JP6247980B2 - Heat pump heating device - Google Patents

Heat pump heating device Download PDF

Info

Publication number
JP6247980B2
JP6247980B2 JP2014068027A JP2014068027A JP6247980B2 JP 6247980 B2 JP6247980 B2 JP 6247980B2 JP 2014068027 A JP2014068027 A JP 2014068027A JP 2014068027 A JP2014068027 A JP 2014068027A JP 6247980 B2 JP6247980 B2 JP 6247980B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
compressor
condenser
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014068027A
Other languages
Japanese (ja)
Other versions
JP2015190681A (en
Inventor
今井 誠士
誠士 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2014068027A priority Critical patent/JP6247980B2/en
Publication of JP2015190681A publication Critical patent/JP2015190681A/en
Application granted granted Critical
Publication of JP6247980B2 publication Critical patent/JP6247980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ヒートポンプ加熱装置に関する。   The present invention relates to a heat pump heating apparatus.

特許文献1に、冷媒と被加熱流体との間で熱交換して冷媒を凝縮させる凝縮器と、凝縮器からの冷媒を減圧する減圧器と、減圧器からの冷媒を蒸発させる蒸発器と、蒸発器からの冷媒を加圧して凝縮器へ送り出す圧縮機と、凝縮器内の冷媒流路に配置されており、冷媒の温度を検出する温度検出手段を備えるヒートポンプ加熱装置が開示されている。このヒートポンプ加熱装置では、温度検出手段での検出温度(すなわち冷媒の凝縮温度)が所定温度を超えた場合に、圧縮機の回転数を低下させて、圧縮機から吐出される冷媒の高圧化を抑制する。   In Patent Document 1, a condenser that condenses the refrigerant by exchanging heat between the refrigerant and the fluid to be heated, a decompressor that decompresses the refrigerant from the condenser, an evaporator that evaporates the refrigerant from the decompressor, A heat pump heating device is disclosed that includes a compressor that pressurizes the refrigerant from the evaporator and sends it to the condenser, and a temperature detection means that is disposed in the refrigerant flow path in the condenser and detects the temperature of the refrigerant. In this heat pump heating device, when the temperature detected by the temperature detection means (that is, the refrigerant condensing temperature) exceeds a predetermined temperature, the rotation speed of the compressor is decreased to increase the pressure of the refrigerant discharged from the compressor. Suppress.

特開2004−226036号公報JP 2004-226036 A

ヒートポンプ加熱装置においては、圧縮機に吸い込まれる冷媒の乾き度が低く、圧縮機から吐出される冷媒が気液二相状態となる場合がある。この状態で圧縮機を運転し続けると、圧縮比の増大およびそれに伴うシリンダ内圧力の上昇を招き、圧縮機の機構部品の劣化を早めてしまう。しかしながら、従来技術では、仮に圧縮機に吸い込まれる冷媒の乾き度が低く、圧縮機から吐出される冷媒が気液二相状態となっていても、その状態を解消するようにヒートポンプ加熱装置を動作させることが出来なかった。   In the heat pump heating device, the dryness of the refrigerant sucked into the compressor is low, and the refrigerant discharged from the compressor may be in a gas-liquid two-phase state. If the compressor is continuously operated in this state, the compression ratio is increased and the pressure in the cylinder is increased accordingly, and the deterioration of the mechanical parts of the compressor is accelerated. However, in the prior art, even if the dryness of the refrigerant sucked into the compressor is low and the refrigerant discharged from the compressor is in a gas-liquid two-phase state, the heat pump heating device is operated so as to eliminate the state I couldn't make it happen.

本明細書は、上記の課題を解決する技術を提供する。本明細書では、ヒートポンプ加熱装置において、圧縮機に吸い込まれる冷媒の乾き度が低く、圧縮機から吐出される冷媒が気液二相状態にある場合に、その状態を解消することが可能な技術を提供する。   The present specification provides a technique for solving the above problems. In the present specification, in the heat pump heating device, when the dryness of the refrigerant sucked into the compressor is low and the refrigerant discharged from the compressor is in a gas-liquid two-phase state, the state can be eliminated I will provide a.

本明細書が開示するヒートポンプ加熱装置は、冷媒と被加熱流体との間で熱交換して冷媒を凝縮させる凝縮器と、凝縮器からの冷媒を減圧する減圧器と、減圧器からの冷媒を蒸発させる蒸発器と、蒸発器からの冷媒を加圧して凝縮器へ送り出す圧縮機と、圧縮機と凝縮器の間の冷媒流路に配置されており、冷媒の温度を検出する第1温度検出手段と、凝縮器内の冷媒流路に配置されており、冷媒の温度を検出する第2温度検出手段を備えている。そのヒートポンプ加熱装置は、第1温度検出手段の検出温度と第2温度検出手段の検出温度の差が所定の下限値に満たない場合に、圧縮機に吸い込まれる冷媒の乾き度を上昇させる冷媒乾き度上昇制御を行う。   The heat pump heating apparatus disclosed in this specification includes a condenser that exchanges heat between a refrigerant and a fluid to be heated to condense the refrigerant, a decompressor that decompresses the refrigerant from the condenser, and a refrigerant from the decompressor. An evaporator that evaporates, a compressor that pressurizes the refrigerant from the evaporator and sends it to the condenser, and a first temperature detection that is disposed in the refrigerant flow path between the compressor and the condenser and detects the temperature of the refrigerant And a second temperature detecting means arranged in the refrigerant flow path in the condenser and detecting the temperature of the refrigerant. The heat pump heating device is configured to increase the dryness of the refrigerant sucked into the compressor when the difference between the detected temperature of the first temperature detecting means and the detected temperature of the second temperature detecting means is less than a predetermined lower limit value. Increase the degree of control.

圧縮機に吸い込まれる冷媒の乾き度が低く、圧縮機から吐出される冷媒が気液二相状態にある場合、冷媒が放熱しても冷媒の温度は低下しないから、第1温度検出手段で検出される温度と第2温度検出手段で検出される温度はほぼ一致する。これに対して、圧縮機に吸い込まれる冷媒の乾き度が高く、圧縮機から吐出される冷媒が気体単相状態である場合、冷媒の放熱により冷媒の温度が低下するから、第1温度検出手段で検出される温度は、第2温度検出手段で検出される温度よりも高くなる。上記のヒートポンプ加熱装置では、第1温度検出手段の検出温度と第2温度検出手段の検出温度の差が所定の下限値に満たない場合に、圧縮機に吸い込まれる冷媒の乾き度を上昇させる冷媒乾き度上昇制御を行う。上記のヒートポンプ加熱装置によれば、圧縮機に吸い込まれる冷媒の乾き度が低く、圧縮機から吐出される冷媒が気液二相状態にある場合に、その状態を解消することができる。   When the refrigerant sucked into the compressor is low in dryness and the refrigerant discharged from the compressor is in a gas-liquid two-phase state, the temperature of the refrigerant does not decrease even if the refrigerant dissipates heat. The detected temperature and the temperature detected by the second temperature detecting means are substantially the same. On the other hand, when the dryness of the refrigerant sucked into the compressor is high and the refrigerant discharged from the compressor is in a gas single-phase state, the temperature of the refrigerant decreases due to the heat dissipation of the refrigerant. The temperature detected at is higher than the temperature detected by the second temperature detecting means. In the above heat pump heating apparatus, when the difference between the detected temperature of the first temperature detecting means and the detected temperature of the second temperature detecting means is less than the predetermined lower limit value, the refrigerant that increases the dryness of the refrigerant sucked into the compressor Perform dryness increase control. According to said heat pump heating apparatus, when the dryness of the refrigerant | coolant suck | inhaled by a compressor is low and the refrigerant | coolant discharged from a compressor exists in a gas-liquid two-phase state, the state can be eliminated.

また、上記のヒートポンプ加熱装置によれば、第2温度検出手段では凝縮器である程度放熱した後の冷媒の温度を計測することになるから、圧縮機から吐出される冷媒が気体単相状態である場合に、第1温度検出手段の検出温度と第2温度検出手段の検出温度の差を明確に検出することができる。   Further, according to the above heat pump heating device, the second temperature detection means measures the temperature of the refrigerant after the heat is radiated to some extent by the condenser, so the refrigerant discharged from the compressor is in a gas single phase state. In this case, the difference between the detected temperature of the first temperature detecting means and the detected temperature of the second temperature detecting means can be clearly detected.

本明細書が開示する別のヒートポンプ加熱装置は、冷媒と被加熱流体との間で熱交換して冷媒を凝縮させる凝縮器と、凝縮器からの冷媒を減圧する減圧器と、減圧器からの冷媒を蒸発させる蒸発器と、蒸発器からの冷媒を加圧して凝縮器へ送り出す圧縮機と、圧縮機と凝縮器の間の冷媒流路に配置されており、冷媒の温度を検出する第1温度検出手段と、圧縮機と凝縮器の間の冷媒流路の第1温度検出手段よりも下流側に配置されており、冷媒の温度を検出する第2温度検出手段を備えている。そのヒートポンプ加熱装置は、第1温度検出手段の検出温度と第2温度検出手段の検出温度の差が所定の下限値に満たない場合に、圧縮機に吸い込まれる冷媒の乾き度を上昇させる冷媒乾き度上昇制御を行う。   Another heat pump heating apparatus disclosed in this specification includes a condenser that exchanges heat between a refrigerant and a fluid to be heated to condense the refrigerant, a decompressor that decompresses the refrigerant from the condenser, and a An evaporator that evaporates the refrigerant, a compressor that pressurizes the refrigerant from the evaporator and sends it to the condenser, and a refrigerant flow path between the compressor and the condenser, and detects the temperature of the refrigerant. The temperature detection means is disposed downstream of the first temperature detection means of the refrigerant flow path between the compressor and the condenser, and includes a second temperature detection means for detecting the temperature of the refrigerant. The heat pump heating device is configured to increase the dryness of the refrigerant sucked into the compressor when the difference between the detected temperature of the first temperature detecting means and the detected temperature of the second temperature detecting means is less than a predetermined lower limit value. Increase the degree of control.

圧縮機と凝縮器の間の冷媒流路においても、僅かではあるが冷媒が放熱する。従って、上記のヒートポンプ加熱装置においても、圧縮機に吸い込まれる冷媒の乾き度が低く、圧縮機から吐出される冷媒が気液二相状態にある場合、第1温度検出手段で検出される温度と第2温度検出手段で検出される温度はほぼ一致し、圧縮機に吸い込まれる冷媒の乾き度が高く、圧縮機から吐出される冷媒が気体単相状態である場合、第1温度検出手段で検出される温度は、第2温度検出手段で検出される温度よりも高くなる。上記のヒートポンプ加熱装置によれば、圧縮機に吸い込まれる冷媒の乾き度が低く、圧縮機から吐出される冷媒が気液二相状態にある場合に、その状態を解消することができる。   Even in the refrigerant flow path between the compressor and the condenser, the refrigerant dissipates heat, albeit slightly. Therefore, also in the above heat pump heating device, when the dryness of the refrigerant sucked into the compressor is low and the refrigerant discharged from the compressor is in a gas-liquid two-phase state, the temperature detected by the first temperature detecting means When the temperature detected by the second temperature detection means is substantially the same, the dryness of the refrigerant sucked into the compressor is high, and the refrigerant discharged from the compressor is in a gas single-phase state, the temperature is detected by the first temperature detection means The detected temperature is higher than the temperature detected by the second temperature detecting means. According to said heat pump heating apparatus, when the dryness of the refrigerant | coolant suck | inhaled by a compressor is low and the refrigerant | coolant discharged from a compressor exists in a gas-liquid two-phase state, the state can be eliminated.

なお、上記のヒートポンプ加熱装置のように、第1温度検出手段と第2温度検出手段の両方が圧縮機と凝縮器の間の冷媒流路に配置されている場合、第2温度検出手段が凝縮器の被加熱流体の温度の影響を受けず、それぞれの温度検出手段の計測条件がほぼ同じになるため、第1温度検出手段と第2温度検出手段の間での計測条件の違いによる計測誤差の影響を排除することができる。   When both the first temperature detection means and the second temperature detection means are arranged in the refrigerant flow path between the compressor and the condenser as in the heat pump heating device described above, the second temperature detection means is condensed. The measurement conditions of the respective temperature detection means are almost the same without being affected by the temperature of the heated fluid of the vessel, so that the measurement error due to the difference in measurement conditions between the first temperature detection means and the second temperature detection means The influence of can be eliminated.

上記のヒートポンプ加熱装置は、蒸発器に送風する送風手段をさらに備えており、冷媒乾き度上昇制御において、送風手段の送風量を増加させるように構成することができる。   Said heat pump heating apparatus is further provided with the ventilation means which ventilates to an evaporator, and can be comprised so that the ventilation volume of a ventilation means may be increased in refrigerant | coolant dryness raise control.

上記のヒートポンプ加熱装置によれば、冷媒乾き度上昇制御において、送風手段の送風量の増加により蒸発器における冷媒の蒸発が促進されて、圧縮機に吸い込まれる冷媒の乾き度を上昇させることができる。圧縮機に吸い込まれる冷媒の乾き度が低い状態を解消することができる。   According to the heat pump heating device described above, in the refrigerant dryness increase control, the evaporation of the refrigerant in the evaporator is promoted by the increase in the blowing amount of the blower means, and the dryness of the refrigerant sucked into the compressor can be increased. . The state where the dryness of the refrigerant sucked into the compressor is low can be solved.

上記のヒートポンプ加熱装置は、冷媒乾き度上昇制御において、圧縮機の回転数を低下させるように構成することができる。   Said heat pump heating apparatus can be comprised so that the rotation speed of a compressor may be reduced in refrigerant | coolant dryness raise control.

上記のヒートポンプ加熱装置によれば、冷媒乾き度上昇制御において、圧縮機の回転数の低下により冷媒の循環流量を低下させて、圧縮機に吸い込まれる冷媒の乾き度を上昇させることができる。圧縮機に吸い込まれる冷媒の乾き度が低い状態を解消することができる。   According to the heat pump heating device described above, in the refrigerant dryness increase control, it is possible to increase the dryness of the refrigerant sucked into the compressor by reducing the circulating flow rate of the refrigerant by reducing the rotation speed of the compressor. The state where the dryness of the refrigerant sucked into the compressor is low can be solved.

上記のヒートポンプ加熱装置は、減圧器が冷媒流路に設けられた絞り弁であって、冷媒乾き度上昇制御において、絞り弁の開度を小さくするように構成することができる。   Said heat pump heating apparatus is a throttle valve in which the decompressor was provided in the refrigerant | coolant flow path, Comprising: In refrigerant | coolant dryness raise control, it can comprise so that the opening degree of a throttle valve may be made small.

上記のヒートポンプ加熱装置によれば、冷媒乾き度上昇制御において、絞り弁の開度を小さくすることで冷媒の循環流量を低下させて、圧縮機に吸い込まれる冷媒の乾き度を上昇させることができる。圧縮機に吸い込まれる冷媒の乾き度が低い状態を解消することができる。   According to the above heat pump heating device, in the refrigerant dryness increase control, it is possible to increase the dryness of the refrigerant sucked into the compressor by decreasing the circulating flow rate of the refrigerant by reducing the opening of the throttle valve. . The state where the dryness of the refrigerant sucked into the compressor is low can be solved.

本明細書が開示するヒートポンプ加熱装置によれば、圧縮機に吸い込まれる冷媒の乾き度が低く、圧縮機から吐出される冷媒が気液二相状態にある場合に、その状態を解消することができる。   According to the heat pump heating device disclosed in this specification, when the dryness of the refrigerant sucked into the compressor is low and the refrigerant discharged from the compressor is in a gas-liquid two-phase state, the state can be eliminated. it can.

ヒートポンプ加熱装置4が組み込まれた給湯システム2の構成を模式的に示す図である。It is a figure which shows typically the structure of the hot water supply system 2 in which the heat pump heating apparatus 4 was integrated. ヒートポンプ加熱装置4における冷媒の冷凍サイクルと、給湯用水の温度変化の一例を示す図である。It is a figure which shows an example of the temperature change of the refrigerating cycle of the refrigerant | coolant in the heat pump heating apparatus 4, and hot water supply water. ヒートポンプ加熱装置4における冷媒の冷凍サイクルと、給湯用水の温度変化の別の例を示す図である。It is a figure which shows another example of the refrigerating cycle of the refrigerant | coolant in the heat pump heating apparatus 4, and the temperature change of the hot water supply water. ヒートポンプ加熱装置4が組み込まれた給湯システム2の別の構成を模式的に示す図である。It is a figure which shows typically another structure of the hot water supply system 2 in which the heat pump heating apparatus 4 was integrated.

(実施例)
図1に示すように、給湯システム2は主に、ヒートポンプ加熱装置4と、貯湯槽8と、循環ポンプ10と、混合弁12と、バーナ加熱装置14と、バイパス弁16と、制御装置18を備えている。給湯システム2は、上水道等の給水源から供給される水を、ヒートポンプ加熱装置4および/またはバーナ加熱装置14を加熱源として加熱し、給湯設定温度に調温された水を給湯する。
(Example)
As shown in FIG. 1, the hot water supply system 2 mainly includes a heat pump heating device 4, a hot water storage tank 8, a circulation pump 10, a mixing valve 12, a burner heating device 14, a bypass valve 16, and a control device 18. I have. The hot water supply system 2 heats water supplied from a water supply source such as a water supply by using the heat pump heating device 4 and / or the burner heating device 14 as a heating source, and supplies water adjusted to a hot water supply set temperature.

ヒートポンプ加熱装置4は、冷媒(例えばR32やR410AといったHFC冷媒や、R744といったCO冷媒)を循環させるための冷媒循環路20と、蒸発器22と、ファン24と、圧縮機26と、凝縮器28と、減圧器30を備えている。 The heat pump heating device 4 includes a refrigerant circulation path 20 for circulating a refrigerant (for example, an HFC refrigerant such as R32 and R410A, and a CO 2 refrigerant such as R744), an evaporator 22, a fan 24, a compressor 26, and a condenser. 28 and a decompressor 30.

蒸発器22は、ファン24によって送風された外気と冷媒循環路20内の冷媒との間で熱交換を行う、気液熱交換器である。蒸発器22には、減圧器30を通過後の低圧低温の液体状態にある冷媒が供給される。蒸発器22は、冷媒と外気とを熱交換させることによって、冷媒を加熱する。冷媒は、加熱されることにより気化し、比較的高温で低圧の気体状態となる。   The evaporator 22 is a gas-liquid heat exchanger that exchanges heat between the outside air blown by the fan 24 and the refrigerant in the refrigerant circulation path 20. The evaporator 22 is supplied with a refrigerant in a low-pressure and low-temperature liquid state after passing through the decompressor 30. The evaporator 22 heats the refrigerant by exchanging heat between the refrigerant and the outside air. The refrigerant is vaporized by being heated, and is in a gas state at a relatively high temperature and a low pressure.

圧縮機26は、リフトタイプの逆止弁を有する圧縮機である。圧縮機26には、蒸発器22を通過後の冷媒が供給される。即ち、圧縮機26には、比較的高温で低圧の気体状態の冷媒が供給される。圧縮機26によって冷媒が圧縮されることにより、冷媒は高温高圧の気体状態となる。圧縮機26は、圧縮後の高温高圧の気体状態の冷媒を、凝縮器28に送り出す。なお、圧縮機26と凝縮器28の間の冷媒循環路20には、冷媒の温度を検出する第1温度センサ31が設けられている。本実施例では、第1温度センサ31は、圧縮機26の吐出口近傍の冷媒循環路20に設けられている。   The compressor 26 is a compressor having a lift type check valve. The refrigerant after passing through the evaporator 22 is supplied to the compressor 26. That is, the compressor 26 is supplied with a relatively high temperature and low pressure gaseous refrigerant. When the refrigerant is compressed by the compressor 26, the refrigerant is in a high-temperature and high-pressure gaseous state. The compressor 26 sends the compressed high-temperature and high-pressure gaseous refrigerant to the condenser 28. A first temperature sensor 31 that detects the temperature of the refrigerant is provided in the refrigerant circuit 20 between the compressor 26 and the condenser 28. In the present embodiment, the first temperature sensor 31 is provided in the refrigerant circuit 20 near the discharge port of the compressor 26.

凝縮器28には、圧縮機26から送り出された高温高圧の気体状態の冷媒が供給される。凝縮器28は、冷媒循環路20内の冷媒と給湯用水循環路6内の水(以下では給湯用水ともいう)との間で熱交換を行う、液液熱交換器である。冷媒は、凝縮器28での熱交換の結果、熱を奪われて凝縮する。これにより、冷媒は、比較的低温で高圧の液体状態となる。なお、凝縮器28内の冷媒循環路20には、冷媒の温度を検出する第2温度センサ32が設けられている。   The condenser 28 is supplied with a high-temperature and high-pressure gaseous refrigerant sent out from the compressor 26. The condenser 28 is a liquid-liquid heat exchanger that performs heat exchange between the refrigerant in the refrigerant circuit 20 and the water in the hot water supply water circuit 6 (hereinafter also referred to as hot water supply water). As a result of the heat exchange in the condenser 28, the refrigerant is deprived of heat and condensed. Thereby, a refrigerant | coolant will be in a high-pressure liquid state with a comparatively low temperature. Note that a second temperature sensor 32 that detects the temperature of the refrigerant is provided in the refrigerant circulation path 20 in the condenser 28.

減圧器30には、凝縮器28を通過後の比較的低温で高圧の液体状態の冷媒が供給される。本実施例の減圧器30は、冷媒循環路20に設けられた絞り弁である。冷媒は、減圧器30を通過することによって減圧され、低温低圧の液体状態となる。減圧器30を通過した冷媒は、上記の通り、蒸発器22に送られる。   The decompressor 30 is supplied with a relatively low-temperature and high-pressure liquid refrigerant after passing through the condenser 28. The decompressor 30 of the present embodiment is a throttle valve provided in the refrigerant circuit 20. The refrigerant is depressurized by passing through the decompressor 30, and becomes a low-temperature and low-pressure liquid state. The refrigerant that has passed through the decompressor 30 is sent to the evaporator 22 as described above.

ヒートポンプ加熱装置4において、圧縮機26を作動させると、冷媒循環路20内の冷媒は、蒸発器22、圧縮機26、凝縮器28、減圧器30の順に循環する。ヒートポンプ加熱装置4が動作すると、凝縮器28において、給湯用水循環路6内の給湯用水が加熱される。   When the compressor 26 is operated in the heat pump heating device 4, the refrigerant in the refrigerant circulation path 20 circulates in the order of the evaporator 22, the compressor 26, the condenser 28, and the decompressor 30. When the heat pump heating device 4 operates, the hot water in the hot water supply water circulation path 6 is heated in the condenser 28.

貯湯槽8は、ヒートポンプ加熱装置4によって加熱された給湯用水を貯える。貯湯槽8は密閉型であり、断熱材によって外側が覆われている。貯湯槽8内には満水まで給湯用水が貯留される。   The hot water storage tank 8 stores hot water supply water heated by the heat pump heating device 4. The hot water tank 8 is a closed type, and the outside is covered with a heat insulating material. Hot water supply water is stored in the hot water tank 8 until it is full.

給湯用水循環路6は、上流端が貯湯槽8の下部に接続されており、ヒートポンプ加熱装置4の凝縮器28を通過して、下流端が貯湯槽8の上部に接続されている。給湯用水循環路6には、循環ポンプ10が取り付けられている。ヒートポンプ加熱装置4を動作させて、かつ循環ポンプ10を駆動すると、貯湯槽8の下部の給湯用水が凝縮器28に送られて、凝縮器28で加熱された給湯用水が貯湯槽8の上部に戻される。貯湯槽8の内部には、低温の給湯用水の層の上に高温の給湯用水の層が積み重なった温度成層が形成される。   The hot water supply water circulation path 6 has an upstream end connected to the lower part of the hot water storage tank 8, passes through the condenser 28 of the heat pump heating device 4, and a downstream end is connected to the upper part of the hot water storage tank 8. A circulation pump 10 is attached to the hot water supply water circulation path 6. When the heat pump heating device 4 is operated and the circulation pump 10 is driven, the hot water for the hot water in the lower part of the hot water tank 8 is sent to the condenser 28, and the hot water for the hot water heated by the condenser 28 is supplied to the upper part of the hot water tank 8. Returned. Inside the hot water storage tank 8, a temperature stratification is formed in which a layer of high-temperature hot water supply water is stacked on a layer of low-temperature hot water supply water.

給水路34は、上流端が外部の上水道に接続されており、給湯用水として水道水を受け入れる。給水路34の下流側は、貯湯槽導入路36と貯湯槽バイパス路38に分岐している。貯湯槽導入路36の下流端は、貯湯槽8の下部に接続されている。貯湯槽バイパス路38の下流端は、混合弁12に接続されている。貯湯槽導出路40は、上流端が貯湯槽8の上部に接続されている。貯湯槽導出路40の下流側は、混合弁12に接続されている。   The upstream end of the water supply channel 34 is connected to an external water supply, and receives tap water as hot water supply water. The downstream side of the water supply path 34 branches into a hot water tank introduction path 36 and a hot water tank bypass path 38. The downstream end of the hot water tank introduction path 36 is connected to the lower part of the hot water tank 8. The downstream end of the hot water tank bypass passage 38 is connected to the mixing valve 12. An upstream end of the hot water tank outlet 40 is connected to the upper part of the hot water tank 8. A downstream side of the hot water tank outlet 40 is connected to the mixing valve 12.

混合弁12は、貯湯槽導出路40を流れる貯湯槽8の上部からの高温の給湯用水と、貯湯槽バイパス路38を流れる給水路34からの低温の給湯用水を混合して、第1給湯路42へ送り出す。混合弁12では、貯湯槽導出路40から第1給湯路42へ流れる給湯用水の流量と、貯湯槽バイパス路38から第1給湯路42へ流れる給湯用水の流量の割合を調整する。第1給湯路42の下流側は、バーナ加熱路44とバーナバイパス路46に分岐している。バーナ加熱路44には、バーナ加熱装置14が取り付けられている。バーナ加熱装置14は、ガス等の燃料を燃焼させてバーナ加熱路44を流れる給湯用水を加熱する。バーナバイパス路46にはバイパス弁16が取り付けられている。バーナ加熱路44とバーナバイパス路46は、それぞれの下流端で合流して、第2給湯路48の上流端に接続している。第2給湯路48から台所の給湯栓や浴室のシャワー等の給湯箇所へ、給湯設定温度に調温された給湯用水が供給される。   The mixing valve 12 mixes the hot water for hot water from the upper part of the hot water tank 8 flowing through the hot water tank outlet path 40 and the low temperature hot water from the water path 34 for flowing through the hot water tank bypass path 38 to the first hot water path. 42. In the mixing valve 12, the ratio of the flow rate of hot water flowing from the hot water tank outlet path 40 to the first hot water path 42 and the flow rate of hot water flowing from the hot water tank bypass path 38 to the first hot water path 42 are adjusted. The downstream side of the first hot water supply passage 42 branches into a burner heating passage 44 and a burner bypass passage 46. A burner heating device 14 is attached to the burner heating path 44. The burner heating device 14 burns fuel such as gas and heats hot water supply water flowing through the burner heating path 44. A bypass valve 16 is attached to the burner bypass 46. The burner heating path 44 and the burner bypass path 46 merge at their downstream ends and are connected to the upstream end of the second hot water supply path 48. Water for hot water adjusted to a hot water supply set temperature is supplied from the second hot water supply path 48 to a hot water supply location such as a kitchen hot water tap and a shower in the bathroom.

制御装置18は、ファン24、圧縮機26、減圧器30、循環ポンプ10、混合弁12、バーナ加熱装置14、バイパス弁16等の動作を制御する。   The control device 18 controls operations of the fan 24, the compressor 26, the decompressor 30, the circulation pump 10, the mixing valve 12, the burner heating device 14, the bypass valve 16, and the like.

以下では給湯システム2が行う給湯運転および蓄熱運転について説明する。   Hereinafter, a hot water supply operation and a heat storage operation performed by the hot water supply system 2 will be described.

給湯運転は、給湯設定温度に調温された給湯用水を第2給湯路48に供給する運転である。給湯運転は、後述する蓄熱運転と並行して行うこともできる。給湯栓やシャワーでの給湯用水の供給が開始されると、給水路34からの水圧によって、給水路34から貯湯槽8の下部に水道水が流入する。同時に、貯湯槽8の上部の給湯用水が、貯湯槽導出路40、第1給湯路42、バーナ加熱路44、バーナバイパス路46を介して、第2給湯路48に供給される。制御装置18は、貯湯槽8から貯湯槽導出路40に供給される給湯用水の温度が、給湯設定温度より高い場合には、混合弁12を駆動して貯湯槽バイパス路38から第1給湯路42に低温の給湯用水を導入する。制御装置18は、第2給湯路48に供給される給湯用水の温度が、目標とする給湯設定温度となるように、混合弁12の開度を調整する。一方、制御装置18は、貯湯槽8から貯湯槽導出路40に供給される給湯用水の温度が、給湯設定温度より低い場合には、バーナ加熱装置14によって給湯用水の加熱を行う。制御装置18は、第2給湯路48に供給される給湯用水の温度が、目標とする給湯設定温度となるように、バーナ加熱装置14の出力を制御する。   The hot water supply operation is an operation in which hot water supply water adjusted to a hot water supply set temperature is supplied to the second hot water supply passage 48. The hot water supply operation can be performed in parallel with the heat storage operation described later. When the supply of hot water in a hot water tap or shower is started, tap water flows from the water supply channel 34 into the lower part of the hot water tank 8 due to the water pressure from the water supply channel 34. At the same time, hot water supply water in the upper part of the hot water storage tank 8 is supplied to the second hot water supply path 48 via the hot water tank outlet path 40, the first hot water supply path 42, the burner heating path 44, and the burner bypass path 46. When the temperature of the hot water supplied from the hot water storage tank 8 to the hot water tank outlet path 40 is higher than the set hot water temperature, the control device 18 drives the mixing valve 12 to connect the first hot water path from the hot water tank bypass path 38. Into 42, low-temperature hot water supply water is introduced. The control device 18 adjusts the opening degree of the mixing valve 12 so that the temperature of the hot water supply water supplied to the second hot water supply passage 48 becomes the target hot water supply set temperature. On the other hand, the control device 18 heats the hot water supply water by the burner heating device 14 when the temperature of the hot water supply water supplied from the hot water storage tank 8 to the hot water tank lead-out path 40 is lower than the hot water supply set temperature. The control device 18 controls the output of the burner heating device 14 so that the temperature of the hot water supply water supplied to the second hot water supply passage 48 becomes the target hot water supply set temperature.

蓄熱運転では、貯湯槽8内の給湯用水をヒートポンプ加熱装置4で加熱し、高温となった給湯用水を貯湯槽8に戻す。蓄熱運転を開始する際には、制御装置18はファン24および圧縮機26を駆動してヒートポンプ加熱装置4を動作させるとともに、循環ポンプ10を駆動する。圧縮機26の駆動により、冷媒循環路20内の冷媒は、蒸発器22、圧縮機26、凝縮器28、減圧器30の順に循環する。また、循環ポンプ10の駆動により、給湯用水循環路6内を貯湯槽8内の給湯用水が循環する。即ち、貯湯槽8の下部に存在する給湯用水が給湯用水循環路6内に導入され、導入された給湯用水が凝縮器28で加熱され、加熱された給湯用水が貯湯槽8の上部に戻される。これにより、貯湯槽8に高温の給湯用水が貯められる。貯湯槽8の内部が高温の給湯用水で満たされた満蓄状態となると、蓄熱運転を終了する。   In the heat storage operation, the hot water supply water in the hot water storage tank 8 is heated by the heat pump heating device 4, and the hot water supply water that has reached a high temperature is returned to the hot water storage tank 8. When starting the heat storage operation, the control device 18 drives the fan 24 and the compressor 26 to operate the heat pump heating device 4 and drives the circulation pump 10. By driving the compressor 26, the refrigerant in the refrigerant circuit 20 circulates in the order of the evaporator 22, the compressor 26, the condenser 28, and the decompressor 30. Further, the hot water supply water in the hot water storage tank 8 circulates in the hot water supply water circulation path 6 by driving the circulation pump 10. That is, the hot water supply water existing in the lower part of the hot water storage tank 8 is introduced into the hot water supply water circulation path 6, the introduced hot water supply water is heated by the condenser 28, and the heated hot water supply water is returned to the upper part of the hot water storage tank 8. . As a result, hot water supply water is stored in the hot water tank 8. When the hot water storage tank 8 is fully charged with hot hot water, the heat storage operation is terminated.

蓄熱運転中、制御装置18は、第1温度センサ31で検出される温度と、第2温度センサ32で検出される温度に基づいて、ファン24の回転数や、圧縮機26の回転数や、減圧器30である絞り弁の開度を調整する。   During the heat storage operation, the control device 18 determines the rotational speed of the fan 24, the rotational speed of the compressor 26 based on the temperature detected by the first temperature sensor 31 and the temperature detected by the second temperature sensor 32, The opening degree of the throttle valve which is the decompressor 30 is adjusted.

図2、図3において、太い実線50はヒートポンプ加熱装置4における冷媒の冷凍サイクルを示しており、太い破線52はヒートポンプ加熱装置4における給湯用水の温度上昇を示しており、白丸54は第1温度センサ31の検出温度を示しており、白丸56は第2温度センサ32の検出温度を示している。   2 and 3, the thick solid line 50 indicates the refrigerant refrigeration cycle in the heat pump heating device 4, the thick broken line 52 indicates the temperature rise of the hot water supply water in the heat pump heating device 4, and the white circle 54 indicates the first temperature. The temperature detected by the sensor 31 is shown, and the white circle 56 shows the temperature detected by the second temperature sensor 32.

図2に示すように、圧縮機26に吸い込まれる冷媒の乾き度が高く、圧縮機26から吐出される冷媒が気体単相状態である場合、第2温度センサ32で検出される温度は第1温度センサ31で検出される温度よりも低くなる。これに対して、図3に示すように、圧縮機26に吸い込まれる冷媒の乾き度が低く、圧縮機26から吐出される冷媒が気液二相状態である場合、第2温度センサ32で検出される温度は第1温度センサ31で検出される温度にほぼ一致する。図3に示すような状態で圧縮機26を運転し続けると、圧縮比の増大およびそれに伴うシリンダ内圧力の上昇を招き、圧縮機26の機構部品の劣化を早めてしまう。そこで、本実施例の給湯システム2では、第1温度センサ31で検出される温度と第2温度センサ32で検出される温度の差が所定の下限値(例えば0.5℃)に満たない場合に、圧縮機26に吸い込まれる冷媒の乾き度を上昇させる冷媒乾き度上昇制御を行う。   As shown in FIG. 2, when the dryness of the refrigerant sucked into the compressor 26 is high and the refrigerant discharged from the compressor 26 is in a gas single phase state, the temperature detected by the second temperature sensor 32 is the first temperature. It becomes lower than the temperature detected by the temperature sensor 31. On the other hand, as shown in FIG. 3, when the dryness of the refrigerant sucked into the compressor 26 is low and the refrigerant discharged from the compressor 26 is in a gas-liquid two-phase state, it is detected by the second temperature sensor 32. The detected temperature substantially matches the temperature detected by the first temperature sensor 31. If the compressor 26 is continuously operated in the state as shown in FIG. 3, the compression ratio is increased and the pressure in the cylinder is increased accordingly, and the deterioration of the mechanical parts of the compressor 26 is accelerated. Therefore, in the hot water supply system 2 of the present embodiment, the difference between the temperature detected by the first temperature sensor 31 and the temperature detected by the second temperature sensor 32 is less than a predetermined lower limit (for example, 0.5 ° C.). Next, the refrigerant dryness increase control for increasing the dryness of the refrigerant sucked into the compressor 26 is performed.

具体的には、制御装置18は、冷媒乾き度上昇制御において、ファン24の回転数を上昇させて、蒸発器22への送風量を増加させる。これにより、蒸発器22における冷媒の蒸発が促進されて、圧縮機26に吸い込まれる冷媒の乾き度を上昇させることができる。圧縮機26に吸い込まれる冷媒の乾き度が低い状態を解消することができる。   Specifically, the control device 18 increases the rotational speed of the fan 24 and increases the amount of air blown to the evaporator 22 in the refrigerant dryness increase control. Thereby, the evaporation of the refrigerant in the evaporator 22 is promoted, and the dryness of the refrigerant sucked into the compressor 26 can be increased. The state where the dryness of the refrigerant sucked into the compressor 26 is low can be eliminated.

および/または、制御装置18は、冷媒乾き度上昇制御において、圧縮機26の回転数を低下させる。これにより、ヒートポンプ加熱装置4における冷媒の循環流量を低下させて、圧縮機26に吸い込まれる冷媒の乾き度を上昇させることができる。圧縮機26に吸い込まれる冷媒の乾き度が低い状態を解消することができる。   And / or the control apparatus 18 reduces the rotation speed of the compressor 26 in refrigerant dryness raise control. Thereby, the circulation flow rate of the refrigerant | coolant in the heat pump heating apparatus 4 can be reduced, and the dryness of the refrigerant | coolant suck | inhaled by the compressor 26 can be raised. The state where the dryness of the refrigerant sucked into the compressor 26 is low can be eliminated.

および/または、制御装置18は、冷媒乾き度上昇制御において、減圧器30である絞り弁の開度を小さくする。これにより、ヒートポンプ加熱装置4における冷媒の循環流量を低下させて、圧縮機26に吸い込まれる冷媒の乾き度を上昇させることができる。圧縮機26に吸い込まれる冷媒の乾き度が低い状態を解消することができる。   And / or the control apparatus 18 makes the opening degree of the throttle valve which is the decompressor 30 small in refrigerant | coolant dryness raise control. Thereby, the circulation flow rate of the refrigerant | coolant in the heat pump heating apparatus 4 can be reduced, and the dryness of the refrigerant | coolant suck | inhaled by the compressor 26 can be raised. The state where the dryness of the refrigerant sucked into the compressor 26 is low can be eliminated.

本実施例では、圧縮機26としてリフトタイプの逆止弁を有する圧縮機を用いている。このような構成とすることによって、圧縮機26に吸い込まれる冷媒の乾き度が低くなって、シリンダ内圧力が急上昇した場合でも、リフトタイプの逆止弁が開放されて、シリンダ内の圧力上昇を緩和することができる。   In this embodiment, a compressor having a lift type check valve is used as the compressor 26. By adopting such a configuration, even when the dryness of the refrigerant sucked into the compressor 26 is lowered and the pressure in the cylinder suddenly rises, the lift type check valve is opened to increase the pressure in the cylinder. Can be relaxed.

上記の実施例では、第2温度センサ32が凝縮器28内の冷媒循環路20に設けられている。このような構成では、第2温度センサ32では凝縮器28である程度放熱した後の冷媒の温度を計測することになるから、圧縮機26から吐出される冷媒が気体単相状態である場合に、第1温度センサ31の検出温度と第2温度センサ32の検出温度の差を明確に検出することができる。   In the above embodiment, the second temperature sensor 32 is provided in the refrigerant circulation path 20 in the condenser 28. In such a configuration, the second temperature sensor 32 measures the temperature of the refrigerant after it has radiated heat to some extent by the condenser 28. Therefore, when the refrigerant discharged from the compressor 26 is in a gas single-phase state, The difference between the temperature detected by the first temperature sensor 31 and the temperature detected by the second temperature sensor 32 can be clearly detected.

上記の実施例とは異なり、図4に示すように、第2温度センサ32を圧縮機26と凝縮器28の間の冷媒循環路20の第1温度センサ31よりも下流側に配置してもよい。図4に示す例では、第1温度センサ31は圧縮機26の吐出口近傍の冷媒循環路20に設けられており、第2温度センサ32は凝縮器28の入り口近傍の冷媒循環路20に設けられている。圧縮機26と凝縮器28の間の冷媒循環路20においても、僅かではあるが冷媒が放熱する。従って、図4に示す構成とした場合も、圧縮機26に吸い込まれる冷媒の乾き度が低く、圧縮機26から吐出される冷媒が気液二相状態にある場合、第1温度センサ31で検出される温度と第2温度センサ32で検出される温度はほぼ一致し、圧縮機26に吸い込まれる冷媒の乾き度が高く、圧縮機26から吐出される冷媒が気体単相状態である場合、第1温度センサ31で検出される温度は、第2温度センサ32で検出される温度よりも高くなる。図4に示す構成においても、圧縮機26に吸い込まれる冷媒の乾き度が低く、圧縮機26から吐出される冷媒が気液二相状態にある場合に、その状態を解消することができる。   Unlike the above embodiment, as shown in FIG. 4, the second temperature sensor 32 may be arranged downstream of the first temperature sensor 31 in the refrigerant circulation path 20 between the compressor 26 and the condenser 28. Good. In the example shown in FIG. 4, the first temperature sensor 31 is provided in the refrigerant circuit 20 near the discharge port of the compressor 26, and the second temperature sensor 32 is provided in the refrigerant circuit 20 near the inlet of the condenser 28. It has been. Even in the refrigerant circuit 20 between the compressor 26 and the condenser 28, the refrigerant dissipates heat, albeit slightly. Therefore, even when the configuration shown in FIG. 4 is adopted, the first temperature sensor 31 detects when the dryness of the refrigerant sucked into the compressor 26 is low and the refrigerant discharged from the compressor 26 is in a gas-liquid two-phase state. The temperature detected by the second temperature sensor 32 is substantially the same, the dryness of the refrigerant sucked into the compressor 26 is high, and the refrigerant discharged from the compressor 26 is in a gas single-phase state. The temperature detected by the first temperature sensor 31 is higher than the temperature detected by the second temperature sensor 32. Also in the configuration shown in FIG. 4, when the dryness of the refrigerant sucked into the compressor 26 is low and the refrigerant discharged from the compressor 26 is in a gas-liquid two-phase state, the state can be eliminated.

なお、図4に示すように、第1温度センサ31と第2温度センサ32の両方が圧縮機26と凝縮器28の間の冷媒循環路20に配置されている場合、第2温度センサ32が凝縮器28の給湯用水の温度の影響を受けず、それぞれの温度センサの計測条件がほぼ同じになるため、第1温度センサ31と第2温度センサ32の間での計測条件の違いによる計測誤差の影響を排除することができる。   As shown in FIG. 4, when both the first temperature sensor 31 and the second temperature sensor 32 are arranged in the refrigerant circuit 20 between the compressor 26 and the condenser 28, the second temperature sensor 32 is The measurement conditions of the respective temperature sensors are substantially the same without being affected by the temperature of the hot water supply water in the condenser 28, so that the measurement error due to the difference in the measurement conditions between the first temperature sensor 31 and the second temperature sensor 32. The influence of can be eliminated.

上記の実施例では、冷媒と給湯用水の間で熱交換を行う場合について説明したが、冷媒と給湯用水以外の被加熱流体との間で熱交換を行う構成としてもよい。例えば、床暖房機や浴室乾燥暖房機などの暖房に用いられる暖房用水を被加熱流体として、冷媒と暖房用水との間で熱交換を行う構成とすることもできる。   In the above embodiment, the case where heat exchange is performed between the refrigerant and the hot water supply water has been described, but heat exchange may be performed between the refrigerant and the heated fluid other than the hot water supply water. For example, it can also be set as the structure which heat-exchanges between a refrigerant | coolant and heating water by using the heating water used for heating, such as a floor heater and a bathroom drying heater, as a to-be-heated fluid.

上記の実施例では、冷媒と1つの被加熱流体(給湯用水)との間で熱交換を行う場合について説明したが、冷媒と2つ以上の被加熱流体との間で熱交換を行う構成としてもよい。   In the above embodiment, the case where heat is exchanged between the refrigerant and one heated fluid (hot water supply water) has been described. However, the heat exchange is performed between the refrigerant and two or more heated fluids. Also good.

以上、本発明の実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the Example of this invention was described in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

4 ヒートポンプ加熱装置
6 給湯用水循環路
8 貯湯槽
10 循環ポンプ
12 混合弁
14 バーナ加熱装置
16 バイパス弁
18 制御装置
20 冷媒循環路
22 蒸発器
24 ファン
26 圧縮機
28 凝縮器
30 減圧器
31 第1温度センサ
32 第2温度センサ
34 給水路
36 貯湯槽導入路
38 貯湯槽バイパス路
40 貯湯槽導出路
42 第1給湯路
44 バーナ加熱路
46 バーナバイパス路
48 第2給湯路
50 冷媒の冷凍サイクル
52 給湯用水の温度上昇
54 第1温度センサの検出温度
56 第2温度センサの検出温度
4 Heat Pump Heating Device 6 Hot Water Supply Water Circulation Path 8 Hot Water Storage Tank 10 Circulation Pump 12 Mixing Valve 14 Burner Heating Device 16 Bypass Valve 18 Controller 20 Refrigerant Circulation Path 22 Evaporator 24 Fan 26 Compressor 28 Condenser 30 Decompressor 31 First Temperature Sensor 32 Second temperature sensor 34 Water supply path 36 Hot water tank introduction path 38 Hot water tank bypass path 40 Hot water tank outlet path 42 First hot water path 44 Burner heating path 46 Burner bypass path 48 Second hot water path 50 Refrigerant refrigeration cycle 52 Hot water supply water Temperature rise 54 first temperature sensor detected temperature 56 second temperature sensor detected temperature

Claims (6)

冷媒と被加熱流体との間で熱交換して冷媒を凝縮させる凝縮器と、
凝縮器からの冷媒を減圧する減圧器と、
減圧器からの冷媒を蒸発させる蒸発器と、
蒸発器に送風する送風手段と、
蒸発器からの冷媒を加圧して凝縮器へ送り出す圧縮機と、
圧縮機と凝縮器の間の冷媒流路に配置されており、冷媒の温度を検出する第1温度検出手段と、
凝縮器内の冷媒流路に配置されており、冷媒の温度を検出する第2温度検出手段を備えており、
第1温度検出手段の検出温度と第2温度検出手段の検出温度の差が所定の下限値に満たない場合に、圧縮機に吸い込まれる冷媒の乾き度を上昇させる冷媒乾き度上昇制御を行い、
冷媒乾き度上昇制御において、送風手段の送風量を増加させる、ヒートポンプ加熱装置。
A condenser that condenses the refrigerant by exchanging heat between the refrigerant and the fluid to be heated;
A decompressor for decompressing the refrigerant from the condenser;
An evaporator for evaporating the refrigerant from the decompressor;
A blowing means for blowing air to the evaporator;
A compressor that pressurizes the refrigerant from the evaporator and sends it to the condenser;
A first temperature detecting means disposed in the refrigerant flow path between the compressor and the condenser and detecting the temperature of the refrigerant;
Disposed in the refrigerant flow path in the condenser, and includes second temperature detecting means for detecting the temperature of the refrigerant,
If the difference between the detected temperature of the detected temperature and the second temperature detecting means of the first temperature detecting means is less than the predetermined lower limit value, the row physician refrigerant dryness degree increase control for increasing the dryness of the refrigerant sucked into the compressor ,
A heat pump heating device that increases the amount of air blown by the air blowing means in the control for increasing the dryness of the refrigerant .
冷媒と被加熱流体との間で熱交換して冷媒を凝縮させる凝縮器と、A condenser that condenses the refrigerant by exchanging heat between the refrigerant and the fluid to be heated;
凝縮器からの冷媒を減圧する減圧器と、A decompressor for decompressing the refrigerant from the condenser;
減圧器からの冷媒を蒸発させる蒸発器と、An evaporator for evaporating the refrigerant from the decompressor;
蒸発器からの冷媒を加圧して凝縮器へ送り出す圧縮機と、A compressor that pressurizes the refrigerant from the evaporator and sends it to the condenser;
圧縮機と凝縮器の間の冷媒流路に配置されており、冷媒の温度を検出する第1温度検出手段と、A first temperature detecting means disposed in the refrigerant flow path between the compressor and the condenser and detecting the temperature of the refrigerant;
凝縮器内の冷媒流路に配置されており、冷媒の温度を検出する第2温度検出手段を備えており、Disposed in the refrigerant flow path in the condenser, and includes second temperature detecting means for detecting the temperature of the refrigerant,
第1温度検出手段の検出温度と第2温度検出手段の検出温度の差が所定の下限値に満たない場合に、圧縮機に吸い込まれる冷媒の乾き度を上昇させる冷媒乾き度上昇制御を行い、When the difference between the detected temperature of the first temperature detecting means and the detected temperature of the second temperature detecting means is less than a predetermined lower limit value, the refrigerant dryness increase control is performed to increase the dryness of the refrigerant sucked into the compressor,
冷媒乾き度上昇制御において、圧縮機の回転数を低下させる、ヒートポンプ加熱装置。A heat pump heating device that reduces the rotational speed of a compressor in refrigerant dryness increase control.
冷媒と被加熱流体との間で熱交換して冷媒を凝縮させる凝縮器と、A condenser that condenses the refrigerant by exchanging heat between the refrigerant and the fluid to be heated;
凝縮器からの冷媒を減圧する減圧器と、A decompressor for decompressing the refrigerant from the condenser;
減圧器からの冷媒を蒸発させる蒸発器と、An evaporator for evaporating the refrigerant from the decompressor;
蒸発器からの冷媒を加圧して凝縮器へ送り出す圧縮機と、A compressor that pressurizes the refrigerant from the evaporator and sends it to the condenser;
圧縮機と凝縮器の間の冷媒流路に配置されており、冷媒の温度を検出する第1温度検出手段と、A first temperature detecting means disposed in the refrigerant flow path between the compressor and the condenser and detecting the temperature of the refrigerant;
圧縮機と凝縮器の間の冷媒流路において第1温度検出手段よりも下流側に配置されており、冷媒の温度を検出する第2温度検出手段を備えており、The refrigerant flow path between the compressor and the condenser is disposed downstream of the first temperature detection means, and includes a second temperature detection means for detecting the temperature of the refrigerant,
第1温度検出手段の検出温度と第2温度検出手段の検出温度の差が所定の下限値に満たない場合に、圧縮機に吸い込まれる冷媒の乾き度を上昇させる冷媒乾き度上昇制御を行う、ヒートポンプ加熱装置。When the difference between the detected temperature of the first temperature detecting means and the detected temperature of the second temperature detecting means is less than a predetermined lower limit value, the refrigerant dryness increase control is performed to increase the dryness of the refrigerant sucked into the compressor. Heat pump heating device.
蒸発器に送風する送風手段をさらに備えており、It further includes a blowing means for blowing air to the evaporator,
冷媒乾き度上昇制御において、送風手段の送風量を増加させる、請求項3のヒートポンプ加熱装置。The heat pump heating device according to claim 3, wherein in the refrigerant dryness increase control, the amount of air blown by the blower is increased.
冷媒乾き度上昇制御において、圧縮機の回転数を低下させる、請求項3または4のヒートポンプ加熱装置。The heat pump heating device according to claim 3 or 4, wherein the rotation speed of the compressor is reduced in the refrigerant dryness increase control. 減圧器が冷媒流路に設けられた絞り弁であって、A throttle valve provided in the refrigerant flow path,
冷媒乾き度上昇制御において、絞り弁の開度を小さくする、請求項1から5の何れか一項のヒートポンプ加熱装置。The heat pump heating device according to any one of claims 1 to 5, wherein the opening degree of the throttle valve is reduced in the refrigerant dryness increase control.
JP2014068027A 2014-03-28 2014-03-28 Heat pump heating device Active JP6247980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014068027A JP6247980B2 (en) 2014-03-28 2014-03-28 Heat pump heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014068027A JP6247980B2 (en) 2014-03-28 2014-03-28 Heat pump heating device

Publications (2)

Publication Number Publication Date
JP2015190681A JP2015190681A (en) 2015-11-02
JP6247980B2 true JP6247980B2 (en) 2017-12-13

Family

ID=54425312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014068027A Active JP6247980B2 (en) 2014-03-28 2014-03-28 Heat pump heating device

Country Status (1)

Country Link
JP (1) JP6247980B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9621118B2 (en) 2014-12-30 2017-04-11 Skyworks Solutions, Inc. Compression control through power amplifier voltage adjustment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4807367B2 (en) * 2008-03-13 2011-11-02 三菱電機株式会社 Heat pump water heater
JP5558937B2 (en) * 2010-06-30 2014-07-23 株式会社コロナ Heat pump type water heater
JP5776314B2 (en) * 2011-04-28 2015-09-09 株式会社ノーリツ Heat pump water heater
JP2012237518A (en) * 2011-05-12 2012-12-06 Fujitsu General Ltd Air conditioner

Also Published As

Publication number Publication date
JP2015190681A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
KR101355689B1 (en) Air conditioning system and accumulator thereof
JP4999529B2 (en) Heat source machine and refrigeration air conditioner
US10753645B2 (en) Refrigeration cycle apparatus
US11204191B2 (en) Air-conditioning apparatus provided with refrigerant circuit capable of performing heating operation
JP5983451B2 (en) Heating system
JP2017044454A (en) Refrigeration cycle device and control method for the same
JP5831467B2 (en) Heating system
EP2857761A1 (en) Water heater
WO2015118580A1 (en) Heat pump hot water supply device
JP6488160B2 (en) Heat pump heating device
JP6247980B2 (en) Heat pump heating device
JP6387246B2 (en) Heat pump heating device
KR20110062457A (en) Heat pump system
KR20110117974A (en) Heat pump type speed heating apparatus
WO2015136595A1 (en) Heat pump system
WO2015121992A1 (en) Refrigeration cycle device
JP2011163575A (en) Heat pump type hot water supply device
JPWO2015132951A1 (en) Refrigeration equipment
JP2015143597A (en) water heater
JP2014149103A (en) Refrigeration cycle device
JP6986675B2 (en) Supercritical vapor compression refrigeration cycle and liquid heating device
JP2014081118A (en) Air conditioner
JP2009085476A (en) Heat pump water heater
JP2016114319A (en) Heating system
JP2016166700A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171120

R150 Certificate of patent or registration of utility model

Ref document number: 6247980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250