrigerant. In this heat pump heating device, when the temperature detected by the temperature detection means (that is, the refrigerant condensing temperature) exceeds a predetermined temperature, the rotation speed of the compressor is decreased to increase the pressure of the refrigerant discharged from the compressor. Suppress.

特開2004−226036号公報JP 2004-226036 A

ヒートポンプ加熱装置においては、圧縮機に吸い込まれる冷媒の乾き度が高く、圧縮機から吐出される冷媒の温度が凝縮温度に比べて大幅に高くなる場合がある。圧縮機から吐出される冷媒の温度が凝縮温度に比べて大幅に高い状態で圧縮機を運転し続けると、潤滑油の変質を誘発し、それによりスラッジが生成されて、冷媒循環路の閉塞を招くおそれがある。しかしながら、従来技術では、仮に圧縮機に吸い込まれる冷媒の乾き度が高く、圧縮機から吐出される冷媒の温度が凝縮温度に比べて大幅に高い状態となっていても、その状態を解消するようにヒートポンプ加熱装置を動作させることが出来なかった。   In the heat pump heating device, the dryness of the refrigerant sucked into the compressor is high, and the temperature of the refrigerant discharged from the compressor may be significantly higher than the condensation temperature. Continuing to operate the compressor with the refrigerant discharged from the compressor at a significantly higher temperature than the condensing temperature will induce lubricating oil alteration, thereby producing sludge and blocking the refrigerant circuit. There is a risk of inviting. However, in the prior art, even if the degree of dryness of the refrigerant sucked into the compressor is high and the temperature of the refrigerant discharged from the compressor is significantly higher than the condensation temperature, the state is solved. The heat pump heating device could not be operated.

本明細書は、上記の課題を解決する技術を提供する。本明細書では、ヒートポンプ加熱装置において、圧縮機に吸い込まれる冷媒の乾き度が高く、圧縮機から吐出される冷媒の温度が凝縮温度に比べて大幅に高い状態となった場合に、その状態を解消することが可能な技術を提供する。   The present specification provides a technique for solving the above problems. In this specification, in the heat pump heating device, when the dryness of the refrigerant sucked into the compressor is high and the temperature of the refrigerant discharged from the compressor is significantly higher than the condensation temperature, the state is changed. Provide technology that can be resolved.

本明細書が開示するヒートポンプ加熱装置は、冷媒と被加熱流体との間で熱交換して冷媒を凝縮させる凝縮器と、凝縮器からの冷媒を減圧する減圧器と、減圧器からの冷媒を蒸発させる蒸発器と、蒸発器からの冷媒を加圧して凝縮器へ送り出す圧縮機と、圧縮機と凝縮器の間の冷媒流路に配置されており、冷媒の温度を検出する第1温度検出手段と、凝縮器内の冷媒流路に配置されており、冷媒の温度を検出する第2温度検出手段を備えている。そのヒートポンプ加熱装置は、第1温度検出手段の検出温度と第2温度検出手段の検出温度の差が所定の上限値を超える場合に、圧縮機に吸い込まれる冷媒の乾き度を下降させる冷媒乾き度下降制御を行う。   The heat pump heating apparatus disclosed in this specification includes a condenser that exchanges heat between a refrigerant and a fluid to be heated to condense the refrigerant, a decompressor that decompresses the refrigerant from the condenser, and a refrigerant from the decompressor. An evaporator that evaporates, a compressor that pressurizes the refrigerant from the evaporator and sends it to the condenser, and a first temperature detection that is disposed in the refrigerant flow path between the compressor and the condenser and detects the temperature of the refrigerant And a second temperature detecting means arranged in the refrigerant flow path in the condenser and detecting the temperature of the refrigerant. The heat pump heating device reduces the dryness of the refrigerant sucked into the compressor when the difference between the detected temperature of the first temperature detecting means and the detected temperature of the second temperature detecting means exceeds a predetermined upper limit value. Descent control is performed.

上記のヒートポンプ加熱装置において、第1温度検出手段では、圧縮機から吐出されたばかりの冷媒の温度を検出しており、第2温度検出手段では、凝縮器において被加熱流体に放熱している冷媒の温度(すなわち凝縮温度)を検出している。上記のヒートポンプ加熱装置によれば、圧縮機に吸い込まれる冷媒の乾き度が高く、圧縮機から吐出される冷媒の温度が凝縮温度に比べて大幅に高い状態となった場合に、その状態を解消することができる。   In the above heat pump heating device, the first temperature detection means detects the temperature of the refrigerant just discharged from the compressor, and the second temperature detection means detects the refrigerant radiating heat to the heated fluid in the condenser. The temperature (that is, the condensation temperature) is detected. According to the above heat pump heating device, when the dryness of the refrigerant sucked into the compressor is high and the temperature of the refrigerant discharged from the compressor becomes significantly higher than the condensation temperature, the state is eliminated. can do.

上記のヒートポンプ加熱装置は、蒸発器に送風する送風手段をさらに備えており、冷媒乾き度下降制御において、送風手段の送風量を減少させるように構成することができる。   Said heat pump heating apparatus is further provided with the ventilation means which ventilates to an evaporator, and can be comprised so that the ventilation volume of a ventilation means may be decreased in refrigerant | coolant dryness fall control.

上記のヒートポンプ加熱装置によれば、冷媒乾き度下降制御において、送風手段の送風量の減少により蒸発器における冷媒の蒸発が抑制されて、圧縮機に吸い込まれる冷媒の乾き度を下降させることができる。圧縮機に吸い込まれる冷媒の乾き度が高い状態を解消することができる。   According to the heat pump heating device described above, in the refrigerant dryness lowering control, the evaporation of the refrigerant in the evaporator is suppressed due to the decrease in the blowing amount of the blower means, and the dryness of the refrigerant sucked into the compressor can be lowered. . The state where the dryness of the refrigerant sucked into the compressor is high can be solved.

上記のヒートポンプ加熱装置は、冷媒乾き度下降制御において、圧縮機の回転数を上昇させるように構成することができる。   Said heat pump heating apparatus can be comprised so that the rotation speed of a compressor may be raised in refrigerant | coolant dryness fall control.

上記のヒートポンプ加熱装置によれば、冷媒乾き度下降制御において、圧縮機の回転数の上昇により冷媒の循環流量を増加させて、圧縮機に吸い込まれる冷媒の乾き度を下降させることができる。圧縮機に吸い込まれる冷媒の乾き度が高い状態を解消することができる。   According to the heat pump heating device described above, in the refrigerant dryness lowering control, the refrigerant circulation flow rate can be increased by increasing the rotational speed of the compressor, and the dryness of the refrigerant sucked into the compressor can be lowered. The state where the dryness of the refrigerant sucked into the compressor is high can be solved.

上記のヒートポンプ加熱装置は、減圧器が冷媒流路に設けられた絞り弁であって、冷媒乾き度下降制御において、絞り弁の開度を大きくするように構成することができる。   The heat pump heating device described above is a throttle valve having a pressure reducer provided in the refrigerant flow path, and can be configured to increase the opening of the throttle valve in the refrigerant dryness lowering control.

上記のヒートポンプ加熱装置によれば、冷媒乾き度下降制御において、絞り弁の開度を大きくすることで冷媒の循環流量を増加させて、圧縮機に吸い込まれる冷媒の乾き度を下降させることができる。圧縮機に吸い込まれる冷媒の乾き度が高い状態を解消することができる。   According to the above heat pump heating device, in the refrigerant dryness lowering control, it is possible to increase the circulating flow rate of the refrigerant by increasing the opening of the throttle valve, and to lower the dryness of the refrigerant sucked into the compressor. . The state where the dryness of the refrigerant sucked into the compressor is high can be solved.

本明細書が開示するヒートポンプ加熱装置によれば、圧縮機に吸い込まれる冷媒の乾き度が高く、圧縮機から吐出される冷媒の温度が凝縮温度に比べて大幅に高い状態となった場合に、その状態を解消することができる。   According to the heat pump heating device disclosed in the present specification, when the dryness of the refrigerant sucked into the compressor is high and the temperature of the refrigerant discharged from the compressor is significantly higher than the condensation temperature, That state can be resolved.

ヒートポンプ加熱装置4が組み込まれた給湯システム2の構成を模式的に示す図である。It is a figure which shows typically the structure of the hot water supply system 2 in which the heat pump heating apparatus 4 was integrated. ヒートポンプ加熱装置4における冷媒の冷凍サイクルと、給湯用水の温度変化の一例を示す図である。It is a figure which shows an example of the temperature change of the refrigerating cycle of the refrigerant | coolant in the heat pump heating apparatus 4, and hot water supply water. ヒートポンプ加熱装置4における冷媒の冷凍サイクルと、給湯用水の温度変化の別の例を示す図である。It is a figure which shows another example of the refrigerating cycle of the refrigerant | coolant in the heat pump heating apparatus 4, and the temperature change of the hot water supply water. ヒートポンプ加熱装置4における冷媒の冷凍サイクルと、給湯用水の温度変化のさらに別の例を示す図である。It is a figure which shows another example of the refrigerating cycle of the refrigerant | coolant in the heat pump heating apparatus 4, and the temperature change of the hot water supply water.

(実施例)
図1に示すように、給湯システム2は主に、ヒートポンプ加熱装置4と、貯湯槽8と、循環ポンプ10と、混合弁12と、バーナ加熱装置14と、バイパス弁16と、制御装置18を備えている。給湯システム2は、上水道等の給水源から供給される水を、ヒートポンプ加熱装置4および/またはバーナ加熱装置14を加熱源として加熱し、給湯設定温度に調温された水を給湯する。
(Example)
As shown in FIG. 1, the hot water supply system 2 mainly includes a heat pump heating device 4, a hot water storage tank 8, a circulation pump 10, a mixing valve 12, a burner heating device 14, a bypass valve 16, and a control device 18. I have. The hot water supply system 2 heats water supplied from a water supply source such as a water supply by using the heat pump heating device 4 and / or the burner heating device 14 as a heating source, and supplies water adjusted to a hot water supply set temperature.

ヒートポンプ加熱装置4は、冷媒(例えばR32やR410AといったHFC冷媒や、R744といったCO冷媒)を循環させるための冷媒循環路20と、蒸発器22と、ファン24と、圧縮機26と、凝縮器28と、減圧器30を備えている。 The heat pump heating device 4 includes a refrigerant circulation path 20 for circulating a refrigerant (for example, an HFC refrigerant such as R32 and R410A, and a CO 2 refrigerant such as R744), an evaporator 22, a fan 24, a compressor 26, and a condenser. 28 and a decompressor 30.

蒸発器22は、ファン24によって送風された外気と冷媒循環路20内の冷媒との間で熱交換を行う、気液熱交換器である。蒸発器22には、減圧器30を通過後の低圧低温の液体状態にある冷媒が供給される。蒸発器22は、冷媒と外気とを熱交換させることによって、冷媒を加熱する。冷媒は、加熱されることにより気化し、比較的高温で低圧の気体状態となる。   The evaporator 22 is a gas-liquid heat exchanger that exchanges heat between the outside air blown by the fan 24 and the refrigerant in the refrigerant circulation path 20. The evaporator 22 is supplied with a refrigerant in a low-pressure and low-temperature liquid state after passing through the decompressor 30. The evaporator 22 heats the refrigerant by exchanging heat between the refrigerant and the outside air. The refrigerant is vaporized by being heated, and is in a gas state at a relatively high temperature and a low pressure.

圧縮機26は、リフトタイプの逆止弁を有する圧縮機である。圧縮機26には、蒸発器22を通過後の冷媒が供給される。即ち、圧縮機26には、比較的高温で低圧の気体状態の冷媒が供給される。圧縮機26によって冷媒が圧縮されることにより、冷媒は高温高圧の気体状態となる。圧縮機26は、圧縮後の高温高圧の気体状態の冷媒を、凝縮器28に送り出す。なお、圧縮機26と凝縮器28の間の冷媒循環路20には、冷媒の温度を検出する第1温度センサ31が設けられている。本実施例では、第1温度センサ31は、圧縮機26の吐出口近傍の冷媒循環路20に設けられている。   The compressor 26 is a compressor having a lift type check valve. The refrigerant after passing through the evaporator 22 is supplied to the compressor 26. That is, the compressor 26 is supplied with a relatively high temperature and low pressure gaseous refrigerant. When the refrigerant is compressed by the compressor 26, the refrigerant is in a high-temperature and high-pressure gaseous state. The compressor 26 sends the compressed high-temperature and high-pressure gaseous refrigerant to the condenser 28. A first temperature sensor 31 that detects the temperature of the refrigerant is provided in the refrigerant circuit 20 between the compressor 26 and the condenser 28. In the present embodiment, the first temperature sensor 31 is provided in the refrigerant circuit 20 near the discharge port of the compressor 26.

凝縮器28には、圧縮機26から送り出された高温高圧の気体状態の冷媒が供給される。凝縮器28は、冷媒循環路20内の冷媒と給湯用水循環路6内の水(以下では給湯用水ともいう)との間で熱交換を行う、液液熱交換器である。冷媒は、凝縮器28での熱交換の結果、熱を奪われて凝縮する。これにより、冷媒は、比較的低温で高圧の液体状態となる。なお、凝縮器28内の冷媒循環路20には、冷媒の温度を検出する第2温度センサ32が設けられている。本実施例では、第2温度センサ32は、凝縮器28内の冷媒循環路20の入口から出口までのほぼ中間の位置に配置されている。   The condenser 28 is supplied with a high-temperature and high-pressure gaseous refrigerant sent out from the compressor 26. The condenser 28 is a liquid-liquid heat exchanger that performs heat exchange between the refrigerant in the refrigerant circuit 20 and the water in the hot water supply water circuit 6 (hereinafter also referred to as hot water supply water). As a result of the heat exchange in the condenser 28, the refrigerant is deprived of heat and condensed. Thereby, a refrigerant | coolant will be in a high-pressure liquid state with a comparatively low temperature. Note that a second temperature sensor 32 that detects the temperature of the refrigerant is provided in the refrigerant circulation path 20 in the condenser 28. In the present embodiment, the second temperature sensor 32 is disposed at a substantially intermediate position from the inlet to the outlet of the refrigerant circulation path 20 in the condenser 28.

減圧器30には、凝縮器28を通過後の比較的低温で高圧の液体状態の冷媒が供給される。本実施例の減圧器30は、冷媒循環路20に設けられた絞り弁である。冷媒は、減圧器30を通過することによって減圧され、低温低圧の液体状態となる。減圧器30を通過した冷媒は、上記の通り、蒸発器22に送られる。   The decompressor 30 is supplied with a relatively low-temperature and high-pressure liquid refrigerant after passing through the condenser 28. The decompressor 30 of the present embodiment is a throttle valve provided in the refrigerant circuit 20. The refrigerant is depressurized by passing through the decompressor 30, and becomes a low-temperature and low-pressure liquid state. The refrigerant that has passed through the decompressor 30 is sent to the evaporator 22 as described above.

ヒートポンプ加熱装置4において、圧縮機26を作動させると、冷媒循環路20内の冷媒は、蒸発器22、圧縮機26、凝縮器28、減圧器30の順に循環する。ヒートポンプ加熱装置4が動作すると、凝縮器28において、給湯用水循環路6内の給湯用水が加熱される。   When the compressor 26 is operated in the heat pump heating device 4, the refrigerant in the refrigerant circulation path 20 circulates in the order of the evaporator 22, the compressor 26, the condenser 28, and the decompressor 30. When the heat pump heating device 4 operates, the hot water in the hot water supply water circulation path 6 is heated in the condenser 28.

貯湯槽8は、ヒートポンプ加熱装置4によって加熱された給湯用水を貯える。貯湯槽8は密閉型であり、断熱材によって外側が覆われている。貯湯槽8内には満水まで給湯用水が貯留される。   The hot water storage tank 8 stores hot water supply water heated by the heat pump heating device 4. The hot water tank 8 is a closed type, and the outside is covered with a heat insulating material. Hot water supply water is stored in the hot water tank 8 until it is full.

給湯用水循環路6は、上流端が貯湯槽8の下部に接続されており、ヒートポンプ加熱装置4の凝縮器28を通過して、下流端が貯湯槽8の上部に接続されている。給湯用水循環路6には、循環ポンプ10が取り付けられている。ヒートポンプ加熱装置4を動作させて、かつ循環ポンプ10を駆動すると、貯湯槽8の下部の給湯用水が凝縮器28に送られて、凝縮器28で加熱された給湯用水が貯湯槽8の上部に戻される。貯湯槽8の内部には、低温の給湯用水の層の上に高温の給湯用水の層が積み重なった温度成層が形成される。   The hot water supply water circulation path 6 has an upstream end connected to the lower part of the hot water storage tank 8, passes through the condenser 28 of the heat pump heating device 4, and a downstream end is connected to the upper part of the hot water storage tank 8. A circulation pump 10 is attached to the hot water supply water circulation path 6. When the heat pump heating device 4 is operated and the circulation pump 10 is driven, the hot water for the hot water in the lower part of the hot water tank 8 is sent to the condenser 28, and the hot water for the hot water heated by the condenser 28 is supplied to the upper part of the hot water tank 8. Returned. Inside the hot water storage tank 8, a temperature stratification is formed in which a layer of high-temperature hot water supply water is stacked on a layer of low-temperature hot water supply water.

給水路34は、上流端が外部の上水道に接続されており、給湯用水として水道水を受け入れる。給水路34の下流側は、貯湯槽導入路36と貯湯槽バイパス路38に分岐している。貯湯槽導入路36の下流端は、貯湯槽8の下部に接続されている。貯湯槽バイパス路38の下流端は、混合弁12に接続されている。貯湯槽導出路40は、上流端が貯湯槽8の上部に接続されている。貯湯槽導出路40の下流側は、混合弁12に接続されている。   The upstream end of the water supply channel 34 is connected to an external water supply, and receives tap water as hot water supply water. The downstream side of the water supply path 34 branches into a hot water tank introduction path 36 and a hot water tank bypass path 38. The downstream end of the hot water tank introduction path 36 is connected to the lower part of the hot water tank 8. The downstream end of the hot water tank bypass passage 38 is connected to the mixing valve 12. An upstream end of the hot water tank outlet 40 is connected to the upper part of the hot water tank 8. A downstream side of the hot water tank outlet 40 is connected to the mixing valve 12.

混合弁12は、貯湯槽導出路40を流れる貯湯槽8の上部からの高温の給湯用水と、貯湯槽バイパス路38を流れる給水路34からの低温の給湯用水を混合して、第1給湯路42へ送り出す。混合弁12では、貯湯槽導出路40から第1給湯路42へ流れる給湯用水の流量と、貯湯槽バイパス路38から第1給湯路42へ流れる給湯用水の流量の割合を調整する。第1給湯路42の下流側は、バーナ加熱路44とバーナバイパス路46に分岐している。バーナ加熱路44には、バーナ加熱装置14が取り付けられている。バーナ加熱装置14は、ガス等の燃料を燃焼させてバーナ加熱路44を流れる給湯用水を加熱する。バーナバイパス路46にはバイパス弁16が取り付けられている。バーナ加熱路44とバーナバイパス路46は、それぞれの下流端で合流して、第2給湯路48の上流端に接続している。第2給湯路48から台所の給湯栓や浴室のシャワー等の給湯箇所へ、給湯設定温度に調温された給湯用水が供給される。   The mixing valve 12 mixes the hot water for hot water from the upper part of the hot water tank 8 flowing through the hot water tank outlet path 40 and the low temperature hot water from the water path 34 for flowing through the hot water tank bypass path 38 to the first hot water path. 42. In the mixing valve 12, the ratio of the flow rate of hot water flowing from the hot water tank outlet path 40 to the first hot water path 42 and the flow rate of hot water flowing from the hot water tank bypass path 38 to the first hot water path 42 are adjusted. The downstream side of the first hot water supply passage 42 branches into a burner heating passage 44 and a burner bypass passage 46. A burner heating device 14 is attached to the burner heating path 44. The burner heating device 14 burns fuel such as gas and heats hot water supply water flowing through the burner heating path 44. A bypass valve 16 is attached to the burner bypass 46. The burner heating path 44 and the burner bypass path 46 merge at their downstream ends and are connected to the upstream end of the second hot water supply path 48. Water for hot water adjusted to a hot water supply set temperature is supplied from the second hot water supply path 48 to a hot water supply location such as a kitchen hot water tap and a shower in the bathroom.

制御装置18は、ファン24、圧縮機26、減圧器30、循環ポンプ10、混合弁12、バーナ加熱装置14、バイパス弁16等の動作を制御する。   The control device 18 controls operations of the fan 24, the compressor 26, the decompressor 30, the circulation pump 10, the mixing valve 12, the burner heating device 14, the bypass valve 16, and the like.

以下では給湯システム2が行う給湯運転および蓄熱運転について説明する。   Hereinafter, a hot water supply operation and a heat storage operation performed by the hot water supply system 2 will be described.

給湯運転は、給湯設定温度に調温された給湯用水を第2給湯路48に供給する運転である。給湯運転は、後述する蓄熱運転と並行して行うこともできる。給湯栓やシャワーでの給湯用水の供給が開始されると、給水路34からの水圧によって、給水路34から貯湯槽8の下部に水道水が流入する。同時に、貯湯槽8の上部の給湯用水が、貯湯槽導出路40、第1給湯路42、バーナ加熱路44、バーナバイパス路46を介して、第2給湯路48に供給される。制御装置18は、貯湯槽8から貯湯槽導出路40に供給される給湯用水の温度が、給湯設定温度より高い場合には、混合弁12を駆動して貯湯槽バイパス路38から第1給湯路42に低温の給湯用水を導入する。制御装置18は、第2給湯路48に供給される給湯用水の温度が、目標とする給湯設定温度となるように、混合弁12の開度を調整する。一方、制御装置18は、貯湯槽8から貯湯槽導出路40に供給される給湯用水の温度が、給湯設定温度より低い場合には、バーナ加熱装置14によって給湯用水の加熱を行う。制御装置18は、第2給湯路48に供給される給湯用水の温度が、目標とする給湯設定温度となるように、バーナ加熱装置14の出力を制御する。   The hot water supply operation is an operation in which hot water supply water adjusted to a hot water supply set temperature is supplied to the second hot water supply passage 48. The hot water supply operation can be performed in parallel with the heat storage operation described later. When the supply of hot water in a hot water tap or shower is started, tap water flows from the water supply channel 34 into the lower part of the hot water tank 8 due to the water pressure from the water supply channel 34. At the same time, hot water supply water in the upper part of the hot water storage tank 8 is supplied to the second hot water supply path 48 via the hot water tank outlet path 40, the first hot water supply path 42, the burner heating path 44, and the burner bypass path 46. When the temperature of the hot water supplied from the hot water storage tank 8 to the hot water tank outlet path 40 is higher than the set hot water temperature, the control device 18 drives the mixing valve 12 to connect the first hot water path from the hot water tank bypass path 38. Into 42, low-temperature hot water supply water is introduced. The control device 18 adjusts the opening degree of the mixing valve 12 so that the temperature of the hot water supply water supplied to the second hot water supply passage 48 becomes the target hot water supply set temperature. On the other hand, the control device 18 heats the hot water supply water by the burner heating device 14 when the temperature of the hot water supply water supplied from the hot water storage tank 8 to the hot water tank lead-out path 40 is lower than the hot water supply set temperature. The control device 18 controls the output of the burner heating device 14 so that the temperature of the hot water supply water supplied to the second hot water supply passage 48 becomes the target hot water supply set temperature.

蓄熱運転では、貯湯槽8内の給湯用水をヒートポンプ加熱装置4で加熱し、高温となった給湯用水を貯湯槽8に戻す。蓄熱運転を開始する際には、制御装置18はファン24および圧縮機26を駆動してヒートポンプ加熱装置4を動作させるとともに、循環ポンプ10を駆動する。圧縮機26の駆動により、冷媒循環路20内の冷媒は、蒸発器22、圧縮機26、凝縮器28、減圧器30の順に循環する。また、循環ポンプ10の駆動により、給湯用水循環路6内を貯湯槽8内の給湯用水が循環する。即ち、貯湯槽8の下部に存在する給湯用水が給湯用水循環路6内に導入され、導入された給湯用水が凝縮器28で加熱され、加熱された給湯用水が貯湯槽8の上部に戻される。これにより、貯湯槽8に高温の給湯用水が貯められる。貯湯槽8の内部が高温の給湯用水で満たされた満蓄状態となると、蓄熱運転を終了する。   In the heat storage operation, the hot water supply water in the hot water storage tank 8 is heated by the heat pump heating device 4, and the hot water supply water that has reached a high temperature is returned to the hot water storage tank 8. When starting the heat storage operation, the control device 18 drives the fan 24 and the compressor 26 to operate the heat pump heating device 4 and drives the circulation pump 10. By driving the compressor 26, the refrigerant in the refrigerant circuit 20 circulates in the order of the evaporator 22, the compressor 26, the condenser 28, and the decompressor 30. Further, the hot water supply water in the hot water storage tank 8 circulates in the hot water supply water circulation path 6 by driving the circulation pump 10. That is, the hot water supply water existing in the lower part of the hot water storage tank 8 is introduced into the hot water supply water circulation path 6, the introduced hot water supply water is heated by the condenser 28, and the heated hot water supply water is returned to the upper part of the hot water storage tank 8. . As a result, hot water supply water is stored in the hot water tank 8. When the hot water storage tank 8 is fully charged with hot hot water, the heat storage operation is terminated.

蓄熱運転中、制御装置18は、第1温度センサ31で検出される温度と、第2温度センサ32で検出される温度に基づいて、ファン24の回転数や、圧縮機26の回転数や、減圧器30である絞り弁の開度を調整する。   During the heat storage operation, the control device 18 determines the rotational speed of the fan 24, the rotational speed of the compressor 26 based on the temperature detected by the first temperature sensor 31 and the temperature detected by the second temperature sensor 32, The opening degree of the throttle valve which is the decompressor 30 is adjusted.

図2−図4において、太い実線50はヒートポンプ加熱装置4における冷媒の冷凍サイクルを示しており、太い破線52はヒートポンプ加熱装置4における給湯用水の温度上昇を示しており、白丸54は第1温度センサ31の検出温度を示しており、白丸56は第2温度センサ32の検出温度を示している。   2 to 4, a thick solid line 50 indicates the refrigerant refrigeration cycle in the heat pump heating device 4, a thick broken line 52 indicates the temperature rise of the hot water supply water in the heat pump heating device 4, and the white circle 54 indicates the first temperature. The temperature detected by the sensor 31 is shown, and the white circle 56 shows the temperature detected by the second temperature sensor 32.

図2に示すように、圧縮機26から吐出される冷媒が気液二相状態ではなく、気体単相状態である場合、第2温度センサ32で検出される温度は第1温度センサ31で検出される温度よりも低くなる。これに対して、図3に示すように、圧縮機26から吐出される冷媒が気液二相状態である場合、第2温度センサ32で検出される温度は第1温度センサ31で検出される温度に一致する。圧縮機26から吐出される冷媒が気液二相状態である場合、圧縮機26に吸い込まれる冷媒の乾き度が低く、この状態で圧縮機26を運転し続けると、圧縮比の増大およびそれに伴うシリンダ内圧力の上昇を招き、圧縮機26の機構部品の劣化を早めてしまう。そこで、本実施例の給湯システム2では、第1温度センサ31で検出される温度と第2温度センサ32で検出される温度の差が所定の下限値(例えば0.5℃)に満たない場合に、圧縮機26から吐出される冷媒が気液二相状態にあると判定し、この状態を解消するための制御を行う。   As shown in FIG. 2, when the refrigerant discharged from the compressor 26 is not in a gas-liquid two-phase state but in a gas single-phase state, the temperature detected by the second temperature sensor 32 is detected by the first temperature sensor 31. The temperature will be lower. On the other hand, as shown in FIG. 3, when the refrigerant discharged from the compressor 26 is in a gas-liquid two-phase state, the temperature detected by the second temperature sensor 32 is detected by the first temperature sensor 31. Match the temperature. When the refrigerant discharged from the compressor 26 is in a gas-liquid two-phase state, the dryness of the refrigerant sucked into the compressor 26 is low. If the compressor 26 continues to be operated in this state, the compression ratio increases and accompanyingly This increases the pressure in the cylinder and accelerates the deterioration of the mechanical parts of the compressor 26. Therefore, in the hot water supply system 2 of the present embodiment, the difference between the temperature detected by the first temperature sensor 31 and the temperature detected by the second temperature sensor 32 is less than a predetermined lower limit (for example, 0.5 ° C.). In addition, it is determined that the refrigerant discharged from the compressor 26 is in a gas-liquid two-phase state, and control for eliminating this state is performed.

具体的には、制御装置18は、圧縮機26から吐出される冷媒が気液二相状態にあると判定すると、ファン24の回転数を上昇させて、蒸発器22への送風量を増加させる。これにより、蒸発器22における冷媒の蒸発が促進されて、圧縮機26に吸い込まれる冷媒の乾き度を上昇させることができる。圧縮機26に吸い込まれる冷媒の乾き度が低い状態を解消することができる。   Specifically, when the control device 18 determines that the refrigerant discharged from the compressor 26 is in a gas-liquid two-phase state, the control device 18 increases the rotational speed of the fan 24 and increases the amount of air blown to the evaporator 22. . Thereby, the evaporation of the refrigerant in the evaporator 22 is promoted, and the dryness of the refrigerant sucked into the compressor 26 can be increased. The state where the dryness of the refrigerant sucked into the compressor 26 is low can be eliminated.

および/または、制御装置18は、圧縮機26から吐出される冷媒が気液二相状態にあると判定すると、圧縮機26の回転数を低下させる。これにより、ヒートポンプ加熱装置4における冷媒の循環流量を低下させて、圧縮機26に吸い込まれる冷媒の乾き度を上昇させることができる。圧縮機26に吸い込まれる冷媒の乾き度が低い状態を解消することができる。   And / or the control apparatus 18 will reduce the rotation speed of the compressor 26, if it determines with the refrigerant | coolant discharged from the compressor 26 being in a gas-liquid two-phase state. Thereby, the circulation flow rate of the refrigerant | coolant in the heat pump heating apparatus 4 can be reduced, and the dryness of the refrigerant | coolant suck | inhaled by the compressor 26 can be raised. The state where the dryness of the refrigerant sucked into the compressor 26 is low can be eliminated.

および/または、制御装置18は、圧縮機26から吐出される冷媒が気液二相状態にあると判定すると、減圧器30である絞り弁の開度を小さくする。これにより、ヒートポンプ加熱装置4における冷媒の循環流量を低下させて、圧縮機26に吸い込まれる冷媒の乾き度を上昇させることができる。圧縮機26に吸い込まれる冷媒の乾き度が低い状態を解消することができる。   If the control device 18 determines that the refrigerant discharged from the compressor 26 is in a gas-liquid two-phase state, the control device 18 decreases the opening of the throttle valve that is the decompressor 30. Thereby, the circulation flow rate of the refrigerant | coolant in the heat pump heating apparatus 4 can be reduced, and the dryness of the refrigerant | coolant suck | inhaled by the compressor 26 can be raised. The state where the dryness of the refrigerant sucked into the compressor 26 is low can be eliminated.

圧縮機26から吐出される冷媒が気液二相状態ではなく、気体単相状態である場合でも、図4に示すように第1温度センサ31で検出される温度と第2温度センサ32で検出される温度の差が大きい場合、圧縮機26から吐出される冷媒の温度が凝縮温度に比べて大幅に高くなっている。圧縮機26から吐出される冷媒の温度が凝縮温度に比べて大幅に高い状態で圧縮機26を運転し続けると、潤滑油の変質を誘発し、それによりスラッジが生成されて、冷媒循環路20の閉塞を招くおそれがある。   Even when the refrigerant discharged from the compressor 26 is not in a gas-liquid two-phase state but in a gas single-phase state, the temperature detected by the first temperature sensor 31 and the second temperature sensor 32 are detected as shown in FIG. When the difference in temperature is large, the temperature of the refrigerant discharged from the compressor 26 is significantly higher than the condensation temperature. If the compressor 26 is continuously operated in a state in which the temperature of the refrigerant discharged from the compressor 26 is significantly higher than the condensation temperature, the lubricating oil is degenerated, thereby generating sludge and the refrigerant circuit 20. There is a risk of blocking.

そこで、本実施例の給湯システム2では、第1温度センサ31で検出される温度と第2温度センサ32で検出される温度の差が所定の上限値(例えば5℃)を超える場合に、制御装置18は、ファン24の回転数を低下させて、蒸発器22への送風量を減少させる。これにより、蒸発器22における冷媒の蒸発が抑制されて、圧縮機26に吸い込まれる冷媒の乾き度を下降させることができる。圧縮機26から吐出される冷媒の温度を低下させることができる。   Therefore, in the hot water supply system 2 of the present embodiment, the control is performed when the difference between the temperature detected by the first temperature sensor 31 and the temperature detected by the second temperature sensor 32 exceeds a predetermined upper limit value (for example, 5 ° C.). The device 18 reduces the rotational speed of the fan 24 to reduce the amount of air blown to the evaporator 22. Thereby, the evaporation of the refrigerant in the evaporator 22 is suppressed, and the dryness of the refrigerant sucked into the compressor 26 can be lowered. The temperature of the refrigerant discharged from the compressor 26 can be reduced.

および/または、制御装置18は、第1温度センサ31で検出される温度と第2温度センサ32で検出される温度の差が所定の上限値を超える場合に、圧縮機26の回転数を上昇させる。これにより、ヒートポンプ加熱装置4における冷媒の循環流量を増加させて、圧縮機26に吸い込まれる冷媒の乾き度を下降させることができる。圧縮機26から吐出される冷媒の温度を低下させることができる。   And / or the control device 18 increases the rotation speed of the compressor 26 when the difference between the temperature detected by the first temperature sensor 31 and the temperature detected by the second temperature sensor 32 exceeds a predetermined upper limit value. Let Thereby, the circulating flow rate of the refrigerant in the heat pump heating device 4 can be increased, and the dryness of the refrigerant sucked into the compressor 26 can be lowered. The temperature of the refrigerant discharged from the compressor 26 can be reduced.

および/または、制御装置18は、第1温度センサ31で検出される温度と第2温度センサ32で検出される温度の差が所定の上限値を超える場合に、減圧器30である絞り弁の開度を大きくする。これにより、ヒートポンプ加熱装置4における冷媒の循環流量を増加させて、圧縮機26に吸い込まれる冷媒の乾き度を下降させることができる。圧縮機26から吐出される冷媒の温度を低下させることができる。   In addition, the control device 18 may control the throttle valve that is the decompressor 30 when the difference between the temperature detected by the first temperature sensor 31 and the temperature detected by the second temperature sensor 32 exceeds a predetermined upper limit value. Increase the opening. Thereby, the circulating flow rate of the refrigerant in the heat pump heating device 4 can be increased, and the dryness of the refrigerant sucked into the compressor 26 can be lowered. The temperature of the refrigerant discharged from the compressor 26 can be reduced.

本実施例では、圧縮機26としてリフトタイプの逆止弁を有する圧縮機を用いている。このような構成とすることによって、圧縮機26に吸い込まれる冷媒の乾き度が低くなって、シリンダ内圧力が急上昇した場合でも、リフトタイプの逆止弁が開放されて、シリンダ内の圧力上昇を緩和することができる。   In this embodiment, a compressor having a lift type check valve is used as the compressor 26. By adopting such a configuration, even when the dryness of the refrigerant sucked into the compressor 26 is lowered and the pressure in the cylinder suddenly rises, the lift type check valve is opened to increase the pressure in the cylinder. Can be relaxed.

上記の実施例では、冷媒と給湯用水の間で熱交換を行う場合について説明したが、冷媒と給湯用水以外の被加熱流体との間で熱交換を行う構成としてもよい。例えば、床暖房機や浴室乾燥暖房機などの暖房に用いられる暖房用水を被加熱流体として、冷媒と暖房用水との間で熱交換を行う構成とすることもできる。   In the above embodiment, the case where heat exchange is performed between the refrigerant and the hot water supply water has been described, but heat exchange may be performed between the refrigerant and the heated fluid other than the hot water supply water. For example, it can also be set as the structure which heat-exchanges between a refrigerant | coolant and heating water by using the heating water used for heating, such as a floor heater and a bathroom drying heater, as a to-be-heated fluid.

上記の実施例では、冷媒と1つの被加熱流体(給湯用水)との間で熱交換を行う場合について説明したが、冷媒と2つ以上の被加熱流体(例えば、給湯用水と暖房用水)との間で熱交換を行う構成としてもよい。   In the above embodiment, the case where heat exchange is performed between the refrigerant and one heated fluid (hot water supply water) has been described. However, the refrigerant and two or more heated fluids (for example, hot water supply water and heating water) It is good also as a structure which performs heat exchange between.

以上、本発明の実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the Example of this invention was described in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

4 ヒートポンプ加熱装置
6 給湯用水循環路
8 貯湯槽
10 循環ポンプ
12 混合弁
14 バーナ加熱装置
16 バイパス弁
18 制御装置
20 冷媒循環路
22 蒸発器
24 ファン
26 圧縮機
28 凝縮器
30 減圧器
31 第1温度センサ
32 第2温度センサ
34 給水路
36 貯湯槽導入路
38 貯湯槽バイパス路
40 貯湯槽導出路
42 第1給湯路
44 バーナ加熱路
46 バーナバイパス路
48 第2給湯路
50 冷媒の冷凍サイクル
52 給湯用水の温度上昇
54 第1温度センサの検出温度
56 第2温度センサの検出温度
4 Heat Pump Heating Device 6 Hot Water Supply Water Circulation Path 8 Hot Water Storage Tank 10 Circulation Pump 12 Mixing Valve 14 Burner Heating Device 16 Bypass Valve 18 Controller 20 Refrigerant Circulation Path 22 Evaporator 24 Fan 26 Compressor 28 Condenser 30 Decompressor 31 First Temperature Sensor 32 Second temperature sensor 34 Water supply path 36 Hot water tank introduction path 38 Hot water tank bypass path 40 Hot water tank outlet path 42 First hot water path 44 Burner heating path 46 Burner bypass path 48 Second hot water path 50 Refrigerant refrigeration cycle 52 Hot water supply water Temperature rise 54 first temperature sensor detected temperature 56 second temperature sensor detected temperature

Claims (4)

冷媒と被加熱流体との間で熱交換して冷媒を凝縮させる凝縮器と、
凝縮器からの冷媒を減圧する減圧器と、
減圧器からの冷媒を蒸発させる蒸発器と、
蒸発器からの冷媒を加圧して凝縮器へ送り出す圧縮機と、
圧縮機と凝縮器の間の冷媒流路に配置されており、冷媒の温度を検出する第1温度検出手段と、
凝縮器内の冷媒流路に配置されており、冷媒の温度を検出する第2温度検出手段を備えており、
第1温度検出手段の検出温度と第2温度検出手段の検出温度の差が所定の上限値を超える場合に、圧縮機に吸い込まれる冷媒の乾き度を下降させる冷媒乾き度下降制御を行う、ヒートポンプ加熱装置。
A condenser that condenses the refrigerant by exchanging heat between the refrigerant and the fluid to be heated;
A decompressor for decompressing the refrigerant from the condenser;
An evaporator for evaporating the refrigerant from the decompressor;
A compressor that pressurizes the refrigerant from the evaporator and sends it to the condenser;
A first temperature detecting means disposed in the refrigerant flow path between the compressor and the condenser and detecting the temperature of the refrigerant;
Disposed in the refrigerant flow path in the condenser, and includes second temperature detecting means for detecting the temperature of the refrigerant,
A heat pump that performs refrigerant dryness lowering control for lowering the dryness of the refrigerant sucked into the compressor when the difference between the detected temperature of the first temperature detecting means and the detected temperature of the second temperature detecting means exceeds a predetermined upper limit value. Heating device.
蒸発器に送風する送風手段をさらに備えており、
冷媒乾き度下降制御において、送風手段の送風量を減少させる、請求項1のヒートポンプ加熱装置。
It further includes a blowing means for blowing air to the evaporator,
The heat pump heating device according to claim 1, wherein in the refrigerant dryness lowering control, the amount of air blown by the blower is reduced.
冷媒乾き度下降制御において、圧縮機の回転数を上昇させる、請求項1または2のヒートポンプ加熱装置。   The heat pump heating device according to claim 1 or 2, wherein the rotation speed of the compressor is increased in the refrigerant dryness lowering control. 減圧器が冷媒流路に設けられた絞り弁であって、
冷媒乾き度下降制御において、絞り弁の開度を大きくする、請求項1から3の何れか一項のヒートポンプ加熱装置。
A throttle valve provided in the refrigerant flow path,
The heat pump heating device according to any one of claims 1 to 3, wherein in the refrigerant dryness lowering control, the opening of the throttle valve is increased.
JP2014103193A 2014-05-19 2014-05-19 Heat pump heating device Active JP6387246B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014103193A JP6387246B2 (en) 2014-05-19 2014-05-19 Heat pump heating device
KR1020150069086A KR20150133149A (en) 2014-05-19 2015-05-18 Heat pump type heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014103193A JP6387246B2 (en) 2014-05-19 2014-05-19 Heat pump heating device

Publications (2)

Publication Number Publication Date
JP2015218959A true JP2015218959A (en) 2015-12-07
JP6387246B2 JP6387246B2 (en) 2018-09-05

Family

ID=54778480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014103193A Active JP6387246B2 (en) 2014-05-19 2014-05-19 Heat pump heating device

Country Status (2)

Country Link
JP (1) JP6387246B2 (en)
KR (1) KR20150133149A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107884259A (en) * 2017-11-06 2018-04-06 南京大学 The device and method of minor material high speed cooling is realized using drop cooling

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123759U (en) * 1979-02-23 1980-09-02
JPH049552A (en) * 1990-04-27 1992-01-14 Sanyo Electric Co Ltd Freezer device
JP2001194015A (en) * 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
JP2004226036A (en) * 2003-01-24 2004-08-12 Toshiba Kyaria Kk Heat pump type hot water supply system
JP2008232508A (en) * 2007-03-19 2008-10-02 Mitsubishi Electric Corp Water heater
JP2008241065A (en) * 2007-03-26 2008-10-09 Daikin Ind Ltd Refrigerating device and oil returning method of refrigerating device
JP2009133542A (en) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd Refrigerating apparatus
JP2010159934A (en) * 2009-01-09 2010-07-22 Panasonic Corp Air conditioner
JP2011080633A (en) * 2009-10-05 2011-04-21 Panasonic Corp Refrigerating cycle device and hot-water heating device
JP2012127650A (en) * 2012-04-02 2012-07-05 Daikin Industries Ltd Refrigerating apparatus
JP2013113520A (en) * 2011-11-30 2013-06-10 Sharp Corp Air conditioner, method for controlling opening degree of expansion valve, and program
JP2013170717A (en) * 2012-02-20 2013-09-02 Fujitsu General Ltd Air conditioner

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123759U (en) * 1979-02-23 1980-09-02
JPH049552A (en) * 1990-04-27 1992-01-14 Sanyo Electric Co Ltd Freezer device
JP2001194015A (en) * 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
JP2004226036A (en) * 2003-01-24 2004-08-12 Toshiba Kyaria Kk Heat pump type hot water supply system
JP2008232508A (en) * 2007-03-19 2008-10-02 Mitsubishi Electric Corp Water heater
JP2008241065A (en) * 2007-03-26 2008-10-09 Daikin Ind Ltd Refrigerating device and oil returning method of refrigerating device
JP2009133542A (en) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd Refrigerating apparatus
JP2010159934A (en) * 2009-01-09 2010-07-22 Panasonic Corp Air conditioner
JP2011080633A (en) * 2009-10-05 2011-04-21 Panasonic Corp Refrigerating cycle device and hot-water heating device
JP2013113520A (en) * 2011-11-30 2013-06-10 Sharp Corp Air conditioner, method for controlling opening degree of expansion valve, and program
JP2013170717A (en) * 2012-02-20 2013-09-02 Fujitsu General Ltd Air conditioner
JP2012127650A (en) * 2012-04-02 2012-07-05 Daikin Industries Ltd Refrigerating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107884259A (en) * 2017-11-06 2018-04-06 南京大学 The device and method of minor material high speed cooling is realized using drop cooling

Also Published As

Publication number Publication date
JP6387246B2 (en) 2018-09-05
KR20150133149A (en) 2015-11-27

Similar Documents

Publication Publication Date Title
US10208987B2 (en) Heat pump with an auxiliary heat exchanger for compressor discharge temperature control
US10753645B2 (en) Refrigeration cycle apparatus
KR20090098691A (en) Air conditioning system and accumulator thereof
KR20090068968A (en) Air conditioning system
JP2008267722A (en) Heat source machine and refrigerating air conditioner
JP6120797B2 (en) Air conditioner
JP2017044454A (en) Refrigeration cycle device and control method for the same
CN105240962A (en) Water-cooled temperature-adjusting dehumidifier wide in air temperature range
JP5300806B2 (en) Heat pump equipment
EP2857761A1 (en) Water heater
JP5984490B2 (en) Heat pump equipment
WO2015118580A1 (en) Heat pump hot water supply device
JP6488160B2 (en) Heat pump heating device
JP6680300B2 (en) Exhaust heat recovery heat pump device
JP6387246B2 (en) Heat pump heating device
KR20130102478A (en) Heat pump type hot water supply apparatus
WO2017060986A1 (en) Refrigeration cycle device
JP6247980B2 (en) Heat pump heating device
WO2015136595A1 (en) Heat pump system
KR20110117974A (en) Heat pump type speed heating apparatus
JP6986675B2 (en) Supercritical vapor compression refrigeration cycle and liquid heating device
JP2016048125A (en) Supply water heating system
CN205227604U (en) Water -cooling temperature adjustment dehumidifier that wind -warm syndrome scope is wide in range
JPWO2015121992A1 (en) Refrigeration cycle equipment
JP2014081118A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180813

R150 Certificate of patent or registration of utility model

Ref document number: 6387246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250