WO2007114187A1 - Heat pump hot water supplier - Google Patents

Heat pump hot water supplier Download PDF

Info

Publication number
WO2007114187A1
WO2007114187A1 PCT/JP2007/056711 JP2007056711W WO2007114187A1 WO 2007114187 A1 WO2007114187 A1 WO 2007114187A1 JP 2007056711 W JP2007056711 W JP 2007056711W WO 2007114187 A1 WO2007114187 A1 WO 2007114187A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
muffler
heat exchanger
hot water
Prior art date
Application number
PCT/JP2007/056711
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Sakamoto
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP07740149.5A priority Critical patent/EP2009371B1/en
Publication of WO2007114187A1 publication Critical patent/WO2007114187A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/322Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • F04C29/0035Equalization of pressure pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/804Accumulators for refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the present invention relates to a refrigeration apparatus including a rotary compressor (including a swing type).
  • Patent Document 1 in a technique such as Patent Document 1, in a refrigeration apparatus in which a rotary compressor, a condenser, a pressure reducing mechanism, and an evaporator are sequentially connected, between the evaporator and the suction side of the compressor. Use a configuration that installs an accumulator.
  • Patent Document 1 JP 2003-247490 A
  • Patent Document 1 if a liquid storage mechanism such as an accumulator is provided, the compressor runs short of intake gas or wasteful refrigerant is required.
  • a refrigeration apparatus includes a compressor, a first heat exchanger, an expansion mechanism, a second heat exchanger, and a muffler.
  • the compressor is a rotary compressor that compresses a refrigerant.
  • the expansion mechanism depressurizes the refrigerant condensed in the first heat exchanger.
  • the second heat exchanger causes the refrigerant decompressed by the expansion mechanism to exchange heat with the second fluid.
  • the muffler is disposed between the second heat exchanger and the compressor to reduce the pulsation of the refrigerant flow.
  • an accumulator is arranged on the suction side of a rotary type (including a swing type) compressor.
  • a liquid storage mechanism such as an accumulator
  • the compressor may run out of suction gas or wasteful refrigerant may be required. Therefore, in the present invention, by installing a muffler that does not have a refrigerant liquid reservoir function in place of the accumulator, it is possible to prevent excessive refrigerant from being generated in the refrigerant circuit, and to prevent shortage of suction gas in the compressor. . In addition, noise generation near the rotary compressor can be suppressed.
  • a refrigeration apparatus is the refrigeration apparatus according to the first aspect of the present invention, wherein the muffler is disposed on the side of the compressor and fixed so as to be integrated with the side wall portion of the compressor. .
  • the vibration of the compressor can be suppressed by fixing the muffler and the compressor so as to be integrated. For this reason, noise generation in the compressor can be suppressed.
  • a refrigeration apparatus is the refrigeration apparatus according to the first or second aspect of the present invention, wherein the muffler has a muffler main body part and a filter part.
  • the muffler body has a cylindrical shape having a channel cross-sectional area larger than the channel cross-sectional area of the gas refrigerant pipe connecting the second heat exchanger and the compressor.
  • the filter part is supported inside the muffler main body part and collects foreign matters in the refrigerant flowing toward the second heat exchange compressor.
  • the filter unit provided inside the muffler main body also collects foreign matter in the refrigerant that flows toward the compressor in the second heat exchanger.
  • the muffler main body portion provided with the filter portion has a flow passage cross-sectional area larger than the flow passage cross-sectional area of the gas refrigerant pipe, the flow passage cross-sectional area of the filter portion can be widened. .
  • a refrigeration apparatus is the refrigeration apparatus according to any of the first to third aspects of the present invention, wherein the muffler supplies low-pressure gas refrigerant that has also flowed out of the second heat exchanger power to the upper part of the muffler. And let it flow out to the lower force compressor of the muffler.
  • the muffler is arranged vertically so as to take in the low-pressure gas refrigerant from the upper part and to flow out from the lower part to the compressor.
  • the liquid refrigerant is mixed into the gas refrigerant and flows into the muffler at low outside air temperature, the liquid refrigerant does not easily accumulate and is filled in the refrigerant circuit. Can be used efficiently. For this reason, the shortage of intake gas in the compressor can be suppressed, and the refrigerant used can be reduced.
  • a refrigeration apparatus is the refrigeration apparatus according to any of the first to fourth aspects of the present invention, further comprising liquid-gas heat exchange.
  • Liquid gas heat exchange exchanges heat between the liquid refrigerant that flows out of the first heat exchanger and flows into the expansion mechanism, and the gas refrigerant that flows out of the second heat exchanger and flows into the compressor.
  • the refrigerant gas sent to the compressor can be overheated to prevent wet compression or liquid compression.
  • an abnormal increase in the internal pressure of the compressor can be suppressed, and damage to the compressor can be prevented.
  • the generation of flash gas in the liquid refrigerant pipe can be prevented by increasing the degree of supercooling of the liquid refrigerant sent to the evaporator. Thereby, the fall of the capability of an expansion mechanism can be prevented.
  • a refrigeration apparatus is the refrigeration apparatus according to any of the first to fifth inventions, wherein the first fluid is water, and the first heat exchange is for exchanging heat between the refrigerant and water. It is a heat exchange for hot water supply that heats water by heating.
  • hot water supply heat exchange is used as the first heat exchange, and heat is exchanged between the refrigerant and water to heat the water and obtain hot water.
  • the refrigeration apparatus can prevent excessive refrigerant from being generated in the refrigerant circuit even in the case of the heat pump unit of the heat pump water heater, and can prevent shortage of intake gas in the compressor. Moreover, noise generation near the compressor can be suppressed.
  • the vibration of the compressor can be suppressed by fixing the muffler and the compressor so as to be integrated. For this reason, noise generation in the compressor can be suppressed.
  • the foreign matter in the refrigerant is prevented from circulating in the refrigerant circuit. It is possible to prevent damage to each device or a decrease in the performance of each device from a foreign object. Moreover, an increase in pressure loss in the filter portion can be suppressed.
  • the refrigerant gas sent to the compressor can be overheated to prevent wet compression or liquid compression.
  • an abnormal increase in the internal pressure of the compressor can be suppressed, and damage to the compressor can be prevented.
  • the generation of flash gas in the liquid refrigerant pipe can be prevented by increasing the degree of supercooling of the liquid refrigerant sent to the evaporator. This prevents a decrease in the capacity of the expansion mechanism.
  • the refrigeration apparatus can prevent excessive refrigerant from being generated in the refrigerant circuit even in the case of a heat pump unit of a heat pump water heater, and can prevent a shortage of suction gas in the compressor. In addition, noise generation near the compressor can be suppressed.
  • FIG. 1 is a schematic circuit diagram of a circuit configuration of a heat pump water heater that works in one embodiment of the present invention.
  • FIG. 2 Control block diagram of heat pump water heater.
  • FIG. 3 is a schematic plan view showing an operating state of the swing type compressor.
  • FIG. 4 (a) is a front view showing a state where the compressor and the muffler are fixed.
  • FIG. 4 (b) is a plan view of FIG. 4 (a).
  • FIG. 5 is a schematic plan view of a rotary compressor that works on a modification (2).
  • FIG. 1 is a schematic configuration diagram of a heat pump water heater 1 according to an embodiment of the present invention.
  • the heat pump water heater 1 is a device that heats tap water and supplies hot water to a household bathtub or the like by performing a vapor compression refrigeration cycle operation using C02 refrigerant.
  • the heat pump water heater 1 mainly includes a hot water storage unit 3 having a hot water storage tank 31 for storing hot water, and a heat pump unit 2 having a refrigerant circuit 20! /.
  • the hot water storage unit 3 is mainly composed of a hot water storage tank 31, a circulation pump 32, and a three-way valve 39.
  • the hot water storage tank 31 has a water supply port 33 on the bottom wall and a hot water outlet 34 on the upper wall.
  • the hot water storage tank 31 is supplied with tap water from the water supply port 33 and can discharge hot hot water stored in the hot water storage tank 31 from the hot water outlet 34 and supply it to a bathtub or the like.
  • a water supply channel 38 for supplying tap water is connected to the water supply port 33.
  • a water intake port 35 is opened on the bottom wall of the hot water storage tank 31, and a hot water supply port 36 is opened on the upper part of the side wall (peripheral wall).
  • the intake port 35 and the hot water supply port 36 are connected to the circulation path 6, and the circulation path 32 is connected to a circulation pump 32 and a hydrothermal exchange 22 of the heat pump unit 2 described later.
  • the circulation pump 32 is connected in the vicinity of the water intake 35 of the hot water storage tank 31. Further, a water heat exchanger 22 is connected to the discharge side of the circulation pump 32. Circulation pump 32 is hot water storage Unheated water in the tank 31 is taken out from the water outlet 35 to the circulation path 6, and unheated water flows into the heat exchange path 61 in the hydrothermal exchange 22. Unheated water that has flowed into the water heat exchanger 22 is heated in the heat exchange path 61 in the hydrothermal exchanger, and returned to the hot water storage tank 31 from the hot water supply port 36.
  • the three-way valve 39 is provided on the hot water supply port 36 side in the circulation path 6 and is connected to a bypass flow path 62 connected to a water return port 37 provided on the bottom wall of the hot water storage tank 31. For this reason, in this embodiment, hot water does not flow through the bypass flow path 62, but water (hot water) that has entered the circulation path 6 from the intake port 35 flows through the circulation path 6 and returns from the hot water supply port 36 to the hot water storage tank 31.
  • the hot water storage tank 31 has a remaining hot water (50L) temperature sensor ⁇ 6, a remaining hot water (100L) temperature sensor ⁇ 7, and a remaining hot water temperature sensor that detects the temperature of hot water in each layer in the hot water storage tank 31 at a pitch of 50L from the top in the vertical direction.
  • a hot water (150L) temperature sensor ⁇ 8 and a remaining hot water (200L) temperature sensor ⁇ 9 are provided.
  • a water supply temperature sensor T10 for detecting the water supply temperature is provided at the bottom of the hot water storage tank 31.
  • the remaining hot water (50L) temperature sensor ⁇ 6 the remaining hot water (100L) temperature sensor ⁇ 7, the remaining hot water (150L) temperature sensor ⁇ 8, the remaining hot water (200L) temperature sensor ⁇ 9, and the feed water temperature sensor T10 are the thermistor. It becomes mosquito.
  • the heat pump unit 2 is installed outdoors and has a refrigerant circuit 20.
  • the refrigerant circuit 20 mainly includes a compressor 21, a hydrothermal exchange 22 constituting a heat exchange path 61, an electric expansion valve 23 as an expansion mechanism, an evaporator 24, a liquid gas heat exchange, and a muffler 26. , Are connected in order.
  • the compressor 21 is a compressor whose operating capacity can be varied.
  • the compressor 21 is a swing type compressor driven by a motor whose rotation speed is controlled by an inverter.
  • the swing type compressor is a kind of rotary type compressor. Details of the swing compressor will be described later.
  • Hydrothermal heat exchange 22 is a heat exchange functioning as a refrigerant condenser. Hydrothermal exchange 22 The high-temperature and high-pressure gas refrigerant compressed in the compressor 21 is condensed by exchanging heat with unheated water sent from the circulation pump 32 (heating the unheated water).
  • the water heat exchanger 22 has a gas side connected to the discharge side of the compressor 21 and a liquid side connected to the electric expansion valve 23.
  • the electric expansion valve 23 is connected to the liquid side of the evaporator 24, and adjusts the pressure and flow rate of the refrigerant flowing in the evaporator 24.
  • the evaporator 24 is a fin-and-tube heat exchanger of cross fin type composed of heat transfer tubes and a large number of fins. It exchanges heat with outdoor air and evaporates the incoming liquid refrigerant.
  • the liquid-gas heat exchange is provided with a liquid refrigerant passage 25a through which the liquid refrigerant flowing out of the hydrothermal exchange passes and a gas refrigerant passage 25b through which the gas refrigerant flowing out of the evaporator 24 passes, and flows out of the hydrothermal exchange 22.
  • Heat exchange is performed between the liquid refrigerant and the gas refrigerant flowing out of the evaporator 24. That is, in the liquid gas heat exchanger 25, the liquid refrigerant passage 25a constitutes a part of the liquid refrigerant pipe 28 connecting the water heat exchanger 22 and the electric expansion valve 23, and the gas refrigerant passage 25b is compressed with the evaporator 24.
  • a part of the gas refrigerant pipe 29 connecting the machine 21 is formed.
  • Liquid-gas heat exchange is performed by exchanging heat between the high-pressure refrigerant that flows out of the water heat exchanger 22 and flows into the electric expansion valve 23, and the low-pressure refrigerant that flows out of the evaporator 24 and flows into the compressor.
  • Supercooling can be imparted to the refrigerant that has flowed out of the heat exchange, and the refrigerant flowing into the compressor 21 can be heated to approach an overheated state. For this reason, the degree of supercooling of the liquid refrigerant sent to the evaporator 24 can be increased, and the generation of flash gas in the liquid refrigerant pipe 28 can be prevented. Further, the compressor 21 can be prevented from being wet-compressed, thereby enabling stable operation.
  • the heat pump unit 2 serves as a blower fan for sucking outdoor air into the unit, exchanging heat with the refrigerant in the evaporator 24, and then discharging the air after heat exchange to the outside.
  • Outdoor fan 27 This outdoor fan 27 is a fan capable of varying the air volume Wo of air supplied to the evaporator 24.
  • the outdoor fan 27a is driven by an outdoor fan motor 27a that also serves as a DC fan motor and an outdoor fan motor 27a.
  • Propeller fan 27b Propeller fan 27b.
  • the muffler 26 is connected between the liquid gas heat exchange 25 and the suction side of the compressor 21, This is a device for reducing the pulsation of the refrigerant flow. Further, the muffler 26 secures the gas refrigerant sucked by the compressor 21, thereby preventing the compressor 21 from running out of the sucked gas and improving the volumetric efficiency of the compressor 21.
  • the configuration of the muffler 26 will be described later.
  • the heat pump unit 2 is provided with various sensors.
  • the heat pump unit 2 includes a discharge temperature sensor Tl for detecting the discharge temperature of the compressor 21, an HPS 40 as a pressure protection switch, and the temperature of the refrigerant flowing in the evaporator 24 (that is, the evaporation temperature).
  • An evaporation temperature sensor T2 for detecting the corresponding refrigerant temperature) and an outside air temperature sensor 3 for detecting the temperature of the outdoor air flowing into the unit are provided.
  • the circulation path 6 is provided with a tapping temperature sensor T4 on the downstream side of the heat exchange path 61 (specifically, between the hydrothermal exchange and the three-way valve), and on the upstream side of the heat exchange path 61 (specifically, Specifically, an incoming water temperature sensor T5 is provided between the circulation pump 32 and the water heat exchanger 22).
  • the discharge temperature sensor Tl, the evaporation temperature sensor ⁇ 2, the outside air temperature sensor ⁇ 3, the hot water temperature sensor ⁇ 4, and the incoming water temperature sensor ⁇ 5 are also thermistors.
  • control unit 7 is configured using, for example, a microcomputer having a CPU, a memory, an input / output interface, and the like. Further, as shown in FIG. 2, the control unit 7 is connected so that it can receive detection signals of various sensors T1 to T10, 40, and various devices and valves 21 based on these detection signals. , 23, 27, 32, 39 can be controlled.
  • FIG. 3 is a schematic plan view of a swing type compressor according to an embodiment of the present invention.
  • the compressor 21 is used as a compressor of a refrigeration apparatus that uses C02 refrigerant.
  • the compressor 21 has a piston 44 in which a substantially cylindrical roller 42 and a blade 43 protruding outward in the radial direction of the roller 42 are integrally formed.
  • the roller 42 is fitted in an eccentric portion 45 formed integrally with the drive shaft 41.
  • the piston 44 is housed in a cylinder chamber 48 formed in the cylinder 46 and having a substantially circular cross section.
  • a bush fitting hole 47 is formed in the cylinder 46 in contact with the cylinder chamber 48, and a substantially semi-cylindrical bush 49 is fitted in the bush fitting hole 47.
  • the bush 49 has the flat surfaces of the bush 49 facing each other, The both sides of the blade 43 of the piston 44 are slidably sandwiched by the flat surface of the bush 49.
  • the cylinder chamber 48 is divided into two chambers by the piston 44.
  • the suction port 50 opens to the inner peripheral surface of the cylinder chamber 48, and the suction chamber 51 Is forming.
  • a discharge port (not shown) opens on the inner peripheral surface of the cylinder chamber 48 to form a discharge chamber 52.
  • the eccentric part 45 rotates eccentrically around the drive shaft 41, and the roller 42 fitted to the eccentric part 45 makes the outer peripheral surface of the roller 42 the inner periphery of the cylinder chamber 48. Revolves in contact with the surface.
  • the compressor 21 is disposed horizontally and the roller 42 revolves in a horizontal plane.
  • the blade 43 moves forward and backward while being held by the bushes 49 on both sides. Then, while suctioning low-pressure gas refrigerant from the suction port 50 (see FIG.
  • Synthetic oil as a lubricating oil is mixed in the high-pressure gas refrigerant, and when the compressor 21 performs a compression operation, the sliding surface inside the compressor 21 (for example, the inner peripheral surface of the roller 42 and the eccentric portion 45 (Outer peripheral surface, outer peripheral surface of roller 42, inner peripheral surface of cylinder chamber 48, etc.) Force Lubricated with lubricating oil mixed in refrigerant.
  • the muffler 26 includes a muffler body 26a and a filter 26b.
  • the muffler body 26a also has a cylindrical part force having a pipe inner diameter larger than the pipe inner diameter of the gas refrigerant pipe 29.
  • the muffler 26 provided on the side of the compressor 21 has an inlet pipe 12 attached above the muffler body 26a and an outlet pipe 13 attached below.
  • the inlet pipe 12 and the outlet pipe 13 are part of the gas refrigerant pipe 29.
  • a hemispherical filter 26b that passes through the muffler body 26a is attached between the inlet pipe 12 and the outlet pipe 13.
  • the outer shape of the filter 26b when viewed from above coincides with the inner diameter of the muffler body 26a.
  • the filter 26b collects foreign matters in the refrigerant that flows from the evaporator 24 side to the compressor 21 side.
  • the gas refrigerant flows from the inlet pipe 12 above the muffler 26, passes through the filter 26 b, removes foreign matter, and flows from the outlet pipe 13 below the muffler 26 to the suction side of the compressor 21.
  • the muffler 26 is fixed so as to be integrated with the side wall portion of the compressor 21 main body.
  • the mounting bracket 10 which is also a plate material bent in a substantially U shape when viewed from above, is welded at its middle to the outer peripheral surface of the compressor 21 body. Has been fixed. Both ends of the mounting bracket 10 protrude from the main body of the compressor 21 and expand in an arc shape.
  • a screw mounting portion 10a is formed at one end thereof, and a system joint hole 10b is formed at the other end. Yes.
  • an elongated plate-like fastening band 11 having a metal force is wound, one end of which is engaged with the system fitting hole 10b of the mounting bracket 10, and the other end is attached.
  • the screw 14 is attached to the screw mounting portion 10a of the mounting bracket 10.
  • the fastening band 11 is pulled to the mounting bracket 10 by fastening the mounting screw 14, and the muffler body 26a is fixed to the compressor 21 body with the muffler body 26a being sandwiched between the fastening band 11 and the mounting bracket 10.
  • the muffler 26 is supported by the mounting bracket 10 and the outlet pipe 13 so as to be integrated with the main body of the compressor 21 at two upper and lower positions.
  • the compressor 21 is driven and the circulation pump 32 is driven.
  • the low-pressure gas refrigerant sucked into the compressor 21 is compressed to become a high-pressure gas refrigerant. Thereafter, the high-pressure gas refrigerant is sent to the hydrothermal exchange, and is condensed by exchanging heat with unheated water supplied by the circulation pump 32 to become a high-pressure liquid refrigerant. Then, the high-pressure liquid refrigerant flows into the liquid-gas heat exchange, and is further cooled by exchanging heat with the gas refrigerant evaporated in the evaporator 24, and enters a supercooled state.
  • the supercooled high-pressure liquid refrigerant is depressurized by the electric expansion valve 23 to near the suction pressure of the compressor 21 and is sent to the evaporator 24 as a low-pressure gas-liquid two-phase refrigerant. Heat is exchanged with the outdoor air supplied by the outdoor fan 27 in the evaporator 24 km, and evaporates to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant flows into the liquid gas heat exchange, is further heated by exchanging heat with the liquid refrigerant condensed in the hydrothermal exchange, and becomes overheated.
  • the low-pressure gas refrigerant flows into the muffler 26, and the low-pressure gas refrigerant that has flowed into the muffler 26 is again sucked into the compressor 21.
  • the stored water flows out from the intake 35 provided at the bottom of the hot water storage tank 31, and this flows through the heat exchange path 61 of the circulation path 6.
  • the unheated water flowing through the heat exchange path 61 of the circulation path 6 is heated by the hydrothermal exchange functioning as a condenser (boiling), and the hot water inlet through the three-way valve 39.
  • the water is returned from 36 to the upper part of the hot water storage tank 31.
  • the control unit 7 receives the control signal, and the hot water in the circulation path 6 circulates in the bypass flow path 62. Switch the three-way valve 39 to ring. That is, the control unit 7 performs binos operation when the boiling temperature is equal to or lower than the predetermined temperature, and returns the low temperature hot water below the predetermined temperature from the hot water supply port 36 to the hot water storage tank 31 without returning it to the water return port 37. To return to hot water storage tank 31.
  • the low-temperature water (hot water) is returned to the lower side of the hot water storage tank 31 so that it is not mixed with the hot hot water at the upper part of the hot water storage tank 31.
  • the control unit 7 switches the three-way valve 39 so that the normal operation state in which the bypass channel 62 is not circulated is performed.
  • the hot water having a high temperature is returned to the hot water storage tank 31 through the hot water supply port 36, and the hot water in the upper part of the hot water storage tank 31 is maintained at a high temperature.
  • control unit 7 receives data from the various temperature sensors ⁇ 1 to ⁇ 10, and performs various controls based on these data. For example, the opening degree of the electric expansion valve 23 is adjusted so that the boiling temperature detected by the tapping temperature sensor ⁇ 4 becomes the target boiling temperature. If the temperature of the incoming water temperature sensor ⁇ 5 is equal to or higher than the predetermined temperature, the operation is stopped because the hot water in the hot water storage tank 31 is boiling up, or the compressor 21 is operated based on the temperature of the outside air temperature sensor ⁇ 3. The hot water heating capacity is adjusted by controlling the operation frequency.
  • This heat pump water heater 1 does not have a refrigerant liquid reservoir function instead of an accumulator.
  • the muffler 26 it is possible to prevent excessive refrigerant from being generated in the refrigerant circuit 20, and it is possible to prevent the compressor 21 from running out of suction gas. Moreover, noise generation in the vicinity of the compressor 21 can be suppressed.
  • vibration of the compressor 21 can be suppressed by fixing the muffler 26 and the compressor 21 so as to be integrated. For this reason, noise generation in the compressor 21 can be suppressed.
  • a filter 26 b provided inside the muffler body 26 a.
  • the muffler body 26a provided with the filter 26b has a flow passage cross-sectional area larger than the flow passage cross-sectional area of the inlet pipe 12, so that the flow passage cross-sectional area of the filter 26b can be widened. .
  • the muffler 26 is arranged vertically and takes in a low-pressure gas refrigerant from the upper part and flows it out to the lower force compressor 21.
  • the liquid refrigerant is mixed into the gas refrigerant and flows into the muffler 26 at a low outside temperature, the liquid refrigerant does not collect easily and is filled in the refrigerant circuit 20.
  • the refrigerant can be used efficiently. For this reason, a shortage of intake gas in the compressor 21 can be suppressed, and the refrigerant used can be reduced.
  • the refrigerant gas sent to the compressor 21 can be overheated to prevent wet compression or liquid compression.
  • an abnormal increase in the internal pressure of the compressor 21 can be suppressed, and damage to the compressor 21 can be prevented.
  • the liquid refrigerant The generation of flash gas in the tube 28 can be prevented. Thereby, the fall of the capability of the electric expansion valve 23 can be prevented.
  • the water heat exchanger 22 is used as the first heat exchanger, and water is heated by heat exchange between the refrigerant and the water to obtain hot water.
  • the heat pump water heater is used as the refrigeration apparatus.
  • the refrigeration apparatus is not limited to this, and may be an air conditioner such as a multi-type air conditioner, a room air conditioner, or a central air conditioner.
  • the swing type compressor 21 in which the roller 42 and the blade 43 are integrally formed is used.
  • the vane 43a and the roller 42a corresponding to the blade are Separately, the drive shaft is driven with the vane 43a urged toward the roller 42a by the spring 53 provided in the vane groove 47a and the tip always in contact with the outer peripheral surface of the roller 42.
  • It may be a rotary type compressor configured to advance and retreat in the vane groove 47a with the rotation of 41.
  • the hot water storage tank 31 is provided. However, in normal boiling operation, unheated water flows into the heat exchange path 61 constituted by the hydrothermal exchanger 22, and this heat exchange path If it is heated as it flows through 61 and high-temperature water flows out of this heat exchange path 61, it does not have a hot water storage tank 31!
  • the temperature detecting means is a thermistor, but the temperature detecting means is not limited to the thermistor.
  • carbon dioxide gas is used as the refrigerant to be used.
  • the refrigerant is not limited to carbon dioxide gas, and may be a supercritical refrigerant such as ethylene, ethane, or acid-nitrogen.
  • Use refrigerants such as dichlorodifluoromethane (R-12) and chlorodifluoromethane (R-22) that are not used in critical conditions.
  • the refrigerating apparatus can suppress the intake gas shortage of the compressor and the generation of noise in the vicinity of the compressor, and is useful as a refrigerating apparatus including a rotary compressor (including a swing type).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

A heat pump hot water supplier where surplus refrigerant is not produced in a refrigerant circuit, thereby a shortage of suction gas in a rotary compressor is prevented, and where an occurrence of noise near the compressor is suppressed. A refrigerating apparatus (1) has the compressor (21), a first heat exchanger (22), an expansion mechanism (23), a second heat exchanger (24), and a muffler (26). The compressor is of a rotary type and is used to compress the refrigerant. The first heat exchanger exchanges heat between a first fluid and the high-temperature high-pressure refrigerant compressed by the compressor. The expansion mechanism reduces the pressure of the refrigerant condensed in the first heat exchanger. The second heat exchanger exchanges heat between a second fluid and the refrigerant reduced in pressure by the expansion mechanism. The muffler is disposed between the second heat exchanger and the compressor and reduces the pulsation of the flow of the refrigerant.

Description

明 細 書  Specification
ヒートポンプ給湯機  Heat pump water heater
技術分野  Technical field
[0001] 本発明は、ロータリー式圧縮機 (スイング式を含む)を備える冷凍装置に関する。  [0001] The present invention relates to a refrigeration apparatus including a rotary compressor (including a swing type).
背景技術  Background art
[0002] 従来、特許文献 1のような技術では、ロータリー式圧縮機、凝縮器、減圧機構、およ び蒸発器を順次接続した冷凍装置において、蒸発器と圧縮機の吸入側との間にァ キュムレータを設置するような構成にして 、る。  Conventionally, in a technique such as Patent Document 1, in a refrigeration apparatus in which a rotary compressor, a condenser, a pressure reducing mechanism, and an evaporator are sequentially connected, between the evaporator and the suction side of the compressor. Use a configuration that installs an accumulator.
特許文献 1:特開 2003 - 247490  Patent Document 1: JP 2003-247490 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかし、特許文献 1のように、アキュムレータのような液溜め機構を設けると、圧縮機 が吸入ガス不足になったり、無駄に冷媒が必要になったりする。 [0003] However, as in Patent Document 1, if a liquid storage mechanism such as an accumulator is provided, the compressor runs short of intake gas or wasteful refrigerant is required.
本発明の課題は、冷媒回路に余剰冷媒が発生しないようにすることにより、圧縮機 の吸入ガス不足を防ぐこと、および、ロータリー式圧縮機の近傍における騒音発生を 抑制することである。  It is an object of the present invention to prevent a shortage of suction gas in a compressor and to suppress noise generation in the vicinity of a rotary compressor by preventing excessive refrigerant from being generated in the refrigerant circuit.
課題を解決するための手段  Means for solving the problem
[0004] 第 1発明に係る冷凍装置は、圧縮機と、第 1熱交換器と、膨張機構と、第 2熱交換 器と、マフラーとを備える。圧縮機は、冷媒を圧縮するロータリー式の圧縮機である。 第 1熱交 は、圧縮機で圧縮された高温高圧の冷媒を第 1流体と熱交換させる。 膨張機構は、第 1熱交換器内で凝縮された冷媒を減圧する。第 2熱交換器は、膨張 機構で減圧された冷媒を第 2流体と熱交換させる。マフラーは、第 2熱交換器と圧縮 機との間に配置され、冷媒の流れの脈動を低減する。 [0004] A refrigeration apparatus according to a first invention includes a compressor, a first heat exchanger, an expansion mechanism, a second heat exchanger, and a muffler. The compressor is a rotary compressor that compresses a refrigerant. In the first heat exchange, the high-temperature and high-pressure refrigerant compressed by the compressor exchanges heat with the first fluid. The expansion mechanism depressurizes the refrigerant condensed in the first heat exchanger. The second heat exchanger causes the refrigerant decompressed by the expansion mechanism to exchange heat with the second fluid. The muffler is disposed between the second heat exchanger and the compressor to reduce the pulsation of the refrigerant flow.
従来、自然冷媒ヒートポンプ式電気給湯機などの冷凍装置において、ロータリー式 (スイング式を含む)の圧縮機の吸入側にアキュムレータを配置している。しかしなが ら、アキュムレータのような液溜め機構を設けると、圧縮機が吸入ガス不足になったり 、無駄に冷媒が必要になったりする。 そこで、本発明では、アキュムレータの代わりに冷媒液溜め機能を有さないマフラ 一を設置することにより、冷媒回路に余剰冷媒が発生しないようにでき、圧縮機の吸 入ガス不足を防ぐことができる。また、ロータリー式圧縮機の近傍における騒音発生 を抑制することができる。 Conventionally, in a refrigeration apparatus such as a natural refrigerant heat pump type electric water heater, an accumulator is arranged on the suction side of a rotary type (including a swing type) compressor. However, if a liquid storage mechanism such as an accumulator is provided, the compressor may run out of suction gas or wasteful refrigerant may be required. Therefore, in the present invention, by installing a muffler that does not have a refrigerant liquid reservoir function in place of the accumulator, it is possible to prevent excessive refrigerant from being generated in the refrigerant circuit, and to prevent shortage of suction gas in the compressor. . In addition, noise generation near the rotary compressor can be suppressed.
[0005] 第 2発明に係る冷凍装置は、第 1発明に係る冷凍装置であって、マフラーは、圧縮 機の側方に配置され、圧縮機の側壁部に一体になるように固定されている。  [0005] A refrigeration apparatus according to a second aspect of the present invention is the refrigeration apparatus according to the first aspect of the present invention, wherein the muffler is disposed on the side of the compressor and fixed so as to be integrated with the side wall portion of the compressor. .
この冷凍装置では、マフラーと圧縮機とを一体になるように固定することにより、圧 縮機の振動を抑制することができる。このため、圧縮機における騒音発生を抑制する ことができる。  In this refrigeration apparatus, the vibration of the compressor can be suppressed by fixing the muffler and the compressor so as to be integrated. For this reason, noise generation in the compressor can be suppressed.
[0006] 第 3発明に係る冷凍装置は、第 1発明または第 2発明に係る冷凍装置であって、マ フラーは、マフラー本体部と、フィルタ部とを有する。マフラー本体部は、第 2熱交換 器と圧縮機とを接続するガス冷媒管の流路断面積よりも大きい流路断面積を有する 筒状のものである。フィルタ部は、マフラー本体部の内部に支持され、第 2熱交 力 圧縮機に向かって流れる冷媒中の異物を捕集する。  [0006] A refrigeration apparatus according to a third aspect of the present invention is the refrigeration apparatus according to the first or second aspect of the present invention, wherein the muffler has a muffler main body part and a filter part. The muffler body has a cylindrical shape having a channel cross-sectional area larger than the channel cross-sectional area of the gas refrigerant pipe connecting the second heat exchanger and the compressor. The filter part is supported inside the muffler main body part and collects foreign matters in the refrigerant flowing toward the second heat exchange compressor.
この冷凍装置では、マフラー本体部の内部に備えられたフィルタ部により、第 2熱交 換器カも圧縮機に向かって流れる冷媒中の異物を捕集している。また、フィルタ部が 備えられているマフラー本体部は、ガス冷媒管の流路断面積よりも大きい流路断面 積を有して 、るため、フィルタ部の流路断面積を広くすることができる。  In this refrigeration apparatus, the filter unit provided inside the muffler main body also collects foreign matter in the refrigerant that flows toward the compressor in the second heat exchanger. In addition, since the muffler main body portion provided with the filter portion has a flow passage cross-sectional area larger than the flow passage cross-sectional area of the gas refrigerant pipe, the flow passage cross-sectional area of the filter portion can be widened. .
このため、冷媒回路内を冷媒中の異物が循環することを防ぐことができ、各機器の 損傷または各機器の能力低下が異物によって引き起こされることを防ぐことができる。 また、フィルタ部における圧力損失の増加を抑えることができる。  For this reason, it can prevent that the foreign material in a refrigerant | coolant circulates in the inside of a refrigerant circuit, and can prevent that the damage of each apparatus or the capability fall of each apparatus is caused by a foreign material. Moreover, the increase in the pressure loss in the filter part can be suppressed.
[0007] 第 4発明に係る冷凍装置は、第 1発明から第 3発明のいずれかに係る冷凍装置で あって、マフラーは、第 2熱交換器力も流出した低圧のガス冷媒をマフラーの上部か ら取り入れ、マフラーの下部力 圧縮機へ流出させる。 [0007] A refrigeration apparatus according to a fourth aspect of the present invention is the refrigeration apparatus according to any of the first to third aspects of the present invention, wherein the muffler supplies low-pressure gas refrigerant that has also flowed out of the second heat exchanger power to the upper part of the muffler. And let it flow out to the lower force compressor of the muffler.
この冷凍装置では、マフラーは、上部から低圧のガス冷媒を取り入れ、下部から圧 縮機へ流出するように縦に配置されて 、る。  In this refrigeration system, the muffler is arranged vertically so as to take in the low-pressure gas refrigerant from the upper part and to flow out from the lower part to the compressor.
したがって、低外気温時などに、液冷媒がガス冷媒に混入して、マフラー内に流入 してくる場合においても、液冷媒が溜まりにくい構造となり、冷媒回路中に充填されて いる冷媒を効率よく使用することができる。このため、圧縮機の吸入ガス不足を抑制 でき、使用冷媒を低減することができる。 Therefore, even when the liquid refrigerant is mixed into the gas refrigerant and flows into the muffler at low outside air temperature, the liquid refrigerant does not easily accumulate and is filled in the refrigerant circuit. Can be used efficiently. For this reason, the shortage of intake gas in the compressor can be suppressed, and the refrigerant used can be reduced.
[0008] 第 5発明に係る冷凍装置は、第 1発明から第 4発明のいずれかに係る冷凍装置で あって、液ガス熱交翻をさらに備える。液ガス熱交翻は、第 1熱交^^から流出 して膨張機構に流入する液冷媒と、第 2熱交 力 流出して圧縮機に流入するガ ス冷媒との熱交換を行う。  [0008] A refrigeration apparatus according to a fifth aspect of the present invention is the refrigeration apparatus according to any of the first to fourth aspects of the present invention, further comprising liquid-gas heat exchange. Liquid gas heat exchange exchanges heat between the liquid refrigerant that flows out of the first heat exchanger and flows into the expansion mechanism, and the gas refrigerant that flows out of the second heat exchanger and flows into the compressor.
この冷凍装置では、液ガス熱交換器を備えることで、圧縮機に送られる冷媒ガスを 過熱状態として、湿り圧縮や液圧縮を防止することができる。これにより、圧縮機の内 圧の異常上昇を抑えることができ、圧縮機の損傷を防ぐことができる。また、蒸発器に 送られる液冷媒の過冷却度を大きくすることにより、液冷媒管でのフラッシュガスの発 生を防止することができる。これにより、膨張機構の能力の低下を防ぐことができる。  In this refrigeration apparatus, by providing a liquid gas heat exchanger, the refrigerant gas sent to the compressor can be overheated to prevent wet compression or liquid compression. As a result, an abnormal increase in the internal pressure of the compressor can be suppressed, and damage to the compressor can be prevented. In addition, the generation of flash gas in the liquid refrigerant pipe can be prevented by increasing the degree of supercooling of the liquid refrigerant sent to the evaporator. Thereby, the fall of the capability of an expansion mechanism can be prevented.
[0009] 第 6発明に係る冷凍装置は、第 1発明から第 5発明のいずれかに係る冷凍装置で あって、第 1流体は水であり、第 1熱交 は、冷媒を水と熱交換させることで水を加 熱する給湯用熱交 である。 [0009] A refrigeration apparatus according to a sixth invention is the refrigeration apparatus according to any of the first to fifth inventions, wherein the first fluid is water, and the first heat exchange is for exchanging heat between the refrigerant and water. It is a heat exchange for hot water supply that heats water by heating.
この冷凍装置では、第 1熱交 として、給湯用熱交 を使用しており、冷媒と 水とを熱交換させることにより、水を加熱して、温湯を得ている。  In this refrigeration system, hot water supply heat exchange is used as the first heat exchange, and heat is exchanged between the refrigerant and water to heat the water and obtain hot water.
したがって、冷凍装置は、ヒートポンプ給湯機のヒートポンプユニットの場合におい ても、冷媒回路に余剰冷媒が発生しないようにでき、圧縮機の吸入ガス不足を防ぐこ とができる。また、圧縮機の近傍における騒音発生を抑制させることができる。  Therefore, the refrigeration apparatus can prevent excessive refrigerant from being generated in the refrigerant circuit even in the case of the heat pump unit of the heat pump water heater, and can prevent shortage of intake gas in the compressor. Moreover, noise generation near the compressor can be suppressed.
発明の効果  The invention's effect
[0010] 第 1発明に係る冷凍装置では、アキュムレータの代わりに冷媒液溜め機能を有さな いマフラーを設置することにより、冷媒回路に余剰冷媒が発生しないようにでき、圧縮 機の吸入ガス不足を防ぐことができる。また、ロータリー式圧縮機の近傍における騒 音発生を抑制することができる。  [0010] In the refrigeration apparatus according to the first aspect of the invention, by installing a muffler that does not have a refrigerant liquid storage function instead of the accumulator, it is possible to prevent excessive refrigerant from being generated in the refrigerant circuit, and the intake gas of the compressor is insufficient. Can be prevented. In addition, noise generation in the vicinity of the rotary compressor can be suppressed.
第 2発明に係る冷凍装置では、マフラーと圧縮機とを一体になるように固定すること により、圧縮機の振動を抑制することができる。このため、圧縮機における騒音発生 を抑制することができる。  In the refrigeration apparatus according to the second aspect of the present invention, the vibration of the compressor can be suppressed by fixing the muffler and the compressor so as to be integrated. For this reason, noise generation in the compressor can be suppressed.
第 3発明に係る冷凍装置では、冷媒回路内を冷媒中の異物が循環することを防ぐ ことができ、各機器の損傷または各機器の能力低下が異物によって引き起こされるこ とを防ぐことができる。また、フィルタ部における圧力損失の増加を抑えることができる In the refrigeration apparatus according to the third aspect of the invention, the foreign matter in the refrigerant is prevented from circulating in the refrigerant circuit. It is possible to prevent damage to each device or a decrease in the performance of each device from a foreign object. Moreover, an increase in pressure loss in the filter portion can be suppressed.
[0011] 第 4発明に係る冷凍装置では、低外気温時などに、液冷媒がガス冷媒に混入して、 マフラー内に流入してくる場合においても、液冷媒が溜まりにくい構造となり、冷媒回 路中に充填されている冷媒を効率よく使用することができる。このため、圧縮機の吸 入ガス不足を抑制でき、使用冷媒を低減することができる。 [0011] In the refrigeration apparatus according to the fourth aspect of the invention, even when the liquid refrigerant is mixed into the gas refrigerant and flows into the muffler at a low outside air temperature, the liquid refrigerant does not easily accumulate, The refrigerant filled in the path can be used efficiently. For this reason, the shortage of the suction gas of the compressor can be suppressed, and the refrigerant used can be reduced.
第 5発明に係る冷凍装置では、液ガス熱交換器を備えることで、圧縮機に送られる 冷媒ガスを過熱状態として、湿り圧縮や液圧縮を防止することができる。これにより、 圧縮機の内圧の異常上昇を抑えることができ、圧縮機の損傷を防ぐことができる。ま た、蒸発器に送られる液冷媒の過冷却度を大きくすることにより、液冷媒管でのフラッ シュガスの発生を防止することができる。これにより、膨張機構の能力の低下を防ぐこ とがでさる。  In the refrigeration apparatus according to the fifth aspect of the invention, by providing the liquid gas heat exchanger, the refrigerant gas sent to the compressor can be overheated to prevent wet compression or liquid compression. As a result, an abnormal increase in the internal pressure of the compressor can be suppressed, and damage to the compressor can be prevented. In addition, the generation of flash gas in the liquid refrigerant pipe can be prevented by increasing the degree of supercooling of the liquid refrigerant sent to the evaporator. This prevents a decrease in the capacity of the expansion mechanism.
第 6発明に係る冷凍装置では、冷凍装置は、ヒートポンプ給湯機のヒートポンプュ ニットの場合においても、冷媒回路に余剰冷媒が発生しないようにでき、圧縮機の吸 入ガス不足を防ぐことができる。また、圧縮機の近傍における騒音発生を抑制させる ことができる。  In the refrigeration apparatus according to the sixth aspect of the invention, the refrigeration apparatus can prevent excessive refrigerant from being generated in the refrigerant circuit even in the case of a heat pump unit of a heat pump water heater, and can prevent a shortage of suction gas in the compressor. In addition, noise generation near the compressor can be suppressed.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明の一実施形態に力かるヒートポンプ給湯機の回路概略構成図。 FIG. 1 is a schematic circuit diagram of a circuit configuration of a heat pump water heater that works in one embodiment of the present invention.
[図 2]ヒートポンプ給湯機の制御ブロック図。  [Fig. 2] Control block diagram of heat pump water heater.
[図 3]スイング式圧縮機の動作状態を示す平面概略図。  FIG. 3 is a schematic plan view showing an operating state of the swing type compressor.
[図 4(a)]圧縮機とマフラーとを固定した状態を示す正面図。  FIG. 4 (a) is a front view showing a state where the compressor and the muffler are fixed.
[図 4(b)]図 4 (a)の平面図。  FIG. 4 (b) is a plan view of FIG. 4 (a).
[図 5]変形例(2)に力かるロータリー式圧縮機の平面概略図。  FIG. 5 is a schematic plan view of a rotary compressor that works on a modification (2).
符号の説明  Explanation of symbols
[0013] 1 ヒートポンプ給湯機 (冷凍装置) [0013] 1 Heat pump water heater (refrigeration system)
21 圧縮機  21 Compressor
22 水熱交換器 (第 1熱交換器、給湯用熱交換器) 23 電動膨張弁 (膨張機構) 22 Water heat exchanger (1st heat exchanger, heat exchanger for hot water supply) 23 Electric expansion valve (expansion mechanism)
24 蒸発器 (第 2熱交換器)  24 Evaporator (second heat exchanger)
25 液ガス熱交  25 Liquid gas heat exchange
26 マフラー  26 Muffler
26a マフラー本体(マフラー本体部)  26a Muffler body (muffler body)
26b フィルタ(フィルタ部)  26b Filter (filter part)
29 ガス冷媒管  29 Gas refrigerant pipe
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、図面に基づいて、本発明に係るヒートポンプ給湯機 1の実施形態について説 明する。 Hereinafter, an embodiment of a heat pump water heater 1 according to the present invention will be described based on the drawings.
<ヒートポンプ給湯機の構成 >  <Configuration of heat pump water heater>
図 1は、本発明の一実施形態に係るヒートポンプ給湯機 1の概略構成図である。ヒ ートポンプ給湯機 1は、 C02冷媒を用いて蒸気圧縮式の冷凍サイクル運転を行うこと によって、水道水を加熱し家庭の浴槽などに温湯を供給する装置である。ヒートボン プ給湯機 1は、主として、温湯を貯める貯湯タンク 31を有する貯湯ユニット 3と、冷媒 回路 20を有するヒートポンプユニット 2とを備えて!/、る。  FIG. 1 is a schematic configuration diagram of a heat pump water heater 1 according to an embodiment of the present invention. The heat pump water heater 1 is a device that heats tap water and supplies hot water to a household bathtub or the like by performing a vapor compression refrigeration cycle operation using C02 refrigerant. The heat pump water heater 1 mainly includes a hot water storage unit 3 having a hot water storage tank 31 for storing hot water, and a heat pump unit 2 having a refrigerant circuit 20! /.
(1)貯湯ユニット  (1) Hot water storage unit
貯湯ユニット 3は、主に、貯湯タンク 31と、循環ポンプ 32と、三方弁 39とで構成され る。  The hot water storage unit 3 is mainly composed of a hot water storage tank 31, a circulation pump 32, and a three-way valve 39.
[0015] 貯湯タンク 31は、底壁に給水口 33が設けられ、上壁に出湯口 34が設けられる。貯 湯タンク 31は、給水口 33からに水道水が供給され、出湯口 34から貯湯タンク 31に 貯まった高温の温湯を出湯し、浴槽などに供給可能である。給水口 33には、水道水 を供給する給水用流路 38が接続される。また、貯湯タンク 31の底壁には、取水口 35 が開設され、側壁 (周壁)の上部に給湯口 36が開設されている。取水口 35と給湯口 36とは、循環路 6に接続されており、循環路 6には、循環ポンプ 32と、後述するヒート ポンプユニット 2の水熱交翻 22とが接続されて 、る。  [0015] The hot water storage tank 31 has a water supply port 33 on the bottom wall and a hot water outlet 34 on the upper wall. The hot water storage tank 31 is supplied with tap water from the water supply port 33 and can discharge hot hot water stored in the hot water storage tank 31 from the hot water outlet 34 and supply it to a bathtub or the like. A water supply channel 38 for supplying tap water is connected to the water supply port 33. In addition, a water intake port 35 is opened on the bottom wall of the hot water storage tank 31, and a hot water supply port 36 is opened on the upper part of the side wall (peripheral wall). The intake port 35 and the hot water supply port 36 are connected to the circulation path 6, and the circulation path 32 is connected to a circulation pump 32 and a hydrothermal exchange 22 of the heat pump unit 2 described later.
循環ポンプ 32は、貯湯タンク 31の取水口 35の近傍に接続されている。また、循環 ポンプ 32の吐出側には、水熱交換器 22が接続されている。循環ポンプ 32は、貯湯 タンク 31内の未加熱水を取水口 35から循環路 6に流出させ、水熱交^^ 22内の熱 交換路 61に未加熱水を流入させる。水熱交換器 22に流入された未加熱水は、水熱 交 内の熱交換路 61にお ヽて加熱され、給湯口 36から貯湯タンク 31内に返 ic れ ο。 The circulation pump 32 is connected in the vicinity of the water intake 35 of the hot water storage tank 31. Further, a water heat exchanger 22 is connected to the discharge side of the circulation pump 32. Circulation pump 32 is hot water storage Unheated water in the tank 31 is taken out from the water outlet 35 to the circulation path 6, and unheated water flows into the heat exchange path 61 in the hydrothermal exchange 22. Unheated water that has flowed into the water heat exchanger 22 is heated in the heat exchange path 61 in the hydrothermal exchanger, and returned to the hot water storage tank 31 from the hot water supply port 36.
[0016] 三方弁 39は、循環路 6内の給湯口 36側に設けられ、貯湯タンク 31の底壁に設けら れる返水口 37に接続されるバイパス用流路 62と接続されている。このため、本実施 例では、バイパス用流路 62を温湯が流れずに、取水口 35から循環路 6に入った水( 温湯)が循環路 6を流れて給湯口 36から貯湯タンク 31に戻る通常運転と、取水口 35 力も循環路 6に入った水(温湯)が循環路 6を流れて三方弁 39を介し、バイパス用流 路 62を通過して、返水口 37から貯湯タンク 31に戻るバイパス運転とを行うことができ る。  The three-way valve 39 is provided on the hot water supply port 36 side in the circulation path 6 and is connected to a bypass flow path 62 connected to a water return port 37 provided on the bottom wall of the hot water storage tank 31. For this reason, in this embodiment, hot water does not flow through the bypass flow path 62, but water (hot water) that has entered the circulation path 6 from the intake port 35 flows through the circulation path 6 and returns from the hot water supply port 36 to the hot water storage tank 31. Normal operation and water intake 35 Water (warm water) that entered the circulation path 6 flows through the circulation path 6, passes through the bypass passage 62 through the three-way valve 39, and returns to the hot water storage tank 31 from the return port 37. Bypass operation can be performed.
また、貯湯タンク 31には、周壁に上下方向の上から 50Lピッチで貯湯タンク 31内の 各層の温湯の温度を検出する残湯(50L)温度センサ Τ6、残湯(100L)温度センサ Τ7、残湯(150L)温度センサ Τ8、および残湯(200L)温度センサ Τ9が設けられる。 そして、貯湯タンク 31の最下部には、給水温度を検出する給水温度センサ T10が設 けられる。本実施形態において、残湯(50L)温度センサ Τ6、残湯(100L)温度セン サ Τ7、残湯(150L)温度センサ Τ8、残湯(200L)温度センサ Τ9、および給水温度 センサ T10は、サーミスタカもなる。  In addition, the hot water storage tank 31 has a remaining hot water (50L) temperature sensor 残 6, a remaining hot water (100L) temperature sensor Τ7, and a remaining hot water temperature sensor that detects the temperature of hot water in each layer in the hot water storage tank 31 at a pitch of 50L from the top in the vertical direction. A hot water (150L) temperature sensor Τ8 and a remaining hot water (200L) temperature sensor Τ9 are provided. A water supply temperature sensor T10 for detecting the water supply temperature is provided at the bottom of the hot water storage tank 31. In this embodiment, the remaining hot water (50L) temperature sensor Τ6, the remaining hot water (100L) temperature sensor Τ7, the remaining hot water (150L) temperature sensor Τ8, the remaining hot water (200L) temperature sensor Τ9, and the feed water temperature sensor T10 are the thermistor. It becomes mosquito.
[0017] (2)ヒートポンプユニット [0017] (2) Heat pump unit
ヒートポンプユニット 2は、屋外に設置されており、冷媒回路 20を有している。冷媒 回路 20は、主として、圧縮機 21と、熱交換路 61を構成する水熱交翻 22と、膨張 機構としての電動膨張弁 23と、蒸発器 24と、液ガス熱交 と、マフラー 26と、を 順に接続して構成される。  The heat pump unit 2 is installed outdoors and has a refrigerant circuit 20. The refrigerant circuit 20 mainly includes a compressor 21, a hydrothermal exchange 22 constituting a heat exchange path 61, an electric expansion valve 23 as an expansion mechanism, an evaporator 24, a liquid gas heat exchange, and a muffler 26. , Are connected in order.
圧縮機 21は、運転容量を可変することが可能な圧縮機であり、本実施形態におい て、インバータにより回転数が制御されるモータによって駆動されるスイング式圧縮機 である。スイング式圧縮機は、ロータリー式圧縮機の一種である。このスイング式圧縮 機の詳細については、後に説明する。  The compressor 21 is a compressor whose operating capacity can be varied. In this embodiment, the compressor 21 is a swing type compressor driven by a motor whose rotation speed is controlled by an inverter. The swing type compressor is a kind of rotary type compressor. Details of the swing compressor will be described later.
水熱交 22は、冷媒の凝縮器として機能する熱交^^である。水熱交 22 は、圧縮機 21において圧縮された高温高圧のガス冷媒を、循環ポンプ 32から送ら れてくる未加熱水と熱交換させる (未加熱水を加熱する)ことで凝縮させる。また、水 熱交換器 22は、そのガス側が圧縮機 21の吐出側に接続され、その液側が電動膨張 弁 23に接続されている。 Hydrothermal heat exchange 22 is a heat exchange functioning as a refrigerant condenser. Hydrothermal exchange 22 The high-temperature and high-pressure gas refrigerant compressed in the compressor 21 is condensed by exchanging heat with unheated water sent from the circulation pump 32 (heating the unheated water). The water heat exchanger 22 has a gas side connected to the discharge side of the compressor 21 and a liquid side connected to the electric expansion valve 23.
[0018] 電動膨張弁 23は、蒸発器 24の液側と接続され、蒸発器 24内を流れる冷媒の圧力 や流量などの調節を行う。 The electric expansion valve 23 is connected to the liquid side of the evaporator 24, and adjusts the pressure and flow rate of the refrigerant flowing in the evaporator 24.
蒸発器 24は、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン'アン ド'チューブ型熱交換器であり、屋外の空気と熱交換を行い、流入してくる液冷媒を 蒸発させる。  The evaporator 24 is a fin-and-tube heat exchanger of cross fin type composed of heat transfer tubes and a large number of fins. It exchanges heat with outdoor air and evaporates the incoming liquid refrigerant. Let
液ガス熱交 は、水熱交 から流出した液冷媒が通過する液冷媒通路 25aと、蒸発器 24から流出したガス冷媒が通過するガス冷媒通路 25bとを備え、水熱 交翻22から流出した液冷媒と蒸発器 24から流出したガス冷媒とを熱交換させる。 すなわち、液ガス熱交換器 25では、液冷媒通路 25aが水熱交換器 22と電動膨張弁 23とを連結する液冷媒管 28の一部を構成し、ガス冷媒通路 25bが蒸発器 24と圧縮 機 21とを連結するガス冷媒管 29の一部を構成している。液ガス熱交 は、水 熱交換器 22から流出して電動膨張弁 23に流入する高圧冷媒と、蒸発器 24から流出 して圧縮機に流入する低圧冷媒との熱交換を行うことにより、水熱交 から流 出した冷媒に過冷却を付与し、また、圧縮機 21に流入する冷媒を加熱して過熱状態 に近づけることができる。このため、蒸発器 24に送られる液冷媒の過冷却度を大きく して、液冷媒管 28でのフラッシュガスの発生を防止することができる。また、圧縮機 2 1の湿り圧縮を防止することができ、安定した運転を可能として 、る。  The liquid-gas heat exchange is provided with a liquid refrigerant passage 25a through which the liquid refrigerant flowing out of the hydrothermal exchange passes and a gas refrigerant passage 25b through which the gas refrigerant flowing out of the evaporator 24 passes, and flows out of the hydrothermal exchange 22. Heat exchange is performed between the liquid refrigerant and the gas refrigerant flowing out of the evaporator 24. That is, in the liquid gas heat exchanger 25, the liquid refrigerant passage 25a constitutes a part of the liquid refrigerant pipe 28 connecting the water heat exchanger 22 and the electric expansion valve 23, and the gas refrigerant passage 25b is compressed with the evaporator 24. A part of the gas refrigerant pipe 29 connecting the machine 21 is formed. Liquid-gas heat exchange is performed by exchanging heat between the high-pressure refrigerant that flows out of the water heat exchanger 22 and flows into the electric expansion valve 23, and the low-pressure refrigerant that flows out of the evaporator 24 and flows into the compressor. Supercooling can be imparted to the refrigerant that has flowed out of the heat exchange, and the refrigerant flowing into the compressor 21 can be heated to approach an overheated state. For this reason, the degree of supercooling of the liquid refrigerant sent to the evaporator 24 can be increased, and the generation of flash gas in the liquid refrigerant pipe 28 can be prevented. Further, the compressor 21 can be prevented from being wet-compressed, thereby enabling stable operation.
[0019] また、ヒートポンプユニット 2は、ユニット内に室外空気を吸入して、蒸発器 24におい て冷媒と熱交換させた後に、熱交換後の空気を室外に排出するための送風ファンと しての室外ファン 27を有している。この室外ファン 27は、蒸発器 24に供給する空気 の風量 Woを可変することが可能なファンであり、本実施形態において、 DCファンモ 一タカもなる室外ファンモータ 27aと、室外ファンモータ 27aによって駆動されるプロ ペラファン 27bとから構成される。 [0019] The heat pump unit 2 serves as a blower fan for sucking outdoor air into the unit, exchanging heat with the refrigerant in the evaporator 24, and then discharging the air after heat exchange to the outside. Outdoor fan 27. This outdoor fan 27 is a fan capable of varying the air volume Wo of air supplied to the evaporator 24. In this embodiment, the outdoor fan 27a is driven by an outdoor fan motor 27a that also serves as a DC fan motor and an outdoor fan motor 27a. Propeller fan 27b.
マフラー 26は、液ガス熱交翻 25と圧縮機 21の吸入側との間に接続されており、 冷媒の流れの脈動を低減するための機器である。また、マフラー 26は、圧縮機 21が 吸入するガス冷媒を確保することで、圧縮機 21が吸入ガス不足になることを防ぎ、圧 縮機 21の容積効率を向上させている。マフラー 26の構成については、後に説明す る。 The muffler 26 is connected between the liquid gas heat exchange 25 and the suction side of the compressor 21, This is a device for reducing the pulsation of the refrigerant flow. Further, the muffler 26 secures the gas refrigerant sucked by the compressor 21, thereby preventing the compressor 21 from running out of the sucked gas and improving the volumetric efficiency of the compressor 21. The configuration of the muffler 26 will be described later.
[0020] また、ヒートポンプユニット 2には、各種のセンサが設けられている。具体的には、ヒ ートポンプユニット 2には、圧縮機 21の吐出温度を検出する吐出温度センサ Tl、圧 力保護スィッチとしての HPS40、蒸発器 24内を流れる冷媒の温度 (すなわち蒸発温 度に対応する冷媒温度)を検出する蒸発温度センサ T2、ユニット内に流入する室外 空気の温度を検出する外気温度センサ Τ3が設けられている。また、循環路 6には、 熱交換路 61の下流側 (具体的には、水熱交 と三方弁との間)に出湯温度セ ンサ T4が設けられ、熱交換路 61の上流側 (具体的には、循環ポンプ 32と水熱交換 器 22との間)に入水温度センサ T5が設けられる。本実施例に置いて、吐出温度セン サ Tl、蒸発温度センサ Τ2、外気温度センサ Τ3、出湯温度センサ Τ4、および入水 温度センサ Τ5は、サーミスタカもなる。  In addition, the heat pump unit 2 is provided with various sensors. Specifically, the heat pump unit 2 includes a discharge temperature sensor Tl for detecting the discharge temperature of the compressor 21, an HPS 40 as a pressure protection switch, and the temperature of the refrigerant flowing in the evaporator 24 (that is, the evaporation temperature). An evaporation temperature sensor T2 for detecting the corresponding refrigerant temperature) and an outside air temperature sensor 3 for detecting the temperature of the outdoor air flowing into the unit are provided. In addition, the circulation path 6 is provided with a tapping temperature sensor T4 on the downstream side of the heat exchange path 61 (specifically, between the hydrothermal exchange and the three-way valve), and on the upstream side of the heat exchange path 61 (specifically, Specifically, an incoming water temperature sensor T5 is provided between the circulation pump 32 and the water heat exchanger 22). In this embodiment, the discharge temperature sensor Tl, the evaporation temperature sensor Τ2, the outside air temperature sensor Τ3, the hot water temperature sensor Τ4, and the incoming water temperature sensor Τ5 are also thermistors.
[0021] 本実施形態において、制御部 7は、例えば、 CPU,メモリ、入出力インターフェース などを有するマイクロコンピュータを用いて構成される。また、制御部 7は、図 2に示さ れるように、各種センサ T1〜T10, 40の検出信号を受けることができるように接続さ れるとともに、これらの検出信号などに基づいて各種機器および弁 21, 23, 27, 32 , 39を制御することができるように接続されている。  In the present embodiment, the control unit 7 is configured using, for example, a microcomputer having a CPU, a memory, an input / output interface, and the like. Further, as shown in FIG. 2, the control unit 7 is connected so that it can receive detection signals of various sensors T1 to T10, 40, and various devices and valves 21 based on these detection signals. , 23, 27, 32, 39 can be controlled.
(Α)スイング式圧縮機  (Α) Swing type compressor
図 3は、本発明の一実施形態に係るスイング式圧縮機の平面概略図である。この圧 縮機 21は、 C02冷媒を用いる冷凍装置の圧縮機として用いられるものである。この 圧縮機 21は、略円筒状のローラ 42と、ローラ 42の径方向外側に突出するブレード 4 3とが一体に形成されてなるピストン 44を有する。ローラ 42は、駆動軸 41に一体に形 成された偏心部 45に嵌合している。ピストン 44は、シリンダ 46に形成されて略円形 の断面を有するシリンダ室 48内に収容されている。シリンダ 46には、シリンダ室 48に 接してブッシュ嵌合穴 47が形成されており、ブッシュ嵌合穴 47に略半円柱形状のブ ッシュ 49を嵌合している。ブッシュ 49は、ブッシュ 49の平坦面を互いに対向させて、 ブッシュ 49の平坦面でピストン 44のブレード 43の両側面を摺動可能に挟んでいる。 シリンダ室 48は、ピストン 44によって 2つの室に区画されており、図 3 (b)において、 ブレード 43の右側の室は、吸入口 50がシリンダ室 48の内周面に開口し、吸入室 51 を形成している。一方、図 3 (b)において、ブレード 43の左側の室は、図示しない吐 出口がシリンダ室 48の内周面に開口し、吐出室 52を形成している。 FIG. 3 is a schematic plan view of a swing type compressor according to an embodiment of the present invention. The compressor 21 is used as a compressor of a refrigeration apparatus that uses C02 refrigerant. The compressor 21 has a piston 44 in which a substantially cylindrical roller 42 and a blade 43 protruding outward in the radial direction of the roller 42 are integrally formed. The roller 42 is fitted in an eccentric portion 45 formed integrally with the drive shaft 41. The piston 44 is housed in a cylinder chamber 48 formed in the cylinder 46 and having a substantially circular cross section. A bush fitting hole 47 is formed in the cylinder 46 in contact with the cylinder chamber 48, and a substantially semi-cylindrical bush 49 is fitted in the bush fitting hole 47. The bush 49 has the flat surfaces of the bush 49 facing each other, The both sides of the blade 43 of the piston 44 are slidably sandwiched by the flat surface of the bush 49. The cylinder chamber 48 is divided into two chambers by the piston 44. In FIG. 3 (b), in the chamber on the right side of the blade 43, the suction port 50 opens to the inner peripheral surface of the cylinder chamber 48, and the suction chamber 51 Is forming. On the other hand, in FIG. 3B, in the chamber on the left side of the blade 43, a discharge port (not shown) opens on the inner peripheral surface of the cylinder chamber 48 to form a discharge chamber 52.
[0022] 次に、圧縮機 21の動作について、図 3 (a)〜(d)に基づいて説明する。まず、図 3 ( a)に示す状態から、偏心部 45が駆動軸 41の周りに偏心回転し、偏心部 45に嵌合し たローラ 42が、ローラ 42の外周面をシリンダ室 48の内周面に接して公転する。通常 の場合、圧縮機 21は、水平に配置され、ローラ 42は水平面内を公転する。ローラ 42 がシリンダ室 48内で公転するに伴って、ブレード 43は両側面をブッシュ 49によって 保持されて進退動する。そうすると、吸入口 50から、低圧のガス冷媒を吸入室 51〖こ 吸入しながら(図 3 (b)参照)、吐出室 52で高圧に圧縮して図示しない吐出口から吐 出する(図 3 (c)〜 (a)参照)。また、高圧のガス冷媒には潤滑油としての合成油が混 合されており、圧縮機 21が圧縮動作すると、圧縮機 21内部の摺動面 (例えばローラ 42の内周面と偏心部 45の外周面、ローラ 42の外周面とシリンダ室 48の内周面など) 力 冷媒に混合された潤滑油によって潤滑される。  Next, the operation of the compressor 21 will be described based on FIGS. 3 (a) to 3 (d). First, from the state shown in FIG. 3 (a), the eccentric part 45 rotates eccentrically around the drive shaft 41, and the roller 42 fitted to the eccentric part 45 makes the outer peripheral surface of the roller 42 the inner periphery of the cylinder chamber 48. Revolves in contact with the surface. In a normal case, the compressor 21 is disposed horizontally and the roller 42 revolves in a horizontal plane. As the roller 42 revolves in the cylinder chamber 48, the blade 43 moves forward and backward while being held by the bushes 49 on both sides. Then, while suctioning low-pressure gas refrigerant from the suction port 50 (see FIG. 3 (b)), it is compressed to high pressure in the discharge chamber 52 and discharged from a discharge port (not shown). c) to (a)). Synthetic oil as a lubricating oil is mixed in the high-pressure gas refrigerant, and when the compressor 21 performs a compression operation, the sliding surface inside the compressor 21 (for example, the inner peripheral surface of the roller 42 and the eccentric portion 45 (Outer peripheral surface, outer peripheral surface of roller 42, inner peripheral surface of cylinder chamber 48, etc.) Force Lubricated with lubricating oil mixed in refrigerant.
[0023] (B)マフラー  [0023] (B) Muffler
マフラー 26は、マフラー本体 26aとフィルタ 26bとで構成される。マフラー本体 26a は、ガス冷媒管 29の管内径よりも大径の管内径を有する筒状部品力もなる。圧縮機 21の側方に設けられるマフラー 26は、図 4のように、マフラー本体 26aの上方に入口 管 12を、下方に出口管 13を取り付けている。入口管 12と出口管 13とはガス冷媒管 2 9の一部である。そして、入口管 12と出口管 13との間に、マフラー本体 26a内を横断 する半球面状のフィルタ 26bが取り付けられている。フィルタ 26bは、上面視の外形 がマフラー本体 26aの内径と一致している。また、フィルタ 26bは、蒸発器 24側から 圧縮機 21側に向力つて流れる冷媒中の異物を捕集している。ここで、ガス冷媒は、 マフラー 26の上方の入口管 12から流入し、フィルタ 26bを通過して異物を除去され、 マフラー 26の下方の出口管 13より圧縮機 21の吸入側へ流入する。  The muffler 26 includes a muffler body 26a and a filter 26b. The muffler body 26a also has a cylindrical part force having a pipe inner diameter larger than the pipe inner diameter of the gas refrigerant pipe 29. As shown in FIG. 4, the muffler 26 provided on the side of the compressor 21 has an inlet pipe 12 attached above the muffler body 26a and an outlet pipe 13 attached below. The inlet pipe 12 and the outlet pipe 13 are part of the gas refrigerant pipe 29. A hemispherical filter 26b that passes through the muffler body 26a is attached between the inlet pipe 12 and the outlet pipe 13. The outer shape of the filter 26b when viewed from above coincides with the inner diameter of the muffler body 26a. Further, the filter 26b collects foreign matters in the refrigerant that flows from the evaporator 24 side to the compressor 21 side. Here, the gas refrigerant flows from the inlet pipe 12 above the muffler 26, passes through the filter 26 b, removes foreign matter, and flows from the outlet pipe 13 below the muffler 26 to the suction side of the compressor 21.
[0024] また、マフラー 26は、圧縮機 21本体の側壁部に一体になるように固定されている。 具体的には、圧縮機 21本体における本体上部に、上方から見て略コの字状に折り 曲げられた板材カもなる取付ブラケット 10が、その中間部を圧縮機 21本体の外周面 に溶接されることで固定されている。取付ブラケット 10の両端部は、圧縮機 21本体か ら突出していて円弧状に広がっており、その一端部にはねじ取付部 10aが、また他端 部には系合孔 10bがそれぞれ形成されている。一方、マフラー 26のマフラー本体 26 aのまわりには、細長い板状の金属力 なる締結バンド 11が巻き付けられ、その一端 部は取付ブラケット 10の系合孔 10bに系合され、他端部は取付ねじ 14により取付ブ ラケット 10のねじ取付部 10aに取り付けられている。そして、取付ねじ 14の締結により 、締結バンド 11を取付ブラケット 10に引き寄せ、締結バンド 11および取付ブラケット 10間にマフラー本体 26aを挟持した状態で、マフラー本体 26aを圧縮機 21本体に 固定している。つまり、マフラー 26は、この取付ブラケット 10と出口管 13とにより上下 の二位置で圧縮機 21本体に一体になるように支持されている。 Further, the muffler 26 is fixed so as to be integrated with the side wall portion of the compressor 21 main body. Specifically, the mounting bracket 10, which is also a plate material bent in a substantially U shape when viewed from above, is welded at its middle to the outer peripheral surface of the compressor 21 body. Has been fixed. Both ends of the mounting bracket 10 protrude from the main body of the compressor 21 and expand in an arc shape. A screw mounting portion 10a is formed at one end thereof, and a system joint hole 10b is formed at the other end. Yes. On the other hand, around the muffler body 26a of the muffler 26, an elongated plate-like fastening band 11 having a metal force is wound, one end of which is engaged with the system fitting hole 10b of the mounting bracket 10, and the other end is attached. The screw 14 is attached to the screw mounting portion 10a of the mounting bracket 10. Then, the fastening band 11 is pulled to the mounting bracket 10 by fastening the mounting screw 14, and the muffler body 26a is fixed to the compressor 21 body with the muffler body 26a being sandwiched between the fastening band 11 and the mounting bracket 10. . In other words, the muffler 26 is supported by the mounting bracket 10 and the outlet pipe 13 so as to be integrated with the main body of the compressor 21 at two upper and lower positions.
[0025] <ヒートポンプ給湯機の動作 > [0025] <Operation of heat pump water heater>
(1)ヒートポンプユニットの動作  (1) Operation of heat pump unit
まず、圧縮機 21を駆動するとともに、循環ポンプ 32を駆動する。  First, the compressor 21 is driven and the circulation pump 32 is driven.
冷媒回路 20側では、圧縮機 21に吸入された低圧のガス冷媒は、圧縮されて高圧 のガス冷媒となる。その後、高圧のガス冷媒は、水熱交 に送られて、循環ボン プ 32によって供給される未加熱水と熱交換を行って凝縮し、高圧の液冷媒となる。そ して、この高圧の液冷媒は、液ガス熱交 に流入し、蒸発器 24において蒸発さ れたガス冷媒と熱交換を行ってさらに冷却され、過冷却状態になる。そして、過冷却 状態になった高圧の液冷媒は、電動膨張弁 23によって圧縮機 21の吸入圧力近くま で減圧されて低圧の気液二相状態の冷媒となって蒸発器 24に送られ、蒸発器 24〖こ おいて室外ファン 27によって供給される室外空気と熱交換を行って蒸発して低圧の ガス冷媒となる。  On the refrigerant circuit 20 side, the low-pressure gas refrigerant sucked into the compressor 21 is compressed to become a high-pressure gas refrigerant. Thereafter, the high-pressure gas refrigerant is sent to the hydrothermal exchange, and is condensed by exchanging heat with unheated water supplied by the circulation pump 32 to become a high-pressure liquid refrigerant. Then, the high-pressure liquid refrigerant flows into the liquid-gas heat exchange, and is further cooled by exchanging heat with the gas refrigerant evaporated in the evaporator 24, and enters a supercooled state. The supercooled high-pressure liquid refrigerant is depressurized by the electric expansion valve 23 to near the suction pressure of the compressor 21 and is sent to the evaporator 24 as a low-pressure gas-liquid two-phase refrigerant. Heat is exchanged with the outdoor air supplied by the outdoor fan 27 in the evaporator 24 km, and evaporates to become a low-pressure gas refrigerant.
[0026] そして、低圧のガス冷媒は、液ガス熱交 に流入し、水熱交 において 凝縮された液冷媒と熱交換を行ってさらに加熱され、過熱状態になる。この低圧のガ ス冷媒は、マフラー 26に流入し、マフラー 26に流入した低圧のガス冷媒は、再び、 圧縮機 21に吸入される。 (2)タンクユニットの動作 [0026] Then, the low-pressure gas refrigerant flows into the liquid gas heat exchange, is further heated by exchanging heat with the liquid refrigerant condensed in the hydrothermal exchange, and becomes overheated. The low-pressure gas refrigerant flows into the muffler 26, and the low-pressure gas refrigerant that has flowed into the muffler 26 is again sucked into the compressor 21. (2) Operation of tank unit
貯湯タンク 31および循環路 6側では、貯湯タンク 31の底部に設けた取水口 35から 貯留水が流出し、これが循環路 6の熱交換路 61を流通する。このように、循環路 6の 熱交換路 61を流通する未加熱水が、凝縮器として機能している水熱交 によ つて加熱され、(沸き上げられ)、三方弁 39を介して給湯口 36から貯湯タンク 31の上 部に返流される。そしてこのような動作を継続して行うことによって、貯湯タンク 31に 高温の温湯を供給して!/ヽる。  On the hot water storage tank 31 and the circulation path 6 side, the stored water flows out from the intake 35 provided at the bottom of the hot water storage tank 31, and this flows through the heat exchange path 61 of the circulation path 6. In this way, the unheated water flowing through the heat exchange path 61 of the circulation path 6 is heated by the hydrothermal exchange functioning as a condenser (boiling), and the hot water inlet through the three-way valve 39. The water is returned from 36 to the upper part of the hot water storage tank 31. By continuing such an operation, hot hot water is supplied to the hot water storage tank 31!
[0027] ところで、制御部 7は、沸き上げ温度が所定温度以下であることを出湯温度センサ Τ 4が検出すると、その制御信号を受け、循環路 6内の温湯がバイパス用流路 62を循 環するように三方弁 39を切り替える。すなわち、制御部 7は、沸き上げ温度が所定温 度以下である場合に、バイノス運転を行い、所定温度以下の低温の温湯を給湯口 3 6から貯湯タンク 31に返流させずに返水口 37から貯湯タンク 31に返流させる。沸き 上げ温度が低温の場合には、低温の水(温湯)は、貯湯タンク 31の下部側に返流さ れることにより、貯湯タンク 31上部の高温の温湯と混ざらないようになつている。そし て、この沸き上げ温度が所定温度を超えると、制御部 7は、三方弁 39の切換を行い、 バイパス用流路 62を循環させない通常の運転状態にする。つまり、給湯口 36を介し て高温となった温湯を貯湯タンク 31に返流させて、貯湯タンク 31上部の温湯を高温 に維持している。 By the way, when the hot water temperature sensor 出 4 detects that the boiling temperature is equal to or lower than the predetermined temperature, the control unit 7 receives the control signal, and the hot water in the circulation path 6 circulates in the bypass flow path 62. Switch the three-way valve 39 to ring. That is, the control unit 7 performs binos operation when the boiling temperature is equal to or lower than the predetermined temperature, and returns the low temperature hot water below the predetermined temperature from the hot water supply port 36 to the hot water storage tank 31 without returning it to the water return port 37. To return to hot water storage tank 31. When the boiling temperature is low, the low-temperature water (hot water) is returned to the lower side of the hot water storage tank 31 so that it is not mixed with the hot hot water at the upper part of the hot water storage tank 31. When the boiling temperature exceeds a predetermined temperature, the control unit 7 switches the three-way valve 39 so that the normal operation state in which the bypass channel 62 is not circulated is performed. In other words, the hot water having a high temperature is returned to the hot water storage tank 31 through the hot water supply port 36, and the hot water in the upper part of the hot water storage tank 31 is maintained at a high temperature.
[0028] また、制御部 7は、各種温度センサ Τ1〜Τ10からのデータが入力され、これらのデ ータに基づいて、各種の制御を行っている。例えば、出湯温度センサ Τ4で検出され た沸き上げ温度を目標沸き上げ温度とするように、電動膨張弁 23の開度を調整して いる。また、入水温度センサ Τ5の温度が所定温度以上であれば、貯湯タンク 31内の 湯が沸き上がつているとして運転を停止させたり、また、外気温度センサ Τ3の温度に 基づいて、圧縮機 21の運転周波数を制御して、湯加熱能力などを調整したりしてい る。  [0028] Further, the control unit 7 receives data from the various temperature sensors Τ1 to Τ10, and performs various controls based on these data. For example, the opening degree of the electric expansion valve 23 is adjusted so that the boiling temperature detected by the tapping temperature sensor Τ4 becomes the target boiling temperature. If the temperature of the incoming water temperature sensor Τ5 is equal to or higher than the predetermined temperature, the operation is stopped because the hot water in the hot water storage tank 31 is boiling up, or the compressor 21 is operated based on the temperature of the outside air temperature sensor Τ3. The hot water heating capacity is adjusted by controlling the operation frequency.
<特徴 >  <Features>
(1)  (1)
このヒートポンプ給湯機 1では、アキュムレータの代わりに冷媒液溜め機能を有さな ヽマフラー 26を設置することにより、冷媒回路 20に余剰冷媒が発生しな 、ようにでき 、圧縮機 21が吸入ガス不足になることを防ぐことができる。また、圧縮機 21の近傍に おける騒音発生を抑制させることができる。 This heat pump water heater 1 does not have a refrigerant liquid reservoir function instead of an accumulator. By installing the muffler 26, it is possible to prevent excessive refrigerant from being generated in the refrigerant circuit 20, and it is possible to prevent the compressor 21 from running out of suction gas. Moreover, noise generation in the vicinity of the compressor 21 can be suppressed.
[0029] (2) [0029] (2)
このヒートポンプ給湯機 1では、マフラー 26と圧縮機 21とを一体になるように固定す ることにより、圧縮機 21の振動を抑制することができる。このため、圧縮機 21における 騒音発生を抑制させることができる。  In this heat pump water heater 1, vibration of the compressor 21 can be suppressed by fixing the muffler 26 and the compressor 21 so as to be integrated. For this reason, noise generation in the compressor 21 can be suppressed.
(3)  (3)
このヒートポンプ給湯機 1では、マフラー本体 26aの内部に備えられたフィルタ 26b により、蒸発器 24力も圧縮機 21に向力つて流れる冷媒中の異物を捕集している。ま た、フィルタ 26bが備えられているマフラー本体 26aは、入口管 12の流路断面積より も大きい流路断面積を有しているため、フィルタ 26bの流路断面積を広くすることが できる。  In the heat pump water heater 1, foreign matter in the refrigerant that flows while the evaporator 24 force is also directed toward the compressor 21 is collected by a filter 26 b provided inside the muffler body 26 a. In addition, the muffler body 26a provided with the filter 26b has a flow passage cross-sectional area larger than the flow passage cross-sectional area of the inlet pipe 12, so that the flow passage cross-sectional area of the filter 26b can be widened. .
[0030] このため、冷媒中の異物が冷媒回路 20内を循環することを防ぐことができ、各機器 の損傷または各機器の能力低下が異物によって引き起こされることを防ぐことができ る。また、フィルタ 26bにおける圧力損失の増加を抑えることができる。  [0030] For this reason, it is possible to prevent foreign matters in the refrigerant from circulating in the refrigerant circuit 20, and it is possible to prevent damage to each device or a decrease in the performance of each device from being caused by the foreign matter. Further, an increase in pressure loss in the filter 26b can be suppressed.
(4)  (Four)
このヒートポンプ給湯機 1では、マフラー 26は、縦に配置され、上部から低圧のガス 冷媒を取り入れ、下部力 圧縮機 21へ流出させている。  In this heat pump water heater 1, the muffler 26 is arranged vertically and takes in a low-pressure gas refrigerant from the upper part and flows it out to the lower force compressor 21.
このため、低外気温時などに、液冷媒がガス冷媒に混入して、マフラー 26内に流 入してくる場合においても、液冷媒が溜まりにくい構造となり、冷媒回路 20中に充填 されている冷媒を効率よく使用することができる。このため、圧縮機 21の吸入ガス不 足を抑制でき、使用冷媒を低減することができる。  For this reason, even when the liquid refrigerant is mixed into the gas refrigerant and flows into the muffler 26 at a low outside temperature, the liquid refrigerant does not collect easily and is filled in the refrigerant circuit 20. The refrigerant can be used efficiently. For this reason, a shortage of intake gas in the compressor 21 can be suppressed, and the refrigerant used can be reduced.
[0031] (5) [0031] (5)
このヒートポンプ給湯機 1では、液ガス熱交 を備えることで、圧縮機 21に送 られる冷媒ガスを過熱状態として湿り圧縮や液圧縮を防止することができる。これ〖こよ り、圧縮機 21の内圧の異常上昇を抑えることができ、圧縮機 21の損傷を防ぐことが できる。また、蒸発器 24に送られる液冷媒の過冷却度を大きくすることにより、液冷媒 管 28でのフラッシュガスの発生を防止することができる。これにより、電動膨張弁 23 の能力の低下を防ぐことができる。 In this heat pump water heater 1, by providing liquid gas heat exchange, the refrigerant gas sent to the compressor 21 can be overheated to prevent wet compression or liquid compression. Thus, an abnormal increase in the internal pressure of the compressor 21 can be suppressed, and damage to the compressor 21 can be prevented. In addition, by increasing the degree of supercooling of the liquid refrigerant sent to the evaporator 24, the liquid refrigerant The generation of flash gas in the tube 28 can be prevented. Thereby, the fall of the capability of the electric expansion valve 23 can be prevented.
(6)  (6)
このヒートポンプ給湯機 1では、第 1熱交換器として、水熱交換器 22を使用しており 、冷媒と水とを熱交換させることにより、水を加熱して、温湯を得ている。  In this heat pump water heater 1, the water heat exchanger 22 is used as the first heat exchanger, and water is heated by heat exchange between the refrigerant and the water to obtain hot water.
[0032] したがって、このようなヒートポンプ給湯機 1の場合においても、余剰冷媒を冷媒回 路 20から排除させ、圧縮機 21の吸入ガス不足を防ぐことができる。また、圧縮機 21 の近傍における騒音発生を抑制させることができる。 Therefore, even in the case of such a heat pump water heater 1, excess refrigerant can be removed from the refrigerant circuit 20, and a shortage of intake gas in the compressor 21 can be prevented. In addition, noise generation in the vicinity of the compressor 21 can be suppressed.
<変形例>  <Modification>
以上にこの発明の具体的な実施の形態について説明したが、この発明は上記形態 に限定されるものではなぐこの発明の範囲内で種々変更して実施することができる。  Although specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention.
(1)  (1)
上記実施形態では、冷凍装置として、ヒートポンプ給湯機としたが、これに限らず、 マルチ式空調機器、ルームエアコン、セントラル式空調機器などの空調機器であって ちょい。  In the above-described embodiment, the heat pump water heater is used as the refrigeration apparatus. However, the refrigeration apparatus is not limited to this, and may be an air conditioner such as a multi-type air conditioner, a room air conditioner, or a central air conditioner.
[0033] (2) [0033] (2)
上記実施形態では、ローラ 42とブレード 43とが一体に形成されて ヽるスイング式の 圧縮機 21を用いているが、図 5のように、ブレードに相当するべーン 43aとローラ 42a とが別体となっており、ベーン 43aがべーン溝 47a内に設けられたスプリング 53によ つてローラ 42a側に付勢され、先端が常にローラ 42の外周面に接触した状態で、駆 動軸 41の回転に伴ってベーン溝 47a内を進退するように構成されているロータリー 式の圧縮機であってもよい。  In the above embodiment, the swing type compressor 21 in which the roller 42 and the blade 43 are integrally formed is used. However, as shown in FIG. 5, the vane 43a and the roller 42a corresponding to the blade are Separately, the drive shaft is driven with the vane 43a urged toward the roller 42a by the spring 53 provided in the vane groove 47a and the tip always in contact with the outer peripheral surface of the roller 42. It may be a rotary type compressor configured to advance and retreat in the vane groove 47a with the rotation of 41.
(3)  (3)
上記実施形態では、貯湯タンク 31を有するものであつたが、正常の沸き上げ運転 において、水熱交換器 22にて構成される熱交換路 61に未加熱水が流入して、この 熱交換路 61を流れる際に加熱されて、高温水がこの熱交換路 61から流出するもの であればょ 、ので、貯湯タンク 31を有さな!/、ものであってもよ!/、。  In the above embodiment, the hot water storage tank 31 is provided. However, in normal boiling operation, unheated water flows into the heat exchange path 61 constituted by the hydrothermal exchanger 22, and this heat exchange path If it is heated as it flows through 61 and high-temperature water flows out of this heat exchange path 61, it does not have a hot water storage tank 31!
[0034] (4) 上記実施形態では、温度の検出手段をサーミスタとしていたが、サーミスタに限るも のではない。 [0034] (4) In the above embodiment, the temperature detecting means is a thermistor, but the temperature detecting means is not limited to the thermistor.
(5)  (Five)
上記実施形態では、使用する冷媒として、炭酸ガスとしていたが、炭酸ガスに限ら ずに、エチレンやエタン、酸ィ匕窒素などの超臨界で使用する冷媒であってもよぐさら には、超臨界で使用する冷媒ではなぐジクロロジフルォロメタン (R— 12)やクロロジ フルォロメタン (R— 22)のような冷媒を使用してもょ 、。  In the above embodiment, carbon dioxide gas is used as the refrigerant to be used. However, the refrigerant is not limited to carbon dioxide gas, and may be a supercritical refrigerant such as ethylene, ethane, or acid-nitrogen. Use refrigerants such as dichlorodifluoromethane (R-12) and chlorodifluoromethane (R-22) that are not used in critical conditions.
産業上の利用可能性 Industrial applicability
本発明に係る冷凍装置は、圧縮機の吸入ガス不足や圧縮機の近傍における騒音 発生を抑制させることができ、ロータリー式圧縮機 (スイング式を含む)を備える冷凍 装置などとして有用である。  The refrigerating apparatus according to the present invention can suppress the intake gas shortage of the compressor and the generation of noise in the vicinity of the compressor, and is useful as a refrigerating apparatus including a rotary compressor (including a swing type).

Claims

請求の範囲 The scope of the claims
[1] 冷媒を圧縮するロータリー式の圧縮機 (21)と、  [1] A rotary compressor (21) that compresses the refrigerant;
前記圧縮機で圧縮された高温高圧の前記冷媒を第 1流体と熱交換させる第 1熱交 (22)と、  A first heat exchange (22) for exchanging heat between the high-temperature and high-pressure refrigerant compressed by the compressor and the first fluid;
前記第 1熱交換器内で凝縮された前記冷媒を減圧する膨張機構 (23)と、 前記膨張機構で減圧された前記冷媒を第 2流体と熱交換させる第 2熱交 (24) と、  An expansion mechanism (23) for decompressing the refrigerant condensed in the first heat exchanger; a second heat exchange (24) for exchanging heat between the refrigerant decompressed by the expansion mechanism and a second fluid;
前記第 2熱交^^と前記圧縮機との間に配置され、前記冷媒の流れの脈動を低減 するマフラー(26)と、  A muffler (26) disposed between the second heat exchanger ^^ and the compressor to reduce pulsation of the refrigerant flow;
を備える冷凍装置(1)。  A refrigeration apparatus comprising (1).
[2] 前記マフラーは、前記圧縮機の側方に配置され、前記圧縮機の側壁部に一体にな るように固定されている、  [2] The muffler is disposed on a side of the compressor and fixed so as to be integrated with a side wall portion of the compressor.
請求項 1に記載の冷凍装置( 1)。  The refrigeration apparatus (1) according to claim 1.
[3] 前記マフラーは、 [3] The muffler is
前記第 2熱交換器と前記圧縮機とを接続するガス冷媒管 (29)の流路断面積よりも 大き 、流路断面積を有する筒状のマフラー本体部(26a)と、  A cylindrical muffler main body (26a) having a flow path cross-sectional area larger than the flow cross-sectional area of the gas refrigerant pipe (29) connecting the second heat exchanger and the compressor;
前記マフラー本体部の内部に支持され、前記第 2熱交^^から前記圧縮機に向か つて流れる冷媒中の異物を捕集するフィルタ部(26b)と、  A filter unit (26b) that is supported inside the muffler main body and collects foreign substances in the refrigerant flowing from the second heat exchanger toward the compressor;
を有する、  Having
請求項 1または 2に記載の冷凍装置(1)。  The refrigeration apparatus (1) according to claim 1 or 2.
[4] 前記マフラーは、前記第 2熱交 力 流出した低圧のガス冷媒を前記マフラーの 上部から取り入れ、前記マフラーの下部から前記圧縮機へ流出させる、 [4] The muffler takes in the low-pressure gas refrigerant that has flowed out of the second heat exchange from the upper part of the muffler, and causes the lower part of the muffler to flow out to the compressor.
請求項 1から 3の 、ずれかに記載の冷凍装置(1)。  The refrigeration apparatus (1) according to any one of claims 1 to 3.
[5] 前記第 1熱交換器から流出して前記膨張機構に流入する液冷媒と、前記第 2熱交 カゝら流出して前記圧縮機に流入するガス冷媒との熱交換を行う液ガス熱交[5] Liquid gas that exchanges heat between the liquid refrigerant that flows out of the first heat exchanger and flows into the expansion mechanism, and the gas refrigerant that flows out of the second heat exchanger and flows into the compressor Heat exchange
(25)をさらに備える、 (25)
請求項 1から 4の 、ずれかに記載の冷凍装置(1)。  The refrigeration apparatus (1) according to any one of claims 1 to 4.
[6] 前記第 1流体は、水であり、 前記第 1熱交換器は、前記冷媒を前記水と熱交換させることで前記水を加熱する 給湯用熱交換器である、 [6] The first fluid is water, The first heat exchanger is a hot water supply heat exchanger that heats the water by exchanging heat between the refrigerant and the water.
請求項 1から 5のレ、ずれかに記載の冷凍装置(1)。 The refrigeration apparatus (1) according to claim 1, wherein the refrigeration apparatus (1).
PCT/JP2007/056711 2006-03-31 2007-03-28 Heat pump hot water supplier WO2007114187A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07740149.5A EP2009371B1 (en) 2006-03-31 2007-03-28 Heat pump hot water supplier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-099382 2006-03-31
JP2006099382A JP2007271211A (en) 2006-03-31 2006-03-31 Refrigerating device

Publications (1)

Publication Number Publication Date
WO2007114187A1 true WO2007114187A1 (en) 2007-10-11

Family

ID=38563455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056711 WO2007114187A1 (en) 2006-03-31 2007-03-28 Heat pump hot water supplier

Country Status (3)

Country Link
EP (1) EP2009371B1 (en)
JP (1) JP2007271211A (en)
WO (1) WO2007114187A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645021A (en) * 2011-03-16 2012-08-22 江苏浴普太阳能有限公司 Waste heat recovery system for compressor of heat pump water heater
WO2014115616A1 (en) * 2013-01-28 2014-07-31 株式会社日立産機システム Waste-heat recovery system in oil-cooled gas compressor
US10578339B2 (en) 2013-01-28 2020-03-03 Hitachi Industrial Equipment Systems Co., Ltd. Waste-heat recovery system in oil-cooled gas compressor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048466A (en) * 2008-08-21 2010-03-04 Daikin Ind Ltd Refrigerating device
JP5749475B2 (en) * 2010-11-16 2015-07-15 三菱電機株式会社 Heat pump type hot water supply outdoor unit
JP5630421B2 (en) * 2011-11-04 2014-11-26 三菱電機株式会社 Heat pump hot water source
JP2018179352A (en) * 2017-04-07 2018-11-15 パナソニックIpマネジメント株式会社 Water heater, and binary hot water generation unit
JP6841350B2 (en) 2017-12-26 2021-03-10 三菱電機株式会社 Heat pump hot water supply outdoor unit
KR102524670B1 (en) * 2019-09-30 2023-05-03 주식회사 경동나비엔 Filter structural assembly and water heater with the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244181A (en) * 1988-03-25 1989-09-28 Mitsubishi Electric Corp Enclosed compressor
JP2004293805A (en) * 2003-03-25 2004-10-21 Daikin Ind Ltd Air conditioner
JP2005127711A (en) * 2001-06-11 2005-05-19 Daikin Ind Ltd Refrigerant circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6220050B1 (en) * 1998-11-24 2001-04-24 Tecumseh Products Company Suction accumulator
JP4254532B2 (en) * 2003-12-26 2009-04-15 ダイキン工業株式会社 Heat pump type water heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244181A (en) * 1988-03-25 1989-09-28 Mitsubishi Electric Corp Enclosed compressor
JP2005127711A (en) * 2001-06-11 2005-05-19 Daikin Ind Ltd Refrigerant circuit
JP2004293805A (en) * 2003-03-25 2004-10-21 Daikin Ind Ltd Air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645021A (en) * 2011-03-16 2012-08-22 江苏浴普太阳能有限公司 Waste heat recovery system for compressor of heat pump water heater
WO2014115616A1 (en) * 2013-01-28 2014-07-31 株式会社日立産機システム Waste-heat recovery system in oil-cooled gas compressor
JP2014145273A (en) * 2013-01-28 2014-08-14 Hitachi Industrial Equipment Systems Co Ltd Exhaust heat recovery system in oil-cooled gas compressor
US10041698B2 (en) 2013-01-28 2018-08-07 Hitachi Industrial Equipment Systems Co., Ltd. Waste-heat recovery system in oil-cooled gas compressor
US10578339B2 (en) 2013-01-28 2020-03-03 Hitachi Industrial Equipment Systems Co., Ltd. Waste-heat recovery system in oil-cooled gas compressor
US11300322B2 (en) 2013-01-28 2022-04-12 Hitachi Industrial Equipment Systems Co., Ltd. Waste-heat recovery system in oil-cooled gas compressor
US11821657B2 (en) 2013-01-28 2023-11-21 Hitachi Industrial Equipment Systems Co., Ltd. Waste-heat recovery system in oil-cooled gas compressor

Also Published As

Publication number Publication date
EP2009371A4 (en) 2015-11-18
EP2009371A1 (en) 2008-12-31
JP2007271211A (en) 2007-10-18
EP2009371B1 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
WO2007114187A1 (en) Heat pump hot water supplier
CN102326039B (en) Heat pump system
CN103250012B (en) binary refrigeration cycle device
CN104520657B (en) Binary refrigeration device
CN108458534B (en) Refrigerator and operation method thereof
CN102224383B (en) Refrigeration cycle device
EP1662212A2 (en) Air conditioning system and method for controlling the same
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
CN104185765B (en) Refrigerating plant
CN103968618A (en) Air conditioning refrigeration system
WO2006120922A1 (en) Refrigeration cycle system
CN102725599A (en) Heat pump system
JP4363997B2 (en) Refrigeration equipment
CN103998875B (en) Refrigerating plant
CN101191679A (en) Cooling device using non-azeotropic mixed refrigerant
CN102725596B (en) Heat pump system
CN103534541A (en) Refrigerating cycle device
JP2010243111A (en) Heat pump type water heater
EP2770278B1 (en) Water heater
EP2770277B1 (en) Water heater
JP5367059B2 (en) Dual refrigeration equipment
JP2005147610A (en) Heat pump water heater
WO2006112157A1 (en) Refrigeration cycle device and method of operating the same
JP2005214550A (en) Air conditioner
CN204553165U (en) Compressor and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007740149

Country of ref document: EP