JP2004226036A - Heat pump type hot water supply system - Google Patents

Heat pump type hot water supply system Download PDF

Info

Publication number
JP2004226036A
JP2004226036A JP2003016349A JP2003016349A JP2004226036A JP 2004226036 A JP2004226036 A JP 2004226036A JP 2003016349 A JP2003016349 A JP 2003016349A JP 2003016349 A JP2003016349 A JP 2003016349A JP 2004226036 A JP2004226036 A JP 2004226036A
Authority
JP
Japan
Prior art keywords
water
refrigerant
heat exchanger
coil body
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003016349A
Other languages
Japanese (ja)
Other versions
JP3949589B2 (en
Inventor
Yasuji Ogoshi
靖二 大越
Tomoaki Tanabe
智明 田邊
Kazuyoshi Irisawa
一義 入澤
Kaoru Katayama
馨 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Electric Appliances Co Ltd
Toshiba Carrier Corp
Original Assignee
Toshiba Electric Appliances Co Ltd
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Electric Appliances Co Ltd, Toshiba Carrier Corp filed Critical Toshiba Electric Appliances Co Ltd
Priority to JP2003016349A priority Critical patent/JP3949589B2/en
Publication of JP2004226036A publication Critical patent/JP2004226036A/en
Application granted granted Critical
Publication of JP3949589B2 publication Critical patent/JP3949589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type hot water supply system capable of suppressing cost increase by integrating a water heat exchanger of a refrigerating cycle circuit with a water heat exchanger of a water circuit, correctly detecting the temperature of condensation without thermal effect of water, improving the detection accuracy and performing correct high-pressure control. <P>SOLUTION: Water heat exchangers 5 and 13 of a refrigerating cycle circuit 1 and a water circuit 10 comprise a plurality of coil assemblies 40 comprising an inner coil body 50 and an outer coil body 60 in which a refrigerant pipe 5P and a water pipe 13P overlap alternately and are wound in a coil, and a refrigerant connection pipe PA and a water connection pipe PB to communicate one end of the refrigerant pipe with one end of the water pipe of the inner and outer coil bodies. The refrigerant connection pipe and the water connection pipe are separated from each other, a condensation temperature sensor 22 to detect the temperature of the refrigerant is fitted to the refrigerant connection pipe, and a control device 30 to perform the high-pressure control of the refrigerating cycle circuit when the detected temperature of the condensation temperature sensor exceeds a predetermined value is provided. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば深夜電力を利用して貯湯するヒートポンプ式給湯器に関する。
【0002】
【従来の技術】
たとえば深夜電力を利用して冷凍サイクル回路の圧縮機を駆動し、冷凍サイクル作用にともなう凝縮熱を水に放出して加熱し、水を湯に変えるヒートポンプ式給湯器が多用されている。
【0003】
本出願人は、先に[特許公報1]において、従来のHCFC冷媒であるR22冷媒を用いたヒートポンプ式給湯器から、環境に影響の少ないHFC冷媒の一種であるR410A冷媒またはR407C冷媒に最適な構成のヒートポンプ式給湯器を開示している。
【0004】
【特許公報1】
特開2002−89958
このヒートポンプ式給湯器は、冷凍サイクル回路および水回路から構成される。上記冷凍サイクル回路は、圧縮機、四方弁、水熱交換器、減圧装置および空気熱交換器が順次、冷媒配管を介して連通され、冷媒を導通させて周知の冷凍サイクル作用をなす。
【0005】
上記水回路は、ポンプ、水熱交換器および貯湯槽が順次、水配管を介して連通され、水を導通させて水熱交換器で冷媒と熱交換し、湯に変えてから貯湯するようになっている。
【0006】
上記冷凍サイクル回路の水熱交換器と、水回路の水熱交換器とは、一体化するよう組立てられる。すなわち、比較的細径の冷媒用パイプと、これよりも太径の水用パイプとが、同一の直径で、かつそれぞれ所定のピッチを存してコイル状に巻回される。
【0007】
互いのコイル空間に互いのパイプを嵌め合わせ、ロー付けなど適宜な手段で固着される。完成した水熱交換器の断面は、冷媒用パイプと水用パイプが交互に重ね合わされ、一列直状をなす。互いのパイプが全長に亘って密接しているので、全長に亘って冷媒と水の熱交換作用を得られる。
【0008】
【発明が解決しようとする課題】
ところで、このようなヒートポンプ式給湯器において、高圧の上昇を抑制する高圧制御として、冷媒の凝縮温度を検知する凝縮温度センサを冷凍サイクル回路中に取付け、上記センサの検知信号にもとづいて制御しなければならない。
【0009】
具体的には、上記凝縮温度センサを水熱交換器の冷媒用パイプに密着固定し、パイプ内を流通する冷媒の凝縮温度を検知して、その検知信号を制御回路に送る。理想として、冷媒の温度が平均化する導入部と導出部のちょうど中間部において、冷媒の温度を検知するのが望ましい。
【0010】
しかしながら、上記水熱交換器は冷媒用パイプと水用パイプとを全長に亘って密着してなり、全長に亘って熱交換作用が行われるので、冷媒温度のみを抽出しての検知が不可能である。
【0011】
すなわち、冷媒によって水が温められるようになっているので、冷媒の凝縮温度が低温の水の温度の影響を受けて、実際の凝縮圧力に対応した温度よりも低い凝縮温度が検知されてしまう。そのため、低い冷媒凝縮温度に対応した圧縮機の高圧制御となり、正確な凝縮圧力に対応した正確な高圧制御ができない状態となっている。
【0012】
冷媒用パイプのちょうど中間部のみを上下の水用パイプから離間するよう径方向に突出もしくは凹陥形成した構造の水熱交換器を製作して、その離間した冷媒用パイプの中間部に凝縮温度センサを取付ければ最適であるが、そのような水熱交換器を得るには工数が嵩んでコストに悪影響を及ぼす。
【0013】
本発明は上述の課題を解決するためになされたものであり、その目的とするところは、冷凍サイクル回路の水熱交換器と水回路の水熱交換器を一体化するという基本的な構成を変えず、コスト上昇を抑制しながら、水の熱影響を受けずに冷媒の正しい凝縮温度を検知でき、検知精度の向上と、それにともなう正確な高圧制御を行い得るヒートポンプ式給湯器を提供しようとするものである。
【0014】
【課題を解決するための手段】
上記目的を満足するため本発明は、圧縮機、四方弁、水熱交換器、減圧装置および空気熱交換器を順次、冷媒配管を介して連通する冷凍サイクル回路と、ポンプ、水熱交換器および貯湯槽を順次、水配管を介して連通する水回路とを具備し、冷凍サイクル回路の水熱交換器から放出される凝縮熱を水回路の水熱交換器で吸収して貯湯槽内に湯を貯めるヒートポンプ式給湯器において、
上記冷凍サイクル回路および水回路の水熱交換器は、冷媒用パイプと水用パイプとを交互に重ね合わせたうえでコイル状に巻装した複数のコイル体と、これらコイル体の冷媒パイプ一端相互と、水パイプ一端相互を互いに連通する冷媒接続管および水接続管からなり、少なくとも1組の冷媒接続管と水接続管を互いに離間し、この冷媒接続管に冷媒の温度を検知する凝縮温度センサを取付け、この凝縮温度センサの検知温度が所定温度を超えたときに冷凍サイクル回路の高圧制御をなす制御手段を備えた。
【0015】
このような課題を解決する手段を採用することにより、冷凍サイクル回路の水熱交換器と水回路の水熱交換器を一体化するという基本的な構成を変えず、中間部において純然たる冷媒の凝縮温度を検知できる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面にもとづいて説明する。
図1は、ヒートポンプ式給湯器の回路構成を示していて、これは冷凍サイクル回路1と、水回路10とから構成される。
上記冷凍サイクル回路1は、圧縮機3と、四方弁4と、水熱交換器5と、減圧装置である膨張弁6および空気熱交換器7が順次、冷媒配管8を介して連通されてなり、冷媒を導通させて周知の冷凍サイクル作用をなす。
【0017】
上記水回路10は、ポンプ12、水熱交換器13および貯湯槽14が順次、水配管15を介して連通されてなり、水を導通させて後述するように湯に変え、かつ貯湯できる。
【0018】
上記冷凍サイクル回路1の水熱交換器5と、水回路10の水熱交換器13とは後述するように一体化されて水熱交換装置Kを構成していて、各水熱交換器5,13に導かれる冷媒と水とが互いに熱交換するようになっている。
【0019】
冷凍サイクル回路1の圧縮機3の冷媒吐出部近傍で冷媒配管8に密着して、圧縮機3から吐出された冷媒の温度を検知する吐出温度センサ20が取付けられる。圧縮機3の冷媒吸込み部近傍で冷媒配管8に密着して、圧縮機に吸込まれる冷媒の温度を検知する吸込み温度センサ21が取付けられる。
【0020】
上記冷凍サイクル回路1の水熱交換器5に密着して、冷媒の凝縮温度を検知する凝縮温度センサ22が取付けられる。なお、この凝縮温度センサ22を取付ける水熱交換器5構造は、水回路10の水熱交換器13構造とともに後述する。
【0021】
上記膨張弁6と空気熱交換器7とを接続する冷媒配管8に密着して、冷媒の蒸発温度を検知する蒸発温度センサ23が取付けられる。上記水回路ポンプ12の吸込み部近傍の水配管15に密着して、水の温度を検知する水温センサ24が取付けられる。
【0022】
また、上記水回路10における水熱交換器13の導出部近傍の水配管15に密着して、この水熱交換器で加熱された湯の温度を検知する湯温センサ25が取付けられる。
【0023】
以上説明した各センサ20〜25は、全て制御装置(制御手段)30と電気的に接続されていて、各センサから検知信号をそれぞれ制御装置30へ送る。上記制御装置30は、圧縮機3、四方弁4、膨張弁6およびポンプ12などの各電動部品に対する制御信号を送り、必要な制御を行える。
【0024】
このようにして構成されるヒートポンプ式給湯器であり、冷凍サイクル回路1に用いられる冷媒は、R410A冷媒またはR407C冷媒が選択される。たとえば深夜時間帯に入って深夜電力が供給されると、水温センサ24が水温を検知して、その検知信号を制御装置30へ送る。
【0025】
上記水温センサ24の検知温度は、貯湯槽14内に貯溜される湯の温度でもあるので、検知温度が所定温度以下であれば、制御装置30はヒートポンプ貯湯運転を開始するよう制御する。
【0026】
水回路10のポンプ12が駆動され、図中実線矢印に示すように水を貯湯槽14内から吸い出して水熱交換器13に導く。その一方で、冷凍サイクル回路1の圧縮機3が駆動され、冷媒を図中破線矢印に示すように水熱交換器5に導いて凝縮させる。
【0027】
冷凍サイクル回路1の水熱交換器5から放出する冷媒凝縮熱を、水回路10の水熱交換器13を通過する水が吸収して温度上昇し、湯に換る。水回路10の水熱交換器13から導出される湯は貯湯槽14の上部に溜まり、時間の経過とともに湯量が増大し、下部の水の量が減少する。
【0028】
冷凍サイクル回路1の水熱交換器5で凝縮した冷媒は膨張弁6に導かれて減圧され、空気熱交換器7に導かれて蒸発し、圧縮機3に吸込まれる。そして、圧縮され、再び上述のように冷凍サイクル回路1を循環する。
【0029】
以上述べたような運転を継続すると、順次、貯湯槽14内の湯が増大し、ついには槽内全てが湯で満たされる。この状態で、水温センサ24の検知水温が所定値以上となり、検知信号を受けた制御装置30は確認し次第、貯湯運転の停止を指示する。
【0030】
つぎに、上記水熱交換装置Kと、この水熱交換装置Kを構成する凝縮温度センサ22を取付けた冷媒回路1の水熱交換器5と、水回路10の水熱交換器13および、ここでの冷媒と水の流れを、図2〜図5にもとづいて説明する。
図2は上記水熱交換装置Kの概略の斜視図、図3は水熱交換器5,13の一部断面図、図4は水熱交換器5,13の一部を省略するとともに冷媒と水の流れを説明する図、図5は水熱交換器5,13の概略構成を示すとともに冷媒と水の流れを説明する図である。
【0031】
図2に示すように、上記水熱交換装置Kは、先に説明した圧縮機3、四方弁4、空気熱交換器7および制御装置30等を収容する室外ユニットF上に載設されている。
【0032】
上記水熱交換装置Kは、矩形箱状をなす筐体(上面は省略)26内に、左右一対のコイル組体40が並列状に配置収容されてなる。各コイル組体40は、それぞれ長円状をなす内側コイル体50と、この内側コイル体の外側に所定間隔を存して配置される外側コイル体60との二重コイル体から構成される。
【0033】
そして、内側コイル体50と外側コイル体60のそれぞれは、冷凍サイクル回路1の水熱交換器5と、水回路10の水熱交換器13を組み合わせている。換言すれば、冷凍サイクル回路1の水熱交換器5および水回路1の水熱交換器13はコイル状になって組み合わされる。
【0034】
図3に示すように、各コイル組体40を構成する内側コイル体50と外側コイル体60のそれぞれは、冷凍サイクル回路1の水熱交換器13を構成する冷媒用パイプ5Pと、水回路1の水熱交換器13である水用パイプ13Pを上下方向に交互に積み重ねている。
【0035】
すなわち、上記水熱交換器5,13は、比較的細径の冷媒用パイプ5Pと、これよりも太径の水用パイプ13Pとが、同一のピッチ直径で、それぞれ所定間隔を存してコイル状に巻回されてなる。
【0036】
そして、互いのコイル空間に互いのパイプを嵌め合わせ、かつロー付けなど適宜な手段で固着することにより、上述した内側コイル体50もしくは外側コイル体60が構成される。
【0037】
完成した内側コイル体50と外側コイル体60の断面は、冷媒用パイプ5Pと水用パイプ13Pが交互に重ね合わされ、一列直状をなす。互いのパイプ5P,13Pがコイル全長に亘って密接しているので、この全長に亘って冷媒と水の熱交換作用を得られる。
【0038】
図4に示すように、各コイル組体40において内側コイル体50と外側コイル体60は、破線で示す冷媒接続管PAと、実線で示す水接続管PBとで連通される。すなわち、上記冷媒接続管PAと水接続管PBは、内側コイル体50の最下部と外側コイル体60の最上部とを連通するように接続される。
【0039】
内外側コイル体50,60のそれぞれは冷媒用5Pパイプと水用パイプ13Pとが全長に亘って密着した状態となっているけれど、これらコイル体50,60相互を連通する冷媒接続管PAおよび水接続管PBは互いに所定の間隔を存して離間している。
【0040】
この実施の形態では、2組のコイル組体40を備えたことを前提として説明しているが、ヒートポンプ式給湯器の仕様によっては、それ以上の数のコイル組体40を備えることもあり得る。
【0041】
いずれにしても、コイル組体40は以上説明した構成に限定される。そして、上記凝縮温度センサ22は、コイル組体40の数に係らず、1つのコイル組体40の冷媒接続管PAのみに取付けられている。
【0042】
特に、上記冷媒接続管PAはコイル組体40の上部から、さらに上方に離間していて、この離間部分に上記凝縮温度センサ22が取付けられる。このことにより、凝縮温度センサ22は水接続管PBの熱影響を受けることがないばかりか、コイル組体40自体の熱影響を受けることもない。
【0043】
上記コイル組体40における冷媒の導入部70は、内側コイル体50の最上部に設定されている。内側コイル体50の導入部70から冷媒は順次下部側に流動し、内側コイル体50の最下部が内側導出部71となる。
【0044】
一方、外側コイル体60の最上部に冷媒の外側導入部72が形成されていて、ここと内側コイル体50の内側導出部71とが上記冷媒接続管PAを介して連通する。外側コイル体60では冷媒は順次下部側に流動し、最下部に形成される導出部73を連通するよう冷媒流路が構成される。
【0045】
また、コイル組体40における水の導入部75は、外側コイル体60の最下部に設定されている。外側コイル体60では水は順次上部側に流動し、最上部が外側導出部76となる。
【0046】
一方、内側コイル体50の最下部に水の内側導入部77が形成されていて、ここと外側コイル体60の外側導出部76とが上記水接続管PBを介して連通する。内側コイル体50において水は順次上部側に流動し、最上部に形成される導出部78を連通するよう水流路が構成される。
【0047】
このことから、各コイル組体40における冷媒流路の冷媒流れ方向と、水流路の水流れ方向とは互いに逆方向となり、冷媒と水のいわゆるカウンターフローが得られる。
【0048】
図5に示すように、互いに並列に配置されるコイル組体40において、各コイル組体の冷媒導入部70と冷媒導出部73のそれぞれは互いに合流して、上記室外ユニットFにおける冷凍サイクル回路1のガス側配管と液側配管をなす冷媒配管8にパックドバルブ(図示しない)を介して接続される。
【0049】
また、各コイル組体40の水導入部75と水導出部78のそれぞれは互いに合流して、上記水回路10の水配管15にパックドバルブ(図示しない)を介して接続される。
【0050】
特に、上記水回路10におけるポンプ12は、各コイル組体40とともに室外ユニットF上に配置されていて、水流路の水導入部75近傍位置で、これらの合流部に対して配管接続される。
【0051】
このように、2組のコイル組体40を並列に配置することにより、配管全体の圧力損失を減少させることができ、熱交換効率の向上を図れる。
圧縮機3で圧縮された高温の冷媒ガスが水熱交換器5の上端導入部70から導入される。その一方で、水が水熱交換器13の下端導入部75から導入され、冷媒とはカウンターフローをなして加熱される。
【0052】
水が水熱交換器13の導出部78に到達する間、水熱交換器5に導入された高温の冷媒ガスにより加熱されて高温化する。冷媒は水と熱交換して低温化し水熱交換器5の下端導出部73から導出される直前で、水熱交換器13に導入される低温の水と熱交換してさらに低温化し、過冷却状態となる。
【0053】
再び図1に示すように、上記圧縮機3は制御装置30からの制御信号にもとづいて回転数が調整される回転数可変のものが用いられている。そのうえで、制御装置30は圧縮機3の能力を調整して、貯湯槽14の貯湯温度を一定に保持するように制御する。
【0054】
具体的には、上記制御装置30は水回路10の水熱交換器13導出側に設けられる湯温センサ25からの検知温度信号を受け、記憶する標準温度と比較して圧縮機3の回転数に変えた演算をなす。そして、得られた回転数制御信号を圧縮機3へ送り、この圧縮機の回転数を調整して湯温センサ25の検知温度が設定貯湯温度になるように制御する。
【0055】
水回路10の水熱交換器13から導出される湯の検知温度が設定値よりも低い場合は、圧縮機3の回転数を上げて加熱能力を増大させ、湯温の上昇を図る。逆に、水回路10の水熱交換器13から導出される湯の温度が設定値よりも高い場合は、圧縮機3の回転数を下げて加熱能力を低下させ、湯温の低下を図る。
【0056】
なお、R410A冷媒、R407C冷媒を採用した冷凍サイクルでは、従来のCO2冷媒を採用した冷凍サイクルと比較して圧力が低い。しかしながら、一般の家庭用エアコンの圧縮機の使用範囲の上限圧力レベルにある。そのため、以下に述べるような高圧制御を行えばよい。
【0057】
すなわち、高圧の上昇を凝縮温度センサ22が検出し、その信号を制御装置30へ送る。制御装置30では、高圧の上限値に対応する凝縮温度の設定値と比較する。その値が上限値を超えたことを確認すると、制御装置30は圧縮機3の回転数低下させ、高圧のさらなる上昇を抑制する。
【0058】
また、圧縮機3から吐出される冷媒ガスの高圧化を可能な限り抑制し、かつ高温出湯を行うために吐出冷媒を高温に保持する制御を行えれば有利である。すなわち、圧縮機3の冷媒吐出温度を高く保持することにより、加熱されてきた水が水熱交換器13から導出される直前で高温の冷媒ガスによりさらに加熱されることになり、高温化した湯が得られる。
【0059】
このようにして、R410A冷媒またはR407C冷媒を用いた冷凍サイクル作用をなし、制御を行うことによって、R410A冷媒では効率(COP)がCO2冷媒を用いた場合よりも良くなり、R407C冷媒では同等となる。
【0060】
また圧力的にもR410A冷媒では高圧で4.75MPa、R407C冷媒では3.70MPaと低くなって、現行の家庭用エアコンの圧力レベルで85℃の高温貯湯が可能になる。
【0061】
以上、要するに貯湯槽14には所定温度に上昇した高温の湯が貯溜されることになり、給湯栓を開放すれば常時、高温の湯を給出できる。深夜電力を使用して湯を得るので、給湯のランニングコストが低くてすむ。
【0062】
上記コイル組体40として、内側コイル体50と外側コイル体60との二重構造としたことにより、限られたスペースに大容量の水熱交換器5,13を形成でき、高い給湯能力を得られる。
【0063】
高温冷媒を内側コイル体50から外側コイル体60に導き、水を外側コイル体60から内側コイル体50に導く、カウンターフローを構成したので、高温冷媒と高温の湯が外側コイル体60で囲まれた内側コイル体50に存在することとなり、外気に逃げる熱ロスを最小に抑制することができ、高性能の給湯器を提供できる。
【0064】
そして、現行のエアコンの室外ユニットFを構成する冷凍サイクル部品である圧縮機や、熱交換器もしくは弁類などをそのまま用いることができ、低コストを保持して、低価格の給湯器を提供できる。
【0065】
上記圧縮機3から吐出される冷媒ガスが高温を保持することにより、吐出冷媒を必要以上に高圧化する必要がなくなり、無理のない高温加熱が可能となる。そして、圧縮機3に対する高圧制御を行うことにより、所定の圧力範囲内で冷凍サイクル運転をなす。
【0066】
なお、上記冷凍サイクル回路1の圧縮機3は、必ずしも回転数可変形のものが使用されるとは限らない。制御が不要であって、しかも制御装置の簡素化を図れるように、回転数が一定の圧縮機が用いられる場合もある。
【0067】
図6は、回転数が一定の圧縮機3Hを備えたヒートポンプ式給湯器の回路構成を示している。先に、図1で説明した部品と同一のものについては同一番号を付して新たな説明は省略する。
【0068】
以上の前提と給湯器における制御手段である制御装置30Hは、以下のような制御が可能である。
すなわち、水回路10に配置されるポンプ12Hの回転数を可変形となし、制御装置30Hから回転数の制御信号を送れるようにする。そして、水回路10の水熱交換器13導出側に設けた湯温センサ25で湯の温度を検知し、その検知信号を制御装置30Hへ送る。
【0069】
上記制御装置30Hでは、湯温センサ25からの検知信号にもとづいて必要な演算をなし、ポンプ12Hに適応する回転数制御信号を送る。すなわち、湯温センサ25の検知温度が所定温度よりも低い場合は、ポンプ12Hの回転数を下げる制御信号を送る。このことにより、水回路10の流量が減少し、最終的に水回路10の水熱交換器13導出側の湯の温度が上昇する。
【0070】
湯温センサ25の検知温度が所定温度よりも高い場合は、制御装置30Hはポンプ12Hの回転数を上げる制御信号を送る。上記水回路10の流量が増加し、最終的に水回路10の水熱交換器13導出側の湯の温度が下がる。結局、回転数が一定の圧縮機3Hを用いても、適応する制御をなすことにより、貯湯槽14における貯湯温度を所定温度に保持できる。
【0071】
つぎに、上記回転数が一定の圧縮機3Hを用いた場合の低圧上昇防止制御として、空気熱交換器7に対向して配置される送風機9の回転数を可変とし、また、外気温度を検出する外気温センサ26を設置し、制御装置30Hは外気温センサ26の温度を検出し、送風機9の回転数を制御する。
【0072】
すなわち、外気温度が設定値よりも高い場合、低圧(蒸発圧力)が高くなり入力が増大するため、送風機9の回転数を低下させ、低圧の上昇を抑え、入力の増加を防止する。
【0073】
また、上記回転数が一定の圧縮機3Hを用いた場合の高圧上昇防止制御として、空気熱交換器7に対向して配置される送風機9の回転数を可変とし、また、凝縮温度を検出する凝縮温度センサ22を取付け、制御装置30Hは凝縮温度センサ22の温度を検出し送風機9の回転数を制御する。
【0074】
すなわち、凝縮温度が設定値よりも高い場合、凝縮圧力が高くなり、入力が増大するため、送風機9の回転数を低下させ、蒸発圧力の上昇を抑えることにより、凝縮圧力の上昇を防止する。この場合においても、冷媒の凝縮温度を精度よく検知できるとともに、高圧制御を正確に行える。
【0075】
上述の水回路10のポンプ12Hの回転数の制御および空気熱交換器7に対向して配置される送風機9の回転数の制御は、回転数可変の圧縮機を用いた冷凍サイクルの場合も適用可能であることは勿論である。
【0076】
なお、上記実施の形態では各コイル組体40を内側コイル体50と外側コイル体60との二重構成としたが、これに限定されるものではなく、コイル体の一方を下部側に配置し、他方を下部側コイル体の上部側に配置し、これら上、下部側コイル体を上記冷媒接続管PAと水接続管PBとで連通してもよい。
【0077】
また、本発明は要旨を超えない範囲内で種々実施可能なことは勿論であり、これらは全て本発明に組み込まれるものである。
【0078】
【発明の効果】
以上説明したように本発明によれば、冷凍サイクル回路の水熱交換器と水回路の水熱交換器を一体化するという基本的な構成を変えず、コスト抑制を図りながら、中間部において水の熱影響を受けない状態での冷媒の凝縮温度を検知でき、検知精度の向上と高圧制御精度の向上を図れるなどの効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す、ヒートポンプ式給湯器の回路構成図。
【図2】同実施の形態を示す、室外ユニット上に載設される水熱交換装置の概略の斜視図。
【図3】同実施の形態の、水熱交換器の一部断面図。
【図4】同実施の形態の、コイル組体の一部を省略して冷媒と水の導通状態を説明する図。
【図5】同実施の形態の、水熱交換装置の冷媒と水の回路を概略的に示す図。
【図6】本発明の他の実施の形態を示す、ヒートポンプ式給湯器の回路構成図。
【符号の説明】
3…圧縮機、5…(冷凍サイクル回路の)水熱交換器、8…冷媒配管、1…冷凍サイクル回路、13…(水回路の)水熱交換器、14…貯湯槽、5P…冷媒用パイプ、13P…水用パイプ、50…内側コイル体、60…外側コイル体、PA…冷媒接続管、PB…水接続管、22…凝縮温度センサ、30…制御装置(制御手段)。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat pump water heater that stores hot water using, for example, midnight power.
[0002]
[Prior art]
For example, heat pump water heaters that use a midnight electric power to drive a compressor of a refrigeration cycle circuit, discharge condensing heat accompanying the refrigeration cycle into water, heat the water, and convert the water into hot water are often used.
[0003]
The present applicant has previously disclosed in Patent Document 1 that a heat pump water heater using R22 refrigerant, which is a conventional HCFC refrigerant, is most suitable for R410A refrigerant or R407C refrigerant, which is a kind of HFC refrigerant having little effect on the environment. Disclosed is a heat pump water heater having a configuration.
[0004]
[Patent Publication 1]
JP-A-2002-89958
This heat pump water heater includes a refrigeration cycle circuit and a water circuit. In the refrigeration cycle circuit, a compressor, a four-way valve, a water heat exchanger, a pressure reducing device, and an air heat exchanger are sequentially communicated via a refrigerant pipe, and the refrigerant is conducted to perform a well-known refrigeration cycle operation.
[0005]
In the water circuit, the pump, the water heat exchanger, and the hot water storage tank are sequentially communicated via a water pipe, conduct water, exchange heat with the refrigerant in the water heat exchanger, change the water, and store the hot water. Has become.
[0006]
The water heat exchanger of the refrigeration cycle circuit and the water heat exchanger of the water circuit are assembled so as to be integrated. In other words, the refrigerant pipe having a relatively small diameter and the water pipe having a larger diameter are wound in a coil shape with the same diameter and at a predetermined pitch.
[0007]
The respective pipes are fitted into the respective coil spaces and fixed by appropriate means such as brazing. In the cross section of the completed water heat exchanger, refrigerant pipes and water pipes are alternately overlapped to form a straight line. Since the pipes are close to each other over the entire length, a heat exchange effect between the refrigerant and the water can be obtained over the entire length.
[0008]
[Problems to be solved by the invention]
By the way, in such a heat pump water heater, as a high-pressure control for suppressing an increase in the high pressure, a condensing temperature sensor for detecting the condensing temperature of the refrigerant must be mounted in the refrigeration cycle circuit and controlled based on the detection signal of the sensor. Must.
[0009]
Specifically, the condensing temperature sensor is closely fixed to the refrigerant pipe of the water heat exchanger, detects the condensing temperature of the refrigerant flowing in the pipe, and sends a detection signal to the control circuit. Ideally, it is desirable to detect the temperature of the refrigerant just in the middle of the inlet and outlet where the temperature of the refrigerant averages.
[0010]
However, since the water heat exchanger is formed by closely adhering the refrigerant pipe and the water pipe over the entire length, and the heat exchange action is performed over the entire length, it is impossible to extract and detect only the refrigerant temperature. It is.
[0011]
That is, since the water is heated by the refrigerant, the condensing temperature of the refrigerant is affected by the temperature of the low-temperature water, and a condensing temperature lower than the temperature corresponding to the actual condensing pressure is detected. Therefore, high-pressure control of the compressor corresponding to a low refrigerant condensation temperature is performed, and accurate high-pressure control corresponding to an accurate condensation pressure cannot be performed.
[0012]
Manufacture a water heat exchanger with a structure in which only the middle part of the refrigerant pipe is projected or recessed in the radial direction so as to be separated from the upper and lower water pipes, and a condensation temperature sensor is provided at the middle part of the separated refrigerant pipe Is most suitable, but to obtain such a water heat exchanger, the number of steps is increased and the cost is adversely affected.
[0013]
The present invention has been made to solve the above-described problems, and has an object to provide a basic configuration in which a water heat exchanger of a refrigeration cycle circuit and a water heat exchanger of a water circuit are integrated. To provide a heat pump type water heater that can detect the correct condensation temperature of the refrigerant without being affected by the thermal effect of water without changing the cost and improving the detection accuracy and the corresponding high-pressure control. Is what you do.
[0014]
[Means for Solving the Problems]
To satisfy the above object, the present invention provides a compressor, a four-way valve, a water heat exchanger, a pressure reducing device and an air heat exchanger, a refrigeration cycle circuit that communicates via a refrigerant pipe, a pump, a water heat exchanger and A water circuit that sequentially communicates with the hot water storage tank via a water pipe, wherein the condensed heat released from the water heat exchanger of the refrigeration cycle circuit is absorbed by the water heat exchanger of the water circuit, and the hot water is stored in the hot water storage tank. Heat pump water heater
The refrigeration cycle circuit and the water heat exchanger of the water circuit are configured such that a plurality of coil bodies wound on a coil are formed by alternately superimposing refrigerant pipes and water pipes, and one end of the refrigerant pipes of these coil bodies is mutually connected. A refrigerant connection pipe and a water connection pipe communicating one end of the water pipe with each other, separating at least one set of the refrigerant connection pipe and the water connection pipe from each other, and detecting the temperature of the refrigerant in the refrigerant connection pipe. And a control means for performing high-pressure control of the refrigeration cycle circuit when the temperature detected by the condensation temperature sensor exceeds a predetermined temperature.
[0015]
By adopting the means for solving such a problem, the basic structure of integrating the water heat exchanger of the refrigeration cycle circuit and the water heat exchanger of the water circuit is not changed, and pure refrigerant in the intermediate portion is not changed. Condensation temperature can be detected.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a circuit configuration of a heat pump water heater, which includes a refrigeration cycle circuit 1 and a water circuit 10.
In the refrigeration cycle circuit 1, a compressor 3, a four-way valve 4, a water heat exchanger 5, an expansion valve 6 as a pressure reducing device, and an air heat exchanger 7 are sequentially communicated via a refrigerant pipe 8. The refrigerant is conducted to perform a well-known refrigeration cycle operation.
[0017]
In the water circuit 10, a pump 12, a water heat exchanger 13, and a hot water storage tank 14 are sequentially communicated via a water pipe 15, so that water can be conducted to change into hot water and store hot water as described later.
[0018]
The water heat exchanger 5 of the refrigeration cycle circuit 1 and the water heat exchanger 13 of the water circuit 10 are integrated as described later to constitute a water heat exchanger K. The refrigerant and water guided to 13 exchange heat with each other.
[0019]
A discharge temperature sensor 20 for detecting the temperature of the refrigerant discharged from the compressor 3 is attached to the refrigerant pipe 8 in close contact with the refrigerant discharge portion of the compressor 3 of the refrigeration cycle circuit 1. A suction temperature sensor 21 for detecting the temperature of the refrigerant sucked into the compressor is attached to the refrigerant pipe 8 in close contact with the refrigerant suction portion of the compressor 3.
[0020]
A condensing temperature sensor 22 for detecting the condensing temperature of the refrigerant is attached in close contact with the water heat exchanger 5 of the refrigeration cycle circuit 1. The structure of the water heat exchanger 5 to which the condensation temperature sensor 22 is attached will be described later together with the structure of the water heat exchanger 13 of the water circuit 10.
[0021]
An evaporating temperature sensor 23 for detecting the evaporating temperature of the refrigerant is mounted in close contact with the refrigerant pipe 8 connecting the expansion valve 6 and the air heat exchanger 7. A water temperature sensor 24 for detecting the temperature of water is attached in close contact with the water pipe 15 near the suction part of the water circuit pump 12.
[0022]
Further, a hot water temperature sensor 25 for detecting the temperature of hot water heated by the water heat exchanger is attached in close contact with the water pipe 15 in the vicinity of the outlet of the water heat exchanger 13 in the water circuit 10.
[0023]
Each of the sensors 20 to 25 described above is electrically connected to a control device (control means) 30, and sends a detection signal from each sensor to the control device 30. The control device 30 sends a control signal to each electric component such as the compressor 3, the four-way valve 4, the expansion valve 6, and the pump 12, and can perform necessary control.
[0024]
The refrigerant used in the refrigeration cycle circuit 1 is the heat pump water heater configured as described above, and the R410A refrigerant or the R407C refrigerant is selected. For example, when midnight power is supplied during the midnight time zone, the water temperature sensor 24 detects the water temperature and sends a detection signal to the control device 30.
[0025]
Since the temperature detected by the water temperature sensor 24 is also the temperature of the hot water stored in the hot water storage tank 14, if the detected temperature is equal to or lower than a predetermined temperature, the control device 30 controls to start the heat pump hot water storage operation.
[0026]
The pump 12 of the water circuit 10 is driven to draw water from the hot water storage tank 14 and guide it to the water heat exchanger 13 as shown by the solid line arrow in the figure. On the other hand, the compressor 3 of the refrigeration cycle circuit 1 is driven, and the refrigerant is guided to the water heat exchanger 5 to be condensed as shown by a dashed arrow in the figure.
[0027]
The refrigerant condensing heat released from the water heat exchanger 5 of the refrigeration cycle circuit 1 is absorbed by the water passing through the water heat exchanger 13 of the water circuit 10, and the temperature rises and is converted to hot water. Hot water derived from the water heat exchanger 13 of the water circuit 10 accumulates in the upper portion of the hot water storage tank 14, and the amount of hot water increases with time and the amount of water in the lower portion decreases.
[0028]
The refrigerant condensed in the water heat exchanger 5 of the refrigeration cycle circuit 1 is guided to the expansion valve 6 to be decompressed, guided to the air heat exchanger 7 and evaporated, and is sucked into the compressor 3. Then, it is compressed and circulates again in the refrigeration cycle circuit 1 as described above.
[0029]
When the operation as described above is continued, the amount of hot water in the hot water storage tank 14 increases sequentially, and finally the entire tank is filled with hot water. In this state, as soon as the water temperature detected by water temperature sensor 24 becomes equal to or higher than the predetermined value and control device 30 receives the detection signal, control device 30 instructs to stop the hot water storage operation.
[0030]
Next, the water heat exchanger K, the water heat exchanger 5 of the refrigerant circuit 1 to which the condensing temperature sensor 22 constituting the water heat exchanger K is attached, the water heat exchanger 13 of the water circuit 10, and The flow of the refrigerant and the water in the above will be described with reference to FIGS.
2 is a schematic perspective view of the water heat exchanger K, FIG. 3 is a partial sectional view of the water heat exchangers 5, 13, and FIG. FIG. 5 is a diagram illustrating the flow of water, and FIG. 5 is a diagram illustrating a schematic configuration of the water heat exchangers 5 and 13 and illustrating a flow of a refrigerant and water.
[0031]
As shown in FIG. 2, the water heat exchanger K is mounted on an outdoor unit F that houses the compressor 3, the four-way valve 4, the air heat exchanger 7, the control device 30, and the like described above. .
[0032]
The water heat exchanger K has a pair of left and right coil assemblies 40 arranged and housed in parallel in a rectangular box-shaped housing (the upper surface is omitted) 26. Each coil assembly 40 is composed of a double coil body including an inner coil body 50 having an oval shape and an outer coil body 60 arranged at a predetermined interval outside the inner coil body.
[0033]
Each of the inner coil body 50 and the outer coil body 60 combines the water heat exchanger 5 of the refrigeration cycle circuit 1 and the water heat exchanger 13 of the water circuit 10. In other words, the water heat exchanger 5 of the refrigeration cycle circuit 1 and the water heat exchanger 13 of the water circuit 1 are combined in a coil shape.
[0034]
As shown in FIG. 3, each of the inner coil body 50 and the outer coil body 60 constituting each coil assembly 40 includes a refrigerant pipe 5P constituting the water heat exchanger 13 of the refrigeration cycle circuit 1 and a water circuit 1 The water pipes 13P as the water heat exchangers 13 are alternately stacked in the vertical direction.
[0035]
In other words, the water heat exchangers 5 and 13 are configured such that a relatively small-diameter refrigerant pipe 5P and a larger-diameter water pipe 13P have the same pitch diameter and a predetermined interval between the coils. It is wound in a shape.
[0036]
Then, the above-described inner coil body 50 or outer coil body 60 is formed by fitting the respective pipes into the respective coil spaces and fixing them by appropriate means such as brazing.
[0037]
The cross-sections of the completed inner coil body 50 and outer coil body 60 have a straight-line shape in which the refrigerant pipes 5P and the water pipes 13P are alternately overlapped. Since the pipes 5P and 13P are close to each other over the entire length of the coil, a heat exchange effect between the refrigerant and water can be obtained over the entire length.
[0038]
As shown in FIG. 4, in each coil assembly 40, the inner coil body 50 and the outer coil body 60 are connected by a refrigerant connection pipe PA shown by a broken line and a water connection pipe PB shown by a solid line. That is, the refrigerant connection pipe PA and the water connection pipe PB are connected such that the lowermost part of the inner coil body 50 and the uppermost part of the outer coil body 60 communicate with each other.
[0039]
Although each of the inner and outer coil bodies 50 and 60 has a state in which the 5P pipe for refrigerant and the pipe 13P for water are in close contact with each other over the entire length, the refrigerant connection pipe PA and the water connecting the coil bodies 50 and 60 mutually communicate. The connection pipes PB are separated from each other with a predetermined interval.
[0040]
In this embodiment, the description has been made on the assumption that two coil assemblies 40 are provided. However, depending on the specifications of the heat pump water heater, a larger number of coil assemblies 40 may be provided. .
[0041]
In any case, the coil assembly 40 is limited to the configuration described above. The condensing temperature sensor 22 is attached to only the refrigerant connection pipe PA of one coil assembly 40 regardless of the number of the coil assemblies 40.
[0042]
In particular, the refrigerant connection pipe PA is further separated upward from the upper part of the coil assembly 40, and the condensation temperature sensor 22 is attached to the separated portion. Thus, the condensation temperature sensor 22 is not affected not only by the heat of the water connection pipe PB but also by the heat of the coil assembly 40 itself.
[0043]
The refrigerant introduction part 70 in the coil assembly 40 is set at the uppermost part of the inner coil body 50. The refrigerant flows from the introduction portion 70 of the inner coil body 50 sequentially to the lower side, and the lowermost part of the inner coil body 50 becomes the inner outlet portion 71.
[0044]
On the other hand, an outer introduction portion 72 of the refrigerant is formed at the uppermost portion of the outer coil body 60, and communicates with the inner introduction portion 71 of the inner coil body 50 through the refrigerant connection pipe PA. In the outer coil body 60, the refrigerant flows sequentially to the lower side, and a refrigerant flow path is configured to communicate with the outlet 73 formed at the lowermost part.
[0045]
The water introduction section 75 in the coil assembly 40 is set at the lowermost portion of the outer coil body 60. In the outer coil body 60, the water sequentially flows to the upper side, and the uppermost portion becomes the outer lead-out portion 76.
[0046]
On the other hand, an inner introduction portion 77 of water is formed at the lowermost portion of the inner coil body 50, and this and the outer lead-out portion 76 of the outer coil body 60 communicate with each other via the water connection pipe PB. In the inner coil body 50, the water flows sequentially to the upper side, and a water flow path is formed so as to communicate with the outlet 78 formed at the uppermost part.
[0047]
From this, the direction of flow of the refrigerant in the refrigerant flow path and the direction of flow of the water in the water flow path in each coil assembly 40 are opposite to each other, and a so-called counterflow of the refrigerant and water is obtained.
[0048]
As shown in FIG. 5, in the coil assembly 40 arranged in parallel with each other, the refrigerant introduction part 70 and the refrigerant derivation part 73 of each coil assembly merge with each other to form the refrigeration cycle circuit 1 in the outdoor unit F. Is connected to a refrigerant pipe 8 forming a gas side pipe and a liquid side pipe through a packed valve (not shown).
[0049]
Further, each of the water introduction part 75 and the water derivation part 78 of each coil assembly 40 merges with each other and is connected to the water pipe 15 of the water circuit 10 via a packed valve (not shown).
[0050]
In particular, the pump 12 in the water circuit 10 is arranged on the outdoor unit F together with each coil assembly 40, and is connected to these junctions at a position near the water inlet 75 in the water flow path.
[0051]
Thus, by arranging the two coil assemblies 40 in parallel, the pressure loss of the entire pipe can be reduced, and the heat exchange efficiency can be improved.
The high-temperature refrigerant gas compressed by the compressor 3 is introduced from the upper end introduction part 70 of the water heat exchanger 5. On the other hand, water is introduced from the lower end introduction portion 75 of the water heat exchanger 13 and is heated in a counterflow with the refrigerant.
[0052]
While the water reaches the outlet section 78 of the water heat exchanger 13, the water is heated by the high-temperature refrigerant gas introduced into the water heat exchanger 5 to be heated to a high temperature. Immediately before being discharged from the lower end outlet portion 73 of the water heat exchanger 5, the refrigerant exchanges heat with water and exchanges heat with low-temperature water introduced into the water heat exchanger 13 to further lower the temperature, and immediately supercools. State.
[0053]
As shown in FIG. 1 again, the compressor 3 is of a variable rotational speed whose rotational speed is adjusted based on a control signal from a control device 30. Then, control device 30 controls the capacity of compressor 3 to control the temperature of hot water in hot water storage tank 14 to be kept constant.
[0054]
Specifically, the control device 30 receives the detected temperature signal from the hot water temperature sensor 25 provided on the water heat exchanger 13 outlet side of the water circuit 10, compares the detected temperature signal with a stored standard temperature, and Perform the operation changed to. Then, the obtained rotation speed control signal is sent to the compressor 3, and the rotation speed of the compressor is adjusted to control the detected temperature of the hot water temperature sensor 25 to the set hot water storage temperature.
[0055]
If the detected temperature of the hot water derived from the water heat exchanger 13 of the water circuit 10 is lower than the set value, the number of revolutions of the compressor 3 is increased to increase the heating capacity and increase the temperature of the hot water. Conversely, when the temperature of the hot water derived from the water heat exchanger 13 of the water circuit 10 is higher than the set value, the number of revolutions of the compressor 3 is reduced to lower the heating capacity, thereby reducing the temperature of the hot water.
[0056]
The pressure of the refrigeration cycle employing the R410A refrigerant and the R407C refrigerant is lower than that of the conventional refrigeration cycle employing the CO2 refrigerant. However, it is at the upper limit pressure level of the usage range of the compressor of a general household air conditioner. Therefore, high-pressure control as described below may be performed.
[0057]
That is, the condensing temperature sensor 22 detects an increase in the high pressure, and sends a signal to the control device 30. The control device 30 compares the value with the set value of the condensation temperature corresponding to the upper limit of the high pressure. When confirming that the value exceeds the upper limit, the control device 30 reduces the rotation speed of the compressor 3 and suppresses a further increase in the high pressure.
[0058]
Further, it is advantageous to control the pressure of the refrigerant gas discharged from the compressor 3 as high as possible and to control the discharged refrigerant at a high temperature in order to perform hot water supply. That is, by keeping the refrigerant discharge temperature of the compressor 3 high, the heated water is further heated by the high-temperature refrigerant gas immediately before being discharged from the water heat exchanger 13, and Is obtained.
[0059]
In this way, by performing the refrigeration cycle operation using the R410A refrigerant or the R407C refrigerant and performing control, the efficiency (COP) of the R410A refrigerant is better than that of the case of using the CO2 refrigerant, and is equivalent to that of the R407C refrigerant. .
[0060]
In terms of pressure, the R410A refrigerant has a high pressure of 4.75 MPa and the R407C refrigerant has a low pressure of 3.70 MPa, so that a high-temperature hot water storage of 85 ° C. can be performed at the current home air conditioner pressure level.
[0061]
In short, the hot water tank 14 stores high-temperature hot water that has risen to a predetermined temperature, and can always supply high-temperature hot water by opening the hot-water tap. Since hot water is obtained using midnight power, the running cost of hot water supply can be reduced.
[0062]
Since the coil assembly 40 has a double structure of the inner coil body 50 and the outer coil body 60, the large-capacity water heat exchangers 5 and 13 can be formed in a limited space, and a high hot water supply capacity is obtained. Can be
[0063]
Since the high-temperature refrigerant is guided from the inner coil body 50 to the outer coil body 60, and the water is guided from the outer coil body 60 to the inner coil body 50, a counterflow is configured, so that the high-temperature refrigerant and hot water are surrounded by the outer coil body 60. The heat loss that escapes to the outside air can be suppressed to a minimum, and a high-performance water heater can be provided.
[0064]
Then, a compressor, a heat exchanger, valves, and the like, which are refrigeration cycle components constituting the outdoor unit F of the current air conditioner, can be used as they are, and a low-cost water heater can be provided while maintaining low cost. .
[0065]
By maintaining the high temperature of the refrigerant gas discharged from the compressor 3, it is not necessary to increase the pressure of the discharged refrigerant more than necessary, and reasonable high-temperature heating becomes possible. By performing high-pressure control on the compressor 3, a refrigeration cycle operation is performed within a predetermined pressure range.
[0066]
The compressor 3 of the refrigeration cycle circuit 1 is not always a variable-speed compressor. In some cases, a compressor having a constant rotation speed is used so that control is not required and the control device can be simplified.
[0067]
FIG. 6 shows a circuit configuration of a heat pump water heater provided with a compressor 3H having a constant rotation speed. The same components as those described above with reference to FIG. 1 are denoted by the same reference numerals, and a new description will be omitted.
[0068]
Based on the above assumptions, the control device 30H, which is a control means in the water heater, can perform the following control.
That is, the rotation speed of the pump 12H disposed in the water circuit 10 is made variable, and a control signal of the rotation speed can be sent from the control device 30H. Then, the temperature of the hot water is detected by a hot water temperature sensor 25 provided on the water heat exchanger 13 outlet side of the water circuit 10, and the detection signal is sent to the control device 30H.
[0069]
The control device 30H performs necessary calculations based on the detection signal from the hot water temperature sensor 25, and sends a rotation speed control signal suitable for the pump 12H. That is, when the detected temperature of the hot water temperature sensor 25 is lower than the predetermined temperature, a control signal for lowering the rotation speed of the pump 12H is sent. As a result, the flow rate of the water circuit 10 decreases, and finally, the temperature of the hot water on the water heat exchanger 13 outlet side of the water circuit 10 increases.
[0070]
If the temperature detected by hot water temperature sensor 25 is higher than the predetermined temperature, control device 30H sends a control signal to increase the rotation speed of pump 12H. The flow rate of the water circuit 10 increases, and finally the temperature of the hot water at the water heat exchanger 13 outlet side of the water circuit 10 decreases. As a result, even if the compressor 3H having a constant rotation speed is used, the hot water storage temperature in the hot water storage tank 14 can be maintained at a predetermined temperature by performing adaptive control.
[0071]
Next, as the low pressure rise prevention control when the compressor 3H having the constant rotation speed is used, the rotation speed of the blower 9 arranged opposite to the air heat exchanger 7 is made variable, and the outside air temperature is detected. The controller 30H detects the temperature of the outside air temperature sensor 26 and controls the rotation speed of the blower 9.
[0072]
That is, when the outside air temperature is higher than the set value, the low pressure (evaporation pressure) increases and the input increases, so that the rotation speed of the blower 9 is reduced, the rise of the low pressure is suppressed, and the input is prevented from increasing.
[0073]
In addition, as the high pressure rise prevention control when the compressor 3H having the constant rotation speed is used, the rotation speed of the blower 9 arranged opposite to the air heat exchanger 7 is made variable, and the condensation temperature is detected. The condensing temperature sensor 22 is attached, and the control device 30H detects the temperature of the condensing temperature sensor 22 and controls the rotation speed of the blower 9.
[0074]
That is, when the condensing temperature is higher than the set value, the condensing pressure increases and the input increases, so that the rotation speed of the blower 9 is reduced and the evaporating pressure is suppressed from increasing, thereby preventing the increase in the condensing pressure. Also in this case, the condensation temperature of the refrigerant can be accurately detected, and high-pressure control can be accurately performed.
[0075]
The above-described control of the rotation speed of the pump 12H of the water circuit 10 and the control of the rotation speed of the blower 9 arranged to face the air heat exchanger 7 are also applied to a refrigeration cycle using a compressor having a variable rotation speed. Of course, it is possible.
[0076]
In the above-described embodiment, each coil assembly 40 has a double structure of the inner coil body 50 and the outer coil body 60. However, the present invention is not limited to this, and one of the coil bodies is arranged on the lower side. The other may be arranged on the upper side of the lower coil body, and the upper and lower coil bodies may be connected to each other by the refrigerant connection pipe PA and the water connection pipe PB.
[0077]
In addition, it goes without saying that the present invention can be implemented in various ways without departing from the scope of the invention, and all of them can be incorporated into the present invention.
[0078]
【The invention's effect】
As described above, according to the present invention, the water in the middle part is not changed while maintaining the basic structure of integrating the water heat exchanger of the refrigeration cycle circuit and the water heat exchanger of the water circuit, while reducing the cost. Thus, it is possible to detect the condensing temperature of the refrigerant without being affected by the heat, thereby improving the detection accuracy and the high-pressure control accuracy.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a heat pump water heater according to an embodiment of the present invention.
FIG. 2 is a schematic perspective view of the water heat exchanger mounted on the outdoor unit, showing the embodiment.
FIG. 3 is a partial cross-sectional view of the water heat exchanger of the embodiment.
FIG. 4 is a diagram illustrating a state of conduction between a refrigerant and water, with a part of the coil assembly omitted in the embodiment.
FIG. 5 is a diagram schematically showing a circuit of a refrigerant and water of the water heat exchange device of the embodiment.
FIG. 6 is a circuit diagram of a heat pump water heater according to another embodiment of the present invention.
[Explanation of symbols]
3 ... Compressor, 5 ... Water heat exchanger (of refrigeration cycle circuit), 8 ... Refrigerant piping, 1 ... Refrigeration cycle circuit, 13 ... Water heat exchanger (of water circuit), 14 ... Hot storage tank, 5P ... For refrigerant Pipe, 13P: water pipe, 50: inner coil body, 60: outer coil body, PA: refrigerant connection pipe, PB: water connection pipe, 22: condensation temperature sensor, 30: control device (control means).

Claims (3)

圧縮機、四方弁、水熱交換器、減圧装置および空気熱交換器を順次、冷媒配管を介して連通する冷凍サイクル回路と、ポンプ、水熱交換器および貯湯槽を順次、水配管を介して連通する水回路とを具備し、上記冷凍サイクル回路の水熱交換器から放出される凝縮熱を、上記水回路の水熱交換器で吸収して貯湯槽内に湯を貯めるヒートポンプ式給湯器において、
上記冷凍サイクル回路と水回路に用いられる水熱交換器は、冷媒が導通する冷媒用パイプと水が導通する水用パイプとを交互に重ね合わせたうえでコイル状に巻装した複数のコイル体と、これらコイル体の冷媒用パイプ一端相互と、水パイプ用一端相互を互いに連通する冷媒接続管および水接続管からなり、
少なくとも1組の冷媒接続管と水接続管は互いに離間しているとともに、離間した冷媒接続管に冷媒の温度を検知する凝縮温度センサが取付けられ、
この凝縮温度センサの検知温度が所定温度を超えたときに、冷凍サイクル回路の高圧制御をなす制御手段を備えたことを特徴とするヒートポンプ式給湯器。
A compressor, a four-way valve, a water heat exchanger, a decompression device, and an air heat exchanger are sequentially communicated through a refrigerant pipe, and a refrigeration cycle circuit, and a pump, a water heat exchanger, and a hot water storage tank are sequentially communicated through a water pipe. A heat pump water heater comprising a communicating water circuit, wherein the heat of condensation discharged from the water heat exchanger of the refrigeration cycle circuit is absorbed by the water heat exchanger of the water circuit and hot water is stored in the hot water tank. ,
The water heat exchanger used in the refrigeration cycle circuit and the water circuit has a plurality of coil bodies wound in a coil shape after alternately superimposing a refrigerant pipe through which refrigerant flows and a water pipe through which water flows. And a refrigerant connection pipe and a water connection pipe that mutually communicate the refrigerant pipe ends of these coil bodies and the water pipe ends.
At least one set of the refrigerant connection pipe and the water connection pipe are separated from each other, and a condensation temperature sensor for detecting a temperature of the refrigerant is attached to the separated refrigerant connection pipe,
A heat pump type water heater comprising a control means for performing high pressure control of a refrigeration cycle circuit when a temperature detected by the condensation temperature sensor exceeds a predetermined temperature.
上記コイル体の一方は内側コイル体であり、上記コイル体の他方は上記内側コイル体の外側に所定間隔を存して構成される外側コイル体であり、これら内側コイル体と外側コイル体を上記冷媒接続管と水接続管とで連通したことを特徴とする請求項1記載のヒートポンプ式給湯器。One of the coil bodies is an inner coil body, and the other of the coil bodies is an outer coil body formed at a predetermined interval outside the inner coil body. The heat pump water heater according to claim 1, wherein the refrigerant connection pipe and the water connection pipe communicate with each other. 上記冷媒接続管と水接続管は、内側コイル体の最下部と外側コイル体の最上部とを連通するよう接続され、
冷媒を、内側コイル体の最上部から導入し内側コイル体の最下部から冷媒接続管を介して外側コイル体の最上部に導き、さらに外側コイル体の最下部から導出するよう冷媒流路を構成し、
水を、外側コイル体の最下部から導入し外側コイル体の最上部から水接続管を介して内側コイル体の最下部に導き、さらに内側コイル体の最上部から導出するよう水流路を構成したことを特徴とする請求項2記載のヒートポンプ式給湯器。
The refrigerant connection pipe and the water connection pipe are connected to communicate the lowermost part of the inner coil body and the uppermost part of the outer coil body,
The refrigerant flow path is configured such that the refrigerant is introduced from the uppermost part of the inner coil body, guided from the lowermost part of the inner coil body to the uppermost part of the outer coil body via the refrigerant connection pipe, and further derived from the lowermost part of the outer coil body. And
The water flow path was configured such that water was introduced from the lowermost part of the outer coil body, guided from the uppermost part of the outer coil body to the lowermost part of the inner coil body via a water connection pipe, and further derived from the uppermost part of the inner coil body. 3. The heat pump water heater according to claim 2, wherein:
JP2003016349A 2003-01-24 2003-01-24 Heat pump water heater Expired - Lifetime JP3949589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003016349A JP3949589B2 (en) 2003-01-24 2003-01-24 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003016349A JP3949589B2 (en) 2003-01-24 2003-01-24 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2004226036A true JP2004226036A (en) 2004-08-12
JP3949589B2 JP3949589B2 (en) 2007-07-25

Family

ID=32903832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003016349A Expired - Lifetime JP3949589B2 (en) 2003-01-24 2003-01-24 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3949589B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078048A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Heat pump heater
JP2006314503A (en) * 2005-05-12 2006-11-24 Matsushita Electric Ind Co Ltd Washing and drying machine
JP2007187366A (en) * 2006-01-12 2007-07-26 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2008517247A (en) * 2004-10-20 2008-05-22 キャリア コーポレイション The shape of the gas cooler integrated in the heat pump chassis
JP2009180436A (en) * 2008-01-31 2009-08-13 Sharp Corp Heat exchanger and heat pump water heater
WO2009113881A1 (en) * 2008-03-10 2009-09-17 Matrix Engineering Limited Heat pump water heater
WO2010089957A1 (en) * 2009-02-05 2010-08-12 パナソニック株式会社 Heat exchanger
WO2015045116A1 (en) * 2013-09-27 2015-04-02 三菱電機株式会社 Refrigeration cycle device
CN105091640A (en) * 2015-09-10 2015-11-25 兰州兰石集团有限公司 Plate type heat exchange unit for domestic hot water
JP2015218959A (en) * 2014-05-19 2015-12-07 リンナイ株式会社 Heat pump heating device
KR20160041346A (en) 2014-10-07 2016-04-18 린나이코리아 주식회사 Water heat exchanger
CN106369874A (en) * 2016-08-27 2017-02-01 重庆鸿佳新科技有限公司 Ice source heat pump system
JP2018146142A (en) * 2017-03-02 2018-09-20 シャープ株式会社 Air conditioner
CN109631378A (en) * 2018-10-24 2019-04-16 浙江中广电器股份有限公司 CO2The heat-pump water heater and its control method of refrigerant Trans-critical cycle frequency conversion compression operation

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631365B2 (en) * 2004-09-08 2011-02-16 パナソニック株式会社 Heat pump heating device
JP2006078048A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Heat pump heater
JP2008517247A (en) * 2004-10-20 2008-05-22 キャリア コーポレイション The shape of the gas cooler integrated in the heat pump chassis
JP2006314503A (en) * 2005-05-12 2006-11-24 Matsushita Electric Ind Co Ltd Washing and drying machine
JP4552748B2 (en) * 2005-05-12 2010-09-29 パナソニック株式会社 Washing and drying machine
JP2007187366A (en) * 2006-01-12 2007-07-26 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2009180436A (en) * 2008-01-31 2009-08-13 Sharp Corp Heat exchanger and heat pump water heater
WO2009113881A1 (en) * 2008-03-10 2009-09-17 Matrix Engineering Limited Heat pump water heater
JP5394405B2 (en) * 2009-02-05 2014-01-22 パナソニック株式会社 Heat exchanger
US20110284193A1 (en) * 2009-02-05 2011-11-24 Panasonic Corporation Heat exchanger
WO2010089957A1 (en) * 2009-02-05 2010-08-12 パナソニック株式会社 Heat exchanger
WO2015045116A1 (en) * 2013-09-27 2015-04-02 三菱電機株式会社 Refrigeration cycle device
EP3051224A4 (en) * 2013-09-27 2017-05-31 Mitsubishi Electric Corporation Refrigeration cycle device
JPWO2015045116A1 (en) * 2013-09-27 2017-03-02 三菱電機株式会社 Refrigeration cycle equipment
JP2015218959A (en) * 2014-05-19 2015-12-07 リンナイ株式会社 Heat pump heating device
KR101633558B1 (en) * 2014-10-07 2016-06-24 린나이코리아 주식회사 Water heat exchanger
KR20160041346A (en) 2014-10-07 2016-04-18 린나이코리아 주식회사 Water heat exchanger
CN105091640B (en) * 2015-09-10 2017-03-01 兰州兰石集团有限公司 A kind of domestic hot-water's plate-type heat-exchange unit
CN105091640A (en) * 2015-09-10 2015-11-25 兰州兰石集团有限公司 Plate type heat exchange unit for domestic hot water
CN106369874A (en) * 2016-08-27 2017-02-01 重庆鸿佳新科技有限公司 Ice source heat pump system
JP2018146142A (en) * 2017-03-02 2018-09-20 シャープ株式会社 Air conditioner
CN109631378A (en) * 2018-10-24 2019-04-16 浙江中广电器股份有限公司 CO2The heat-pump water heater and its control method of refrigerant Trans-critical cycle frequency conversion compression operation
CN109631378B (en) * 2018-10-24 2023-12-12 浙江中广电器集团股份有限公司 CO 2 Heat pump water heating device operated by refrigerant transcritical variable frequency compression and control method thereof

Also Published As

Publication number Publication date
JP3949589B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
JP5238001B2 (en) Refrigeration cycle equipment
JP2004226036A (en) Heat pump type hot water supply system
US9464830B2 (en) Refrigeration apparatus for executing a pump down
JP2000213806A (en) Hot water supply apparatus
CN102326028A (en) Heat pump
JP5475874B2 (en) Heat pump system
JP4363997B2 (en) Refrigeration equipment
WO2013065233A1 (en) Refrigeration cycle apparatus and air conditioner provided with same
JP2013104623A (en) Refrigeration cycle device and air conditioner with the same
EP2770278B1 (en) Water heater
WO2007114187A1 (en) Heat pump hot water supplier
JP2009092258A (en) Refrigerating cycle device
WO2015118580A1 (en) Heat pump hot water supply device
JP5929012B2 (en) Heat exchanger and heat pump water heater
JP6137016B2 (en) Heat pump water heater and control method of heat pump water heater
JP2009162403A (en) Air conditioner
JP4155334B2 (en) vending machine
JP2002089958A (en) Heat pump type hot water supply system
JP2011052850A (en) Heat pump type warm water heating device
JP5973336B2 (en) Air conditioner
US5077986A (en) Energy recovery system for absorption heat pumps
JP2016114319A (en) Heating system
JP2005351588A (en) Heat pump water heater
JP5793715B2 (en) Air conditioner
JP5935742B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R150 Certificate of patent or registration of utility model

Ref document number: 3949589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term